

LJMU Research Online

Morley, D, Till, K, Ogilvie, P and Turner, G

Influences of gender and socioeconomic status on the motor proficiency of children in the UK.

http://researchonline.ljmu.ac.uk/id/eprint/2014/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Morley, D, Till, K, Ogilvie, P and Turner, G (2015) Influences of gender and socioeconomic status on the motor proficiency of children in the UK. HUMAN MOVEMENT SCIENCE, 44. pp. 150-156. ISSN 0167-9457

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Dear Author,

Please, note that changes made to the HTML content will be added to the article before publication, but are not reflected in this PDF.

Note also that this file should not be used for submitting corrections.

1

5 6

3

4

11

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/humov

Influences of gender and socioeconomic status on the motor proficiency of children in the UK

⁷ David Morley^{a,*}, Kevin Till^b, Paul Ogilvie^b, Graham Turner^c

^a School of Education, Leisure and Sport Studies, Liverpool John Moores University, Liverpool, UK

9 ^b School of Sport, Leeds Beckett University, Leeds, UK

10 ^c Department of Sport, Health and Nutrition, Leeds Trinity University, Leeds, UK

ARTICLE INFO

23	
14	Article history:
15	Received 27 March 2015
16	Revised 22 May 2015

- 17 Accepted 27 August 2015
- 18 Available online xxxx
- 19 Keywords:
- 20 Motor proficiency
- 21 Children
- 22 Gender
- 23 Socioeconomic status

ABSTRACT

As the development of movement skills are so crucial to a child's involvement in lifelong physical activity and sport, the purpose of this study was to assess the motor proficiency of children aged 4–7 years (range = 4.3–7.2 years), whilst considering gender and socioeconomic status. 369 children (176 females, 193 males, aged = 5.96 ± 0.57 years) were assessed for fine motor precision, fine motor integration, manual dexterity, bilateral coordination, balance, speed and agility, upper-limb co-ordination and strength. The average standard score for all participants was 44.4 ± 8.9 , classifying the participants towards the lower end of the average score. Multivariate analysis of covariance identified significant effects for gender (p < 0.001) and socioeconomic status (p < 0.001). Females outperformed males for fine motor skills and boys outperformed girls for catch and dribble gross motor skills. High socioeconomic status significantly outperformed middle and/or low socioeconomic status for total, fine and gross motor proficiency. Current motor proficiency of primary children aged 4-7 years in the UK is just below average with differences evident between gender and socioeconomic status. Teachers and sport coaches working with primary aged children should concentrate on the development of movement skills, whilst considering differences between genders and socioeconomic status.

© 2015 Published by Elsevier B.V.

44

26

27

28

29

30

31

32

33

34

35

36

37

38

39

45

46 **1. Introduction**

Children's ability to perform movement skills develops at a prolific rate in the early years as they begin to acquire, refine and develop a range of gross and fine movement skills (Gallahue, Ozmun, & Goodway, 2012). The appropriate development of movement skills is regarded as a crucial platform for a child's participation in lifelong physical activity (Barnett, Van Beurden, Morgan, et al., 2009), although the exact nature of this relationship has been contested (Lai, Costigan, Morgan, et al., 2014). Furthermore, Seefeldt (1980) hypothesised that failure to develop a certain level of movement competence could result in a motor proficiency barrier, leading to a child's exclusion from a range of physical activities.

The development of reliable and validated tools that assess motor proficiency (the specific abilities upon which performance is built, e.g. agility, balance, co-ordination, running speed) has formed a cornerstone of motor development research for many decades. In most cases, motor proficiency assessment has involved the completion of tasks by participants and

http://dx.doi.org/10.1016/j.humov.2015.08.022 0167-9457/© 2015 Published by Elsevier B.V.

^{*} Corresponding author at: Liverpool John Moores University, IM Marsh Campus, Barkhill Road, Aigburth, Liverpool L17 6BD, UK.

E-mail addresses: d.m.morley@ljmu.ac.uk (D. Morley), k.till@leedsbeckett.ac.uk (K. Till), p.ogilvie@leedsbeckett.ac.uk (P. Ogilvie), g.turner@leedstrinity. ac.uk (G. Turner).

D. Morley et al./Human Movement Science xxx (2015) xxx-xxx

56 57

58 59

60

61

2

assessed in comparison to norm-referenced (compared to a normative group) quantifiable scores, or criterion-referenced against a set of pre-determined criteria (Cools, De Martelaer, Samaey, et al., 2008). Motor proficiency assessments are predominantly developed and validated for assessing children with motor impairments, suggesting that such assessments are of motor deficiency, rather than proficiency (Haywood & Getchell, 2005). Such assessments are also used as a way of measuring the impact of an intervention, predominantly involving a focus on improving children's movement competence and/or physical activity, on children's motor proficiency (Kirk & Rhodes, 2011).

The effect of gender on motor proficiency has been raised, with studies suggesting that girls develop fine motor skills at a faster rate than boys, and boys acquire certain gross motor skills earlier than girls (Bala & Katić, 2009). In research using the same assessment methods as used in this study, South African boys demonstrated overall motor proficiency superior to that of the girls and outperformed girls significantly in the upper limb and strength skills sub-items (Pienaar & Kemp, 2014). Paradoxically, other studies have reported no gender differences in motor proficiency (Milanese, Bortolami, Bertucco, Verlato, & Zancanaro, 2010), particularly in relation to younger children (Du Toit & Pienaar, 2002; Shala, 2009; Venetsanou & Kambas, 2011).

69 What is less commonly reported in the research literature is the relationship between motor proficiency and socioeconomic status (SES). A range of factors can be used to determine the SES of children. For example, the UK uses Indices of Mul-70 tiple Deprivation (IMD) to measure SES within an area by postcode in terms of income, employment, health and disability, 71 education, skills and training, barriers to housing and services and the living environment (Noble, McLennan, Wilkinson, 72 73 et al., 2007). Studies in Australia have used similar indices of SES to explore FMS development of children in low-income communities, suggesting that such children start school developmentally delayed in FMS development (Okely & Booth, 74 2004), with early identification and targeted intervention seen as crucial in these environments if children are to be given 75 the chance to catch up (Roeber, Tober, Bolt, et al., 2012). Other studies in Australia (Booth et al., 1999; Hardy, Reinten-76 77 Reynolds, Espinel, Zask, & Okely, 2012) have also highlighted an association between low movement competency and low 78 SES, suggesting that Grade 2 (aged 7–8) and Grade 4 (aged 9–10) children had not mastered FMS expected at their stage 79 of development. Whilst colleagues have presented some interesting findings from other Countries, this study adds further 80 to our understanding of the field in that participants are younger, aged 4-7 years, and reside in a different country with its own social, political and cultural influences. Moreover, there is a general tendency to explore the relationship between 81 motor proficiency and physical activity (Cohen, Morgan, Plotnikoff, et al., 2014) in understanding the influence of SES, rather 82 than motor proficiency itself. This is not without cause as SES has been identified as a determinant of physical activity that 83 84 can predispose, enable or reinforce physical activity behaviour (Inchley, Currie, Todd, et al., 2005).

There is a general shortage of research exploring motor proficiency of children in Europe, particularly within early years 85 environments and this leads to a lack of normative data for cross-cultural uses of motor proficiency assessments (Cools et al., 86 2008). Furthermore, an understanding of how the development of motor proficiency is different for different children is even 87 88 less understood. It is often assumed within schools that children have the prerequisite mastery of movement skills to be able to participate in organised and informal activities (Lubans, Morgan, & Cliff, 2010). However, with findings suggesting that 89 organised physical activity within an institution such as a school is the most effective way to develop movement (Logan, 90 Robinson, Wilson, et al., 2012), it is essential that we understand more about children's motor proficiency within this specific 91 92 environment.

In the UK, there is a paucity of research that assesses the motor proficiency of children and determines the influences of gender and SES. Therefore, the purpose of this study was to assess children's motor proficiency across a number of primary schools (children aged 4–7 years) in the UK and to subsequently compare children's motor proficiency with gender and SES. Such findings would have serious implications for ensuring every child has access to lifelong pathways for participation in physical activity, as well as providing teachers and coaches appropriate information to be able to differentiate their practice effectively.

99 2. Methods

The research formed part of the 'Start to Move' research project (Youth Sport Trust (YST)/Bupa, 2014) and was funded by the YST/Bupa. The funding organizations played no role in any aspect of the research process and did not have the right to approve or disapprove of the publication.

103 2.1. Participants

Participants consisted of children (n = 369; females, n = 176; males, n = 193; aged 5.96 ± 0.57 years) from 14 primary schools in the North of England. Schools were randomly invited from a 'Start to Move' (Youth Sport Trust (YST)/Bupa, 2014) course delegate list, with 100% response rate. The ethics committee at Leeds Beckett University granted ethical approval. The Head teacher, teachers and parents provided consent, with informed assent provided by participants.

3

D. Morley et al./Human Movement Science xxx (2015) xxx-xxx

108 *2.2. Procedure*

Motor proficiency was assessed using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition Brief Form (BOT-109 110 2 BF). All data collection was conducted during scheduled physical education classes, providing as naturalistic a setting as 111 possible, in each of the participating schools. Gender, classified as male or female, and date of birth was collected for each participant. In addition, SES was calculated for each participating school by collecting United Kingdom's Indices of Multiple 112 113 Deprivation (IMD). Each school's IMD was classified as low = below 10,894, medium = 10,895–21,788 and high as above 114 21,789. Therefore, 'low' IMD represented a lower SES than medium or high IMD. In the absence of individual participant 115 postcode data, the IMD of the school provided the 'next-best' source of a participant's SES as a result of the use of 'catchment areas'. Catchment areas are determined by a number of factors including distance from home to school and are predomi-116 nantly used to allocate places in oversubscribed schools. It can be assumed, given the existing population explosion at this 117 age range (Department for Education (DfE), 2014a), that the majority of school places will be allocated to children within 118 their catchment area (DfE, 2014b). 119

120 2.3. Measures

The BOT-2 BF was selected for its suitability to assess children with and without motor problems and strong test-retest reliability (Yoon, Scott, & Hill, 2006), as well as being a validated assessment instrument for motor proficiency for participants aged between 4 and 21 years of age (Bruininks & Oseretsky, 2010). The BOT-2 BF consisted of 12 measures of motor proficiency, which are categorised into sub-tests to assess fine motor precision, fine motor integration, manual dexterity, bilateral co-ordination, balance, speed and agility, upper-limb co-ordination and strength.

All the test items and sub-tests originated from the full assessment and were selected for "clinical utility, content cover-126 127 age, and ease of administration" (Bruininks & Oseretsky, 2010). Test stations were established to allow multiple participant 128 assessments, simultaneously. The child, guided by the examiner, determined whether a full or knee push-up was the most 129 appropriate assessment of strength based on the pupil's performance in other areas, as per the BOT-2 BF manual (Bruininks & Oseretsky, 2010). A research team was collectively trained to administer the test, primarily through jointly observing par-130 131 ticipant performance of each element of the test. This training process was repeated until an analysis of the interobserver reliability produced an interclass correlation coefficient of 1.00 (n = 27; 95% Cl = 0.99 - 0.1.00), indicating excellent 132 133 agreement between the responder's observations.

134 2.4. BOT-2 BF scoring

The standard score for each pupil was reached by converting the total points score (max = 72) to the standard score, using the gender-specific norms provided (Bruininks & Oseretsky, 2010). This took the child's age, gender and choice of strength assessment (push-up: full/ knee) into account when assessing their performance. Standard scores were classified as >70 = well above average, 60-69 = above average, 41-59 = average, 31-40 = below average, and <30 = well below average. Individual fine motor proficiency (items 1–7) and sub-section items (totals for fine motor precision/integration (items 1– 4) and bilateral co-ordination (items 5–7)), and gross motor proficiency (items 8–12) were also calculated in relation to their raw score.

142 2.5. Statistical analysis

Data are presented as means and standard deviation (SD). Initial descriptive scores were calculated for the BOT-2 standard score and subsequent descriptive category. To compare the motor proficiency between gender and SES, mean and standard deviation scores were calculated for all elements of the BOT-2 motor proficiency assessment. A multivariate analysis of covariance (MANCOVA) test, with chronological age applied as the covariate, was used for comparisons between gender and SES. Chronological age was applied as a covariate to control for the relationships between age and motor proficiency and progress on the standardised scoring of the BOT-2, which doesn't class chronological age as a continuous variable and this was included within individual and sub-section scores.

Bonferroni pairwise comparisons were conducted to examine univariate effects between each dependent variable. All analyses were conducted with SPSS version 21.0 with significance levels set at p < 0.05. Effect sizes using partial eta squared (η^2) were calculated and interpreted as 0.01 = small, 0.06 = medium and 0.14 = large according to Cohen (1988).

153 **3. Results**

Table 1 shows the mean standard scores obtained in the BOT-2-BF and when classified into descriptive categories by gender and SES. The standard score for all participants was 44.4 ± 8.9 classifying the participants towards the lower end of the average group. On an individual level, most of the participants were classified in the average (n = 241; 65.3%) or below average (n = 95; 25.7%) categories. Of the remaining 33 participants, 18 scored well below average and 15 above average.

ARTICLE IN PRESS D. Morley et al./Human Movement Science xxx (2015) xxx-xxx

28 August 2015 4

Table 1

Standard score for BOT-2-BF according to gender and SES.

			Well above average >70 (%)	Above average 60– 69 (%)	Average 41–59 (%)	Below average 31– 40 (%)	Well below average <30 (%)
Gender							
Males	193	44.9 ± 9.2	0	10	130 (67.4)	43	10
			(0)	(5.2)		(22.2)	(5.2)
Females	176	43.8 ± 8.6	0	5	111	52	8
			(0)	(2.8)	(63.0)	(29.6)	(4.6)
SES							
Low	108	43.4 ± 10.7	0	3	60	41	4
			(0)	(2.8)	(55.6)	(40.0)	(3.6)
Medium	134	46.4 ± 7.4	0	4	102	26	2
			(0)	(3.0)	(76.1)	(19.4)	(1.5)
High	127	43.1 ± 8.3	0	8	79	28	12
			(0)	(6.3)	(62.2)	(22.0)	(9.4)

Table 2

Differences in motor proficiency by gender.

	Male Mean ± SD	Female Mean ± SD	Covariate Age	Р	η^2
Fine motor					
Star	1.9 ± 0.5	2.1 ± 0.4	•	***	0.06
Line	1.7 ± 1.5	2.1 ± 1.7	***	r •	0.01
Circle	4.0 ± 1.7	4.5 ± 1.5	**	**	0.02
Diamond	3.1 ± 1.7	3.0 ± 1.9	***	NS	0.00
Precision total	10.7 ± 3.6	11.7 ± 3.6	***	**	0.02
Manual dexterity	2.7 ± 1.3	2.9 ± 1.2	***	NS	0.01
Touch nose	3.2 ± 1.2	3.5 ± 1.0	***	*	0.01
Thumbs and finger	1.4 ± 1.2	1.6 ± 1.3	***	NS	0.00
Bilateral dexterity total	4.8 ± 1.8	5.1 ± 1.8	***	NS	0.01
Fine motor total	18.2 ± 5.0	19.8 ± 5.0		**	0.03
Gross motor					
Balance	2.5 ± 1.6	2.7 ± 1.5	***	NS	0.01
Speed and agility	2.3 ± 1.8	2.5 ± 1.8	••••	NS	0.00
Catch	0.5 ± 1.0	0.2 ± 0.6	**	**	0.02
Dribble	1.9 ± 1.4	1.6 ± 1.4	***	**	0.02
Strength	2.2 ± 1.9	2.0 ± 1.9	***	NS	0.00
Gross total	9.3 ± 4.9	8.9 ± 4.3	***	NS	0.00
Total	30.1 ± 11.7	31.8 ± 11.1	***	NS	0.01

P < 0.05

P < 0.01.

P < 0.001

Table 2 shows the gender differences in motor proficiency. MANCOVA demonstrated significant effects of chronological 158 age ($F_{14,349}$ = 18.53, p < 0.001, $\eta^2 = 0.46$) and gender ($F_{14,349}$ = 3.86, p < 0.001, $\eta^2 = 0.14$). Using chronological age as a covariation of the second state of the se 159 ate, age was related to every element of the BOT-2 BF. When controlling for age, significant gender differences were iden-160 tified for star, line, circle, precision total, touch nose, fine motor total, catch and dribble. Females outperformed males for 161 162 all fine motor skills, whilst males outperformed females for catching and dribbling ability. Effect sizes for all variables were trivial to small except for the star, which were moderate. 163

Table 3 shows the differences in motor proficiency ability between high, middle and low SES children. MANCOVA demon-164 strated significant effects of SES ($F_{30,698}$ = 10.2, p < 0.001, $\eta^2 = 0.314$). In relation to total score a significant large difference 165 166 was identified with high and middle SES outperforming low SES. For fine motor skills, when controlling for age, significant differences between SES groups were identified for line, circle, precision total, manual dexterity and fine motor total. High 167 168 SES significantly outperformed middle and/or low SES for each variable where significant differences were found. Low SES only significantly outperformed middle SES for line ability. Effect sizes demonstrated a large effect for line and manual dex-169 terity with a moderate effect shown for fine motor total. For gross motor skills, when controlling for age, significant differ-170 171 ences between high and low SES were identified for speed and agility, dribble, push up and gross total. High and middle SES outperformed low SES for speed and agility, push up and gross total with high and low outperforming middle SES for dribble 172 173 performance. Large effect sizes were only identified for speed and agility.

D. Morley et al./Human Movement Science xxx (2015) xxx-xxx

Differences in motor proficiency by SES.

	High (<i>n</i> = 106)	Middle (<i>n</i> = 127)	Low (<i>n</i> = 134)	Р	η^2	Pairwise
Fine motor						
Star	2.0 ± 0.4	2.0 ± 0.4	1.9 ± 0.6	NS	0.01	
Line	2.6 ± 1.6	1.1 ± 1.2	2.0 ± 1.8	***	0.10	H > L > M
Circle	4.5 ± 1.5	4.4 ± 1.8	4.0 ± 1.6	*	0.02	H > L
Diamond	3.2 ± 1.7	3.1 ± 2.0	2.9 ± 1.5	NS	0.01	
Precision total	12.4 ± 3.6	10.6 ± 3.4	10.8 ± 3.7	**	0.03	H > M,L
Manual dexterity	3.5 ± 1.2	2.8 ± 1.1	2.3 ± 1.1	***	0.16	H > M > L
Touch nose	3.3 ± 1.0	3.2 ± 1.2	3.4 ± 1.2	NS	0.01	
Thumbs and finger	1.6 ± 1.2	1.6 ± 1.3	1.4 ± 1.3	NS	0.01	
Bilateral dexterity total	4.9 ± 1.6	5.2 ± 1.9	4.8 ± 1.8	NS	0.02	
Fine motor total	20.8 ± 5.0	18.6 ± 4.6	17.9 ± 5.1	***	0.06	H > L
Gross motor						
Balance	2.7 ± 1.5	2.6 ± 1.5	2.5 ± 1.5	NS	0.01	
Speed and agility	2.7 ± 2.0	2.9 ± 1.7	1.7 ± 1.5	***	0.13	H,M > L
Catch	0.4 ± 0.9	0.4 ± 0.8	0.3 ± 0.8	NS	0.00	
Dribble	2.0 ± 1.7	1.3 ± 1.0	2.0 ± 1.6	**	0.03	H,L > M
Strength	2.3 ± 1.8	2.2 ± 2.0	1.8 ± 1.6	**	0.02	H,M > L
Gross total	10.0 ± 5.0	9.4 ± 4.4	8.3 ± 4.4	**	0.04	H,M > L
Total	34.8 ± 13.8	32.7 ± 10.5	26.2 ± 8.2	***	0.16	H,M > L

^{*} P < 0.05.

**** P < 0.001.

174 4. Discussion

The primary purpose of this study was to assess the motor proficiency of primary school (4–7 years) children in the North of England, with a secondary purpose of subsequently comparing children's motor proficiency according to gender and SES. To our knowledge, this is the first study to assess the motor proficiency of children aged 4–7 years, exploring the effect of gender and SES, in the UK. Overall, findings demonstrated that UK children performed below average to average on the BOT-2 BF motor proficiency assessment. When compared by gender, females outperformed males for fine motor skills, whilst males outperformed females for the gross motor skills of catching and dribbling. When SES was compared, high and middle SES significantly outperformed low SES for total, fine and gross motor skills.

The average standard score of this cohort (44.9) was on the average to below average boundary with 89.6% of participants' scores falling within this range. This potentially raises some concern as it indicates that approximately a quarter of 4–7 year olds in the current study score below average for motor proficiency. What is even more worrying about the low average score of participants is that the BOT-2 BF motor proficiency assessment tool is designed to assess motor deficiencies and therefore consists of basic tasks. These findings coincide with previous research findings worldwide that typically demonstrate average or below average motor proficiency in children (Okely & Booth, 2004; Sigmundsson & Rostoft, 2003), with few exceptions (Chow, Henderson, & Barnett, 2001).

Variation in motor proficiency of children from different countries has been previously reported (Adolph, Karasik, & 189 190 Tamis-LeMonda, 2010), with influencing factors ranging from family expectations to the guality of stimulation at home 191 (Hills, Anderson, & Byrne, 2011). Children's decline in motor proficiency has been supported elsewhere, although the impact 192 of the general living environment has been evidenced as less important than changes in lifestyle activities on the movement 193 behaviour of children (Kretschmer et al., 2014). In light of the reported variations in children's motor proficiency between 194 different countries and evidence of the decline in the motor proficiency of children, it is important to understand reasons 195 that may be impacting upon the motor proficiency of 4–7 year olds within the UK. One potential explanation for the low level of children's motor proficiency in this study is the recent shift in government policy with the dismantling of School 196 Sport Partnerships and withdrawal of funding for the Physical Education and Sport Strategy in the UK (DfES, 2003; Bardens 197 198 et al., 2012). Another reason could be the inadequate preparation of Primary school teachers to teach PE, with reports that a lack of specialist Physical Education subject knowledge remains a major weakness affecting the guality of Primary school 199 200 provision (Ofsted, 2013). Whilst the impact of more recently introduced initiatives (DfE/Education Funding Agency, 2014) 201 for Primary school Physical Education and sport are yet to be fully understood it remains imperative that teachers and coa-202 ches who are responsible for introducing young children to sport have an understanding of how to provide an environment where developing movement patterns and sequences can be nurtured and improved (Malina, 2012). 203

Given the limited research within this age-range of participants, previous research has highlighted the need to identify skill-specific differences in the mastery of movement skills, in order to adequately inform subsequent interventions and promote children's movement development effectively (Cools et al., 2008). In this vain, females in this study outperformed males for all fine motor skills, whilst males outperformed females for the elements of gross motor skills involving catching

5

^{**} P < 0.01.

28 August 2015

D. Morley et al./Human Movement Science xxx (2015) xxx-xxx

and dribbling, as reported elsewhere (Bala & Katić, 2009; Sigmundsson & Rostoft, 2003) These differences could be attributed 208 209 to stereotyped practices both within the school and home environments that support physical activity and play practices 210 that facilitate the development of certain movement skills. This could relate, for instance, to gender influence on the selec-211 tion of toys for play (Weisgram, Fulcher, & Dinella, 2014), with toys traditionally associated with boys being more likely to 212 include sports equipment, whereas toys traditionally associated with girls were more likely to include dolls, fictional char-213 acters, and furniture, amongst other items (Pomerleau, Bolduc, Malcuit, & Cossette, 1990). Gender-biased play preferences 214 might also contribute to the differences in motor proficiency, with boys playing more physical games than girls (Lindsey & Mize, 2001). 215

216 Interestingly, in the current study, effect sizes between genders demonstrated trivial to small differences in motor pro-217 ficiency with results from the vast majority of subsets suggesting that the significant differences found in other studies were less prevalent within this age group, most notably strength (Pienaar & Kemp, 2014). In one of the rare UK studies, albeit with 218 219 7-10 year olds, a study by Duncan, Stanley, and Leddington-Wright (2013) reported no gender differences in motor proficiency when considered as total scores, but girls outperformed boys on the hurdle step and straight leg raise with boys out-220 221 performing girls on the trunk stability push-up. Other studies have reported varying and often conflicting perspectives on the significance of gender in motor proficiency when studying preschool children (Bala & Katić, 2009). Considering the trivial to 222 223 small significance of gender differences, our results go some way to support the notion that the significance of the gender effect becomes more prominent as children age and biological diversity becomes pronounced (Barnett et al., 2009). 224

225 Empirical research has demonstrated a positive association between SES and FMS mastery (Cohen et al., 2014). Further-226 more, the use of an ecological systems theory approach to understanding motor proficiency has yielded some interesting correlations between the child, family and environment, suggesting that early motor development is influenced by parental 227 228 support and the child's immediate surroundings (Barnett, Hinkley, Okely, et al., 2013). Perhaps the most striking finding from 229 this study is the strength of the relationship between SES and motor proficiency, with socially disadvantaged children having 230 significantly lower motor proficiency than socially advantaged children. Specifically, socially disadvantaged children signif-231 icantly underperformed, in comparison to socially advantaged children, on the majority of gross motor skill subsets apart 232 from two (balance and catch). Other authors have reported similar general findings in their studies of children the same age as this study in other countries (McPhillips & Jordan-Black, 2007). Furthermore, the authors also established a correlation 233 between motor deficit and reading attainment, suggesting that motor deficiency has more wide-ranging impact than solely 234 inhibiting children in their full involvement in physical activity. As gross motor skill proficiency is a likely determinant of 235 236 children's subsequent physical activity patterns, these findings suggest that this prevalence of motor deficiency could lead 237 to a life of exclusion from physical activity for socially disadvantaged children.

238 5. Conclusions

Strengths of this study relate to the exploration of the large sample size drawn from a range of schools and the use of children from the UK as participants. Whilst other measurement instruments may have been deemed more suitable to assess typical motor development of the specific age range of participants in an educational setting, the breadth of skills coverage and number of detailed sub-elements deemed the BOT-2 BF the most appropriate measurement tool.

Whilst the relationship between the mastery of FMS and participation in physical activity remains inconclusive (Lai et al., 243 244 2014), there is sufficient evidence from longitudinal studies (Jaakkola & Washington, 2013) to suspect a relationship that consequently heightens the importance of movement in children's ability to access a range of physical activity experiences. 245 The current findings suggest that teachers, sports coaches and physical activity specialists need to concentrate on 246 movement-based approaches in their delivery and differentiate practice for different genders, particularly in the develop-247 248 ment of gross motor skills. Those responsible for the development of interventions in related fields need to be mindful of 249 the motor deficits evidenced within this study and ensure they provide targeted and differentiated programs for socially dis-250 advantaged children and female participants. Researchers have also suggested the need to further understand the movement 251 ability of children in the wider constructs of the assessment of physical literacy within schools (Gublin, Collins, & Button, 2014) and involve teachers in the assessment of children's motor proficiency (Cools et al., 2008). Although this study has 252 253 started to do this with UK primary school children, future developments are crucial if motor proficiency assessment is going 254 to have a subsequent positive affect on the appropriate development of children's movement, over and beyond the relatively 255 small-scale, cross-sectional, studies that currently exist.

6. Uncited reference

257 Goodway and Branta (2003).

258 Acknowledgements

Thank you to the staff and students responsible for the data capture and other members of the Start to Move project team for their thoughts and comments on initial thoughts around this manuscript. The Youth Sport Trust and Bupa funded this research.

28 August 2015

D. Morley et al. / Human Movement Science xxx (2015) xxx-xxx

262 **References**

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

- Adolph, K. E., Karasik, L. B., & Tamis-LeMonda, C. S. (2010). Motor skills. In H. Marc & T. Bornstein (Eds.), Handbook of cross-cultural developmental science (pp. 61–88). New York: Taylor & Francis.
- 265 Bala, G., & Katić, R. (2009). Sex differences in anthropometric characteristics, motor and cognitive functioning in preschool children at the time of school 266 enrolment. *Collegium Antropologicum*, 33, 1071–1078.
- Barnett, L., Hinkley, T., Okely, A., et al (2013). Child, family and environmental correlates of children's motor skill proficiency. *Journal of Science and Medicine in Sport*, *16*, 332–336.
 Barnett, L., M., Van Beurden, E., Morgan, P. I., et al (2009). Childhood motor skill proficiency as a predictor of adolescent physical activity. *Journal of Adolescent*
 - Barnett, L. M., Van Beurden, E., Morgan, P. J., et al (2009). Childhood motor skill proficiency as a predictor of adolescent physical activity. Journal of Adolescent Health, 44, 252–259.
 - Booth, M. L., Okely, T., McLellan, L., Phongsavan, P., Macaskill, P., Patterson, J., ... Holland, B. (1999). Mastery of fundamental motor skills among New South Wales school students: Prevalence and sociodemographic distribution. *Journal of Science and Medicine in Sport*, 2, 93–105.
 - Bruininks, R. H., & Oseretsky, B. D. (2010). Bruininks-Oseretsky test of motor proficiency, second edition, brief form, Bloomington: PsychCorp.

Chow, S. M. K., Henderson, S. E., & Barnett, A. L. (2001). The movement assessment battery for children: A comparison of 4-year-old to 6-year-old children from Hong Kong and the United States. American Journal of Occupational Therapy, 55, 55–61.

- Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
- Cohen, K. E., Morgan, P., Plotnikoff, R. C., et al (2014). Fundamental movement skills and physical activity among children living in low-income communities: A cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 11, 58-74.
- Cools, W., De Martelaer, K., Samaey, C., et al (2008). Movement skill assessment of typically developing preschool children: A review of seven movement skill assessment tools. *Journal of Sports Science and Medicine*, 8, 154–168.
- Department for Education (2014a). National pupil projections Future trends in pupil numbers: July 2014. London: Department for Education.
- Department for Education (2014b). School admissions code: Statutory guidance for admission authorities, governing bodies, local authorities, schools adjudicators and admission appeals panels. London: Department for Education.
 - Department for Education/Education Funding Agency (2014). Guidance: PE and sport premium for primary schools. London: Department for Education.
- Du Toit, D., & Pienaar, A. E. (2002). Gender differences in gross motor skills of 3-6-year-old children in Potchefstroom, South Africa. African Journal for Physical, Health Education, Recreation and Dance, 8, 346–358.
- Duncan, M., Stanley, J. M., & Leddington-Wright, S. (2013). The association between functional movement and overweight and obesity in British primary school children. Sports Science, Medicine and Rehabilitation, 15, 11.
- Gallahue, D. L., Ozmun, J. C., & Goodway, J. (2012). Understanding motor development: Infants, children, adolescents, adults (7th ed.). Boston: Mass McGraw-Hill.
- Goodway, J. D., & Branta, C. F. (2003). Influence of a motor skill intervention on fundamental motor skill development of disadvantaged preschool children. Research Quarterly for Exercise and Sport, 74, 36–46.
- Gublin, S., Collins, D., & Button, C. (2014). Physical literacy: Importance, assessment and future directions. Sport Medicine, 44, 1177–1184.
- Hardy, L., Reinten-Reynolds, T., Espinel, P., Zask, A., & Okely, A. D. (2012). Prevalence and correlates of low fundamental movement skill competency in children. *Pediatrics*, 130, 390–398.
- Haywood, K. M., & Getchell, N. (2005). Life span motor development (4th ed.). Champaign, IL: Human Kinetics.
- Hills, A. P., Anderson, L. B., & Byrne, N. M. (2011). Physical activity and obesity. British Journal of Sports Medicine, 45, 866-870.
- Inchley, J. C., Currie, D. B., Todd, J. M., et al (2005). Persistent socio-demographic differences in physical activity among Scottish schoolchildren 1990–2002. European Journal of Public Health, 15, 386–388.
- Jaakkola, T., & Washington, T. (2013). The relationship between fundamental movement skills and self-reported physical activity during Finnish junior high school. Physical Education and Sport Pedagogy, 18, 492–505.
- Kirk, M. A., & Rhodes, R. E. (2011). Motor skill interventions to improve fundamental movement skills of preschoolers with developmental delay. Adapted Physical Activity Quarterly, 28, 210-232.
- Kretschmer, J., Saunders, J., Bressan, E., et al (2014). The relationship of motor ability to some selected 'living and moving' variables: Findings from a case study of 8 and 9 year old primary school children in Hamburg, Melbourne and Cape Town. International Sports Studies, 36, 31–50.
- Lai, S. K., Costigan, S. A., Morgan, P. J., et al (2014). Do school-based interventions focusing on physical activity, fitness, or fundamental movement skill competency produce a sustained impact in these outcomes in children and adolescents? A systematic review of follow-up studies. Sports Medicine (Auckland, N.Z.), 44, 67–79.
- Lindsey, E. W., & Mize, J. (2001). Contextual differences in parent-child play: Implications for children's gender role development. Sex Roles, 44.
- Logan, S. W., Robinson, L. E., Wilson, A. E., et al (2012). Getting the fundamentals of movement: A meta-analysis of the effectiveness of motor skill interventions in children. *Child: Care, Health and Development, 38,* 305–316.
- Lubans, D. R., Morgan, P. J., & Cliff, D. P. (2010). Review of the benefits associated with fundamental movement skill competency in youth. Sports Medicine (Auckland, N.Z.), 40, 1019–1035.
- McPhillips, M., & Jordan-Black, J. A. (2007). The effect of social disadvantage on motor development in young children: A comparative study. Journal of Child Psychology and Psychiatry, 48, 1214–1222.
- Milanese, C., Bortolami, O., Bertucco, M., Verlato, G., & Zancanaro, C. (2010). Anthropometry and motor fitness in children aged 6–12 years. Journal of Human Sport and Exercise, 5, 265–279.
- Noble, M., McLennan, D., Wilkinson, K., et al (2007). The English indices of deprivation, 2007. Social Disadvantage Research Centre, Oxford: University of Oxford.
- Okely, A. D., & Booth, M. L. (2004). Mastery of fundamental movement skills among children in New South Wales: Prevalence and sociodemographic distribution. *Journal of Science and Medicine in Sport*, 7, 358–372.
- Pienaar, A. E., & Kemp, C. (2014). South African journal for research in sport. Physical Education and Recreation, 36, 167-182.
- Pomerleau, A., Bolduc, D., Malcuit, G., & Cossette, L. (1990). Pink or blue: Environmental gender stereotypes in the first two years of life. Sex Roles, 22, 359–367.
- Roeber, B. J., Tober, C. L., Bolt, D. M., et al (2012). Gross motor development in children adopted from orphanage settings. Developmental Medicine and Child Neurology, 54, 527–531.
- Seefeldt, V. (1980). Developmental motor patterns: Implications for elementary school physical education. In C. Nadeau, W. Holliwell, & K. Newell, et al. (Eds.), *Psychology of motor behavior and sport*. Champaign, IL: Human Kinetics.
- Shala, M. (2009). Assessing gross motor skills of Kosovar preschool children. Early Child Development and Care, 179, 969-976.
- Sigmundsson, H., & Rostoft, M. S. (2003). Motor development: Exploring the motor competence of 4-year-old Norwegian children. Scandinavian Journal of Educational Research, 47, 451–459.
- Venetsanou, F., & Kambas, A. (2011). The effects of age and gender on balance skills in preschool children. Physical Education and Sport, 9, 81–90.
- Weisgram, E. S., Fulcher, M., & Dinella, L. M. (2014). Pink gives girls permission: Exploring the roles of explicit gender labels and gender-typed colors on preschool children's toy preferences. *Journal of Applied Developmental Psychology*, 35, 401–409.
- Yoon, D., Scott, K., & Hill, M. (2006). Review of three tests of motor proficiency in children. Perceptual and Motor Skills, 102, 543-551.
- Youth Sport Trust/Bupa (2014). Bupa start to move: A new approach to teaching PE to 4-7 year olds, to help them stay active for life. Available from http:// www.starttomovezone.com (Accessed Mar 2015).
- 336 337 338