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Abstract: Climate warming at high latitudes has contributed to the growing interest in shrub tree-ring
analysis. Shrub architecture presents new challenges for dendrochronology, such as the seemingly
lower and inconsistent climatic sensitivity of stems vs. root collars. Shrub stems may thus be
considered as sub-optimal to study climate–growth relationships. In this paper, we propose that the
lower climatic sensitivity of stems could be caused by the use of unsuitable detrending methods
for chronologies spanning decades rather than centuries. We hypothesize that the conversion of the
ring width (RW) to basal area increment (BAI) is better suited than traditional detrending methods
to removing age/size-related trends without removing multi-decadal climate signals. Using stem
and root collar samples collected from three sites in the forest–tundra ecotone of eastern Canada, we
compared the climate–growth relationships of these two approaches for stems and root collars using
mixed-effects models. The climate sensitivity was, on average, 4.9 and 2.7 times higher with BAI than
with detrended (mean-centered) RW chronologies for stems and root collars, respectively. The climatic
drivers of radial growth were identical for stems and root collars when using BAI (July temperature
and March precipitation), but were inconsistent when using detrended RW series (root collars: July
temperature and March precipitation at all sites; stems: April and June temperature, depending on
the site). Although the use of BAI showed promising results for studying long-term climate signals in
shrub growth chronologies, further studies focusing on different species and locations are needed
before the use of BAI can become broadly used in shrub dendrochronology.

Keywords: dendrochronology; shrub; climate sensitivity; radial growth; basal area increment; ring
width; detrending; root collar; stem; Betula glandulosa

1. Introduction

Harsh climatic conditions and short growing seasons limit plant productivity across
the Arctic and subarctic [1–3]. Cold temperatures reduce photosynthetic activity [4] and
slow down plant phenological processes such as bud burst and seed development [5–7]. In
recent decades, however, warming in Arctic and subarctic regions, which is nearly three
times stronger than the global average [8], has substantially reduced the limiting effect of
temperature on primary productivity [9–11]. Although some studies have found browning
trends in the boreal or lower Arctic regions due to changes in the natural disturbance
regime [12–14], the improved climatic conditions during the growing season have resulted
in widespread “greening” of the circumpolar region of the Northern Hemisphere [15–17].
The expansion of shrub species, either through the densification of existing stands or
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through the colonization of new habitats, contributes to this phenomenon [14,18–20]. In
such high-latitude ecosystems, shrub encroachment could alter the surface energy exchange,
soil temperature, snow cover, and nutrient cycling, all of which could foster further shrub
encroachment [19]. However, shrub encroachment in other ecosystems, such as arid and
semi-arid grasslands, could lead to the decline of vegetation cover through its effects on
the biophysical and biogeochemical processes affecting the regional climate [21].

North of the treeline, shrubs are the only woody plants [22,23] and their growth rings
are a valuable ecological archive with a yearly resolution. Therefore, dendrochronological
studies on shrub species can provide precious insights on the drivers of climate and land-
scape change across the entire circumpolar region. However, shrub growth and architecture
present new challenges for dendrochronology. For example, seed-originating individu-
als of the subarctic shrub Betula glandulosa Michx. have a growth form characterized by
multiple stems growing from an often-buried root collar, i.e., the interface between the
stems and the roots (Figure 1a). From a dendrochronology standpoint, the root collar is
thus the anatomical equivalent of the base of the primary axis of a tree as it integrates the
growth of all stems. In the field, shrub root collar sampling necessitates shrub excavation, a
time-consuming and destructive manipulation that can interfere with the complex logistics
of fieldwork in remote areas. For these reasons, many dendrochronological studies have
been conducted on samples taken at the base of the dominant stems [23–27]. However,
stems can be substantially younger than their root collar as they are continually replaced
throughout the shrub’s life, resulting in shorter growth chronologies. Moreover, the use
of stems instead of root collars could be problematic, as Ropars et al. [28] demonstrated
that the climate sensitivity of B. glandulosa stems is lower and more variable than that
recorded at the root collar just a few centimeters below [28]. Although this has not yet been
proven for other shrub species, there is a need to better understand the difference in climate
sensitivity between stems and root collars in order to improve shrub dendroclimatology.
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Figure 1. (a) Position of the root collar, roots, and stems of an uprooted Betula glandulosa individual.
Stems and roots were cut and marked in the field to facilitate the transportation of the samples.
(b) Landscape in the vicinity of the Boniface River research station, with patches of B. glandulosa
interspersed in a matrix of tundra vegetation.

Although Ropars et al. [28] argued that the weaker climatic signal registered by stems
could arise from competition between the different stems of a single individual, another
likely explanation relies on a technical issue associated with the detrending of growth ring
chronologies. Detrending, sometimes also called standardization, is necessary to remove
age/size-related trends from tree-ring series in order to isolate and amplify signals of
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interest, such as high-frequency or low-frequency climatic trends, forest disturbances, or
stand dynamics [29]. One of the trends that is almost systematically removed is the age/size
effect, observed as a gradual decrease in ring width from the center of the stem towards the
bark. This trend, which results from the increasing perimeter of the cambium as new rings
are produced, is removed using a variety of detrending approaches that each have their
benefits and drawbacks [30–32]. One of the challenges of detrending is to be able to remove
the age/size trend while keeping the low-frequency (long term) variations associated
with climate change, as both operate at a multi-decadal scale. For example, in time series
spanning decades rather than centuries, detrending to remove any age/size-related trends
will likely also remove at least part of the long-term increase in ring width associated with
climate warming. This appears to be exacerbated under rapid climate change.

The conversion of ring width (RW) to ring area, or basal area increment (BAI), is a
robust detrending approach that compensates for the ever-increasing perimeter of the
cambium [33,34]. BAI has been used in studies aiming to characterize tree responses to
environmental changes, and some of these studies confirm the effectiveness of converting
RW into BAI as a detrending method [35–38]. Leblanc [39] demonstrated that RW mea-
surements of pine and spruce species tend to cloud the relationship between a growth
trend and its potential cause, and that BAI measurements are more closely related to the
stem volume increment than RW data. Moreover, based on the results of Baral et al. [40],
who demonstrated that climate–tree growth relationships were stronger when using BAI
rather than standardized RW in short chronologies, we believe that the use of BAI might
be of high interest when analyzing shrub species’ growth rings. Indeed, even though BAI
measurement has been used mainly with trees, it remains only marginally used for shrub
species [22,23,41–43].

In this study, conducted in Nunavik (subarctic Québec, Canada), our main objective
was to determine if the conversion of RW to BAI can reduce the discrepancies found in
B. glandulosa detrended chronologies built from shrub stems vs. root collars, both in terms
of growth patterns and the relationship with multi-decadal climate trends. If so, the climatic
drivers and climatic sensitivity of growth chronologies should be comparable, regardless
of the nature of the sample (stem or root collar), when using BAI data instead of detrended
RW data (mean-centered or spline detrended). A secondary objective was to determine if
BAI estimations (i.e., calculated from raw ring width measurements) are correlated with
the actual measurements of BAI (i.e., measured on scanned cross-sections using image
analysis) for B. glandulosa. Indeed, both approaches have been used in previous studies
but have never been compared (calculated: [37,40,42]; measured: [22,41]). Calculating BAI
from RW measurements is significantly faster, but might generate inaccurate values in the
presence of eccentric growth forms or irregular rings [23].

2. Materials and Methods

Using the same dataset as Ropars et al. [28,44], we calculated BAI values to perform a
direct climate sensitivity comparison between growth ring chronologies built with either
detrended RW or BAI for both stems and root collars.

2.1. Study Area

The samples were collected in the vicinity of the Boniface River research station
(57◦45′ N, 76◦10′ W) in Nunavik (subarctic Québec, Canada). Located in the forest–tundra
ecotone, approximately 10 km south of the treeline [28], this region showed a significant
greening trend between 1984 and 2012 [16]. The landscape is dominated by shrub tundra,
with B. glandulosa being the dominant shrub species (Figure 1b). Open lichen woodlands
dominated by black spruce (Picea mariana Miller) cover ca. 30% of the landscape. Wetlands,
exposed hilltops, and sandy terraces are also common. The fire frequency in the region is
very low, with a fire rotation period of 1800 years [45]. The study area is also located at the
southern limit of the summer range of the Leaf River Caribou Herd, but the caribou density
is low and evidence of grazing has mostly been found on Salix species [46].
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The closest meteorological station is located 130 km northwest of the Boniface River
research station, at Inukjuak Airport (Environment Canada, 58◦28′ N, 78◦05′ W). The mean
annual air temperature was −6.8 ◦C for the 1950−1994 period, but increased to −5.2 ◦C
in the 1995–2019 period. Over the 1995–2019 period, the total annual precipitation was
500 mm on average, 42% of which fell as snow [47].

2.2. Field Sampling

Field sampling was conducted in the summer of 2010 [28,44]. Samples were collected
at three sites in each of the following environment types: sandy terraces, exposed hilltops,
and snowbeds. Sandy terraces, located on well-drained sites next to the river, are dominated
by lichens, graminoids, and large patches of shrub species [28], whereas exposed hilltops
are dominated by arctic–alpine vegetation and mineral soil as a result of harsher winter
conditions [44]. Snowbeds are characterized by greater snow accumulation during winter
and later snowmelt in the spring, resulting in shorter growing seasons [48]. At each site,
20 large, circular, and isolated B. glandulosa individuals were selected as they were believed
to represent older individuals that originated from seed. Each shrub was excavated to
collect the root collar, as well as two of its main stems. If the root collar of an individual
could not easily be identified, it was discarded, and another shrub was excavated. Samples
were cleaned and left to dry at room temperature for further analysis. Ropars et al. [28]
randomly selected one site per environment type (sandy terrace, exposed hilltop, and
snowbed) to conduct their analyses. We used the same sites and samples in this study.

2.3. Dendrochronological Analysis

Root collars and stems were boiled for 3 h before being sliced (25 µm) with a micro-
tome. Thin sections were stained with 1% safranine, and were dried and mounted on
microscope glass slides with a 66% toluene solution. Root collars that could not be sliced
perpendicularly or that were rotten were discarded, along with their corresponding stems.
At the end of this process, 46 shrubs were kept in the study, for a total of 138 analyzed
cross-sections (46 root collars and 92 stems). The mean diameter of the stems and root
collars was 7 and 21 mm, respectively.

Digital pictures of each sample were taken with a camera mounted on binoculars at
40× magnification. Most samples showed little to no eccentricity. Ring width measure-
ments were conducted with the LIGNOVISION software (v. 1.36, Rinntech, Heidelberg,
Germany) on two opposite radii for each sample. The RW series were crossdated using
COFECHA software [49] and were standardized in the Dendro 2019 software (v. 3.2.8, Cen-
tre for northern studies, Université Laval, Québec, Canada) to produce RWI chronologies.
During our analyses, we realized that the detrending methods applied in Ropars et al. [28]
sometimes varied between samples and sites. Therefore, we decided to redo the detrending
process using the same detrending methods for all of the samples. Uniformity in the
detrending process is in fact necessary to show how traditional detrending methods can
remove climatic trends in dendrochronological series. Consequently, the results shown
in this paper are slightly different from those published in Ropars et al. [28]. The first
detrending method used was the mean-centering method as it is the most commonly used
method when studying multi-decadal growth trends. However, to show how other de-
trending methods can alter climatic signals, we also detrended RW data with cubic splines
of different wavelengths (20-year, 30-year, and 66% of the length of the series). Only the
comparison between BAI and RWI obtained from the mean-centering method is shown
in the text, but the results obtained with the various spline lengths are presented in the
Supplemental Material (Tables S1–S3).

BAI was first calculated using raw (non-standardized) RW measurements according
to the following equation, which assumes that all growth rings are perfectly circular
and concentric:

Calculated BAI = (π × r2 of current year) − (π × r2 of previous year) (1)
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BAI was also measured by image vectorization with Image J software. For this part of
the study, only samples for which the complete thin section could fit on a microscope slide
were used, resulting in the measurement of 56 samples, mostly stems (terrace: 18; hilltop:
18; snowbed: 20) with a mean and maximum diameter of 5.0 and 11.5 mm, respectively.
Each outer ring was delineated by hand, and the annual ring area was computed by
subtracting the cumulative ring area of the previous year from the cumulative ring area of
the current year.

Expressed population signal (EPS) values were computed in Dendro 2019, and rbar
and AR1 values were computed using the dplR package in R [50]. All individual RWI and
calculated BAI chronologies are available as Supplemental Material (Figures S1–S3), as well
as mean chronologies divided by age cohorts (Figures S4–S6).

2.4. Statistical Analyses

To determine whether the BAI values calculated from the raw RW were representatives
of the BAI values measured by image vectorization, two mean chronologies were produced
for each site using the calculated and measured BAI data. The similarity of the chronologies
was then evaluated with the Pearson correlation coefficients (r).

To evaluate climate sensitivity, mixed-effects models were created using the lme4
package in R software (v. 4.0.2; [51]). For each environment type (terrace, hilltop, and
snowbed), we ran four separate series of models using individual growth series constructed
with (1) either root collar or stem data and (2) either RWI (detrended by mean-centering or
various spline wavelength) or BAI calculated from raw RW measurements. The RWI and
calculated BAI were used as response variables, and monthly total precipitation, monthly
mean temperature, and their various combinations were used as fixed effects. Year was
considered as a random effect. Null models using only growth measurements (BAI or
standardized RW; response variable) and year (random effect) were used as a baseline to
calculate the climatic sensitivity. The models were run with data from 1947 to 2009, the
period for which both climatic and radial growth data were available.

The Akaike information criterion (AIC) was used to determine the best models and to
compare climatic sensitivity [28]. To do so, we calculated the ∆AICnull by subtracting the
AIC of each model built with climatic data from the AIC of the corresponding null model. A
higher ∆AICnull represents a greater sensitivity to climate [52]. To assess the goodness of fit
of the models, the marginal and conditional R2 were calculated using the MuMIn package
and the r.squaredGLMM function [28,53] in R. Marginal R2 represents the proportion of
growth that is influenced by fixed effects (climate), whereas the conditional R2 represents
the proportion of growth that is influenced by both fixed and random effects [53].

3. Results

The RWI results included in the results section come from RW series detrended by the
mean-centering method. The climate sensitivity results obtained with RWI detrended by
the various spline lengths can be found in the Supplemental Material (Tables S1–S3).

The age of the sampled root collars ranged from 13 to 96 years, with an average age
of 41.4 ± 20.5 years (Figure 2). On average, the root collars were 18 years older than their
two corresponding stems. The stem age ranged from 10 to 64 years, with an average age of
23.4 ± 13 years (Figure 2). The age distributions were, however, skewed towards younger
individuals, with 68.4% of stems being younger than 25 years.
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3.1. Growth Chronologies

There was a strong correlation (p < 0.001) between the BAI calculated with a perfect
circle equation and BAI measured by image vectorization, as revealed by the correlation
coefficients > 0.9 (Figure 3).

All of the growth chronologies had high EPS values, between 0.92 and 0.98, with an
average of 0.95 (see Table S4 for other growth chronologies statistics). Growth chronologies
built from the RW data were characterized by high variability (large confidence intervals)
in their oldest portion and a significant radial growth increase in the mid-1990s (Figure 4).
Compared with the RW chronologies, the BAI chronologies were much less variable at
their onset and showed a similar significant growth increase in the mid-1990s. As a result,
the main difference between the RW and BAI chronologies was found in the oldest portion
of the chronologies. The examination of individual chronologies (Figures S1–S3) and of
the chronologies separated by age groups (Figures S4–S6) suggests that the high variability
in the early RW chronology was caused by the age/size effect found in each individual
series that are gradually included in the chronologies. Such an effect is not seen in the BAI
chronologies because the age/size effect is effectively removed by the transformation of
RW to BAI.
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3.2. Climatic Drivers and Sensitivity to Climate

When using RW index data, the model selection found that the climatic drivers
were different for the stem and root collar growth chronologies (Table 1). Moreover, the
climatic drivers of the stem chronologies were also different between the different habitats.
However, when using BAI instead of RW, our analyses generated identical climatic drivers
of B. glandulosa growth, regardless of the sample type/shrub part and habitat (Table 1). For
all BAI chronologies, July temperature and March precipitation were the best predictors
and had positive impacts on B. glandulosa growth. These results contrasted sharply with
those presented by Ropars et al. [28], in which the climatic drivers of stem radial growth
varied from site to site.
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The BAI chronologies also showed greater climatic sensitivity than the RWI chronolo-
gies (Table 1). For stems, the use of BAI increased climate sensitivity by 5.2 times on
terraces, 7.5 on hilltops, and 1.9 in snowbeds (average increase across all environment
types: 4.9 times higher). Even the climatic sensitivity of the root collar chronologies ap-
peared to benefit, although to a lesser extent, from the use of BAI (3.6 times higher on
terraces, 2.6 on hilltops, and 1.8 in snowbeds; average: 2.7).

Finally, differences in climate sensitivity between root collars and stems were greatly
reduced by the use of BAI values. This was exemplified by the overlapping predictive
responses of stems and root collar growth to July temperature and March precipitation
(Figure 5). Other detrending approaches (spline of various wavelengths) did not have the
same positive impact as BAI conversion as they did not reduce the differences in climate
sensitivity between root collars and stems and between habitats (Tables S1–S3). Therefore,
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the conversion of RW into BAI led to the highest climate sensitivity results among the five
detrending methods tested (Figure S7). Lastly, the substantial increases in marginal and
conditional R2 values revealed that climatic variables explained a larger portion of BAI
than the RW index (Table 1).

Table 1. Climate sensitivity values (∆AICnull), model fit statistics (R2), and residual degree of freedom
(residual df) for the best climatic variables explaining the RW index (detrended by mean-centering)
and calculated BAI of Betula glandulosa root collars and stems over the 1947–2009 period.

Environment Data Type Sample Type Best Climatic
Model

Climatic Sensitivity
(∆AICnull)

Marg. R2 Cond.
R2 Residual df

Terrace
RW index

Root collars T Jul + P Mar 9.8 0.07 0.14 413
Stems T Apr 6.4 0.04 0.06 403

BAI
Root collars T Jul + P Mar 34.8 0.29 0.39 400

Stems T Jul + P Mar 33.5 0.39 0.46 354

Hilltop
RW index

Root collars T Jul + P Mar 16.3 0.13 0.25 471
Stems T Apr 4.9 0.03 0.08 486

BAI
Root collars T Jul + P Mar 43.1 0.43 0.56 458

Stems T Jul + P Mar 36.7 0.40 0.48 449

Snowbed
RW index

Root collars T Jul + P Mar 18.9 0.28 0.50 339
Stems T Jun 10.6 0.15 0.24 246

BAI
Root collars T Jul + P Mar 33.5 0.52 0.75 325
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4. Discussion

In this study, we showed that the use of basal area increment (BAI) to remove age/size-
related growth trends is an effective detrending procedure for Betula glandulosa, as it yielded
consistent results regardless of the nature of the samples (stems or root collars). First, the
use of BAI allowed us to consistently identify July temperature and March precipitation
as the most important climatic drivers of B. glandulosa radial growth. Secondly, using BAI
increased the climate sensitivity of stem growth to a level comparable to the root collars.
Therefore, our results strongly support the use of BAI when considering the impact of
climate change on shrub species radial growth at the multi-decadal scale. Although our
study was conducted on a single species and further studies are needed to determine if
the use of BAI is appropriate for other species, it appears likely that such a procedure will
allow low-frequency (long term) variations associated with climate to be found for any
shrub species displaying age/size trends.

4.1. Growth Chronologies
4.1.1. Calculated vs. Measured BAI

The calculated BAI values from raw B. glandulosa RW measurements were strongly
correlated with the measured BAI values. This result suggests that ring width can be used
to estimate BAI for species with regular and concentric growth rings like B. glandulosa
(see Figure S8 for pictures of B. glandulosa cross-sections). For such species, it appears
thus not necessary to conduct the time-consuming BAI measurements on scanned images,
although we would recommend to always verify the strength of the correlation between
the calculated and measured BAI before using this short-cut approach with another species
as shrubs growing in Arctic and subarctic regions under extreme growth conditions often
produce irregular, off-centered, or discontinuous growth rings. For such species, further
tests would be needed prior to using the ring width to estimate BAI. A lower correlation
between the calculated and measured BAI could necessitate various adjustments. For
example, ring width could be measured on at least four radii to improve the accuracy of
the BAI estimation [22]. The use of equations considering growth rings as elliptical instead
of circular could also be a solution for some species [54]. However, for species with very
important eccentric growth, BAI measurements (instead of calculation) would be the most
appropriate approach.

4.1.2. BAI Conversion as a Detrending Method for Shrub Chronologies

BAI is already widely used in studies aiming to analyze the relationship between
climate and tree growth [33,35,37,40,55–57]. In fact, many studies have demonstrated that
the use of BAI instead of RW generates higher correlations to tree biomass and wood
volume gain [39,56,58]. Similar results were also reported for some shrub species [26]. In
most cases, the conversion of raw RW to calculated BAI values was used as a detrending
method to remove non-climatic growth trends related to stem age/size in trees [33,37,38,59].
When both RW and BAI values were compared, the latter systematically yielded better
correlations between climate and radial growth [23,31,40,55].

Our results corroborate these previous studies, even though they were mainly con-
ducted on tree species. They strongly suggest that the use of BAI is an efficient method
to remove non-climatic growth trends related to the age or size of shrub stems while pre-
serving climatic trends. The conversion of RW to BAI had a noticeable effect in the earliest
portion of our growth chronologies, where the BAI series were less variable (narrower
confidence intervals) than the RW ones. This greater variability in RW data arose from
the different period of establishment of the samples used to build the growth chronolo-
gies, resulting in asynchronous age/size growth trends (see Figures S1–S3 for individual
chronologies). On the other hand, climatic growth trends are generally synchronous in a
given region because they are associated with climatic drivers acting at a regional scale. In
our chronologies, these trends, mostly found in the recent period in response to the sub-
stantial warming observed in the study region since the mid-1990s [60], were not removed
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by the conversion to BAI. Moreover, the reduced variability at the beginning of the BAI
chronologies, evidenced by the narrower confidence intervals in BAI chronologies, revealed
that the growth estimations were more robust when BAI measurements were used.

An alternative hypothesis for the simultaneous increase in growth observed during
the 1990s is the manifestation of a strong recruitment pulse with young stems growing
rapidly. However, most individuals showed an increase in radial growth during the
1990s, regardless of their establishment year (see Figures S4–S6). Such synchrony between
individuals (or stems) of different ages suggests a generalized growth trend that cannot be
solely due to a sudden recruitment pulse. Additionally, as the conversion of the RW into BAI
is a simple geometric correction removing the effect of the increasing stem diameter [43], it
fails to remove the growth fluctuations related to population dynamics and disturbance.
This is not an issue in most Arctic and subarctic environments with low inter-individual
competition and disturbance regimes. However, in environments where disturbance and
competition affect growth trends, researchers should be aware of the limits of the BAI
detrending method.

4.2. Climatic Drivers and Sensitivity to Climate: The Influence of BAI

Ropars et al. [28] found that growth chronologies built from stems instead of root
collars resulted in inconsistent climatic drivers of B. glandulosa and in reduced climatic
sensitivity. As many shrubs species, such as B. glandulosa, have a multi-stem growth form,
Ropars et al. [28] hypothesized that competition between the stems of a single individual
could overshadow at least partially the climatic signal. Under this hypothesis, the available
resources for growth might be unevenly allocated to the different parts of a single individual
according to a competition-like mechanism [61]. It would thus be possible that all stems do
not receive their fair share of resources, a pattern that can lead to differential radial growth
between stems for any given year. Nonetheless, we would still expect growth trends in
stems and root collars to be influenced by the same climatic variables, which was not the
case in Ropars et al. [28].

While intra-plant competition is a potential contributor to the observed differences
in the climate–growth relationship between stems and root collars, we showed that the
detrending method chosen to remove age/size trends could be another factor to consider.
In fact, the correlation between climate and woody species growth is strongly influenced
by the detrending procedure applied [31,38,59]. For example, in young chronologies
(ca. 22 years old on average), Baral et al. [40] found that the use of splines and negative
exponential functions tended to eliminate the climatic signal of RW chronologies. When
using a smoothing detrending method for shorter chronologies, the use of shorter time
windows tends to eliminate mid- and low-frequency variations, which usually comprise
most of the long-term climatic signals [62]. Such a detrending procedure could thus explain
the lack of radial growth increase in the mid-1990s in our dataset following standardization
with cubic splines (Figures S9–S11). Although detrending by mean-centering data enabled
us to preserve the multi-decadal climatic trends, it failed to remove, or even amplified, the
asynchronous age/size growth trends, which could cloud the climatic signal and strongly
influence the results of such an analysis.

The conversion of raw RW to BAI could solve many of the inconsistencies related to the
chosen detrending method. In our study, the use of BAI resulted in greater consistency in
the identification of the climatic drivers of B. glandulosa growth. Using BAI, the best climatic
model combined July temperature and March precipitation, regardless of site or sample
type (root collar or stem). Analyzing the Inukjuaq meteorological station data, we found
that the July temperature increased by 0.14 ◦C/year between 1980 and 2009 (p = 0.002),
while no significative trend was observed between 1947 and 1980 (p = 1). Before 2000, March
precipitation only increased by 0.25 mm/year, while it increased by 4.1 mm/year after
2000 (p = 0.003 and p = 0.1, respectively). In addition to corroborating the climatic trends
in the regions, such results also corroborate previously published dendroclimatological
analyses that revealed the importance of summer temperature and winter precipitation for
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shrub growth. In fact, a strong relationship was found between Empetrum hermaphroditum
radial growth and summer temperature [24], and the growing season temperature was
found to be the main driver of growth in nine circumpolar countries [52]. At sites located at
high latitudes, warmer summer temperatures contributed to the lengthening of the growing
season [10], allowing for the formation of more wood cells and an overall increase in radial
growth [63]. Snow precipitation was also found to have a positive impact on shrub radial
growth [25]. This is in line with our results, as March precipitation falls as snow in our
study region. March precipitation could lead to a deeper snow cover that provides greater
protection against freeze–thaw cycles in the spring [64], creates higher water availability at
the onset of the growing season, and stimulates soil organic matter decomposition [1,25],
all of which have positive effects on primary productivity.

Another notable effect of using BAI is the increased climate sensitivity of the chronolo-
gies, regardless of the analyzed shrub part/cross-section type (i.e., root collar or stem).
Indeed, in Ropars et al. [28], as well as in our study, RWI chronologies built with stem
samples had substantially lower climate sensitivity than those using root collar samples.
However, when using the calculated BAI values, our results show that these differences
almost disappeared. Thus, the use of BAI appears to be a more robust approach for cli-
mate sensitivity analyses at the multi-decadal scale than traditional detrending methods
(mean-centering or spline), at least for relatively short B. glandulosa growth chronologies.
Although we only tested this approach on B. glandulosa, we believe that the use of BAI
would yield similar results for other erected subarctic shrubs species displaying similar
concentric growth rings. Further studies should thus focus on other species and could be
expanded to include prostrate shrub species growing in the High Arctic.

5. Conclusions

In this study, we demonstrated that the conversion of the raw ring width (RW) to the
basal area increment (BAI) should be favored over mean-centering or spline-fitting detrend-
ing methods for the dendroclimatological analysis of multi-decadal growth trends in Betula
glandulosa growth chronologies spanning decades rather than centuries. When using BAI
instead of detrended ring width (RWI), chronologies have stronger and more consistent
relationships with climate, especially for stems. Our results support the hypothesis that
the standardization of short chronologies using unsuitable detrending methods might be
responsible for the observed lower climate sensitivity of stems compared with the root
collars. As the climate sensitivity of root collars and stems is similar when BAI is used, the
only difference remains in the length of the series, which is longer for root collars than for
stems. Otherwise, the time-consuming and destructive process of collecting shrub root
collars may no longer be necessary for multi-decadal dendroclimatological analysis, as long
as BAI values are used. We showed that the calculation of BAI from raw RW is an accurate
estimate of the true basal area increment measured on an image for samples whose rings
are mostly circular and concentric.

This study contributes significantly to the fast-developing field of shrub dendrochronol-
ogy. First, from a logistical perspective, the ability to use stems instead of root collars while
still obtaining robust and consistent results greatly simplifies and quickens sampling in the
field. Second, the use of BAI instead of RW for shrub stems should allow for a more accurate
identification of the climatic drivers of shrub growth and expansion across the Arctic and
subarctic. In light of these results and as our study was conducted on only one shrub
species (B. glandulosa), further studies need to investigate the use of BAI with different
species and detrending methods before it is broadly used in shrub dendrochronology.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14020319/s1, Figure S1: Individual RW and BAI growth
chronologies of stems and root collars growing on terraces; Figure S2: Individual RW and BAI
growth chronologies of stems and root collars growing on hilltops; Figure S3: Individual RW and BAI
growth chronologies of stems and root collars growing in snowbeds; Figure S4: Mean chronologies
(RW and BAI) of stems and root collars growing on terraces, separated into 20-year age groups;
Figure S5: Mean chronologies (RW and BAI) of stems and root collars growing on hilltops, separated
into 20-year age groups; Figure S6: Mean chronologies (RW and BAI) of stems and root collars
growing in snowbeds, separated into 20-year age groups; Figure S7: Maximum climate sensitivity
(∆AICnull) of stems and root collars of each environment type obtained with various detrending meth-
ods of RW measurements; Figure S8: Example of Betula glandulosa cross-sections used in this study;
Figure S9: Mean raw and detrended (30-year spline) RW series for stems and root collars collected
on terraces; Figure S10: Mean raw and detrended (30-year spline) RW series for stems and root
collars collected on hilltops; Figure S11: Mean raw and detrended (30-year spline) RW series for
stems and root collars collected in snowbeds; Table S1: Climate sensitivity values (∆AICnull) and
model fit statistics (R2) for the best climatic variables explaining RW index (detrended by a 20-year
spline) and calculated BAI of Betula glandulosa root collars and stems over the 1947–2009 period;
Table S2: Climate sensitivity values (∆AICnull) and model fit statistics (R2) for the best climatic vari-
ables explaining RW index (detrended by a 30-year spline) and calculated BAI of Betula glandulosa
root collars and stems over the 1947–2009 period; Table S3: Climate sensitivity values (∆AICnull) and
model fit statistics (R2) for the best climatic variables explaining RW index (detrended by a spline of
wavelength = 66% of series length) and calculated BAI of Betula glandulosa root collars and stems
over the 1947–2009 period; Table S4: Number of samples (n), Expressed Population Signal (EPS),
mean correlation coefficients (rbar) and first order autocorrelation (AR1) of the BAI and RWI (mean-
centered) chronologies of stems and root collars in the three environment types. EPS values were
computed in the Dendro 2019 software, rbar and AR1 were computed with the dplR package in R.
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