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Abstract

A priority for machine learning in healthcare and other high stakes applications is to enable
end-users to easily interpret individual predictions. This opinion piece outlines recent
developments in interpretable classifiers and methods to open black box models.

There is much discussion about opening black boxes, partic-
ularly in relation to predictive models that involve machine
learning [1]. Some funding schemes go as far as requiring artifi-
cial intelligence models to inform about possible failures, as part
of the requirement for technical robustness in high stakes appli-
cations. This has led to frameworks to define testable standards
for the interpretability of predictive models [2].

In medicine in particular, interpretable models are important,
not least because an understanding of the contributing factors
towards a diagnosis can be as insightful as the quantification
of the diagnostic prediction itself, but also because this level of
transparency is essential for building trust in the model [3]. A
typical example of good practice in explaining machine learning
models in medicine is the application of Shapley values during
model validation, which shows ‘how a domain understanding of
machine learning models is straightforward to establish’ [4].

The need for explanation is equally as pronounced when deep
learning is applied to the classification of medical images. A
rigorous study of Covid-19 detection from lung CTs showed
that high performance metrics could be achieved when the pre-
dictive models focused on artefacts such as annotations in the
images and even the support structure on which the person
was laid out for the CT. Explanation methods were central to
identifying the bias in the models due to spurious effects that
happened to correlate with class membership in the data set,
despite good practice by splitting the data into three groups for
model inference, optimisation, and performance estimation [5].
This paper found that ‘very small increases in validation accu-
racy can correspond to drastic changes in the concepts learned
by the network … it can mean overcoming a bias introduced by
the artifacts.’
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In many computer-based decision support applications,
clinical attributes take the form of tabular data. Being so
prevalent, not just in medicine but also for risk models in other
domains ranging from banking to insurance, this class of data
deserves particular focus and it is the subject of the rest of this
piece. For tabular data specifically, one way around the issue of
transparency is with models that are interpretable by design [6].

Interpretability by design has long been known to be possible
with linear-in-the-parameters models and with decision trees,
albeit at the expense of classification performance. Although
rule-based predictors [7] and risk scores derived from logistic
regression models [8] have been effective to aid decision mak-
ing in clinical practice and indeed have performance levels that
are competitive even against modern approaches such as deep
learning [9] there are significant shortcomings. In order to cope
with non-linear dependence on clinical attributes with linear
models, input variables are frequently discretised. An example
of this would be to group age intervals into multiple categories.
However, if age bands are for instance by decades, this would
treat someone aged 39 as more similar to a 30-year-old than
to a 40-year-old. Discretisation will mask variation within each
group and, furthermore, it can lead to considerable loss of
power and residual confounding [10].

One way to manage non-linearities with interpretable models
is to fit a Generalised Additive Model (GAM) estimating the
dependence on individual variables with splines [11]. This class
of flexible models is in fact a gold standard for interpretability
[12]. They are self-explaining [13] and new formulations are
emerging which do not require careful tuning of spline param-
eters but replace them with machine learning modules. In the
case of Explainable Boosting Machines [14] the modules are
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FIGURE 1 Schematic of the mapping of black box classifiers into Generalised Additive Models for tabular data.

random forests and gradient boosted trees, whereas Neural
Additive Models [15] have the structure of a self-explaining
neural network (SENN). Both are bespoke models and esti-
mate the component functions of the GAM in tandem with
inferring an optimal sparse model structure. Along with linear
and logistic regression, GAMs lend themselves to practical
implementation in the form of nomograms, which are already
familiar to clinicians for visualisation of risk scores [16, 17].

But what about existing machine learning models?
A key to opening probabilistic black box classifiers with-

out sacrificing predictive performance is an old statistical tool,
Analysis of Variance (ANOVA). It is well known that ANOVA
decompositions can express any function as an exact sum
of functions of fewer variables, comprising main effects for
individual variables together with interaction terms [18]. This
is a natural way to derive additive functions with gradually
increasing complexity. The derived functions are non-linear and
mutually orthogonal, ensuring that the terms involving several
variables do not overlap with the information contained in the
simpler component functions.

All black box models generate multivariate response func-
tions and hence can be expressed in the form of GAMs using
ANOVA. For probabilistic models, this can be applied to the
logit of the predicted probabilities. Selecting univariate and
bivariate additive terms provide interpretability. The black box
is then explained by replacing the original data columns with the
ANOVA terms and selecting the most informative components
with an appropriate statistical model, such as the Least Absolute
Shrinkage and Selection Operator [19].

There are two measures that can be applied in ANOVA, both
related to the commonly used partial dependence functions.
The Dirac measure corresponds to a cut across the predicted
surface and the Lebesgue measure is an average over the same
surface, sampled over the training data by setting the values of
only the variables in the argument of each component function
and sweeping them across their full range. In practice, the main

difference between the two measures is a small variation in the
models that are selected. This framework is remarkably stable
showing that partial dependence functions, normally used only
for visualisation, work very well for model selection and are
effective for prediction.

Once the black box has been mapped onto a GAM, from
there onwards the two measures yield exactly the same com-
ponent functions. Interestingly, the Shapley additive values,
already used in medicine [4], are exactly the terms in the GAM
expansion [20].

A natural next step is to replicate the interpretable model
derived from the black box by implementing it in the form of
a Generalised Additive Neural Network (GANN) also known
as a SENN. This will ensure that the univariate and bivari-
ate component functions can be further optimised given the
selected structure. Model refinement is possible by a renewed
application of the ANOVA decomposition, this time to sep-
arate and orthogonalise the first- and second-order terms in
the GANN/SENN [20] rather than the original Multi-Layer
Perceptron (MLP). This results in a streamlined model that is
optimised to the final sparse structure. A schematic of the model
inference process is shown in Figure 1.

Second-order terms appear to be sufficient to achieve strong
performance [20] no doubt due to the inherent noise in the
data. Moreover, starting with a black box model, the structure
and form of the original interpretable model is generally very
close to that of the GANN/SENN estimated de novo by re-
initialising and re-training, as are the predictive performances of
the two models [20].

The derived GAMs make clinically plausible predictions
for real-world data and buck the performance-transparency
trade-off even against deep learning [21]. They solve one
of the biggest hurdles for AI by enabling physicians and
other end-users to easily interpret the results of the models.
Arguably, transparency has arrived for tabular data, setting a new
benchmark for the clinical application of flexible classifiers.
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