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Abstract 

As CMOS scales down, hot carrier aging (HCA) scales 

up and can be a limiting aging process again. This has 

motivated re-visiting HCA, but recent works have focused on 

accelerated HCA by raising stress biases and there is little 

information on HCA under use-biases. Early works proposed 

that HCA mechanism under high and low biases are different, 

questioning if the high-bias data can be used for predicting 

HCA under use-bias. A key advance of this work is proposing 

a new methodology for evaluating the HCA-induced variation 

under use-bias. For the first time, the capability of predicting 

HCA under use-bias is experimentally verified. The 

importance of separating RTN from HCA is demonstrated. 

We point out the HCA measured by the commercial Source-

Measure-Unit (SMU) gives erroneous power exponent. The 

proposed methodology minimizes the number of tests and the 

model requires only 3 fitting parameters, making it readily 

implementable. 

 

Introduction 

Recent results (Fig.1) show Hot Carrier Aging (HCA) 

can be severe for current/future CMOS nodes [1-7], because: 

(i) Channel length downscaling enhances HCA (Fig.2a). For 

some sub-30nm processes, HCA can be higher than BTI 

(Figs.1b&2b); (ii) HCA can have larger time exponents 

(Figs.1b&2b) [3-7] and its importance increases with aging. 

(iii) NBTI recovery [8-10] is higher than HCA (Fig.2c); (iv) 

Conventionally, the worst HCA occurs during switch near 

Vg~Vd/2 and duty factor (DF) is typically low (1~2%) [7,11]. 

For modern CMOS, however, more damage occurs under 

Vg=Vd (Fig. 3) [3,6,7] and DF can be high. For example, 

during ‘read 0’ in a SRAM cell, one access nMOSFET can 

suffer HCA for ~50% of time (Fig. 4).  

The renewed HCA-threat has motivated its re-visit [1-

7,12]. It is reported aging mechanisms and time exponent, ‘n’ 

(Eq.1 in Table 1), are different under different stress biases 

[1,6,7]. ‘n’ can also vary with time (e.g. Fig.5) [2,4,5,7], 

challenging the lifetime, τ, prediction based on Eq.1 that 

requires a constant ‘n’ [11,13,14]. The recent works have 

focused on bias-accelerated HCA [1-7,12] and there is little 

data on HCA under use-bias. For test engineers, two pressing 

questions are: can τ under use-bias still be predicted by the 

established JEDEC method based on Eq.1 and how to 

evaluate ‘n’ correctly for HCA?  A key advance of this work is 

answering them and finding the pitfalls for extracting ‘n’. For 

the first time, the capability of predicting HCA under use-bias 

is experimentally verified (Fig.6). 

 

Devices and Experiments 
nMOSFETs of MG/HK were made by an industrial 

process with L×W of 27×(90~900)nm and use-Vdd of 0.9V. 

Vd=Vg is chosen to represent stress, as Isub/Id has a device-

to-device variation (DDV) at stress-0 for nm-devices (Fig.7a) 

and it does not correlate with HCA (Fig.7b).  All tests were at 

125oC. 

 

Methodology 

A. Selecting parameter for extracting power exponent, ‘n’  

HCA was widely monitored by forward saturation current 

shift under Vg=Vd=Vdd, ΔId/Id_F, although reverse 

saturation current shift, ΔId/Id_R, and ΔVth(Vd≤0.1V) also 

were used [1-7,11,12]. The problem is ‘n’ for ΔId/Id_F is 

larger than ‘n’ for ΔId/Id_R, leading to their incorrect cross-

over and errors in prediction at 10 years (Fig.8), highlighting 

the importance of ‘n’-accuracy. Under Vg=Vd, ΔId/Id_F does 

not sense the HCA-defects above space charge region (Fig.8), 

resulting in an apparent larger ‘n’, as simulated by subtracting 

a constant from real power law (inset of Fig.8). The ‘n’ 

extracted from the forward ΔId/Id is erroneous. To capture all 

defects, ΔVth(Vd=0.1V) should be used for extracting ‘n’, as 

ΔVth_F=ΔVth_R  (Fig.9). Once ΔVth is predicted, we 

propose evaluating ΔId/Id_F and ΔId/Id_R by using their 

measured relation with ΔVth (Fig.10). 

 

B. HCA acceleration 

SRAM often is used for qualifying new processes [15], 

where the access nMOSFETs suffer the worst HCA under 

Vg≈Vd (Figs.3&4). HCA under use-Vg=Vd must be 

predicted and we focus on it here. Under use-bias, Fig.11 

shows that HCA is too low to establish its kinetics reliably 

within a practical time and acceleration is needed. One may 

accelerate HCA by raising Vd only [12] or both Vg and Vd 

with Vg=Vd [1,6].  Fig.12a confirms ‘n’ is larger under 

Vg<Vd than under Vg=Vd [1,7], so that Vg<Vd must not be 

used to predict HCA under use-Vg=Vd. When accelerated by 

Vg=Vd, ‘n’ is bias-independent (Fig.12b) and should be used. 

 

C.  DC versus AC 

Unlike NBTI(AC)<NBTI(DC) [8-10], the AC and DC 

HCAs agree well, regardless of frequency and duty-factor (DF) 

for the same equivalent stress time, i.e. DF×time (Fig.13), 

confirming the frequency-independence [3]. DC will be used. 

 

D. Voltage-Step-Stress (VSS) 

The VSS technique recently developed for NBTI [16] 

allows extracting both ‘n’ and ‘m’ (Eq.1) from just one large 
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device, reducing test numbers by ~80%, and will be adopted 

for HCA here. For an L×W=27×900nm, stress under each 

Vg=Vd lasted for T=1ks and biases were then stepped up 

(Fig.14), lifting HCA up from the power law (Fig.14c). Based 

on Eqs.1-3, HCA under a high Vg=Vd was converted into a 

longer equivalent stress time under a low Vg=Vd (Fig.14c) 

and ΔVth follows a power law well even when ΔVth>150mV, 

corresponding to ΔId/Id>30% (Fig.10), well beyond the 

typical 10% HCA lifetime criterion and allowing reliable 

extraction of ‘n’ and ‘m’ (Fig.14c). 

 

Prediction 

A model is useful only if it can predict aging under use-

bias. The HCA predicted by the model extracted from the 

VSS data in Fig.14 agrees well with the test data in Figs.6b-g. 

The highest ΔVth in Figs.6a&14 is ~2-orders above ΔVth 

under 0.9V (Fig.6b), verifying its prediction capability. We 

emphasize the model was extracted from the data in Fig.6a 

only and the test data in Figs.6b-g were not used for fitting. 

The extracted model (Eq.1) can be used for evaluating HCA 

under any bias and time and for predicting lifetime and 

operation Vdd (Fig. 15).  

 

HCA in nm-width devices 

Unlike L×W=27×900nm, 27×90nm devices suffer from 

RTN-like within-a-device fluctuation (WDF) and large 

device-to-device variation (DDV) (Fig.16). To extract HCA 

kinetics, one has to use the smooth mean of 50 devices, but 

‘n’ depends on how data is taken (Fig.17). After a stress, 

ΔVth fluctuates and one can use its up-envelope (UE), lower-

envelope (LE) [17], or average over a period of time, e.g. 

~10ms (Fig.17b), as a typical quasi-DC Source-Measure-Unit 

(SMU) does. The ‘n’ from UE and DC (inset of Fig. 17a) is 

smaller than the ‘n=0.29’ from a device of W=900nm 

(Fig.14c), but the ‘n’ from LE agrees well with it. The smaller 

‘n’ for UE incorrectly takes it below LE when extrapolating 

(see the ‘cross-over’ in Fig. 17a).  

To explain the difference in ‘n’, Figs.18a&b show that 

WDF=(UE-LE) does not increase with aging. It must 

originate from as-grown defects and should be excluded from 

aging kinetics, so that LE must be used for extracting ‘n’. 

LE_F and LE_R correlates (Fig.19a), but WDF_F and 

WDF_R does not (Fig.19b), supporting their different origins.  

Since HCA-recovery is insignificant (Fig.2c), one may 

think it can be measured by a quasi-DC SMU [7,18]. This, 

however, gives an erroneous lower ‘n’ (Fig.17a) by including 

some as-grown WDF. Adding a constant to a power law leads 

to an apparent lower ‘n’ at short time and a variation of ‘n’ 

with time (inset, Fig.17a) [13].   

 

Statistic HCA 

The DDV of LE at different time (Figs.20a&b) and 

voltage (Figs.20c&d) follows the defect-centric distribution 

(Eqs.4&5) well [19]. LE_mean of 50 W=90nm devices 

agrees well with ΔVth of one W=900nm device (Fig.21a) and 

can be predicted by the same method (Figs.6&14). After 

knowing LE_mean, the standard deviation, σ, can be 

evaluated from its power law relation with the mean (Fig.21b).  

 

A. Impact on use-Vdd 

To have a yield corresponding to i×σ, ΔId/Id=10% is 

required at i×σ, resulting in smaller mean value (Fig.22a) and 

in turn lower use-Vdd (Fig.22b) for higher i. For a yield of 

3×σ (99.7%), HCA-only and HCA+WDF (Eqs.6,7) reduces 

Vdd from its zero-spread value by 75mV and 100mV, 

respectively.  

 

B. Impact on 6T-SRAM  

Assuming only one access nMOSFET suffered HCA and 

using the predicted HCA distribution at 10 years under 0.9V 

for simulation [20], static write/read noise margin 

reduces/rises, respectively (Fig.23), as a weakened access 

nMOSFET is not in favor of write. Both the dynamic read 

(Figs.24a-c) and write (Figs.24d-f) access time deteriorates, 

since longer time is required through a weakened access 

nMOSFET. This demonstrates that the extracted HCA model 

can be incorporated into a compact simulator to evaluate the 

required margin for a specified yield.    

 

Conclusions 

As CMOS scales down, HCA scales up. For the first time, 

this work experimentally verifies that the HCA under use-Vdd 

can be predicted by the power law extracted from VSS-

method, provided that correct acceleration and ‘n’-evaluation 

are made. We point out the forward saturation ΔId/Id and 

HCA measured by SMU gives erroneous ‘n’ for nm-width 

devices. The model requires only 3 fitting parameters (Eq.1), 

making it readily implementable.  
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Fig.1 A comparison of Hot Carrier Aging (HCA) with 
BTIs reported by early works. (a) and (b) are re-plots 
of data from refs. [2] and [1], respectively.  
 

Fig.3 HCA under Vg=Vd is more 
than HCA under Vg=Vd/2 for 
L=27nm. 
 

Fig.6 Verification of predicting HCA under use-Vdd. The model was extracted 
from accelerated VSS test data given in (a) with Vg=Vd rising from 1.3 to 1.7V 
(For details, see Fig. 14). The symbols in (b)-(e) were measured from 4 devices 
and not used for fitting. The lines in (b)-(e) are the predicted HCA. The lines in 
(f) and (g) were obtained from Fig.10 by converting ΔVth to 
ΔId/Id(Vg=Vd=0.9V). 
 

Fig.4 The access nMOS in a 
SRAM during read-0 has a HCA 
duty factor of ~50% (simulation). 
 

Fig.10 Relation 
of HCA-induced 
ΔVth under 
Vd=0.1V with 
ΔId/Id under 
Vg=Vd=0.9V. 
The open 
symbols are the 
mean of 50 
small devices 
(90×27nm) 
 

Fig. 11 HCA is too low to establish kinetics reliably 
under use-Vdd=0.9V and acceleration (e.g. 1.3V) is 
needed.  

Fig. 7 Isub/Id does not represent 
HCA-stress well for nm-devices, 
as it has a device-to-device 
variation (DDV) at stress=0 (a) and 
its DDV does not correlate with 
that of HCA-induced ΔId/Id. 
 

Fig.13 The AC and 
DC HCAs agree well 
when using equivalent 
stress time, i.e. 
time×Duty Factor 
(DF). The AC stress 
conditions are given 
in the format of 
‘AC_DF_Frequency’ 
and Vg=Vd=2V.   
 

Fig.2 (a) Downscaling L increases HCA. The stress was at 125oC for 1000sec. (b) A comparison of 
HCA and BTIs for L=27nm used in this work. Stresses were under the same |Vg|, with Vd=Vg for 
HCA and Vd=0 for PBTI and NBTI. (c) A comparison of their recovery under Vg=Vd=0. 
 

Fig.8 Although test data (o and □) show (ΔId/Id_F)<(ΔId/Id_R), higher ‘n’ for ΔId/Id_F 
leads to incorrect (ΔId/Id_F)>(ΔId/Id_R) when extrapolating. ΔId/Id_F does not sense 
the defects above space charges. The ‘Δ’ in inset is calculated from (At0.29-Constant), 
which fits well with Bt0.34 (black line). Subtracting a constant from a real power law (red 
line) can give an ‘apparent’ higher ‘n’.  Id was measured under Vg=Vd=0.9V. 
 

Fig.9 The forward and reverse ΔVth 
measured under Vd=0.1V agrees 
well.    
 

Fig. 12 (a) The time exponents under Vg=Vd are 
smaller than that under Vg=Vd/2. (b) The time 
exponent is insensitive to stress biases under 
Vg=Vd 
 

Fig.5 Variation of time exponent, ‘n’ 
(the line slope), with HCA time. A 
re-plot of data from ref. [2]. 



 

 

 

 

 

 

 

 

Fig.18 (a) For L×W=27×90nm, LE 
increases with HCA, but WDF=UE-
LE does not. (b) The WDF_mean of 
50 devices and its sigma do not 
increase with stress time.  

Fig.20 Statistics of LE DDV after different stress time (a&b) and voltage 
(c&d). The lines are fitted with the defect-centric distribution (Eqs.4&5).   
 

Fig.21 (a) The mean of 50 
90×27nm agrees well with one 
900×27nm for VSS stresses. (b) 
Sigma versus mean. The fitted 
exponent is 0.55.  
 

Fig.22 Impact of DDV on use-Vdd. When 
ΔId/Id reaches 10% at i×σ, the mean ΔId/Id, 
µ, of defect-centric distributions reduces for 
higher i (a). This in turn requires a lower use-
Vdd (b). For the reverse: ‘■’--- HCA only 
and ‘●’ --- HCA and RTN/WDF (Eqs.6&7).  

Fig.14 Voltage-Step-Stress (VSS) technique for HCA. (a) One device was stressed for a time T and the stress Vg=Vd was then stepped up. ΔVth is plotted against 
linear (b) and log (c) stress time. The stress time under high bias is converted to an equivalent longer time at low bias by fitting the voltage exponent ‘m’ (inset of 
(c)), based on Eqs.1-3 in Table 1. The dashed line has n=0.29 and m=9. 
 

Fig.15 Evaluation of lifetime versus 
Vdd based on the model extracted 
from VSS tests in Fig.14. 
 

Fig. 17 (a) HCA kinetics for the mean of 50 W=90nm devices. UE, 
DC, and LE have different ‘n’ (inset). Incorrect inclusion of an as-
grown component, ‘C’, gives an apparent lower ‘n’ at short time. (b) 
The definition of UE, DC, and LE. DC is the average over 10ms.   

Fig.16 HCA of two W=90nm devices shows large 
DDV. WDF, UE, and LE is ‘within-a-device-
fluctuation’, the upper- and the lower- envelope. 
 

Fig.19 (a) The forward 

LE_F correlates with LE_R. 

(b) WDF_F does not 

correlate with WDF_R.   

(a) 

Fig.24 Impact of HCA of access nMOS on dynamic read (a-c) and write (d-
f) assess time, normalized against their fresh value. The mean and sigma of 
HCA under Vdd=0.9V at 10 years were predicted based on test data and 
then used to compute the defect-centric PDF vs HCA. For a given PDF, the 
corresponding HCA were used to compute the failure time, as illustrated in 
(a,b) and (d,e).  The (t_Fail, PDF) pairs were plotted in (c) & (f). The insets 
of (c)&(f) shows the normalized margins against i×σ. 
 

Fig.23 Impact of the predicted HCA at 10 years 

under 0.9V on static read (a) and write (b) noise 
margins. Their change at i×σ is given in (c). The 

32nm PTM model from [20] was used. 
 
 


