
On the Identity and Group Problems for
Complex Heisenberg Matrices

Paul C. Bell1, Reino Niskanen2, Igor Potapov3, and Pavel Semukhin2

1 Keele University, UK
p.c.bell@keele.ac.uk

2 Liverpool John Moores University, UK
{r.niskanen,p.semukhin}@ljmu.ac.uk

3 University of Liverpool, UK
potapov@liverpool.ac.uk

Abstract. We study the Identity Problem, the problem of determining
if a finitely generated semigroup of matrices contains the identity matrix;
see Problem 3 (Chapter 10.3) in “Unsolved Problems in Mathematical
Systems and Control Theory” by Blondel and Megretski (2004). This fun-
damental problem is known to be undecidable for Z4×4 and decidable for
Z2×2. The Identity Problem has been recently shown to be in polynomial
time by Dong for the Heisenberg group over complex numbers in any fixed
dimension with the use of Lie algebra and the Baker-Campbell-Hausdorff
formula. We develop alternative proof techniques for the problem making
a step forward towards more general problems such as the Membership
Problem. We extend our techniques to show that the fundamental prob-
lem of determining if a given set of Heisenberg matrices generates a group,
can also be decided in polynomial time.

1 Introduction

Matrices and matrix products can represent dynamics in many systems, from
computational applications in linear algebra and engineering to natural science
applications in quantum mechanics, population dynamics and statistics, among
others [4, 5, 10, 11, 15, 19, 24, 28, 29]. The analysis of various evolving systems
requires solutions of reachability questions in linear systems, which form the
essential part of verification procedures, control theory questions, biological
systems predictability, security analysis etc.

Reachability problems for matrix products are challenging due to the complex-
ity of this mathematical object and a lack of effective algorithmic techniques. The
significant challenge in the analysis of matrix semigroups was initially illustrated
by Markov(1947), [27] and later highlighted by Paterson (1970) [30], Blondel and
Megretski (2004) [5], and Harju (2009) [21]. The central reachability question is
the Membership Problem: Decide whether or not a given matrixM belongs to
the matrix semigroup S generated by a set of square matrices G. By restrictingM
to be the identity matrix, the problem is known as the Identity Problem.
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Problem 1 (Identity Problem). Let S be a matrix semigroup generated by a finite
set of n×n matrices over K = Z,Q,A,Q(i), . . . Is the identity matrix I in the
semigroup, i.e., does I ∈ S hold?

The Membership Problem is known to be undecidable for integer matrices
from dimension three, but the decidability status of the Identity Problem was
unknown for a long time for matrix semigroups of any dimension, see Problem 10.3
in “Unsolved Problems in Mathematical Systems and Control Theory” [5]. The
Identity Problem was shown to be undecidable for 48 matrices from Z4×4 in [3]
and for a generator of eight matrices in [23]. This implies that the Group Problem
(decide whether a finitely generated semigroup is a group) is also undecidable.
The Identity Problem and the Group Problem are open for Z3×3.

The Identity Problem for a semigroup generated by 2× 2 matrices was shown
to be EXPSPACE decidable in [9] and later improved by showing to be NP-complete
in [2]. The only decidability beyond integer 2×2 matrices were shown in [14] for
flat rational subsets of GL(2,Q).

Similarly to [8], the work [23] initiated consideration of matrix decision
problems in the Special Linear Group SL(3,Z), by showing that there is no
embedding from pairs of words into matrices from SL(3,Z). Beyond the 2×2
case, the Identity Problem was shown to be decidable for the discrete Heisenberg
group H(3,Z) which is a subgroup of SL(3,Z).

The Heisenberg group is widely used in mathematics and physics. This is in
some sense the simplest non-commutative group, and has close connections to
quantum mechanical systems [6,20,25], harmonic analysis, and number theory
[7, 13]. It also makes appearances in complexity theory, e.g., the analysis and
geometry of the Heiseberg group have been used to disprove the Goemans-Linial
conjecture in complexity theory [26]. Matrices in physics and engineering are
ordinarily defined with values over R or C. In this context, we formulate our
decision problems and algorithmic solutions over the field of complex numbers
with a finite representation, Gaussian rationals Q(i).

The Identity Problem was recently shown to be decidable in polynomial time
for complex Heisenberg matrices in a paper by Dong [18]. They first prove the
result for upper-triangular matrices with rational entries and ones on the main
diagonal, UT(Q) and then use a known embedding of the Heisenberg group over
algebraic numbers into UT(Q). Their approach is different from our techniques;
the main difference being that [18] uses tools from Lie algebra, and in particular,
matrix logarithms and the Baker-Campbell-Hausdorff formula, to reason about
matrix products and their properties. In contrast, our approach first characterises
matrices which are ‘close to’ the identity matrix, which we denote Ω-matrices.
Such matrices are close to the identity matrix in that they differ only in a single
position in the top-right corner. We then argue about the commutator angle of
matrices within this set in order to determine whether zero can be reached, in
which case the identity matrix is reachable. We believe that these techniques
take a step towards proving the decidability of the more general membership
problem, which we discuss towards the end of the paper. A careful analysis then
follows to ensure that all steps require only Polynomial time, and we extend our
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techniques to show that determining if a given set of matrices forms a group (the
group problem) is also decidable in P (this result is shown in [16] using different
techniques). We thus present polynomial time algorithms for both these problems
for Heisenberg matrices over Q(i) in any dimension n.

These new techniques allow us to extend previous results for the discrete
Heisenberg group H(n,Z) and H(n,Q) [12,17,23,24] and make a step forward to-
wards proving the decidability of the membership problem for complex Heisenberg
matrices.

2 Roadmap

We will give a brief overview of our approach here. Given a Heisenberg matrix

M =

(
1 mT

1 m3

0 In−2 m2

0 0T 1

)
∈ H(n,Q(i)), denote by ψ(M) the triple (m1,m2,m3) ∈

Q(i)2n−3. We define the set Ω ⊆ H(n,Q(i)) as those matrices where m1 and m2

are zero vectors, i.e., matrices in Ω look like In except allowing any element of
Q(i) in the top right element. Such matrices play a crucial role in our analysis.

In particular, given a set of matrices G = {G1, . . . , Gt} ⊆ H(n,Q(i)) generat-
ing a semigroup ⟨G⟩, we can find a description of Ω⟨G⟩ = ⟨G⟩ ∩Ω. Since I ∈ Ω,
the Identity Problem reduces to determining if I ∈ Ω⟨G⟩.

Several problems present themselves, particularly if we wish to solve the
problem in Polynomial time (P). The set Ω⟨G⟩ is described by a linear set
S ⊆ Nt, which is the solution set of a homogeneous system of linear Diophantine
equations induced by matrices in G. This is due to the observation that the
elements (m1,m2) ∈ Q(i)2n−4 behave in an additive fashion under multiplication
of Heisenberg matrices. The main issue is that the size of the basis of S is
exponential in the description size of G. Nevertheless, we can determine if a
solution exists to such a system in P (Lemma 1), and this proves sufficient.

The second issue is that reasoning about the element m3 ∈ Q(i) (i.e., the top
right element) in a product of Heisenberg matrices is much more involved than
for elements (m1,m2) ∈ Q(i)2n−4. Techniques to determine if m3 = 0 for an
Ω-matrix within Ω⟨G⟩ take up the bulk of this paper.

The key to our approach is to consider commutators of pairs of matrices
within G, which in our case can be described by a single complex number. That
is, for M1,M2 ∈ G, the commutator is [M1,M2] ∈ Q(i). After removing all
redundant matrices (those never reaching an Ω-matrix), we have two cases to
consider. Either every pair of matrices from G has the same angle in the polar
form of the commutator or else there are at least two commutators with different
angles.

The latter case is used in Lemma 5. It states that the identity matrix can
always be constructed using a solution that contains four particular matrices.
Let M1, M2, M3 and M4 be such that [M1,M2] = r exp(iγ) and [M3,M4] =
r′ exp(iγ′), where γ ̸= γ′ so that pairs M1,M2 and M3,M4 have different commu-
tator angles. We may then define four matrix products using the same generators
but matrices M1, M2, M3 and M4 are in a different order. This difference in
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order and the commutator angles being different, ensures that we can control
the top right corner elements in order to construct the identity matrix. Lemma 3
provides details on how to calculate the top right element in these products. We
then prove that these top right elements in the four matrices are not contained in
an open half-plane and this is sufficient for us to construct the identity matrix.

The above construction does not work when all commutators have the same
angle, and indeed in this case the identity may or may not be present. Hence,
we need to consider various possible shuffles of matrices in these products. To
this end, we extend the result of Lemma 3 to derive a formula for the top right
element for any shuffle and prove it as Lemma 4. We observe that there is a
shuffle invariant part of the product that does not depend on the shuffle, and
that shuffles add or subtract commutators. Furthermore, this shuffle invariant
component can be calculated from the generators used in the product. As we
assume that all commutators have the same angle, γ, different shuffles move the
value along the line in the complex plane defined by the common commutator
angle which we call the γ-line.

It is straightforward to see that if it is not possible to reach the γ-line using
the additive semigroup of shuffle invariants, then the identity cannot be generated.
Indeed, since different shuffles move the value along the γ-line but the shuffle
invariant part never reaches it, then the possible values are never on the γ-line,
which includes the origin.

We show that if it is possible to reach the γ-line using shuffle invariants and
there are at least two non-commuting matrices in the used solution, then the
identity matrix is in the semigroup (Lemma 6). Testing this property requires
determining the solvability of a polynomially-sized set of non-homogeneous
systems of linear Diophantine equations, which can be done in polynomial time
by Lemma 1.

If the γ-line can be reached only using commuting matrices, we can construct
another system of linear Diophantine equations since the top right element has
an explicit formula in terms of generators used (see Lemma 6).

3 Preliminaries

The sets of rational numbers, real numbers and complex numbers are denoted by
Q, R and C. The set of rational complex numbers is denoted by Q(i) = {a+ bi |
a, b ∈ Q}. The set Q(i) is often called the Gaussian rationals in the literature. A
complex number can be written in polar form a+ bi = r exp(iφ), where r ∈ R
and φ ∈ [0, π). We denote the angle of the polar form φ by arg(a+ bi). We also
denote Re(a+ bi) = a and Im(a+ bi) = b. It is worth highlighting that commonly
the polar form is defined for a positive real r and an angle between [0, 2π). These
two definitions are obviously equivalent.

The identity matrix is denoted by In or, if the dimension n is clear from
the context, by I. The Heisenberg group H(n,K) is formed by n × n matrices

of the form M =

(
1 mT

1 m3

0 In−2 m2

0 0T 1

)
, where m1,m2 ∈ Kn−2, m3 ∈ K and 0 =
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(0, 0, . . . , 0)T ∈ Kn−2 is the zero vector. It is easy to see that the Heisenberg
group is a non-commutative subgroup of SL(n,K) = {M ∈ Kn×n | det(M) = 1}.

We will be interested in subsemigroups of H(n,Q(i)) which are finitely gen-
erated. Given a set of matrices G = {G1, . . . , Gt} ⊆ H(n,Q(i)), we denote the
matrix semigroup generated by G as ⟨G⟩.

Let M =

(
1 mT

1 m3

0 In−2 m2

0 0T 1

)
, then (M)1,n = m3 is the top right element. To

improve readability, by ψ(M) we denote the triple (m1,m2,m3) ∈ Q(i)2n−3.
The vectors m1,m2 play a crucial role in our considerations. We define the set

Ω ⊆ H(n,Q(i)) as those matrices where m1 and m2 are zero vectors, i.e., matrices
in Ω look like In except allowing any element of Q(i) in the top right element.

That is, Ω =

{(
1 0T m3

0 In−2 0

0 0T 1

)
| m3 ∈ Q(i)

}
, where 0 = (0, 0, . . . , 0)T ∈ Q(i)n−2 is

the zero vector.
Let us define a shuffling of a product of matrices. LetM1, . . . ,Mk ∈ G. The set

of permutations of a product of these matrices is denoted by shuffle(M1, . . . ,Mk) =
{Mσ(1) · · ·Mσ(k) | σ ∈ Sk}, where Sk is the set of permutations on k elements.
If some matrix appears multiple times in the list, say M1 appears x times, we
write shuffle(Mx

1 ,M2, . . . ,Mk) instead of shuffle(M1, . . . ,M1︸ ︷︷ ︸
x times

,M2, . . . ,Mk).

Let M1 =

(
1 aT

1 c1
0 In−2 b1

0 0T 1

)
and M2 =

(
1 aT

2 c2
0 In−2 b2

0 0T 1

)
. By an abuse of notation, we

define the commutator [M1,M2] ofM1 andM2 by [M1,M2] = aT
1 b2−aT

2 b1 ∈ Q(i).
Note that the commutator of two arbitrary matrices A,B is ordinarily defined as
[A,B] = AB −BA, i.e., a matrix. However, for matrices M1,M2 ∈ H(n,Q(i)), it

is clear thatM1M2−M2M1 =

(
0 0T aT

1 b2−aT
2 b1

0 O 0
0 0T 0

)
, where O is the (n−2)×(n−2)

zero matrix, thus justifying our notation which will be used extensively. Observe
that the matrices M1,M2 commute if and only if [M1,M2] = 0.

Note that the commutator is antisymmetric, i.e., [M1,M2] = −[M2,M1]. We
further say that γ is the angle of the commutator if [M1,M2] = r exp(iγ) for
some r ∈ R and γ ∈ [0, π). If two commutators [M1,M2], [M3,M4] have the same
angles, that is, [M1,M2] = r exp(iγ) and [M3,M4] = r′ exp(iγ) for some r, r′ ∈ R,
then we denote this property by [M1,M2]

γ
= [M3,M4]. If they have different

angles, then we write [M1,M2] ̸
γ
= [M3,M4]. By convention, if [M1,M2] = 0, then

[M1,M2]
γ
= [M3,M4] for every M3,M4 ∈ H(n,Q(i)).

To show that our algorithms run in polynomial time, we will need the following
lemma.

Lemma 1. (i) Let A ∈ Qn×m be a rational matrix, and b ∈ Qn be an n-
dimensional rational vector with non-negative coefficients. Then we can
decide in polynomial time whether the system of inequalities Ax ≥ b has an
integer solution x ∈ Zm.

(ii) Let A1 ∈ Qn1×m and A2 ∈ Qn2×m be a rational matrices. Then we can
decide in polynomial time whether the system of inequalities A1x ≥ 0n1 and
A2x > 0n2 has an integer solution x ∈ Zm.
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4 Properties of Ω-matrices

To solve the Identity Problem for subsemigroups of H(n,Q(i)) (Problem 1), we
will be analysing matrices in Ω (matrices with all zero elements, except possibly
the top-right corner value). Let us first discuss how to construct Ω-matrices from
a given set of generators G ⊆ H(n,Q(i)).

As observed earlier, when multiplying Heisenberg matrices of the form(
1 mT

1 m3

0 In−2 m2

0 0T 1

)
, elements m1 and m2 are additive. We can thus construct a homo-

geneous system of linear Diophantine equations (SLDEs) induced by matrices in
G. Each Ω-matrix then corresponds to a solution to this system.

Let G = {G1, . . . , Gt}, where ψ(Gi) = (ai, bi, ci). For a vector a ∈ Q(i)n−2,
define Re(a) = (Re(a(1)), . . . ,Re(a(n− 2))) (similarly for Im(a)). We consider
system Ax = 0, where

A =


Re(a1) Re(a2) · · · Re(at)
Im(a1) Im(a2) · · · Im(at)
Re(b1) Re(b2) · · · Re(bt)
Im(b1) Im(b2) · · · Im(bt)

 , (1)

x ∈ Nt and 0 is the 4(n− 2)-dimensional zero vector; noting that A ∈ Q4(n−2)×t.
Let S = {s1, . . . , sp} be the set of minimal solutions to the system. Recall that
elements of S are irreducible. That is, a minimal solution cannot be written as a
sum of two nonzero solutions. The set S is always finite and constructable [31].

A matrix Mi ∈ G is redundant if the ith component is 0 in every minimal
solution s ∈ S. Non-redundant matrices can be recognized by checking whether
a non-homogeneous SLDE has a solution. More precisely, to check whether Mi

is non-redundant, we consider the system Ax = 0 together with the constraint
that x(i) ≥ 1, where x(i) is the ith component of x. Using Lemma 1, we can
determine in polynomial time whether such a system has an integer solution.

For the remainder of the paper, we assume that G is the set of non-redundant
matrices. This implicitly assumes that for this G, the set S ≠ ∅. Indeed, if there
are no solutions to the corresponding SLDEs, then all matrices are redundant.
Hence G = ∅ and I ̸∈ ⟨G⟩ holds trivially.

Let M1, . . . ,Mk ∈ G be such that X = M1 · · ·Mk ∈ Ω. The Parikh vector
of occurrences of each matrix from G in product X may be written as x =
(m1, . . . ,mt) ∈ Nt. This Parikh vector x is a linear combination of elements of S,
i.e., x =

∑p
j=1 yjsj , with yj ∈ N, because x is a solution to the SLDEs. Each

element of shuffle(M1, . . . ,Mk) has the same Parikh vector, but their product is
not necessarily the same matrix; potentially differing in the top right element.

Let us state some properties of Ω-matrices.

Lemma 2. The Ω-matrices are closed under matrix product; the top right el-
ement is additive under the product of two matrices; and Ω-matrices commute
with Heisenberg matrices. In other words, let A,B ∈ Ω and M ∈ H(n,Q(i)), then

(i) AB ∈ Ω; (ii) (AB)1,n = A1,n +B1,n; (iii) AM =MA.
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Furthermore, if N =M1M2 · · ·Mk−1Mk ∈ Ω for some M1, . . . ,Mk ∈ H(n,Q(i)),
then every cyclic permutation of matrices results in the same matrix, N . That is,
N =M2M3 · · ·MkM1 = · · · =MkM1 · · ·Mk−2Mk−1.

We require the following technical lemma that allows us to calculate the
value in top right corner for particular products. The claim is proven by a direct
computation.

Lemma 3. Let M1,M2, . . . ,Mk ∈ H(n,Q(i)) such that M1M2 · · · Mk ∈ Ω and
let ℓ ≥ 1. Then,

(M ℓ
1M

ℓ
2 · · · M ℓ

k)1,n = ℓ

k∑
i=1

(
ci −

1

2
aT
i bi

)
+
ℓ2

2

∑
1≤i<j≤k−1

[Mi,Mj ],

where ψ(Mi) = (ai, bi, ci) for each i = 1, . . . , k.

If we further assume that the matrices from the previous lemma commute,
then for every M ∈ shuffle(M ℓ

1 ,M
ℓ
2 , . . . ,M

ℓ
k):

M1,n = ℓ

k∑
i=1

(
ci −

1

2
aT
i bi

)
+
ℓ2

2

∑
1≤i<j≤k−1

[Mi,Mj ] = ℓ

k∑
i=1

(
ci −

1

2
aT
i bi

)
, (2)

noting that [Mi,Mj ] = 0 when matrices Mi and Mj commute.
In Lemma 3, the matrix product has an ordering which yielded a simple

presentation of the value in the top right corner. In the next lemma, we consider
an arbitrary shuffle of the product and show that the commutators are important
when expressing the top right corner element.

Lemma 4. Let M1,M2, . . . ,Mk ∈ H(n,Q(i)) such that M1M2 · · · Mk ∈ Ω and
let ℓ ≥ 1. Let M be a shuffle of the product M ℓ

1M
ℓ
2 · · ·M ℓ

k by a permutation σ
that acts on kℓ elements. Then

(M)1,n = ℓ

k∑
i=1

(
ci −

1

2
aT
i bi

)
+
ℓ2

2

∑
1≤i<j≤k−1

[Mi,Mj ]−
∑

1≤i<j≤k

zji[Mi,Mj ],

where ψ(Mi) = (ai, bi, ci) for i = 1, . . . , k, and zji is the number of times Mj

appears before Mi in the product; so zji is the number of inversions of i, j in σ.

The crucial observation is that regardless of the shuffle, the top right corner
element has a common term, namely

∑k
i=1(ci −

1
2a

T
i bi), plus some linear combi-

nation of commutators. We call the common term the shuffle invariant. Note that
the previous lemmas apply to any Heisenberg matrices, even those in H(n,C).
For the remainder of the section, we restrict considerations to matrices in G.

Definition 1 (Shuffle Invariant). Let M1, . . . ,Mk ∈ G be such that X =
M1 · · · Mk ∈ Ω. The Parikh vector of occurrences of each matrix from G in
product X may be written as x = (m1, . . . ,mt) ∈ Nt where t = |G| as before.
Define Λx =

∑t
i=1mi(ci − 1

2a
T
i bi) as the shuffle invariant of Parikh vector x.
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Note that the shuffle invariant is dependant only on the generators used in
the product and the Parikh vector x.

Let S = {s1, . . . , sp} ⊆ Nk be the set of minimal solutions to the system
of linear Diophantine equations for G giving an Ω-matrix, as described in the
beginning of the section. Each sj thus induces a shuffle invariant that we denote
Λsj

∈ Q(i) as shown in Definition 1. The Parikh vector of any X =M1M2 · · · Mk

with X ∈ Ω, denoted x, is a linear combination of elements of S, i.e., x =∑p
j=1 yjsj . We then note that the shuffle invariant Λx of x is Λx =

∑p
j=1 yjΛsj

,
i.e., a linear combination of shuffle invariants of S.

Finally, it follows from Lemma 4 that for any X ∈ shuffle(M1,M2, . . . ,Mk),
where as before M1M2 · · ·Mk ∈ Ω and whose Parikh vector is x =

∑p
j=1 yjsj ,

the top right entry of X is equal to

X1,n = Λx +
∑

1≤i<j≤k

αij [Mi,Mj ] =

p∑
j=1

yjΛsj
+

∑
1≤i<j≤k

αij [Mi,Mj ], (3)

where each αij ∈ Q depends on the shuffle.
Furthermore, if a product of Heisenberg matrices is an Ω-matrix and all

matrix pairs share a common angle γ for their commutators, then shuffling the
matrix product only modifies the top right element of the matrix by a real
multiple of exp(iγ). This drastically simplifies our later analysis.

5 The Identity Problem for subsemigroups of H(n,Q(i))

In this section, we prove our main result.

Theorem 1. Let G ⊆ H(n,Q(i)) be a finite set of matrices. Then it is decidable
in polynomial time if I ∈ ⟨G⟩.

The proof relies on analysing generators used in a product that results in
an Ω-matrix. There are two distinct cases to consider: either there is a pair of
commutators with distinct angles, or else all commutators have the same angle.
The former case is considered in Lemma 5 and the latter in Lemma 6. More
precisely, we will prove that in the former case, the identity matrix is always in
the generated semigroup and that the latter case reduces to deciding whether
shuffle invariants reach the line defined by the angle of the commutator.

The two cases are illustrated in Figure 1. On the left, is a depiction of the case
where there are at least two commutators with different angles, γ1 and γ2. We will
construct a sequence of products where the top right element tends to r1 exp(iγ1)
with positive r1 and another product that tends to r2 exp(iγ1) with negative
r2. This is achieved by changing the order of matrices whose commutator has
angle γ1. Similarly, we construct two sequences of products where the top right
elements tend to r3 exp(iγ2) and r4 exp(iγ2), where r3 and r4 have the opposite
signs. Together these sequences ensure, that eventually, the top right elements
do not lie in the same open half-planes. On the right, is a depiction of the other
case, where all commutators lie on γ-line. In this case, the shuffle invariants of
products need to be used to reach the line.
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Im

Re

γγ + Λ1γ + 2Λ1

Λ1

Λ2Λ1 + Λ2

r1

r2

r3

H1 H2

Im

Re

γ1

γ2

r1,1

r1,2

r1,3

r2,1

r2,2r2,3

r3,1

r3,2

r3,3

Fig. 1. Illustrations of Lemma 5 and Lemma 6. Left shows two lines defined by two
different commutators and how the values r1,ℓ and r2,ℓ tend to γ1-line in opposite
directions, while r3,ℓ tends to γ2-line (r4,ℓ is omitted for clarity). Eventually, they are
not all within the same closed half-plane. Right shows that if there is only one shuffle
invariant, say Λ1, then all reachable values are on lines parallel to the γ-line, namely,
γ + kΛ1 for k > 0. But if there exists Λ2 in the opposite half-plane, then the γ-line
itself is reachable.

Lemma 5. Let G = {G1, . . . , Gt} ⊆ H(n,Q(i)), where each Gi is non-redundant.

Suppose there exist M1,M2,M3,M4 ∈ G such that [M1,M2] ̸
γ
= [M3,M4]. Then

I ∈ ⟨G⟩.

It remains to consider the case when the angles of commutators coincide for
each pair of non-redundant matrices. Our aim is to prove that, under this condi-
tion, it is decidable whether the identity matrix is in the generated semigroup.

Lemma 6. Let G = {G1, . . . , Gt} ⊆ H(n,Q(i)) be a set of non-redundant matri-
ces such that the angle of commutator [Gi, Gi′ ] is γ for all 1 ≤ i, i′ ≤ t, then we
can determine in polynomial time if I ∈ ⟨G⟩.

Proof. Let {s1, . . . , sp} ⊆ Nt be the set of minimal solutions to the SLDEs for G
giving zeros in a and b elements. Each sj induces a shuffle invariant Λsj ∈ Q(i)
as explained in Definition 1.

Consider a product X = M1 · · ·Mk ∈ Ω, where each Mi ∈ G. Let x =
(m1,m2, . . . ,mt) ∈ Nt be the Parikh vector of the number of occurrences of each
matrix from G in product X. Since X ∈ Ω, we have x =

∑p
j=1 yjsj , where each

yj ∈ N. Notice that X ∈ shuffle(Gm1
1 , . . . , Gmt

t ). Hence, by Equation (3), we have

X1,n = Λx +
∑

1≤i<j≤k

αij [Mi,Mj ] =

p∑
j=1

yjΛsj + r exp(iγ), (4)

where αij ∈ Q and r ∈ R depend on the shuffle. In other words, any shuffle of
the product X will change the top right entry X1,n by a real multiple of exp(iγ).

Let H1, H2 be the two open half-planes of the complex plane induced by
exp(iγ), that is, the union H1 ∪ H2 is the complement of the γ-line; thus 0 ̸∈
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H1 ∪ H2. We now prove that if {Λs1
, . . . , Λsp

} ⊆ H1 or {Λs1
, . . . , Λsp

} ⊆ H2

then we cannot reach the identity matrix.
Assume that {Λs1 , . . . , Λsp} ⊆ H1, renaming H1, H2 if necessary. Assume

that there exists some product X = X1X2 · · ·Xk equal to the identity matrix,
where k > 0 and Xj ∈ G. Then since X ∈ Ω, we see from Equation (4) that
X1,n =

∑p
j=1 yjΛsj

+ r exp(iγ), where r ∈ R.
Clearly,

∑p
j=1 yjΛsj

∈ H1, and since yj ̸= 0 for at least one i, we have∑p
j=1 yjΛsj ̸= 0. Now, since r exp(iγ) is on the γ-line, which is the boundary of

H1, the value X1,n belongs to H1 and cannot equal zero. This contradicts the
assumption that X is the identity matrix.

If {Λs1
, . . . , Λsp

} is not fully contained in either H1 or H2, then there are two
possibilities. Either there exists some Λsj

∈ Q(i) such that the angle of Λsj
is

equal to γ (in which case such a Λsj lies on the line defined by exp(iγ)), or else
there exist Λsi , Λsj such that 1 ≤ i < j ≤ p and Λsi and Λsj lie in different open
half-planes, say Λsi

∈ H1 and Λsj
∈ H2.

In the latter case, note that there exists x, y ∈ N such that xΛsi
+ yΛsj

=
r exp(iγ) for some r ∈ R since Λsi

, Λsj
and the commutators that define the γ-line

have rational components. It means that in both cases there exist z1, . . . , zp ∈ N
such that

∑p
j=1 zjΛsj = r exp(iγ) for some r ∈ R.

Consider a product T = T1 · · ·Tk ∈ Ω, where each Tj ∈ G and whose Parikh
vector is equal to

∑p
j=1 zjsj , where z1, . . . , zp ∈ N are as above. It follows from

Equation (4) that T1,n =
∑p

j=1 zjΛsj + r′ exp(iγ) = r exp(iγ) + r′ exp(iγ), where
r, r′ ∈ R and shuffles of such a product change only r′.

We have two possibilities. Either T = T1 · · ·Tk is a product only consisting of
commuting matrices from G, or else two of the matrices in the product of T do
not commute. In the latter case, let us write T ′ = N1N2X

′ ∈ shuffle(T1, . . . , Tk),
where N1 ∈ G and N2 ∈ G do not commute and X ′ is the product of the
remaining matrices in any order. We observe that Lemma 3 implies

(N ℓ1
1 N

ℓ1
2 X

′ℓ1)1,n = ℓ1r exp(iγ) +
ℓ21
2
[N1, N2] = ℓ1r exp(iγ) +

ℓ21
2
r′ exp(iγ) and

(N ℓ2
2 N

ℓ2
1 X

′ℓ2)1,n = ℓ2r exp(iγ) +
ℓ22
2
[N2, N1] = ℓ2r exp(iγ)−

ℓ22
2
r′ exp(iγ),

for some 0 ̸= r′ ∈ R. We then notice that
(
(N ℓ1

1 N
ℓ1
2 X

′ℓ1)d1(N ℓ2
2 N

ℓ2
1 X

′ℓ2)d2

)
1,n

=

d1

(
ℓ1r exp(iγ) +

ℓ21
2 r

′ exp(iγ)
)
+ d2

(
ℓ2r exp(iγ)− ℓ22

2 r
′ exp(iγ)

)
. Now,

d1

(
ℓ1r exp(iγ) +

ℓ21
2
r′ exp(iγ)

)
+ d2

(
ℓ2r exp(iγ)−

ℓ22
2
r′ exp(iγ)

)
= 0

⇐⇒ d1(2ℓ1r + ℓ21r
′) + d2(2ℓ2r − ℓ22r

′) = 0

⇐⇒ d1(2
r

r′
ℓ1 + ℓ21) + d2(2

r

r′
ℓ2 − ℓ22) = 0.

By our assumption, the vectors r exp(iγ) and r′ exp(iγ) have rational coordinates
and the same angle γ. It follows that r

r′ ∈ Q. Hence we may choose sufficiently
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large ℓ1, ℓ2 > 1 such that 2 r
r′ ℓ1 + ℓ21 and 2 r

r′ ℓ2 − ℓ22 have different signs, and then
integers d1, d2 > 1 can be chosen that satisfy the above equation. This choice of
ℓ1, ℓ2, d1, d2 is then such that (N ℓ1

1 N
ℓ1
2 X

′ℓ1)d1(N ℓ2
2 N

ℓ2
1 X

′ℓ2)d2 = I as required.
Thus if such non-commuting matrices are present, we can reach the identity.

Otherwise, our final case is that only commuting matrices can be used to
reach the γ-line. In this case we can compute in polynomial time a subset C ⊆ G
of these matrices. Then we can check if the identity matrix is in ⟨C⟩ in polynomial
time as follows.

Since C consists only of commuting matrices, by Equation (2), the top corner
value M1,n of any M ∈ ⟨C⟩ ∩ Ω can be expressed as a linear combination of
ci − 1

2a
T
i bi, where Gi ∈ C. We now construct a new homogeneous system of

linear Diophantine equations. Let C = {G1, . . . , Gt′}, and let A ∈ Q4(n−2)×t′

be defined as in Equation (1) using only matrices present in C. Also, let A2 =
(c1− 1

2a
T
1 b1, . . . , ct′− 1

2a
T
t′bt′). Now construct a system

(
A
A2

)
x = 0, where x ∈ Nt′

and 0 is the (4(n− 2) + 1)-dimensional zero vector. Note that if this system has

a solution x, then G
x(1)
1 G

x(2)
2 · · ·Gx(t′)

t′ = I. By Lemma 1 (see also [22]), we can
decide if such a system has a non-zero solution in polynomial time.4

The proof is concluded by showing that the whole procedure is in P. Namely,
we first decide if there is a pair Gi, Gj of non-commuting matrices such that
the γ-line can be reached using Gi and Gj , in which case I ∈ ⟨G⟩ by the above
argument. This requires constructing a polynomially sized set of non-homogeneous
systems of linear Diophantine equations and deciding whether they have solutions.
This can be done in polynomial time.

If the γ-line can be reached only using commuting matrices, then we can
compute the set C ⊆ G of these matrices and check whether I ∈ ⟨C⟩ in polynomial
time. ⊓⊔

Lemmata 5 and 6 allow us to prove the main result, Theorem 1.

The decidability of the Identity Problem implies that the Subgroup Problem
is also decidable. That is, whether the semigroup generated by the generators G
contains a non-trivial subgroup. However, the decidability of the Group Problem,
i.e., whether ⟨G⟩ is a group, does not immediately follow. Our result can be
extended to show decidability of the Group Problem.

Corollary 1. It is decidable in polynomial time whether a finite set of matrices
G ⊆ H(n,Q(i)) forms a group.

Proof. We give a brief overview of the proof. For ⟨G⟩ to be a group, each element
of G must have a multiplicative inverse in ⟨G⟩. If I ∈ ⟨G⟩, then each element
used in a factorization of I has such an inverse. E.g., if M1 · · ·Mk = I, then
M−1

1 =M2 · · ·Mk etc. The difficulty is that perhaps I ∈ ⟨G⟩, but this does not
imply that every matrix in G has a multiplicative inverse (since not every matrix
may be used within a product equal to I).

4 Note by a result of [1], the Membership Problem is decidable in polynomial time for
commuting matrices. However, the authors prefer to have a self-contained proof.
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We therefore proceed by first ensuring there are no redundant matrices
(carried out in P) since a redundant matrix cannot even be used to reach an
Ω-matrix. Assuming all matrices are non-redundant, we then adapt the proofs of
Lemmata 5 and 6 to ensure that not only can we reach the identity matrix, but
we can do so with a product that uses every matrix from G. Both lemmata use
Ω-matrices as part of their proofs, and we know there is a product containing
all matrices giving an Ω-matrix since all matrices are non-redundant. Lemma 5
can then be adapted to say that if two pairs have different commutator angles,
then we can reach the identity matrix using all matrices within the product. If
all commutator angles of pairs of matrices in G are identical, then we can adapt
the non-homogeneous system of linear Diophantine equations from the proof
of Lemma 6 to enforce that all matrices are used at least once. This gives us a
polynomial time algorithm for deciding whether ⟨G⟩ is a group. ⊓⊔

6 Future research

We believe that the techniques, and the general approach, presented in the
previous chapters can act as stepping stones for related problems. In particular,
consider the Membership Problem, i.e., where the target matrix can be any

matrix rather than the identity matrix. Let M =

(
1 mT

1 m3

0 In−2 m2

0 0T 1

)
be the target

matrix and let G = {G1, . . . , Gt}, where ψ(Gi) = (ai, bi, ci). Following the idea
of Section 4, we can consider system Ax = (m1,m2), where x ∈ Nt. This system
is a non-homogeneous system of linear Diophantine equations that can be solved
in NP. The solution set is a union of two finite solution sets, S0 and S1. The
set S0 being the solutions to the corresponding homogeneous system that can
be repeated any number of times as they add up to 0 on the right-hand side.
The other set, S1, corresponds to reaching the vector (m1,m2). The matrices
corresponding to the solutions in S1 have to be used exactly this number of times.

The techniques developed in Section 4 allow us to manipulate matrices
corresponding to solutions in S0 in order to obtain the desired value in the top
right corner. However, this is not enough as the main technique relies on repeated
use of Ω-matrices. These can be interspersed with matrices corresponding to a
solution in S1 affecting the top right corner in uncontrollable ways.

References
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matrices. RAIRO - Theoretical Informatics and Applications, 39(1):125–131, 2005.
doi:10.1051/ita:2005007.
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12. Thomas Colcombet, Joël Ouaknine, Pavel Semukhin, and James Worrell. On
reachability problems for low-dimensional matrix semigroups. In Proceedings of
ICALP 2019, volume 132 of LIPIcs, pages 44:1–44:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.44.

13. Persi Diaconis and Maryanthe Malliaris. Complexity and randomness in the
heisenberg groups (and beyond), 2021. doi:10.48550/ARXIV.2107.02923.

14. Volker Diekert, Igor Potapov, and Pavel Semukhin. Decidability of membership
problems for flat rational subsets of GL(2, Q) and singular matrices. In Ioannis Z.
Emiris and Lihong Zhi, editors, ISSAC ’20: International Symposium on Symbolic
and Algebraic Computation, Kalamata, Greece, July 20-23, 2020, pages 122–129.
ACM, 2020. doi:10.1145/3373207.3404038.

15. Jintai Ding, Alexei Miasnikov, and Alexander Ushakov. A linear attack on a key
exchange protocol using extensions of matrix semigroups. IACR Cryptology ePrint
Archive, 2015:18, 2015.

16. Ruiwen Dong. On the identity problem and the group problem for subsemigroups
of unipotent matrix groups. CoRR, abs/2208.02164, 2022. doi:10.48550/arXiv.
2208.02164.

17. Ruiwen Dong. On the identity problem for unitriangular matrices of dimension
four. In Proceedings of MFCS 2022, volume 241 of LIPIcs, pages 43:1–43:14, 2022.
doi:10.4230/LIPIcs.MFCS.2022.43.

18. Ruiwen Dong. Semigroup Intersection Problems in the Heisenberg Groups. In
In Proceedings of STACS 2023, volume 254 of LIPIcs, pages 25:1–25:18, 2023.
doi:10.4230/LIPIcs.STACS.2023.25.
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