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ABSTRACT
One of the biggest challenges arising from modern large-scale pulsar surveys is the number of
candidates generated. Here, we implemented several improvements to the machine learning
(ML) classifier previously used by the LOFAR Tied-Array All-Sky Survey (LOTAAS) to
look for new pulsars via filtering the candidates obtained during periodicity searches. To
assist the ML algorithm, we have introduced new features which capture the frequency and
time evolution of the signal and improved the signal-to-noise calculation accounting for broad
profiles. We enhanced the ML classifier by including a third class characterizing RFI instances,
allowing candidates arising from RFI to be isolated, reducing the false positive return rate. We
also introduced a new training data set used by the ML algorithm that includes a large sample
of pulsars misclassified by the previous classifier. Lastly, we developed an ensemble classifier
comprised of five different Decision Trees. Taken together these updates improve the pulsar
recall rate by 2.5 per cent, while also improving the ability to identify pulsars with wide pulse
profiles, often misclassified by the previous classifier. The new ensemble classifier is also able
to reduce the percentage of false positive candidates identified from each LOTAAS pointing
from 2.5 per cent (∼500 candidates) to 1.1 per cent (∼220 candidates).

Key words: pulsars: general – methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

Since the discovery of the first pulsar (Hewish et al. 1968), various
large-scale surveys have been carried out to search for more of
them, in order to characterize their Galactic population and to use
them as physical probes (see Lyon et al. 2016 for a full list of
pulsar surveys conducted). While there has been a resurgence in
finding pulsars via detection of their single pulses, the majority
of the pulsars discovered so far, were found through periodicity
searches using a fast Fourier transform based method. One of the
biggest issues faced by most modern pulsar surveys, is the number
of periodicity search candidates produced by this approach. Early
pulsar surveys by contrast produced relatively few candidates. For
example the 2nd Molonglo survey produced only ∼2500 candidates
in total (Manchester et al. 1978). However, as search techniques
and telescope sensitivity improves, more and more candidates are
generated, including a large number of false positive candidates
generated by either noise or radio frequency interference (RFI).
Modern surveys such as the Green Bank Northern Celestial Cap
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pulsar survey ( Stovall et al. 2014) have produced more than 1.2
million candidates. It is not feasible to visually examine such a large
number of candidates as it is a time consuming and error-prone
process (Eatough et al. 2010). Hence, various techniques have been
developed to address the issue of candidate numbers.

One of the earliest methods used to reduce the number of candi-
dates to be examined, involved introducing a cut-off based on the
signal-to-noise ratio (S/N) of a pulsar candidate in the spectral do-
main (Stokes et al. 1986). Those candidates with an S/N below the
cut-off were considered likely to be noise, whilst those above the
cut-off were highlighted for investigation. This method was used
by the Arecibo Phase II survey, which reduced the number of can-
didates to a managable ∼5000. As candidate numbers grew, more
sophisticated methods were developed to filter them. For instance,
Faulkner et al. (2004) developed a graphical suite known as REAPER.
The REAPER tool displayed a visual representation of candidate sets
on a customizable 2D plot. This allowed users to rapidly summa-
rize candidates according to key pulsar characteristics (e.g. S/N, DM
etc.) and custom heuristics. By focusing attention on regions of the
plot most likely to contain real pulsars, promising candidates could
be quickly identified for follow-up analysis. An updated version
known as JREAPER developed by Keith et al. (2009), assigned scores
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based on the aforementioned heuristics, allowing candidates to be
ranked based on the overall score achieved. However, as noted by
Bates et al. (2012), the JREAPER method is biased against candidates
with low S/N, or those having a period that is similar to known
RFI sources. An alternate approach was developed by Lee et al.
(2013), known as the PEACE algorithm, which linearly combines the
scores obtained from six different heuristics in order to rank pulsar
candidates.

Recently, several pulsar surveys have deployed machine learning
(ML) tools to reduce the number of candidates to be inspected
visually (Morello et al. 2014; Lyon 2016; Lyon et al. 2016). The most
common branch of ML used for candidate classification is known as
supervised learning (Mitchell 1997). In supervised learning, distinct
subsets of candidates are labelled as pulsars and non-pulsars to
form what is called a training set. A set of variables known as
‘features’ are then extracted from the candidates, and used by a
ML algorithm to derive a mathematical model that can accurately
separate candidates into their respective classes. The classification
model produced by the algorithm is then used to search for pulsars
by classifying unlabelled candidates collected during a survey.

The first application of ML to candidate filtering was accom-
plished by Eatough et al. (2010), for a reanalysis of the Parkes
Multibeam Pulsar Survey data ( Manchester et al. 2001). In that
work, 12 numerical features inspired by JREAPER were extracted from
a sample of candidates, and used to train a form of artificial neural
network (ANN) known as the multilayer perceptron (Bishop 1995).
This yielded a binary classifier able to assign ‘pulsar’ and ‘non-
pulsar’ labels to candidates. Bates et al. (2012) later improved upon
the classification process by extracting 10 extra features from the
candidates collected during the High Time Resolution Universe
Pulsar Survey (HTRU, Keith et al. 2010) to train a new classifier.
The SPINN system developed by Morello et al. (2014) further built
upon this work and developed an ANN system that uses six features
extracted from candidates obtained from the HTRU-medlat survey.
A different approach was followed by Zhu et al. (2014), who ex-
plored the selection problem as a visual learning task by developing
the Pulsar Image-based Classification System (PICS). PICS takes
the diagnostic plots generated for each candidate obtained from the
PALFA survey (Cordes et al. 2006; Lazarus et al. 2015), and feeds
them through a combination of several different ML algorithms to
produce an image recognition classifier. More recently, Yao, Xin &
Guo (2016) addressed the issue of class imbalance between pulsars
and non-pulsars examples in training data, by building classifiers so-
ley for the pulsar (positive) class. While Bethapudi & Desai (2017)
explored the potential of several newer ML algorithms for pulsar
classification. Ford (2017) undertook a similar study whilst also
considering the class imbalance.

The LOFAR Tied-Array All-sky Survey (LOTAAS; 2014;
Sanidas et al. in preparation) is an ongoing all-Northern-sky pul-
sar survey conducted using the LOw Frequency ARray (LOFAR;
Stappers et al. 2011; van Haarlem et al. 2013). LOTAAS is a sen-
sitive low-frequency (119–151 MHz) pulsar survey that utilizes the
unique capabilities of phased-array telescopes in order to observe
large areas of the sky for prolonged periods of time (1 h per point-
ing). The current periodicity search pipeline, which is run on by
the Dutch national supercomputer Cartesius,1 produces on average
roughly 20 000 candidates per pointing. More than 1000 such point-
ings have so far been completed, producing more than 20 million
candidates. Since visual inspection of all the survey’s candidates is

1 https://userinfo.surfsara.nl/systems/cartesius

unfeasible on realistic time-scales without a large group of volun-
teers, Lyon et al. (2016) developed a ML classifier to significantly
reduce the vast number of candidates. This is an algorithm which
employs a tree-learning approach (Quinlan 1993), chosen specif-
ically to overcome some of the distributional problems identified
in pulsar data (Lyon et al. 2013, 2014). The classifier, from now
on referred to as LOTAAS classifier 1 (LC1), reduces the number
of candidates to be manually inspected from ∼20 000 to a more
manageable ∼500 per pointing, filtering out ∼97.5 per cent of the
candidates. Testing done on LC1 shows an estimated overall accu-
racy of 96.8 per cent.

Although LC1 is highly successful in identifying pulsars, short-
comings have been found with the data and features used to train
the classifier. We hereby implemented several improvements to the
heuristics and the ML classifier to overcome the issues. This resulted
in the creation of a new classifier, LOTAAS classifier 2 (LC2). In
Section 2, we describe the shortcomings in the classifier model of
LC1. In Section 3, we describe the various improvements made to
the classifier, primarily the introduction of new features and a sep-
arate class of RFI instances. In Section 4, we describe an ensemble
approach of several distinct versions of the classifier used to improve
classification. This approach improved the pulsar recall rate while
reducing the false positive rate (FPR; see the definitions in Table 5).
In Section 5, we discuss the performance of LC2 compared to LC1
on actual LOTAAS data. We conclude in Section 6 by describing
the improvements achieved by LC2, potential future modifications
and summarize how the new system has been implemented within
the survey search pipeline.

2 ISSUES WI TH LOTAAS CLASSI FI ER 1

LC1 utilizes eight features obtained from the integrated pulse pro-
file (Profμ, Profσ , ProfS, Profk) and the DM–χ2

red plot (DMμ, DMσ ,
DMS, DMk). These are plots A and D of Fig. 1. The mathematical
description of the features used is shown in Table 1. The classifier
model was built using a training set obtained by Cooper (2017)
and a decision tree algorithm (Quinlan 1993). The tree algorithm
examines the distribution of each feature variable. It uses an opti-
mization function to find the feature variable that yields the ‘best’
class separation. Each time an optimal feature is found, a numerical
split-point over the feature that maximizes class separation is iden-
tified. The training data are then split into two subsets based on the
numerical split-point found. A single split-point over one feature
is typically not very useful. However, many splits recursively com-
bined partition the data into smaller and smaller groups, leading to
more complex, and more accurate decision paths. Once constructed,
the classifier is able to label each candidate as either a pulsar or a
non-pulsar. An illustration of a decision tree is shown in Fig. 2.

Despite the success of LC1 in identifying many new pulsars
(see Sanidas et al. in preparation and the LOTAAS website2 for
more details on the discoveries), it was suspected and subsequently
verified through a series of tests, that some pulsars, particularly those
with wide integrated pulse profiles, either intrinsically or due to large
scattering tails, were regularly missed during classification (see
Fig. 3 for the profiles of the pulsars that were misclassified). This
was confirmed by folding the data from the survey pointings directed
at positions of known pulsars with available rotational ephemerides.
We then visually inspected the candidates from these pointings,
and found that these pulsars were detected by the LOTAAS search

2 http://www.astron.nl/lotaas
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Figure 1. The diagnostic plot of a pulsar detected by the LOTAAS search pipeline obtained using the pulsar searching suite PRESTO (Ransom 2001; Ransom,
Eikenberry & Middleditch 2002). The plot shows, A: the integrated pulse profile of the pulsar, B: pulse intensity (grey-scale) as a function of pulse phase and
time, C: pulse intensity as a function of frequency sub-band and pulse phase, D: DM versus reduced χ2, E: period versus reduced χ2, F: period derivative
versus reduced χ2 plots and G: A heatmap of the reduced χ2 of the pulsar over a range of period and period-derivative values. The calculation of reduced
χ2 is described in Section 3.1. A pulsar will exhibit a peak in the integrated pulse profile, and the peak will generally be consistent over time, and across the
sub-bands, while showing a well-defined maximum value on the reduced χ2 plots.

Table 1. The four features extracted from both the inte-
grated pulse profile and the DM–χ2

red plot by Lyon et al.
(2016). Here, n is either the total number of DM values or
pulse phase bins plotted and y represents either the χ2

red
or the pulse intensity values.

Feature Definition

Mean, μ 1
n

∑n
i=1 yi

Standard deviation, σ

√ ∑ n
i=1(yi−μ)2

n−1

Skewness, S
1
n

∑ n
i=1(yi−μ)3

(
√

1
n

∑ n
i=1(yi−μ)2)3

Excess kurtosis, k
1
n

∑ n
i=1(yi−μ)4

( 1
n

∑ n
i=1(yi−μ)2)2 − 3

pipeline, but were incorrectly labelled by the classifier as non-
pulsars.

While the presence of misclassified pulsars is concerning, they
only represent roughly 3 per cent of all the different known pulsars
in the survey. Although they appear to have wide profiles it was not
clear from the current features why they were missed. However, the
scatter plot in Fig. 4 suggests that it is due to class (i.e. pulsars and
non-pulsars) inseparability. Fig. 4 shows the distribution of pulsars
and non-pulsars in the space of the two most separable features:
profile skewness (ProfS) and kurtosis of the DM–χ2

red curve (DMk).
We found that ProfS is able to separate a large number of pulsars

from non-pulsars. As most of the pulsars have a narrow integrated
pulse profile, there is no emission at the majority of pulse phases.
This gives rise to the high ProfS values as the distribution of the
intensity values are highly skewed towards the positive side.

However, some pulsars with low ProfS are mixed deeply within
the non-pulsar space. These are found to be the pulsars with wide
integrated pulse profiles, either intrinsic to the pulsar or due to
having large scattering tails. The scatter plot suggests that DMk is
unable to separate these pulsars from the non-pulsars. A study of
the remaining features also revealed that they are unable to assist
in separating these pulsars from non-pulsars. Hence, to derive an
improved class separation in these dense regions, we needed to
explore other possible features, as well as possible flaws in the
preprocessing of the data. We also needed to improve the training
data set, by including more pulsar examples that are misidentified by
LC1, as these misclassified examples may assist with classification
in the dense ProfS–DMk region.

3 IMPROVEMENTS TO THE C LASSI FI ER
I M P L E M E N TAT I O N

3.1 Data preprocessing

While we were investigating the cause of classifier error, we no-
ticed that the script used to generate the features from the DM–
χ2

red curve for LC1 contains an error which potentially affects the

MNRAS 474, 4571–4583 (2018)
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Figure 2. An illustration of a binary decision tree classifier. At each node of
the decision tree the ‘best’ feature F = {F1, F2, . . . , Fn} is used to separate
the data by identifying a numerical threshold. After each split-point, the
separated data are re-evaluated to select a new ‘best’ feature to further split
the data, until the tree reaches a decision at the leaf nodes where the data in
each node are assigned a class.

classification process. The PRESTO toolkit, which is used in the
LOTAAS search pipeline, calculates the significance of a signal
by using a χ2 measurement of the deviation of each bin in the
integrated pulse profile from the average. When PRESTO makes its
diagnostic plots it applies a correction to the χ2

red values that takes
into account the effective number of bins used to fold the data for
a particular candidate. However, this was not performed when the
features were generated for LC1. This oversight was rectified when
the features were generated for LC2. Without the correction the
χ2

red values of candidates with short periods, especially millisecond
pulsars, will have a much lower χ2

red value than expected.
Despite applying this correction to the χ2

red values, we suspect
that DM–χ2

red curve is sub-optimal for pulsars with wide integrated
pulse profiles, either intrinsically or due to scattering, and it may
adversely affect the performance of our ML systems. To overcome
this, we decided to use a box car convolution method to measure
the S/N of the pulse (Edwards et al. 2001). First, the integrated
pulse profile is convolved with a box car of various trial sizes to
search for the baseline of the profile (minimum value obtained from
the convolution). This value is then subtracted from the profile. A
second box car convolution is computed to look for the best on-pulse
region (which returns the maximum value of the convolution). The
width of the box car ranges from 3 profile bins to 80 per cent of the

Figure 3. The integrated pulse profiles of the pulsars that were misclassified by the LC1. PSR J0621+1002 has a intrinsically wide integrated pulse profiles and
the others are heavily scattered at LOFAR frequencies. Two periods of the integrated pulse profile are plotted to show the profile more clearly. The amplitudes
of the integrated pulse profiles are in arbitrary units.

MNRAS 474, 4571–4583 (2018)
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Figure 4. Scatter plot of the distribution of a sample of 986 pulsar de-
tections (red) and 1267 non-pulsar detections (black) in the feature space
of the profile skewness (ProfS) and kurtosis of the DM–χ2

red curve (DMk).
The examples of pulsars misclassified by LC1 in Fig. 3 are shown in cyan.
The plot shows that most of the known pulsars can be separated from the
non-pulsars with just ProfS, leaving a small number of pulsars embedded
within the non-pulsars region.

pulse phase. This maximum obtained value is then used to calculate
the S/N of a pulsar:

S/N = max(convolution)√
σ 2

√
nonnoff

n
, (1)

where σ 2 is the variance of the integrated pulse profile, non is the
number of profile bins in the on-pulse region, noff is the number
of profile bins in the off-pulse region, and n is the total number
of profile bins. As the convolution assumes the pulse to have a
top-hat function, and the box car function used has a height of

1/width, a normalization factor,
√

nonnoff
n

is required to correct for

the shape of a real pulse. We then constructed the DM–S/N curve
of each candidate using the method described above, using the
same DM range as the DM–χ2

red curve from the diagnostic plots.
We then compared the performance of two separate test classifiers
using features generated from either the DM–S/N curve or DM–χ2

red

curve. We found that we are able to recover more pulsars using the
features generated from the DM–S/N curve. Hence, we decided to
extract features from the DM–S/N curve, instead of the DM–χ2

red

curve for LC2.
In the LOTAAS pipeline candidates can be folded with different

numbers of profile bins, sub-integrations, and sub-bands depending
on the period of the candidate. However, the different data ranges,
that the candidates have, is problematic because of a basic assump-
tion used in ML. For ML algorithms to work we need the input data
to be independent and identically distributed (i.i.d.; Bishop 2006),
which is violated in this case. We found that the distributions of
the features generated from the pulse intensity as a function of
time and pulse phase, and the pulse intensity as a function of fre-
quency sub-band and pulse phase plots (plots B and C of Fig. 1, see
Section 3.2 on the features generated) are different for candidates
with different numbers of sub-integrations and/or sub-bands. To
overcome this issue for LOTAAS, which like all pulsar surveys of-
ten produces candidates with varying data ranges, we ensured that
the number of sub-bands and sub-integrations for all candidates
are the same. However, for the number of profile bins, due to the
large time resolution (492 µs), candidates with periods less than
50 ms have to be folded with 50 profile bins, as there are a limited

Table 2. The new features extracted from the DM–S/N
curve that was described in Section 3.1. Here, x and
y are the DM and S/N values on the DM–S/N curve,
respectively.

Feature Definition

DMμ′
∑

xy∑
y

DMσ ′

√ ∑
(x−DMμ′ )2y∑

y

DM|S′ | | 1
DM3

σ ′

∑
(x−DMμ′ )3y∑

y
|

DMk′ 1
DM4

σ ′

∑
(x−DMμ′ )4y∑

y
− 3

number of independent time samples. For candidates with periods
of more than 50 ms, 100 profile bins are used to preserve the resolu-
tion of the pulse profile, as long period pulsars often have small duty
cycles that are not resolvable at 50 bins. Although it is advisable to
have separate classifiers for the two types of candidates to preserve
the i.i.d. assumption, we did not split up the data due to the lack of
available pulsar examples in which the period is less than 50 ms.

3.2 New features

In order to improve the performance of the ML classifier, the in-
corporation of additional features to complement those by Lyon
et al. (2016) was also investigated. While inspecting the diagnos-
tic plots of candidates by eye, the two plots commonly used to
identify pulsars, are the pulse intensity as a function of time and
pulse phase, and the pulse intensity as a function of frequency
sub-band and pulse phase plots. A pulsar will generally have a
consistent signal that appears across both plots, aligned in phase
with the peak seen in the pulse profile.3 To look for the presence
of such characteristics, we used a method first described by Bates
et al. (2012). This involves calculating the correlation coefficient
between each individual sub-band and the integrated pulse profile,
as well as between each sub-integration and the integrated pulse
profile. A pulsar should be characterized by larger correlation coef-
ficients in both plots compared to a non-pulsar example. Two lists
of the values of correlation coefficients are computed between all
36 sub-bands and the integrated pulse profile, as well as between all
40 sub-integrations and the integrated pulse profile. We then extract
the features, specified in Table 1, from these lists. This gives us
eight new features.

A second new set of features is obtained for the classifier when
a new method for calculating the statistics of the DM–S/N curve is
applied. The new set of statistics calculates the mean, standard de-
viation, absolute skewness, and excess kurtosis of the curve, which
takes into account the values of the curve in the DM axis as well
as the S/N axis as indicated in Table 2. When a pulsar candidate is
found, the candidate might not be found in its optimal DM value
that yields the highest S/N. Hence, a search around that DM value
if done to find the best DM value for the candidate. For a real pulsar
detection, the best DM value should be close to the DM value where
the candidate is found, and hence, in the middle of the DM–S/N
curve. For the new features to be able to identify the location of

3 However, certain pulsars will show variation in signal over time and/or
frequency. See Section 3.3 for a discussion on the variation in the frequency
domain. The variation in time is usually caused by intermittency of the
pulsar.
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Figure 5. A comparison of the integrated pulse profile (top row), pulse intensity as a function of frequency sub-band and pulse phase plot (middle row), and
DM–S/N curve (bottom row) of a typical pulsar (left), a noise-like detection (middle), and an RFI instance (right).

the peak, the values of the DM axis are changed from actual DM
values of the trials to the integer number of the DM trials, so that
the value of DMμ′ are similar for candidates where the peak is at
the middle of the curve. These new features are in principle able to
gauge the shape of the DM–S/N curve better than the statistics used
by Lyon et al. (2016), which only takes into account the values of
the curve on the S/N axis. The Lyon et al. (2016) features are able
to detect the presence of a peak in the DM–S/N curve, without pro-
viding information on the location and symmetry of the peak. We
note that the absolute value of the skewness is used instead of actual
the skewness value, as we only want to know if the shape of the
DM–S/N curve is skewed without knowing the direction towards
which the curve is skewed. With the use of both sets of features
for the DM–S/N curve, we are able to better gauge the shape of the
curve.

3.3 Defining an RFI class

In addition to generating new features, we have added an RFI classi-
fication group alongside the pulsar and non-pulsar options included
by Lyon et al. (2016). This new class has been added to represent
specific types of RFI which strongly mimic pulsars. Many RFI in-
stances were labelled as pulsars by the LC1. A close inspection of
the diagnostic plots of these instances, revealed that they possess a
pulsar-like pulse profile, and for certain types of RFI, the DM–S/N
curves are similar too. However, these instances do exhibit a notable
difference in the pulse intensity as a function of frequency sub-band

and pulse phase plot. Fig. 5 shows the integrated pulse profile, pulse
intensity as a function of frequency sub-band and pulse phase plot,
and the DM–S/N curve of a typical pulsar, a noise-like non-pulsar,
and an RFI instance, respectively.

The profile of the pulsar in Fig. 5 has a strong narrow peak,
and the pulse intensity as a function of frequency sub-band and
pulse phase plot has a consistent signal that correlates with the
location of the peak of the pulse. On the other hand, the profile of
the noise-like detection has no obvious pulse, and no clear signal is
seen in the pulse intensity as a function of frequency sub-band and
pulse phase plot. The RFI instance has two peaks in its profile that
resembles a pulsar with an interpulse. However, the pulse intensity
as a function of frequency sub-band and pulse phase plot shows that
only a fraction of the sub-bands contain a signal that correlates with
the pulse.

The DM–S/N curve for the three types of candidates are different
from each other too. A typical pulsar will show a clear peak at
a specific DM value of the curve, while the DM–S/N curve of a
noise-like candidate will not show a clear peak. The RFI instance
shows two maxima on the DM–S/N curve, which comes from the
signal at different bands lining up at two different DM values. As
the original features used did not describe the DM–S/N curve well
on its own, the candidate is still likely to be misclassified as a pulsar
by LC1.

To further illustrate the difference between the two types of non-
pulsar candidates, we generated box and whisker plots showing the
distribution of the standard deviation of the correlation coefficients,
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Figure 6. Box and whisker plots showing the distribution of the values of
the standard deviation of the correlation coefficients between each sub-bands
and the integrated pulse profile, Sub-bandσ , of the three different classes
of candidates. The boxes show the median and interquartile ranges (IQRs,
Q3−Q1, where Q1 and Q3 are the values at the end of the boxes) of the
distribution of each class of candidates, with the middle 50 per cent of the
distributions within the boxes. The whiskers show the range of the distribu-
tion, with the end of the whiskers being Q1−1.5IQR and Q3+1.5IQR. The
dots show the outliers of the distributions.

between each sub-band and the integrated pulse profile for the three
different types of candidate (see Fig. 6). It shows that noise-like
candidates have higher median value of the feature compared to
pulsars. RFI instances have the highest median among the three
classes; this is because there are several sub-bands that are highly
correlated with the pulse profile while others are not. Collectively
this shows that the distributions of the three classes are different
from each other. To further show that noise-like candidates and
RFI instances have different distributions, we did an independent
t-test on the distributions of the value of Sub-bandσ of the two non-
pulsar classes. The independent t-test gives the probability that the
distributions of the two sets of values are the same. The test shows
that the probability of the two classes having the same distribution
is 7 × 10−12. Hence, we decided to split these RFI instances into a
separate class of non-pulsars to improve classification accuracy.

Although Sub-bandσ showed promise in separating the three dif-
ferent classes, Fig. 6 suggests that a small number of pulsars exhibits
large Sub-bandσ values similar to typical RFI detections. A study of
these pulsars revealed two main effects causing a high Sub-bandσ

value. First, some of these pulsar detections are affected by scin-
tillation. This causes pulses to be brighter than average, for some
sub-bands. Secondly, there are pulsars that are brighter in the lower
part of the observing band. This can be caused by two different
scenarios. The beam size at the lower part of the observing band of
LOTAAS is larger than the beam size at the upper part of the ob-
serving band. Hence, this effect will show up if a pulsar is detected
at the edge of a beam. There are also pulsars with steep spectra,
in which the pulsars are intrinsically much brighter at lower ob-
serving frequencies. These resulted in variation in the correlation
coefficient between the profile in each sub-band and the integrated
pulse profile. However, inspections on pulsars affected by these two
cases showed that the DM–S/N curve of the pulsars still shows a
well-defined peak. Hence, these pulsars would still be identified
by the features generated from the DM–S/N curve. There is also
a possibility of profile evolution of the pulsar across the observing
bandwidth. However, we expect the profile evolution is only visi-
ble at high S/N and the change across the band to be gradual and

not show the distinct narrow-band signature of RFI. Hence, we do
not expect pulsars that show profile evolution to produce a high
Sub-bandσ value.

3.4 New training set

We improve upon the training data used by Cooper (2017) to build
the classification model for LC2. The newly acquired training data
consists of 247 known pulsars redetected by LOTAAS, and 33 new
pulsars discovered by the survey at the time of compilation of the
training set. These include those that were not detected by LC1 (see
Fig. 3). The new sample also included 17 pulsars observed as part
of the LOFAR HBA pulsar census (Bilous et al. 2016), including
15 that were not detected by LOTAAS. These pulsars were either
in the area not covered by LOTAAS yet, or were too faint to be
detected with the LOTAAS setup which uses fewer LOFAR stations
for the observations. The data from the HBA census have a larger
bandwidth than a typical LOTAAS observation. Hence, in order
to simulate a LOTAAS observation, the bandwidth is reduced to
match the LOTAAS bandwidth before the data are folded using the
ephemeris of the pulsar. In total, 986 different detections of 295
unique pulsars were used to build the classifier. How the sample
of pulsars is used in the production of the ML classifier will be
discussed below in Section 4.

The sample of noise-like candidates and RFI instances were ob-
tained from 50 different LOTAAS pointings. The pointings from
which the candidates are chosen, were randomly selected from all
available survey pointings at the time of the analysis. These candi-
dates were chosen at random from each pointing, manually labelled
as either noise-like or RFI based on the correlation based criteria.
A random sampling was used because the environment around the
telescope varies over time. This in turn produces noise-like candi-
dates, as well as RFI instances that differ over time. In total, 1267
noise-like candidates and 150 RFI instances were obtained for the
two different non-pulsar classes.

3.5 Feature evaluation

Before any new features are used as inputs into the ML classifier, we
need to test their viability, to ensure that they are able to improve the
separability of the data. We used the method that Lyon et al. (2016)
employed to study the performance of the features. This is known as
Information Theoretic Analysis. In information theory, each feature
is described in terms of entropy (Shannon & Weaver 1949). The
entropy of a feature XJ is defined as

H (XJ ) = −
∑
x∈XJ

p(x) log2 p(x), (2)

where x is a possible value that XJ can take, and p(x) is the probability
of the occurrence of x. Entropy provides information on the amount
of uncertainty present in the distribution of XJ. The entropy is small
if the values of XJ are biased towards a small range of x. On the
other hand, if all values of x are equally likely to occur, then the
entropy of XJ would be at its maximum. The entropy of a feature
variable can be tied to another variable, in this case the class of
the data. This is known as the conditional entropy. The conditional
entropy of a feature XJ given the class Y is

H (XJ |Y ) = −
∑
y∈Y

p(y)
∑
x∈XJ

p(x|y) log2 p(x|y), (3)

where p(x|y) is the probability of x given y. The conditional entropy
quantifies the amount of uncertainty in XJ after knowing the outcome
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of the class Y. If knowing Y reduces the uncertainty surrounding the
value of XJ, then intuitively there must be some correlated infor-
mation between the two. For example, if XJ represents the house
price, and Y the number of bedrooms, one would expect the two
to correlate, i.e. houses with more bedrooms are more expensive.
If Y were house height however, the correlation would likely be
weaker. By subtracting the conditional entropy (equation 3) from
the entropy (equation 2), we can calculate the mutual information
(MI; Brown et al. 2012) between XJ and Y. It is defined as

I (XJ ; Y ) = H (XJ ) − H (XJ |Y ), (4)

where MI represents the amount of uncertainty in XJ that is removed
after Y is known. If I(XJ; Y) = 0, then XJ and Y are independent of
each other. On the other hand, if I(XJ; Y) > 0, then by knowing the
class Y, we increase the understanding of the feature XJ. It is there-
fore desirable for classification features to have higher MI content.
This is because we would need our pulsar features to be correlated
with the class variable Y. By computing MI values for our new fea-
tures we can not only determine their utility, but also compare them
directly with the features used to build LC1. Furthermore, any new
features developed in the future can be compared directly to those
presented here using the same analysis.

Whilst MI provides details on how each feature performs against
each other, it is possible for two or more features to possess redun-
dant information (Guyon & Elisseeff 2003). Hence, if we only use
a subset of the features with the highest MI value, we might end
up with a sub-optimal subset of features for classification. A rank-
ing system, known as the joint mutual information criterion (JMI;
Yang & Moody 1999) was developed to rank the set of features
after taking redundancy into account. JMI ranks the features by
first choosing the feature with the most MI, X1, and then uses a
greedy iterative process, known as ‘forward selection’ (Kohavi &
John 1997; Guyon & Elisseeff 2003), to look for the most comple-
mentary features to X1, using the JMI score,

JMI (XJ ) =
∑

XK∈F

I (XJ XK ; Y ), (5)

where XJXK is the joint probability of the two features, and F is the
set of features selected. The process carries on until a desirable set
of features is chosen, or all the features are ranked accordingly.

The Information Theoretic Analysis outlined above requires the
data to be discretized. We employed a Minimum Description Length
approach (Fayyad & Irani 1993) to discretize the data. The entropy,
MI, and JMI of the features are then calculated using the MITOOLBOX

and FEAST suites, developed by Brown et al. (2012). Since the statis-
tics above only consider features used for binary classification, we
calculated the statistics between noise and pulsars, and pulsars and
RFI, separately. The results are presented in Table 3.

The MI values obtained suggest that features extracted from the
integrated pulse profile are the best at separating pulsars from both
non-pulsar classes, with profile skewness being the highest ranked
feature in both cases. When considering pulsars and noise-like can-
didates, the MI values for all the features extracted from the in-
tegrated pulse profile, are much higher than the rest. However, an
analysis of the misclassified pulsars showed that features from the
integrated pulse profile are poor at separating pulsars with wide
profiles from non-pulsars. Hence, we looked into the JMI ranking
for other features to assist us in classifying these pulsars.

The JMI ranking comparison of the features between pulsars and
noise-like candidates, showed that Sub-intσ is the best feature after
ProfS in separating pulsars from noise-like candidates. As we expect
signals from most of the pulsars to be consistent in time, the Sub-

intσ of pulsars will achieve low values to reflect that. On the other
hand, noise-like candidates should have a random set of values for
the correlation coefficients which should result in a larger value of
Sub-intσ . Besides that, other features extracted from the DM–S/N
curve showed high JMI ranking, particularly the mean and standard
deviation. This is likely due to the new method used to calculate the
S/N of the pulse profile being more effective, producing a DM–S/N
curve with a narrower peak and higher peak S/N. The combination
of both gives a larger value for the mean and standard deviation of
the DM–S/N curve compared to the noise-like candidates.

The JMI ranking of the features between pulsars and RFI in-
stances, showed that Sub-bandσ is the best feature after ProfS as
expected. The next best feature is DMσ ′ , as RFI instances usually
have DM–S/N curves that have very different shapes compared to
pulsars. Signals from RFI instances usually do not converge into a
single DM value, and hence show multiple maxima in the DM–S/N
curve. While the DM–S/N curve of a pulsar typically shows a well-
defined maximum. These characteristics are better represented with
the new features extracted from the DM–S/N curve.

The result from the Information Theoretic Analysis showed that
the new features are helpful in separating pulsars from non-pulsars,
with the JMI ranking showing the order of usefulness of each feature
in separating the data. It also showed that those features giving the
best separation between noise and pulsar examples, differ from
those giving the best separation between pulsar and RFI examples.
Hence, it is advisable to split the non-pulsar class into noise and RFI,
in order to improve the ability of the classifier to identify pulsars.

4 ENSEMBLE APPROACH

A single LOTAAS pointing consists of three separate sub-array
pointings (SAPs) formed by six Superterp stations, a 300 m diameter
circular area where the LOFAR stations are most densely packed.
The three SAPs are directed towards three different but nearby parts
of the sky. An incoherent beam is formed for each of the three SAPs.
The central region of each SAP is also tiled with 61 tied-array beams
(TABs), in which the stations are combined coherently, arranged in a
hexagonal grid. Also 12 additional TABs are formed in the direction
of the known pulsars within the field of view (FoV) of a SAP but
outside the tiled-up central part (see Sanidas et al. in preparation;
Coenen et al. 2014; Cooper 2017, for details on the arrangement of
the beams). Hence, when a bright pulsar is within the FoV of the
pointing, it can be detected in multiple beams.4 The pulsar can be
detected either at the centre, the edge or the sidelobe of a beam. A
bright pulsar can be detected in multiple adjacent pointings as well.
The S/N of the detection will vary depending on the location of the
pulsar within the beam, due to the sensitivity of the beam pattern on
the sky (the structure of a LOFAR beam can be seen in fig. 27 of van
Haarlem et al. 2013). This gives us a very large sample of pulsars of
various S/N to train our ML classifier. However, most of the bright
pulsars have the standard narrow integrated pulse profile which are
easily detected by LC1. To properly represent the population of
the pulsars visible to LOTAAS, and to avoid a training set biased
towards certain types of pulsars, we decided to include only one
instance of each of the 295 known pulsars in the initial training set.

We then noticed that for different detections of the same pulsar,
the features generated could vary. Table 4 shows the values of several
features of two detections of PSR B0329+54 at different S/Ns. This
showed that feature values generated from different detections of

4 Beams refer to both the incoherent beams and TABs.
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Table 3. The entropy, H(XJ), MI, I(XJ; Y), and JMI ranking, JMI(XJ) of each of the features. Values are given
for comparison between noise and pulsars, as well as between pulsars and RFI. Prof indicates features obtained
from the pulse profile, DM indicates features obtained from the DM–S/N curve, Sub-band and Sub-int indicate the
features obtained from the lists of correlation coefficients between each sub-band and the integrated pulse profile
and between each sub-integration and the integrated pulse profile, respectively. The subscripts show the type of
features as described in Tables 1 and 2.

Feature Noise–pulsars Pulsars–RFI
H(XJ) I(XJ; Y) JMI(XJ) H(XJ) I(XJ; Y) JMI(XJ)

Profμ 1.94 0.74 4 1.55 0.34 5
Profσ 2.49 0.60 6 2.02 0.25 7
ProfS 1.57 0.83 1 1.27 0.37 1
Profk 1.91 0.79 3 1.45 0.37 4
DMμ 2.14 0.19 7 2.34 0.05 12
DMσ 1.96 0.30 5 1.65 0.13 10
DMS 2.14 0.27 9 1.88 0.08 13
DMk 1.36 0.09 14 1.01 0.02 17
Sub-bandμ 1.37 0.19 13 1.28 0.21 6
Sub-bandσ 1.37 0.17 10 1.66 0.18 2
Sub-bandS 0.18 0.01 18 0.32 0.03 16
Sub-bandk 0 0 19 0 0 19
Sub-intμ 1.37 0.20 12 1.26 0.09 9
Sub-intσ 1.40 0.20 2 1.01 0.06 11
Sub-intS 0.78 0.02 17 0.91 0.01 18
Sub-intk 0 0 20 0 0 20
DMμ′ 1.25 0.03 16 1.11 0.04 14
DMσ ′ 2.24 0.20 11 2.18 0.22 3
DM|S′ | 0.94 0.04 15 0.83 0.03 15
DMk′ 2.08 0.22 8 2.08 0.19 8

Table 4. The S/N of two different detections of PSR B0329+54
by LOTAAS, calculated using equation (1), and the corresponding
values generated by several highly ranked features.

Feature Detection 1 Detection 2

S/N 575 9.5
ProfS 7.74 2.58
DMμ 283 4.82
Sub-bandσ 0.06 0.12
Sub-intσ 0.02 0.12
DMk′ −0.56 −0.65

the same pulsar will be different. Hence, only using a single pulsar
detection may not capture the various factors that characterize the
data. This can result in a biased classifier if only a single training set
is used. To overcome the issue we decided to employ an ensemble
approach to produce LC2.

In our ensemble approach, five different classifier models are
produced, each trained with a different subset of the training data
available. In the case of the pulsar class, five unique detections
of each pulsar are randomly assigned to one of the five subsets.
However, 154 of the 295 training pulsars have been detected on
fewer than five occasions. In this case, duplicate detections of the
pulsar are used in several subsets of the training data. Hence, each
training data subset still consists of 295 unique pulsars, for a total
of 986 different examples. As for the sample of noise and RFI
instances, five subsets of 600 noise-like candidates and 100 RFI
instances, are randomly selected with replacement from the sample
of 1267 noise-like candidates and 150 RFI instances. This approach
is based on the bagging technique (Biau 2012) used in random
forest classifiers (see Bishop 2006). By using multiple overlapping
training data subsets for the non-pulsar classes in each different

decision tree, we will be able to sample the feature space of the two
classes without being biased towards one individual sample.

We used the decision tree algorithm (Quinlan 1993) from the
WEKA data mining software (Frank, Hall & Witten 2016) to produce
five different decision tree classifiers. The results of all five differ-
ent classifiers were then combined together, with only candidates
identified as pulsars by three or more different classifiers being kept
for further visual inspection. This seemingly arbitrary choice to
keep only those identified as pulsars by three or more classifiers is
the standard majority vote rule that is popular in the ML literature
(see section 3.4 of ‘On combining classifiers’; Kittler et al. 1998).
In the decision tree algorithm, a classifier will undergo pruning
(Mitchell 1997) after building to reduce the bias of the classifier to-
wards the training set. Pruning works by removing branches in the
tree which are specialized (cover fewer examples) to prevent over-
fitting (Bishop 2006). However, He & Garcia (2009) showed that
pruning in imbalanced data does not necessarily improve classifica-
tion performance. Furthermore, in ensemble decision tree scenarios,
overtraining each individual tree by reducing the amount of pruning
done has been shown to yield improved performance over pruned
decision trees (Sollich & Krogh 1995; Lyon 2016). Therefore, we
decided to reduce the amount of pruning done by each individ-
ual decision tree classifier within our ensemble, by increasing the
confidence factor of the decision tree from 0.25 to 0.5. A higher
confidence factor results in less pruning for the decision tree.

We then tested the performance of LC2 on the full data set used
to train the five different classifiers. The test data consists of all
1267 noise, 986 pulsar and 150 RFI instances used for training.
Data used for training should never normally be used for testing.
However due to the lack of labelled data describing the pulsar class
(especially on pulsars with wide integrated pulse profiles), almost
all the available samples are used for training, thus we were forced to
use the same data for testing as well. Since we are only interested in
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Table 5. The definition of the various standard metrics used to measure the performance of a classifier. True positive (TP) indicates
pulsars that are classified correctly. True negative (TN) indicates non-pulsars (noise and RFI alike) that are classified correctly. False
negative (FN) are pulsars that are misclassified as non-pulsars and false positive (FP) are non-pulsars that are misclassified as pulsars.
All metrics have values ranging from 0 to 1.

Metric Description Definition

Accuracy The overall accuracy of classification
(T P + T N )

(T P + FP + T N + FN )

FPR The fraction of negative instances misclassified as positive
FP

(FP + T N )

Precision The fraction of retrieved instances that are positive
T P

(T P + FP )

Recall The fraction of correctly classified positive instances
T P

(T P + FN )

F-Score The accuracy of classifier considering both precision and recall 2 × Precision × Recall

P recision + Recall

Specificity The fraction of negative instances that are correctly classified
T N

FP + T N

G-Mean Imbalanced data metric that describes the ratio between positive and negative accuracy
√

Recall × Specif icity

Table 6. The performance of different ML classifiers when tested with the test data described in Section 4. LC1
is trained with the training set described in Section 2. Tree1–5 are the individual decision tree classifiers, each
trained with a different training subset, used as part of the ensemble LC2.

Classifier Accuracy FPR Precision Recall F-Score Specificity G-Mean

LC1 0.968 0.028 0.961 0.962 0.961 0.972 0.967
Tree1 0.983 0.018 0.975 0.984 0.979 0.982 0.983
Tree2 0.974 0.027 0.975 0.976 0.975 0.973 0.974
Tree3 0.983 0.020 0.971 0.987 0.979 0.980 0.983
Tree4 0.988 0.008 0.989 0.981 0.985 0.992 0.986
Tree5 0.979 0.011 0.984 0.965 0.974 0.989 0.977
LC2 0.992 0.005 0.993 0.987 0.990 0.995 0.991

the pulsar class, the performance of the classifiers is only measured
in relation to the pulsar class. Table 5 shows the various metrics
used to measure the performance of a classifier, and Table 6 shows
the performance of each individual decision tree and the ensemble
LC2, as well as LC1 deployed upon the new test data.

The performance data showed that the ensemble LC2 achieves
better performance than any individual decision tree classifier across
various metrics, with a lower FPR and a higher pulsar recall rate.
LC2 also performed better than LC1 according to the G-Mean met-
ric. While the original classifier is 3.3 per cent away from being
perfect, the new classifier now achieved less than 1 per cent loss
in performance. We also check how LC2 performs on the pulsars
misclassified by LC1 (shown in Fig. 3). We found that seven out
of the nine pulsars are now correctly identified by LC2 (except
PSRs J0621+1002 and B2053+36), showing an improvement in
the ability to discover pulsars that possess wide integrated pulse
profiles.

5 A PPLYING THE C LASSIFIER TO LOTAAS

Although LC2 exhibits better performance than LC1 when tested
with the data set described earlier, it is more practical to apply
the classifier to actual survey data to better gauge real-world per-
formance. We would expect the classifier to produce fewer false
positive candidates, given the results of Section 4, reducing the
number of candidates to inspect. Besides that, we expect to see an
improvement in the recall rate of the classifier. We applied LC2 to
the candidates previously obtained by the search pipeline. We then
compared the pulsars identified by LC2 with the pulsars identified

by LC1. The pointings from which the candidates are obtained, con-
tain some pulsar/noise/RFI examples also present in the training set,
as well as examples from pointings obtained after the training set
was compiled (independent samples).

First, we want to compare the FPR of LC2 on actual survey data
with that of LC1. We did this by comparing the number of non-
pulsars that are classified as pulsars by the two classifiers in 11
different LOTAAS pointings. LC1 identified 5406 different candi-
dates as pulsars, giving an average of 491 pulsar predictions per
pointing. LC2 identified 2400 different candidates as pulsars, giv-
ing an average of 218 pulsar predictions per pointing, i.e. roughly
one candidate per beam. Given that each LOTAAS pointing pro-
duces roughly 20 000 candidates, the number of candidates flagged
for inspection is reduced from about 2.5 per cent, to ∼1.1 per cent,
approximately 56 per cent fewer candidates.

There is a difference between the FPRs obtained in survey data
for LC1 and LC2, compared to test data. This result is expected,
because in the real-world classification scenario the total number of
non-pulsar examples in the training set is very small when compared
to the total number of non-training data points to be classified. It
is therefore difficult for such a small number of training examples
to characterize all possible non-pulsar examples. This is especially
true as our real-world data is full of variable forms of RFI/noise
and interesting phenomena yet to be identified and therefore not
included in the training sample, which are technically considered
non-pulsars. The result is that FPRs are different on real-world data,
compared to test data. That said, LC2 still reduces the FPR on real
world data, and is even better than the FPR of LC1 on test data.
Thus, the difference does not imply an issue with the new classifier.
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Next, we compared the pulsar recall rate for both classifiers. The
classifiers were applied to a total of 185 pointings known to contain
pulsars. A total of 192 different pulsars are known to exist within
these pointings, either through detection by LC1, or via plots made
by the LOFAR Pulsar Pipeline (see Kondratiev et al. 2016), in which
the raw data are folded with the ephemerides of known pulsars in the
FoV. As some pulsars are detected in multiple different pointings,
we have a total of 313 instances to recover. We compared the recall
rate of LC2 on known pulsars, with LC1 on these pointings. LC1
misclassified 16 different instances, while LC2 misclassified only
three, in which two of them were misclassified by both classifiers.
This suggests an increase of pulsar recall rate from 94.9 per cent
to 99.0 per cent. The integrated pulse profiles of the pulsars mis-
classified by LC1, but correctly identified by LC2, are shown in
Fig. 7. The pulse profiles of the three pulsars misclassified by LC2
are shown in Fig. 8.

LC2 showed a marked improvement over LC1, as fewer pulsar
instances were misclassified. LC2 was also able to identify pulsars
with wide integrated pulse profiles that were otherwise not identi-
fied by LC1, specifically PSRs B0531+21, B1907-03, B1946+35,
J2007+0809, B2027+37, B2106+44 and B2148+52, overcoming
the main issue with LC1. LC2 was also able to classify some of
the low S/N pulsars with narrow profiles and those comprised of
two components. These pulsars, PSRs J1652+2651, B1907+03,
B1935+25, and J2040+1657 were also misclassified by LC1 be-
fore.

However, a small number of pulsars have eluded the new clas-
sification system. We decided to inspect the features belonging to
these pulsars, to understand what went wrong in the classifier. PSR
B2324+60 has a pulse profile that is similar to PSRs B1935+25 and
B2227+61, but was incorrectly classified. We checked the features
of the detections and audited their decision paths within the classi-
fier models produced by each of the five decision trees. We found
that in four out of the five trees, the features Sub-intμ, Sub-intσ ,
or DMσ ′ missed the positive prediction threshold by a small mar-
gin. This resulted in the pulsar being misclassified as either noise
or RFI on those occasions. It showed that this observation of PSR
B2324+60 lies on the edge of detectability of LC2. PSR B2053+36
has low S/N with a highly scattered integrated pulse profile. The
pulsar is not immediately recognizable from its diagnostic plot, and
only identifiable via its period and DM. Hence, it is not surprising
that the classifier missed this instance.

PSR B0531+21, which has a pulse period of 33 ms is detected
in three different LOTAAS pointings. However, one of the three
detections is not identified by LC2 as a pulsar. The misclassified
detection has a lower S/N than the detections from the other two
pointings. The misclassified detection was made in a far side-lobe of
an incoherent beam of the pointing. Hence, the pulsar is only being
detected in the lower part of the observing bandwidth of LOTAAS,
which resulted in a large value for Sub-bandσ compared to a typical
pulsar. The diagnostic plot of the detection also showed variation
in signal intensity over time, due to the rotation of the beam pattern
during the observation, resulting in the pulsar moving in and out
of the side lobe. This gives a Sub-intσ value that is larger than for
a typical pulsar. A combination of these two issues results in the
pulsar being classified as noise by the classifier.

6 C O N C L U S I O N

We have discovered shortcomings in LC1 that reduced its ability to
identify pulsars with wide integrated pulse profiles. We therefore

introduced a number of improvements. We first introduced a new
method to construct the DM–S/N plot. We also introduced 12 new
features for the ML classifier to learn from. Next, we defined a
new class of non-pulsars that consists of notable RFI instances
affecting LOTAAS observations. Besides that, we introduced a new
training set consisting of a larger sample of candidates, with a
larger number of pulsar examples that were misclassified by LC1.
We then evaluated the usefulness of these new improvements via
an Information Theoretic Analysis. We found that the new features
are able to assist in the classification process, and that it is more
advantageous to separate notable RFI instances from the rest of the
non-pulsar class, forming a new class for our ML classifier to learn
from.

Finally, we introduced an ensemble ML approach of five different
decision tree classifiers, trained with five different training subsets,
whereby a candidate is assigned the pulsar label only if three or more
members of the ensemble agree. Compared to LC1 (96.7 per cent G-
Mean), our improvements result in a new ensemble system that has
a much better performance (99.1 per cent G-Mean) on the test data
set. We then compared the performance of LC1 and LC2 on recent
LOTAAS observations as the performance of the classifiers derived
from actual survey data is more important. LC2 exhibited a big
improvement compared to LC1, including a drop in false positives
from ∼2.5 per cent to ∼1.1 per cent, which reduces the number of
candidates per pointing from ∼500 to ∼220. A higher pulsar recall
rate was also achieved, from 94.9 per cent to 99.0 per cent. More
importantly, LC2 is able to identify pulsars with wide pulse profiles
that LC1 could not.

The building of LC2 showed there are several important issues
to keep in mind. First, we needed to make sure the features used to
build a ML classifier are able to capture all the notable properties of
the candidates. We found that only using features from the integrated
pulse profile and the DM–χ2

red curve, yielded classification systems
inadequate at separating pulsars from non-pulsars. Hence, we added
features from the pulse intensity as a function of frequency sub-band
and pulse phase plot, as well as the pulse intensity as a function of
time and pulse phase plot, to assist in the classification process.
A training set which properly represents the pulsar population is
also crucial to the production of a successful classifier. We found
that having separate classes for different types of non-pulsars is
helpful to the classification process, as the noise and RFI instances
have very different properties in terms of the features we used.
Lastly, we found that for different detections of the same pulsar,
the values of the features obtained are different. Therefore, we
applied an ensemble approach in the production of the classifier to
accommodate the variations we see in different detections of the
same pulsar.

Although we have implemented several different ‘modifications’,
there are still several potential improvements worth investigating.
One potential change would involve separating the candidates to
enable processing by different classification systems, according to
the number of bins in the profiles. This can be done if we have
a larger sample of short period pulsars. Investigation of the RFI
class suggest that we can further separate the RFI class, depending
on the properties of the RFI, i.e. narrow-band RFI or short duration
burst. However, further subclassing the RFI instances would require
a larger sample of training data for all the classes.

Now that the new ML classifier has proven to be successful, it
is being implemented into the LOTAAS search pipeline. It is also
being used to reclassify all older, archived LOTAAS candidates,
in the expectation that previously missed new pulsars may yet be
found.
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Figure 7. The integrated pulse profiles of the pulsars that are classified correctly by LC2, but not LC1. PSR B0531+21 was detected in two separate pointings
with different S/Ns. The amplitudes are in arbitrary units. PSRs B0531+21, B1907−03, B1946+35, J2007+0809, B2027+37, B2106+44, and B2148+52
are pulsars with wide integrated pulse profiles, with several of them being heavily scattered. PSRs J1652+2651, B1907+03, B1935+25, and J2040+1657 are
pulsars with low S/N and double peaked integrated pulse profiles.

Figure 8. The pulse profiles of the pulsars that are classified incorrectly by LC2. This particular detection of PSR B0531+21, which was in a different pointing
compared to the two detections in Fig. 7, was correctly identified by LC1.
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