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Abstract: 

Introduction: Azadirachta indica A. Juss. is a well-known medicinal plant that has been used traditionally 

to cure various ailments in every corner of the globe. There are many in vitro and in vivo experimental 

evidences in connection with the bioactivity of this plant extracts. Lung cancer is the deadliest form of 

cancer and contributes to the most cancer related deaths. The mode of action of anticancer components of 

this plant is still to establish explicitly.  

Objective: The objective of this study is to identify druggable targets of active constituents of Azadirachta 

indica A. Juss. for non-small cell lung cancer (NSCLC) using network pharmacology and validation of 

activity through molecular docking analysis. 

Methodology: Targets of  all the active phytochemicals from A. indica were predicted and genes related to 

NSCLC were retrieved. PPI network of the overlapping genes were prepared. Various databases and server 

were employed to analyze the disease pathway enrichment analysis of the clustered genes. Validation of 

the gene/protein activity was achieved by performing molecular docking, and ADMET profiling of selected 

phytocompounds was performed. 

Result: Gene networking revealed three key target genes as EGFR,BRAF and PIK3CA against NSCLC by 

the active components of A. indica. Molecular docking and ADMET analysis further validated that 

desacetylnimbin, nimbandiol, nimbin, nimbinene, nimbolide, salannin and vepinin are the best suited anti 

NSCLC among all the phytocompounds present in this plants. 

Conclusion: The present study has provided a better understanding of pharmacological effects of active 

components from A. indica and its potential therapeutic effect on NSCLC. 

 Keywords: Azadirachta indica, Network pharmacology, Molecular docking, Non-small cell lung cancer, 

phytocompounds 

 



1. Introduction  

Azadirachta indica (Meliaceae), commonly known as “Neem”, is an evergreen tree, native to tropical and 

subtropical regions such as Bangladesh, Burma, India, Nepal and Pakistan.1,2 Many ailments, including 

infections, metabolic disorders and cancer, have been claimed to be treated with phytochemicals extracted 

from various part of this tree, and this plant is included in the Ayurveda, Unani, and homoeopathy systems 

of medicine.3 In recent years, studies have demonstrated that A. indica constituents possess several 

biological and pharmacological properties including anti-inflammatory, antibacterial, analgesic, 

antipyretic, anti-arrhythmic, antihistamine, anti-arthritic, antiprotozoal, antifungal, diuretic, anti-ulcer, 

antitubercular, antimalarial, spermicidal, insect repellent, antifeedant, and antihormonal activities.4-6 This 

in silico study was designed to understand the mechanism of anti-non-small cell lung cancer (NSCLC) 

activity of the active components present in this plant. 

Cancer is a deadly disease, which killed 10 million people just in the year 2020 according to the WHO report 

(WHO factsheets, 3 February 2022; https://www.who.int/news-room/fact-sheets). The number is increasing 

rapidly day by day. Among all cancers, lung cancer causes the highest number of cancer related deaths and 

is the most predominantly diagnosed cancer amid patients.7 Lung cancer causes massive haemorrhage, 

systemic air embolism, bronchopleural fistula leading to intractable pneumothorax, pneumonitis, and 

pulmonary artery pseudoaneurysm. It also damages nearby lung tissue, and leads to empyema, needle tract 

seeding, skin burns, and lung abscesses. Surgical removal of the tumour is both the first and best treatment 

option for lung cancer. However, this procedure is not suitable for all types of patients, like those with 

multiple health problems, advanced stages of cancer, or lungs that compromise its function. Chemotherapy, 

radiotherapy, or a combination of the two are other treatments for these patients, but the success rate is  

low.8 So, to find new alternative treatments for NSCLC is a major goal for cancer researchers. In this study, 

A. indica was selected to understand its underlying molecular mechanism against NSCLC by the network 

pharmacology, which is a new drug discovery approach developed by Hopkins in 2007 that combines 

systematic medicine and information science. It highlights the concept of "network target, multicomponent 



treatments," which shifts the paradigm from one gene, one target, and one disease. Network pharmacology 

is a powerful method for studying traditional medicine's synergistic actions and underlying mechanisms9. 

2. Methodology 

2.1. Screening of active components and targets of Azadirachta indica 

Active components present in Azadirachta indica were retrieved from the Dr. Duke's Phytochemical and 

Ethnobotanical Databases (https://phytochem.nal.usda.gov/phytochem/search) and literature mining. In the 

databases, the search keyword was used as “Azadirachta indica”. 

For literature mining, PubMed (https://pubmed.ncbi.nlm.nih.gov/), Google Scholar 

(https://scholar.google.com) and Science Direct (https://www.sciencedirect.com/) databases were used. In 

all the cases, keyword used as “phytocompounds of Azadirachta indica”, “metabolites and Azadirachta 

indica”, “secondary metabolites from Azadirachta indica”, “bioactive compounds from Azadirachta 

indica”. 

The chemical structures of identified compounds were retrieved for target prediction. PubChem   

(https://pubchem.ncbi.nlm.nih.gov/) and ChemSpider (https://www.chemspider.com/) were employed to 

get the structure in canonical smile format. Swiss Target Prediction (https://www.swisstargetprediction.ch/)  

and search tool for interactions of chemicals (STICH) (https://stitch.embl.de/) databases were used to 

predict the probable target of the compounds. During the search, the selected species was Homo sapiens. 

The target was predicted using structural similarity and a reverse pharmacophore matching approach, and 

a target with a high probability was chosen for further experiments. 

2.2. Collection of target genes for non-small cell lung cancer 

Several database were employed for collection of target genes for non-small cell carcinoma, they were 

merged and any duplicates were removed. In all the platforms, keyword used was “non-small cell lung 

cancer” and species was selected as Homo sapience.  Gene Cards (https://www.genecards.org/) is a robust 



searchable database that compiles human gene data from a variety of sources, Drug Bank 

(https://go.drugbank.com/) a knowledge base for drug interactions, pharmacology, chemical structures, 

targets, metabolism, & more., NCBI Genes (https://www.ncbi.nlm.nih.gov/gene/) which is a powerful 

database by The National Center for Biotechnology Information (NCBI), part of the United States National 

Library of Medicine (NLM) provide gene integrates information from a wide range of species, The Online 

Mendelian Inheritance in Man (OMIM) (https://omim.org/search/advanced/) database is regularly updated 

with new information about the correlation between genetic and phenotypic features in humans and 

DiGeNET (https://www.disgenet.org/) a discovery platform containing one of the largest publicly available 

collections of genes and variants associated to human diseases were used for retrievals of data.  

2.3. Acquisition of overlapping targets of the  and NSCLC  

The targets predicted from the active compounds of A. indica and targets related to NSCLC were put as 

two separate data set to Veny v.2.1, an online mapping tool for creation of venn diagram.10 The overlapping 

targets were identified and proceeds for the further analysis. 

2.4. Protein-protein interaction (PPI) network construction 

Compounds and NSCLC overlap targets were deemed hub genes, and their PPI was obtained by online 

STRING v.11.5 (https://string-db.org/) analysis, with the species set to "Homo sapiens" and a confidence 

score of >0.990.11 The output TSV file from STRING database was generated following evidences of 

various sources and was imported into Cytoscape v3.9.1 for further study. The network was built and 

visualized using Cytoscape v3.9.1, a programme frequently used in network pharmacology studies. For 

more advanced network analysis, it also provides a standard set of characters for data integration, analysis, 

and display. In a network, the most significant nodes are defined by the degree and betweenness centralities 

of their corresponding edges; larger numerical values for these topological metrics indicate greater 

significance.12 

2.5. Gene clustering and network analysis 



The Molecular Complex Detection (MCODE) tool in cytoscape v3.9.1 was used to extract the highly 

interaction regions (Clusters) from the massive gene network. The MCODE score, which takes into  account 

both the number of edges and the distance between them, is used to rank the clusters.13  For the cluster 

analysis with MCODE, the whole network was selected, where as other parameters was set as default; 

degree cutoff set at 2, node score cut of 0.2, k-score 2 and max. depth was set at 100. 

2.6. Disease pathway analysis 

To identify the most influential gene from all the generated clusters, disease pathway analysis was done 

using different server and algorithm. ClueGO v2.5.9, a cytoscape plugin, ShinyGO v0.76.3 

(http://bioinformatics.sdstate.edu/go/) and  Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (https://david.ncifcrf.gov/) were employed to perform this analysis. The disease was 

limited related to human in the search filter. ClueGo were used for human disease pathway analysis, 

ShinyGO predicted kyoto encyclopedia of genes and genomes (KEGG) and OMIM pathway and DAVID 

used for DisGeNET human disease pathway analysis. 

2.7. Molecular docking 

In computer aided drug discovery (CADD) approaches, molecular docking is one of the most important 

tool to understand the nature and strength of chemical bonding between the protein molecule and target 

ligands. The visual interface gives the information regarding the types and position of the bonds and the 

scoring system indicates the bond strength. The negative scores implies the spontaneous binding whereas 

positive score means external energy is required for formation of bond. Molegro virtual docker (MVD) v6.0 

were used to perform the molecular docking analysis. Protein molecule were downloaded from protein data 

bank (https://www.rcsb.org/) in .pdb format and imported in to the workspace of MVD removing the water 

molecules and bonded ligands. In built protein preparation plugin of the software were used to correct the 

protonation state of the protein. The active site of the protein was detected using the detect cavity plugin. 

Details of the used target proteins are tubulated in the Table 1. All the ligands were then imported to the 



workspace in mol format. Docking was performed replicating the run 10 times for each ligands and 

considering the moldock score, top 1 pose for each ligands were retrieved.7 

Table 1: Receptor information retrieved from the RCSB PDB database (www.rcsb.org/pdb). 

Sl 

No. 
Receptor PDB Id Mutation R-free Resolution 

Experimental 

methods 

1 EGFR 1xkk No mutation 0.255 2.40 Å XRD 

2 EGFR 6lub L858R/T790M/C797S 2.31 Å  0.226  XRD 

3 B-Raf 4r5y V600E  3.50 Å 0.306 XRD 

4 PIK3CA 7l1c Mutant  1.96 Å 0.205 XRD 

 

2.8.  ADMET prediction and drug likeliness analysis 

The ADME (Adsorption, Distribution, Metabolism, and Excretion) profiles of the screened compounds by 

molecular docking were calculated using SwissADME (http://www.swissadme.ch/), a web server from 

Swiss Institute of Bioinformatics. Canonical smile formats of the active screened compounds were imported 

to the server which generated the pharmacokinetics, drug likeliness and boiled egg models for the 

compounds.14 

3. Result and Discussion 

3.1.  Active components and targets of Azadirachta indica 

From the literature and phytochemical databases, a total of 79 phytocompounds were retrieved, whereas 

structure was available for 53 compounds. Target fishing enabled the prediction of targets effective against  

NSCLC related targets. Remaining 26 compounds were avoided in this study due to the lack of their 

structural elucidation. All the compounds and their predicted targets were given in Supplementary Table: 

1. The efficacy of the compounds fished by such in silico methods can be considered to be complementary 

to experimental findings as these methods employ structure–activity relationship (SAR) data to predict 

bioactivity of the phytochemicals. 

3.2.  NSCLC related targets and identification of overlapping targets 



From the aforementioned database, targets related to human NSCLC were retrieved, merged and removed 

duplicates. A total of 19970 target genes were found. The Venny v2.1.0 differentiated the overlapping 

targets of active components of A. indica and NSCLC. Generation of venn diagrams helped in easy 

dissection of the targets into identifiable groups relevant to our study. 724 common targets from both the 

lists were found. These targets were assumed to have roles to play in causing human NSCLC 

(Supplementary file: 2) (Figure: 1).  These 724 common targets genes were used for further studies, which 

are somehow linked with the human NSCLC. 

 

Figure 1: Differentiation of overlapping target genes of active compounds of A. indica and targets related 

to human NSCLC. 

3.3.  Construction of compound target network and clustering 

The protein-protein interaction (PPI) of overlapping 724 genes were constructed by STRING database. The 

database generated interaction based on various types of evidences such as text mining, experimental 

results, annotated pathways etc. At the highest confidence score (>0.990), network was formed with 724 

nodes, 3523 edges with average node degree of 9.73, indicating that these genes have highest likelihood of 

interaction. This NSCLC network belongs to the targets of active components from A. indica. PPI network 

generated from STRING was exported to Cytoscape for visualization and further analysis. MCODE app 

utilized for clustering showed 19 highly interactive clusters (gene regions) from the network. These 19 

clusters are composed of total 235 genes. As genes interact in clusters to materialize a biological process, 

therefore, identification of the highly influential cluster is imperative in order to predict the most potent 

target causing this disease. 



3.4. Disease enrichment pathway analysis of clustered genes 

To compare and validate results, the disease enrichment analysis with 4 different methodology and server 

was carried out. First of all, clueGO enrichment app available at Cytoscape was used. Analysis with this 

software revealed that out of these 235 genes, 4 genes are highly linked with neoplasm of lung and lung 

cancer. These four genes are EGFR, BRAF, ERBB2 and PIK3CA, belongs to cluster 4, cluster 14, cluster 

6 and cluster 2 respectively. Other than this, more 7 genes are also related to another 6 different types of 

human ailments (Figure: 2).  

 

Figure 2: Disease gene cluster pathway network by ClueGO enrichment analysis. 4 target genes were 

identified associated with human lung cancer and neoplasm of lung. 



OMIM and KEGG disease pathway were analyzed by using ShinyGO web server. According to OMIM 

analysis data, out of 235 genes, a subset is responsible for nine distinct human diseases, one of which is 

lung cancer. Three of the genes, EGFR, BRAF, and PIK3CA, were shown to be associated with lung cancer, 

and they were found to be located in clusters 4, 14, and 2 respectively (Figure: 3). KEGG shows 20 human 

disease pathway whereas non-small cell lung cancer stood for second position contributing by 21 

responsible genes belonging to cluster 2, cluster 4, cluster 6, cluster 12 and cluster 14 (Figure: 4). 

 

Figure 3: Disease gene cluster pathway network by OMIM enrichment analysis. Three genes namely 

PIK3CA, BRAF and EGFR found to be associated with human lung carcinoma and these three genes are 

belongs to cluster 2, 14 and 4 respectively. 

 



Figure 4: Disease gene cluster pathway network by KEGG enrichment analysis. Twenty different human 

disease are found to be associated with the gene set whereas non-small cell lung carcinoma ranked 2 

comprising 21 genes. 

Lastly, DAVID enrichment software was used, where DisGeNET identified 15 genes from cluster 2, cluster 

4, cluster 6, cluster 12, cluster 13 and cluster 14 are responsible for non-small cell lung cancer (Figure: 5). 

 

Figure 5: Disease gene cluster pathway network by DisGeNET enrichment analysis. From the six different 

genes cluster, 15 genes are found associated with human non-small cell lung cancer. 

After all of these analyses, an extensive panoramic view of the interaction pattern was generated. Upon 

merging the result of aforesaid four methods, three genes, EGFR, BRAF and PIK3CA were found to be 

most common among all (Figures: 6 and 7).  



 

Figure 6: Common Target genes from different disease pathway and network clusters. This analysis 

revealed PIK3CA, BRAF and EGFR are the most important target genes for the therapeutic use of non-

small cell lung cancer. 



 

Figure 7: The overall  disease  pathway analysis of four different database and finding of most influence 

genes associated with human non-small cell lung carcinoma. 

The epidermal growth factor receptor (EGFR) belongs to the family of proteins called ErbB receptors. The 

tyrosine kinase, which is located inside the cell, is responsible for signal transduction, whereas ligand 

binding occurs on the extracellular region of the receptor.15  The extracellular receptor is activated by 

dimerization following the binding of a ligand, such as epidermal growth factor (EGF) or transforming 

growth factor-a (TGF-a). The signal travels through a number of downstream routes. The STAT3/STAT5 

pathway, the PI3K/AKT pathway, and the RAS/RAF/MEK/MAPK route appear to be the most 

significant.16  These pathways modify gene transcription and the cell cycle, leading in enhanced cell 

proliferation and angiogenesis, suppression of apoptosis, and changes in their ability to migrate, adhere, 

and invade. Changes in these factors and properties, as expected, have an effect on the development of the 



cancer. The EGFR gene has been found to contain several mutations. Some of these mutations improve 

tyrosine kinase activity and so sensitivity to targeted therapy, whereas others increase cell resistance to 

treatment with tyrosine kinase inhibitors (TKIs).15  

Mutant epidermal growth factor receptor (EGFR) tumours constitute a distinct subtype of NSCLC.17 This 

EGFR mutation leads to cancer cell proliferation.18 Adenocarcinomas, particularly those in younger women 

and girls who have never smoked, are characterized by mutations in the EGFR gene.19,20. Gefitinib is used 

as a first line drug for treatment of  naive patients with activating EGFR mutations, but did not improve 

overall survival in T790M-mutant patients.21  

BRAF is a serine/threonine protein kinase that operates as a downstream molecule of KRAS and is activated 

upon phosphorylation in a GTP dependent way, controlling important cell processes such as survival and 

proliferation by boosting the MEK/MAPK cascade.22,23  Mutations that turn on the BRAF gene trigger 

constitutive MEK/ERK signaling, which in turn facilitates uncontrolled cell proliferation. About 30% of 

human malignancies are caused by BRAF mutations, which were first discovered in malignant melanomas. 

Around 50% of lung cancers have BRAF mutations, and these alterations might be V600E or non-

V600E.24,25  

In recent years, the PIK3CA gene has been considered as a potential driver gene in lung squamous cell 

cancer.26-29 Wang et. al.30, reported smoking may be associated with PIK3CA high expression in NSCLC 

patients, and PIK3CA mutation may alter lymph node metastasis and serve as a promising prognostic factor. 

Human cancer patients have been reported to carry somatic mutations in the PIK3CA (phosphatidylinositol 

3-kinase catalytic subunit) gene. The PIK3CA gene has been shown to be mutated in roughly 4% of lung 

tumours, according to some studies.31  The catalytic p110 subunit of PI3K is encoded by three genes 

(PIK3CA, PIK3CB, and PIK3CD), while the regulatory p85 subunit is encoded by only one gene (PIK3R1). 

The PIK3CA mutation is the most common in malignancies.32  Some research has indicated that PIK3CA 

mutation occurs in a wide range of human cancers, with rates as high as 2-7% in NSCLC.33,34 Moreover, 



the PIK3CA gene may have a role in the expansion and development of NSCLC tumour cells and has been 

identified as a possible driver gene of lung squamous cell carcinoma.26-29  

The detailed pathway of these three genes are illustrated in Figure 8. 

 

Figure 8: The detailed pathway for Non-small cell lung cancer and the associated genes. Red boxes are 

the target genes identified by the network pharmacological approach using disease pathway analysis. 

3.5.  Molecular Docking: 

Molecular docking of active compounds from A. indica with the identified 3 targets viz. EGFR, B-Raf  

(encoded by BRAF gene) and PIK3CA. As the mutated form of all the proteins are responsible for NSCLC, 

therefore all the protein structure were downloaded in their mutated form. Additionally normal EGFR 

protein also selected for this docking study as the normal EGFR protein associated with the said type of 

cancer. This docking analysis revealed that ten compound from this plants namely salannolide, 

deacetylsalannin, isonimbinolide, nimbolide, nimbin, salannin, nimbinene, nimbocinolide, nimbandiol and 

vepinin exhibited better inhibition in all the four cases than their marketed drugs (Figure 9). Apart from 



this  three more compounds viz. 7-deacetyl-7-benzoylepoxyazadiradione, desacetylnimbin and 17-

epiazadiradione showed activity against EGFR and PIK3CA. Normal and mutated EGFR were also 

inhibited by two more active compounds, including rutin and azadiradione (Table 2). If the top one 

compound is considered against each protein, salannolide showed the best inhibition against normal EGFR 

and B-Raf targets with a moldock score of -177.16 and -169.35, respectively, whereas positive control 

(marketed drug) gefitinib displayed moldock score of -127.63 and dabrafenib showed -137.31. Similarly, 

against PIK3CA and mutated EGFR, best inhibition was shown by salannin with a score of -178.13 and -

161.54, respectively, while the positive control alpelisib exhibited -134.59 and gefitinib showed -107.35. 

The entire moldock score of the active compounds against these targets are tabulated in Table 2. Docking 

pose of best ligands with target receptors are shown in Figure 10 and interaction of positive controls with 

the target molecules are shown in Figure 11. 



 

 

Figure 9: Structure (A) salannolide, (B) deacetylsalannin, (C) isonimbinolide, (D) nimbolide, (E) nimbin, 

(F) salannin, (G) nimbinene, (H) nimbocinolide, (I) nimbandiol and (J) vepinin . 



Table 2: MolDock score of the ligands for their respective target proteins. 

Normal EGFR Mutant EGFR  Mutant PIK3CA Mutated B-Raf 

Ligand 
Moldock 

Score 
Ligand 

Moldock 

Score 
Ligand 

Moldock 

Score 
Ligand 

Moldock 

Score 

Gefitinib (Positive 

Control) 
-127.63 

Gefitinib (Positive 

Control) 
-107.35 Alpelisib  

(Positive Control) 
-123.51 

Dabrafenib (Positive 

Control) 
-137.31 

Salannolide -177.16 Salannin -161.54 Salannin -178.65 Salannolide -169.35 

Salannin -168.95 Isonimbinolide -145.61 Deacetylsalannin -161.94 Deacetylsalannin -163.84 

Deacetylsalannin -150.43 Salannolide -141.77 Salannolide -160.76 Isonimbinolide -161.56 

Isonimbinolide -149.19 Deacetylsalannin -135.77 Rutin -155.26 Nimbolide -155.21 

Nimbinene -147.41 Nimbolide -133.51 Nimbinene -147.68 Nimbin -153.79 

Rutin -144.44 Nimbinene -130.20 Nimbocinolide -146.98 Salannin -153.52 

Nimbocinolide -143.26 Nimbocinolide -128.36 Nimbolide -144.86 Nimbinene -151.53 

Vepinin -142.50 Vepinin -125.88 Isonimbinolide -143.49 Nimbocinolide -143.71 

Nimbaflavone -141.85 Nimolicinol -124.30 17-Epiazadiradione -140.66 Nimbandiol -142.50 

Nimbandiol -137.51 Rutin -123.53 Nimbin -140.09 Vepinin -141.03 

Nimbosterol -136.46 Nimbandiol -120.98 Nimbandiol -139.68 Nimocinol -138.05 

Nimbolide -135.84 
7-Deacetyl-7-

benzoylepoxyazadiradione -119.44 

7-Deacetyl-7-

benzoylepoxyazadiradione -137.40 
  

7-Deacetyl-7-

benzoylepoxyazadiradione 
-135.72 

Desacetylnimbin -115.15 

Azadiradione 

-130.22 
  

Azadiradione -135.29 Nimbaflavone -114.91 Vepinin -129.51   

Nimocinol -131.90 Nimbin -114.79 Linoleic acid -126.75   

Nimbin -131.78 Nimbosterol -114.78 Nimolicinol -126.58   

Desacetylnimbin -131.095 Linoleic-Acid -109.98 Nimocinol -125.44   

Epoxyazadiradione -130.056 17-Epiazadiradione -109.72 Meldenin -123.58   

Hyperoside -129.818 Oleic-Acid -108.44     

Azadirone -129.709       

17-Epiazadiradione -129.342       

Nimbinin -127.79       



 

Figure 10: Docking pose of ligand with the target receptors. 3D pose of (A) EGFR with Salannolide; (B) 

B-Raf with Salannolide; (C) PIK3CA with Salannin; 2D pose of (D) EGFR with Salannolide (E) B-Raf with 

Salannolide; (F) PIK3CA with Salannin; 

 

 

Figure 11: Docking pose of positive control with the target receptors. 3D pose of (A) EGFR with Gefitinib; 

(B) B-Raf with Dabrafenib; (C) PIK3CA with Alpelisib; 2D pose of (D) EGFR with Gefitinib acid (E) B-

Raf with Dabrafenib; (F) PIK3CA with Alpelisib; 



Protein-ligand molecular docking is an effective and crucial method in drug development, especially for 

characterizing the drug-likeness and mechanism of action of new compounds.7  Inhibition of protein EGFR 

and B-Raf is associated with the inhibition of uncontrolled cell proliferations. Studies have revealed that, 

the L858R/T790M/C797S mutation in EGFR are associated with NSCLC. 50% of lung cancer cases are 

associated with T790M mutations. L858R is responsible for upregulation of the CXCR4 chemokine 

receptor and malignant pleural effusion (MPE) formation. C797S mutation is linked with tyrosine kinase 

inhibitors, it is found that almost 40% of the 3rd generation cancer drugs treated patients often get C797S 

mutations.35-37  Similar studies has done by the Saini et. al.,38  and shows that targeting EGFR can cure the 

NSCLC. 

The common type of BRAF mutation is BRAF V600E which is responsible for NSCLC.39 Targeted therapy 

of B-Raf protein is a key therapeutic strategy for NSCLC.40,41  Somatic mutations in the PIK3CA gene have 

been found in high frequency in numerous cancer types, including colon, brain, stomach, breast, and ovary. 

More than 75% of these mutations are found in the PIK3CA gene's helical (exon 9) and kinase domains 

(exon 20). Mutations in PIK3CA's three mutation hotspots (E542K, E545K, and H1047R) have been 

demonstrated to increase its lipid kinase activity and activate the downstream Akt-signaling pathway. 

PIK3CA mutations were found 11.4% of lung cancer cases.42-44  PIK3CA mutations are also commonly 

coexist with EGFR/KRAS mutations in NSCLC cases.45 Studies has found that the treatment with the 

inhibitors to mutated PIK3CA in murine model shows the NSCLC protections . 

3.6.  ADME profile and drug likeliness analysis: 

Considering the 10 compounds screened by the molecular docking analysis, uploaded for ADME and drug 

likeliness analysis by SwissADME server. The pharmacokinetics parameter used for the studies were 

selected Gastro Intestinal (GI) absorption, Blood Brain Barrier (BBB) permeability and P-Glycoprotein (P-

GP) substrate. GI absorption is an important parameter to understand the drug delivery concept; a drug 

having high GI absorption is considered that it can be consumed orally.46 BBB permeability is also an 



crucial parameter for a drug candidates. If a drug crosses the BBB, may interact with the Central Nervous 

System (CNS) which may occurs ill effect in the brain. Additionally, P-GP substate is responsible for efflux 

out the drug from the BBB, if somehow permeable the barrier.47  Other than the isonimbinolide, 

nimbocinolide, salannin and salannolide, all the rest seven compounds showed high GI absorption. All the 

eleven compounds were non-permeable to BBB, and excluding desacetylnimbin, isonimbinolide, nimbin 

and nimbinene, all displayed P-GP substrate activities (Table 3). The same result also obtained by the 

boiled egg analysis by the same server. The yolk part of the egg represents the BBB and white part 

represents the Gastro Intestinal absorption (Figure 12). 

Table 3: Calculated pharmacokinetics and drug-likeness parameters of the selected phytocompounds from 

A. indica. 

Compounds 

Name 

Pharmacokinetics Drug likeness 

GI absorption 
BBB 

permeant 

P-GP 

substrate 

Lipinski 

(Pfizer) 

Ghose 

(Amgen) 

Veber 

(GSK) 

Egan 

(Pharmacia) 

Muegge 

(Bayer) 

Bioavailability 

Score 

Desacetylnimbin High No No Yes No (1) Yes yes Yes 0.55 

Isonimbinolide Low No No No (2) No (3) No (1) No (1) No (2) 0.17 

Nimbandiol High No Yes Yes Yes Yes Yes Yes 0.55 

Nimbin High No No Yes No (3) Yes yes Yes 0.55 

Nimbinene High No No Yes No (1) Yes yes Yes 0.55 

Nimbocinolide Low No Yes Yes No (3) No (1) No (1) No (1) 0.55 

Nimbolide High No Yes Yes Yes Yes yes Yes 0.55 

Salannin Low No Yes Yes No (3) Yes yes Yes 0.55 

Salannolide Low No Yes No (2) No (3) No (1) No (1) No (2) 0.17 

Vepinin High No Yes Yes Yes Yes yes No (1) 0.55 

 



 

Figure 12: BOILED-EGG MODEL for Absorption in the Gastrointestinal tract and Penetration into the 

Brain: Molecules in the yolk of the BOILED-Egg are thought to passively pass through the Blood-brain 

barrier (BBB). Molecules in the white of a Boiled Egg are thought to be absorbed passively by the digestive 

tract. The p-glycoproteins are thought to get rid of the blue-dotted molecules from the Central Nervous 

System (CNS) 

 

Apart from this pharmacokinetics data, another important parameter is drug likeliness. An orally 

bioavailable drug candidate is one that displays drug-like properties. Pharmaceutical giants routinely utilise 

filters like the Lipinski (Pfizer), Ghose (Amgen), Veber (GSK), Egan (Pharmacia), and Muegge (Bayer) 

filters to weed out candidates with undesirable pharmacokinetic profiles.47 The most promising result was 

shown by nimbandiol and nimbolide without violating a single drug likeliness methods. Desacetylnimbin, 

nimbin, nimbinene, salannin and vepinin violated single out of five methods and all had a good 

bioavailability score. The most unsatisfactory result was observed with isonimbinolide, nimbocinolide and 

salannolide violating all the drug likeliness filters and had low bioavailability score (Table 3). Similar type 

of ADMET and drug likeliness studies were reported earlier by Laskar et. al.47 
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