

Abstract Pattern Image Generation using Generative

Adversarial Networks

Mohamed Mahyoub

Tutor Reach

United Kingdom
m.mahyoub@tutorreach.com

Sadiq H. Abdulhussain

University of Baghdad

Baghdad, Iraq

sadiqh76@yahoo.com

Friska Natalia

Faculty of Engineering and Informatics

Universitas Multimedia Nusantara

Tangerang, Indonesia
friska.natalia@umn.ac.id

Sud Sudirman

School of Computer Science and

Mathematics

Liverpool John Moores University

Liverpool, United Kingdom
s.sudirman@ljmu.ac.uk

Basheera M. Mahmmod

University of Baghdad

Baghdad, Iraq
basheera.m@coeng.uobaghdad.edu.iq

Abstract—Abstract pattern is very commonly used in the

textile and fashion industry. Pattern design is an area where

designers need to come up with new and attractive patterns

every day. It is very difficult to find employees with a sufficient

creative mindset and the necessary skills to come up with new

unseen attractive designs. Therefore, it would be ideal to identify

a process that would allow for these patterns to be generated on

their own with little to no human interaction. This can be

achieved using deep learning models and techniques. One of the

most recent and promising tools to solve this type of problem is

Generative Adversarial Networks (GANs). In this paper, we

investigate the suitability of GAN in producing abstract

patterns. We achieve this by generating abstract design patterns

using the two most popular GANs, namely Deep Convolutional

GAN and Wasserstein GAN. By identifying the best-performing

model after training using hyperparameter optimization and

generating some output patterns we show that Wasserstein

GAN is superior to Deep Convolutional GAN.

Keywords—Abstract Pattern, Image Synthesis, Generative

Adversarial Networks, Deep Convolutional GAN, Wasserstein

GAN

I. INTRODUCTION

The textile industry is growing rapidly worldwide. In
2021, the global textile market size was estimated at USD
993.6 billion and is anticipated to grow at a rate of 4.0% from
2022 to 2030 [1]. To keep the revenue coming, textile
designers need to come up with creative ideas every day. Since
this task is something that depends on a person’s skill and
experience, it is becoming very difficult for apparel designers
to continuously design unseen, realistic, and eye-catching
patterns for clothes. This is not limited to just apparel, it also
consists of all other types of fabrics such as curtains,
bedsheets, etc. Exploring this area with the help of deep
learning neural networks can resolve this problem. Since not
much work is done in the industry of fashion, it can generate
insights that were not known earlier.

The common approach to resolve this problem is to have
an automated design generation mechanism that could
generate unique attractive designs which can further be
enhanced by human intervention otherwise can be used as is.
And this process should inculcate classes so that designs are
generated based on a specific class. For instance, there can be
classes such as floral patterns, checks, quotes, solids,

abstracts, and many more. The research that has happened for
now is limited to classifying the different classes of textiles
and generating basic designs, though the need to have
attractive patterns is not achieved yet.

Generative Adversarial Network (GAN) [2] is a neural
network architecture that can be used to generate synthetic
images that are similar but not identical to the images used to
train the network. This is a relatively new technology that was
only been introduced in 2014 but has received a lot of attention
in the Artificial Intelligence research communities. We will be
investigating this exciting and relatively new technology in
generating or synthesizing new abstract images that is suitable
to be used as patterns in apparel design. In particular, we
would like to find out what pre-processing techniques can be
applied to the input images to improve the quality of the
generated images. We will also investigate how the GAN
models can be evaluated when generated images are abstract
in nature. The main aim of this research study is to propose a
model that can generate abstract design patterns for apparel in
the textile industry using a publicly available dataset of
abstract pattern images. We will achieve these by 1)
generating abstract design patterns using two state-of-the-art
GAN models, 2) identifying the best-performing model after
hyperparameter optimization, and 3) generating textile design
patterns using the final models.

II. LITERATURE REVIEW

A. Overview of Generative Adversarial Networks

GANs architecture (shown in Figure 1) is based on a zero-
sum game. There are two opponents, one is the “generator”
and the other is the “discriminator”. Random noise is added as
an input to a generator and the generator creates an output.
This output acts as an input for the discriminator. The
discriminator assigns a score from 0 to 1, the more realistic the
generated output is, the highest score is provided by the
discriminator and vice versa [2]. The generator loses the battle
when the discriminator correctly classifies the generated
images. In this case, the generator needs to continuously
improve the quality of images to win over the discriminator.
On the other hand, the discriminator loses when it fails to
distinguish the original images from the generated ones.

Fig. 1. An overview of Generative Adversarial Networks architecture.

The initially generated images will never be like the
original images and so it is important to continuously train the
model and optimize it so it can improve the quality. Although
this type of training is not like how other neural networks are
trained. In this, either the generator or the discriminator is
made stationary one at a time and the other respective
component is optimized [3], i.e., when the generator is made
stationary then the discriminator will be worked upon and
when the discriminator is made stationary then the generator
will be worked upon.

During the training of the generator, the discriminator is
made stationary and once that is done, the generator starts
generating images. On these images, the discriminator checks
and assigns a score, and this output from the discriminator is
transferred to the generator. Since there is some difference
between the original images and the generated images at the
start, loss from the discriminator is fed to the generator. The
outcome of this iteration will be that generator is able to fool
the discriminator by producing real-like images and the score
of the discriminator is very close to one. Likewise, during the
training of the discriminator, the generator is made stationary.
The discriminator scores the output of the generator regularly
and differentiates between original images and generated
images. This allows a discriminator to efficiently score fake
images near zero.

GANs have been used in a variety of applications ranging
from image synthesis to image enhancement. Silva et al. have
used Conditional GANs to generate post-treatment PET
images of lymphoma using pre-treatment images [4]. This was
done to avoid subjecting human beings to harmful radiation
and save costs. To achieve this, PET scan images were
converted from 3D to 2D and sliced manually for maximum
intensity projection. Once the images were extracted, then
they were co-registered for achieving the best outcomes based
on metrics such as structural similarity index and peak signal-
to-noise ratio.

Eltahan et al. implemented GANs to model the spatial
distribution of Earth’s surface’s radiation fluxes in the upward
direction [5]. They used the ERAS dataset in the 2000-2020
period. This model was able to reproduce fluxes within the
range of ±10% root mean square error. This approach requires
additional work to assess the uncertainty of the model and the
response. The model’s capability can further be improved by
increasing the number of filters in the generator to extract
more features or by weakening the discriminator.

Abramian and Eklund implemented a CycleGAN model
that is based on an unsupervised image-to-image translations
framework [6]. This model reconstructs facial image that has
been anonymized for data sharing purposes. The reason

behind using CycleGAN was to solve the problem of data
being unpaired and the problem of identifying a mapping
within two domains. Here CycleGAN resolved the problem
by employing a cyclic constraint in which the data is
converted to a new or different domain and reverted to the
original. Results suggested that face blurring does not provide
enough protection against attempts to identify the test subject
however face removal can be more robust.

Akimoto et al. proposed something new which was never
been done earlier which is the generation of 360-degree high-
resolution images using GANs [7]. To achieve this, a two-
stage generation with series and parallel convolution layers
(dilated) was used. In this way, 360-degree input images can
be fed and the remaining part of the image would be
completed by the GANs. The results of this research indicated
that the distortion observed in the final generated images of
structures such as buildings was much clear than the other
baseline model such as Pix2pixHD [8].

Ali et al. implemented a model which could remove ink
marks added by pathologists on detected tumor regions [9].
Ink marks are generally added as they form a part of a medical
record and once the record is digitalized, there is no way of
removing ink from images. With this model, ink-free images
are generated without losing information or image resolution.
In this model, a convolution neural net is used to first classify
whether it contains ink or not, then a consistent cycle
generative adversarial network model for pixel restoration.
Results show that this model generates ink-free images. This
model was evaluated using Peak Signal to Noise Ratio
(PSNR), Structure Similarity, and VIF with final values of
28.73 dB, 0.71, and 0.78 respectively.

Han et al. implemented a model which generates synthetic
magnetic resonance images of the most crucial part of the
body which is the human brain using GANs [10]. Some
difficulties faced during the implementation were fewer
contrast images as well as high consistency in different brain
images. This model generated 128 x 128 resolution images
which even the expert physician couldn’t distinguish between
synthetic and original during Turing Test. The dataset used for
this model is Brats 2016 which contains brain tumor image
data. Different types of GAN architectures used in this model
are DCGAN and WGAN whereas WGAN showed the most
promising results.

More related to our work, researchers have been able to
classify and generate specific patterns such as checks and
floral designs for apparel, hence generating abstract designs
would be an extension of the previous research. Fayyaz et al.
designed a model to generate textile designs using GANs [11].
In their approach, they first tried to improve the overall
accuracy of state-of-the-art results in the classification of
textile design patterns by 2% with the help of data cleaning
and labeling. Then on a newly obtained dataset, they applied
various generative models such as Wasserstein Generative
Adversarial Networks Gradient Penalty (WGANs GP), Deep
Convolutional GANs (DCGANs), and Convolutional
Variational Autoencoders (CVAEs) for all classes separately
and compared the performance of these using the inception
score. As per the findings, WGANs seemed more promising,
style transfer model was used along with it to generate more
appealing textile design patterns.

Our study will be equipped with all modern tools and
technologies such as powerful deep-learning libraries and

high-specification machines with powerful GPUs which can
be useful in reducing model training times and improving
model accuracy. With this, the trained models will be able to
generate good-quality synthetic images specifically different
from the ones present in the learning dataset. Since these
models have never been trained on these types of abstract
images, it will generate new insights and metrics which will
be an addition to previous research.

III. MATERIAL AND METHOD

Every machine learning or neural network model
undergoes a set of steps in the model-building process. These
steps can vary based on the tasks’ requirements and
objectives. In our research, these steps are shown in Figure 2.
The figure identifies the first phase of the model building
which consists of Data Gathering, Data Pre-Processing, and
Exploratory Data Analysis steps.

Fig. 2. The first phase of the workflow.

A. Data Gathering

Data gathering or data acquisition is a crucial step in any
machine learning or deep learning model creation and any
person from the data science community knows that it is better
to have too much data than to have less data than is needed.
Since this research is based on abstract image synthesis and
generation, the dataset required for this research must contain
images of this specific kind. There are many datasets available
that are specifically created for image syntheses such as the
Celeb-500k dataset [12], Facial Features dataset [13], or
MNIST dataset [14] but none of these are compatible with the
generation of artistic design patterns that can be used in
apparel designing. So, a custom dataset that only consists of
abstract design images and artistic design images can fulfill
our needs. For this research, the data has been acquired from
the well-known website Kaggle where the required data is
publicly available [15]. Images presented here were originally
scraped from the WikiArt website [16]. With the help of

scraping, only images that contained artistic patterns were
fetched and other images were discarded. The dataset contains
2782 abstract images which will be used for model creation
and training.

B. Data Pre-processing

While manually going through the image, it was observed
that some images do not contain any artistic design pattern
such as those shown in Figure 3. These images were removed
from the dataset. Once we have a cleaned dataset, then we will
reload the updated dataset to our code and apply further pre-
processing techniques to the image dataset.

Fig. 3. Examples of images that do not contain artistic or abstract patterns.

Images in our dataset are of varied sizes as they all
originated from a different source and were clubbed together
in a single dataset. But these are still raw images and need to
be processed so that all images are the same in size and color
channels having RGB encoding. The default setting for a
GAN model is 64x64 dimensions so all images will be resized
to this size.

Data normalization is an important step to maintain numerical

stability during training. Normalizing the data increases the

probability of quicker training and more stable gradient

descent. As a result, the pixel values of the input images will

be standardized to a range of 0–1. There can be several ways

of normalizing the image, the first one is common for RGB

images and other approaches depending on the project

requirements.

C. Data Augmentation

This technique is used when the quantity of data or image
samples is not enough for a classification problem or when
there is very little data available. Augmentation is mostly used
in the case of image data to increase the sample count and
variance. Augmentation technique is required to be applied on
images where images will be rotated at certain degrees, scaled
to a certain limit, and flipped horizontally. All these methods
will be used in multiple runs to achieve good performance.

D. Building the GAN model

We developed two GAN models based on different GAN
architectures, namely 1) Deep Convolution GAN (DCGAN)
[17] and b) Wasserstein GAN (WGAN) [18] with weight
clipping. Once the models are trained and generate results,
then both models will be evaluated as per the next steps as
shown in Figure 4. The diagram shown in this figure is a
continuation of that shown in Figure 2 and portrays a common
flow chart for both GAN architectures.

The DCGAN model uses convolution layers instead of
fully connected layers. Convolution layers are very powerful
and have been used in the field of computer vision for many
years. They are capable to extract features from an image by
applying different filters without affecting the correlation
within neighbor pixels. This substitution of dense layers with
convolution layers has a great impact on training efficiency.
Other changes that further stabilize the GAN training are the
replacement of pooling layers with strided convolution layers.
This approach boosts the performance, and it is recommended
to use strided layers in both Generator and Discriminator. The
use of Batch Normalization in the DCGAN model helps in
convergence by reducing noise and improving the diversity of
generated images. We use Rectified Linear Unit (ReLU)
activation function for the hidden layer of the Generator and
the Hyperbolic Tangent (tanh) activation function for the outer
layer of the Generator. Likewise, we use Leaky ReLU and
Sigmoid activation functions for the hidden layer and outer
layer of the Discriminator.

Fig. 4. The second phase of the workflow.

In a typical GAN model, let � represent an image, ����
will represent the discriminator network that will output a
probability number which states if � is a real image (labeled
0) or a fake image (labeled 1) i.e. whether � is coming from
training data or is it generated as a fake by generator network.
The input � to the discriminator should be a three-channel
image of dimension 64x64 and based on model functionality
���� should be high for training image data and low for
generated fake images. Similarly, for the generator network,
let � represents a vector from latent space of a similar

dimension. ���� function when the generator network is
applied on vector � would result in a new vector from training
data space. The generator function tries to learn the data
distribution of real images and with help of that training, it
tries to generate fake images like the identified distribution.

The discriminator is trained to maximize the log������ �
log�1
 �������� function. We achieve this by following the
following steps:

1. Fetch real samples from training data and create a small
batch.

2. Propagate forward this batch through model �

3. Calculate the loss log������

4. Calculate the gradients using stochastic gradient descent
in the backward propagation

5. Now create fake samples by passing a latent vector z from
generator model �

6. Propagate forward this batch of fake images from � and
calculate the Loss as log�1
 ��������

7. Calculate the gradients with backward propagation

8. Pass these gradients obtained for real and fake batches
from �’s Adam optimizer

The generator is trained to maximize the log�1

�������� function. We achieve this by following the
following steps:

1. Classify �’s output from the previous �’s training step
and calculate �’s loss

2. Calculate gradients for � in backpropagation

3. Update the params for � using the �’s Adam optimizer

The progress of model training can be observed by
generating images after each complete iteration. The statistics
generated such as Discriminator loss, Generator Loss, the
output of Discriminator on real batch, the output of
Discriminator on fake batch, etc can also be observed after
each iteration and plotted on a time-series graph.

When developing the WGAN architecture, the
Discriminator model is replaced by a critic which rates the
generated image for its real-ness and fake-ness value. The
model development is similar to that of DCGAN with the
following modifications:

1. While creating a WGAN model, we will replace the
sigmoid or ReLU activation function with a linear
activation which will predict the score for the real or fake
image instead of just classifying it as real or fake.

2. The class labels of 0 and 1 in DCGAN are replaced by -1
(real) and +1 (fake) as there is nothing fixed in the case
of scores.

3. The Wasserstein loss function [19] will be used as a critic
instead of a classifier.

4. The model weights for the critic will be constrained to a
limited range after every mini-batch update

5. The critic model will be updated more than the generator
model.

6. The Adam optimizer [20] in the DCGAN model will be
replaced by RMSProp [21] with a smaller learning rate.

7. The gradients of the critic in the WGAN model require
clipping unlike the gradients in the DCGAN model and
so this step will also be applied while creating the WGAN
model.

The training of a WGAN model is more stable than that of
a DCGAN as it is not affected by model architecture or by the
hyperparameters.

IV. EXPERIMENT AND RESULT ANALYSIS

The model implementation is one of the phases of the deep
learning lifecycle in which models are trained on initialized
weights and retrained again on tuned hyperparameters to
achieve the required results. For both DCGAN and WGAN
models, it is crucial to initialize weights randomly from a
normal distribution. The value of mean and standard deviation
must be 0 and 0.02 for convolution and convolution transpose
layers, and 1 and 0.02 for batch normalization layers,
respectively. This is the first step which is applied after both
Generator and Discriminator models are initialized. The Loss
function for the DCGAN model is Binary Cross Entropy loss
(BCE) [22] and the optimizers used are Adam [20]. The loss
function for the WGAN model is Earth Movers Distance or
Wasserstein distance [23] and the optimizers used are
RMSProp [21]. Some examples of the input images used for
the models’ training are shown in Figure 5.

Fig. 5. Some examples of the input images used for the models' training

before conversion to tensors.

Hyperparameter optimization is carried out during the
training steps on eight hyperparameters. The name and the
final values of the optimized hyperparameters are summarized
in Table I.

TABLE I. OPTIMIZED HYPERPARAMETER VALUES

Parameters DCGAN Final WGAN Final

Batch Size 24 32

Image Size 64 x 64 64 x 64

Latent Vector 100 100

Feature Maps (fm_g) 64 64

Feature Maps (fm_d) 64 64

Number of Epochs 400 400

Learning Rate 0.0002 0.0002

Optimizer Parameter 0.5 0.01

The Generator and Discriminator losses during training of
the best DCGAN and WGAN models are shown in Figure 6.

Fig. 6. Generator and Discriminator Losses during training of the DCGAN

model (top) and the WGAN model (bottom).

Figure 7 shows some examples of the output images
generated by the best DCGAN model. The images all have
identical dimension, which is 64x64 pixels. The patterns
generated in this image are distinguishable from the input
image set and the quality is very good. It can be observed that
some images in this model are very similar and seem repeated.
This problem is known as Mode Collapse in which similar
images are generated even though the inputs are different.

Fig. 7. Some examples of output images of the best DCGAN model. The

occurrence of similar-looking images in A1-B1-D1-C6, A2-D6, and A8-B6
cells suggests the presence of a Mode Collapse problem in the model.

Figure 8 shows some examples of the output images
generated by the best WGAN model. As before, the images all
have identical dimension, which is 64x64 pixels. The patterns
generated in this image are also distinguishable from the input
image set.

Fig. 8. Some examples of output images of the best WGAN model. No

similar-looking images were observed.

The quality and diversity of images generated by the
WGAN model are far better than the DCGAN model’s
generated images. All patterns generated are unique and no
mode collapse issue occurred in this model. Patterns generated
are completely abstract in design are represents an artistic
form.

V. CONCLUSION

In this paper, we have presented the results of our
investigation into using Generative Adversarial Networks on
abstract images to produce abstract motif designs. We have
investigated the different pre-processing techniques that can
be used on an abstract image dataset and how the GAN models
can be evaluated when the generated images are abstract in
nature. We achieved these by generating abstract design
patterns using two state-of-the-art models DCGAN and
WGAN, by identifying the best-performing model, and by
generating textile design patterns with the finalized model.
Our findings showed that both DCGAN and WGAN models
have generated very good abstract design patterns however the
WGAN model has generated better quality and more diverse
outcomes than the DCGAN model where image patterns are
not as diverse and where some of the images are repeated due
to Mode Collapse.

REFERENCES

[1] Grand View Research, “Textile Market Size, Share & Trends Analysis

Report By Raw Material (Cotton, Wool, Silk, Chemical), By Product
(Natural Fibers, Nylon), By Application (Technical, Fashion), By

Region, And Segment Forecasts, 2022 - 2030,” 2021. [Online].

Available: https://www.grandviewresearch.com/industry-
analysis/textile-market. [Accessed: 22-Oct-2022].

[2] J. Goodfellow Ian, P.-A. Jean, M. Mehdi, X. Bing, W.-F. David, O.

Sherjil, and C. Courville Aaron, “Generative adversarial nets,” in
Proceedings of the 27th international conference on neural

information processing systems, 2014, vol. 2, pp. 2672–2680.

[3] S. Wang, T.-Z. Huang, J. Liu, and X.-G. Lv, “An alternating iterative
algorithm for image deblurring and denoising problems,” Commun.

Nonlinear Sci. Numer. Simul., vol. 19, no. 3, pp. 617–626, 2014.

[4] G. Silva, I. Domingues, H. Duarte, and J. A. M. Santos, “Automatic
Generation of Lymphoma Post-Treatment PETs using Conditional-

GANs,” in 2019 Digital Image Computing: Techniques and

Applications (DICTA), 2019, pp. 1–6.

[5] M. Eltahan, N. Daoud, and K. Moharm, “Generative Adversarial

Networks (GANs) for spatial upward fluxes radiation estimation,” in

2021 International Conference on Advances in Electrical, Computing,
Communication and Sustainable Technologies (ICAECT), 2021, pp.

1–5.

[6] D. Abramian and A. Eklund, “Refacing: reconstructing anonymized
facial features using GANs,” in 2019 IEEE 16th international

symposium on biomedical imaging (ISBI 2019), 2019, pp. 1104–1108.

[7] N. Akimoto, S. Kasai, M. Hayashi, and Y. Aoki, “360-degree image
completion by two-stage conditional GANs,” in 2019 IEEE

International Conference on Image Processing (ICIP), 2019, pp.

4704–4708.

[8] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,

“High-resolution image synthesis and semantic manipulation with

conditional GANs,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8798–8807.

[9] S. Ali, N. K. Alham, C. Verrill, and J. Rittscher, “Ink removal from
histopathology whole slide images by combining classification,

detection and image generation models,” in 2019 IEEE 16th

International Symposium on Biomedical Imaging (ISBI 2019), 2019,
pp. 928–932.

[10] C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu,

Y. Furukawa, G. Mauri, and H. Nakayama, “GAN-based synthetic

brain MR image generation,” in 2018 IEEE 15th international
symposium on biomedical imaging (ISBI 2018), 2018, pp. 734–738.

[11] R. A. Fayyaz, M. Maqbool, and M. Hanif, “Textile Design Generation

Using GANs,” in 2020 IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), 2020, pp. 1–5.

[12] J. Cao, Y. Li, and Z. Zhang, “Celeb-500k: A large training dataset for

face recognition,” in 2018 25th IEEE International Conference on
Image Processing (ICIP), 2018, pp. 2406–2410.

[13] Y. Tian, C. Suzuki, T. Clanuwat, M. Bober-Irizar, A. Lamb, and A.

Kitamoto, “Kaokore: A pre-modern Japanese art facial expression
dataset,” arXiv Prepr. arXiv2002.08595, 2020.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, 1998.

[15] B. Boulé, “Abstract Art Gallery,” Kaggle, 2022. [Online]. Available:

https://www.kaggle.com/datasets/bryanb/abstract-art-gallery.
[Accessed: 22-Oct-2022].

[16] WikiArt, “Visual Art Encyclopedia,” WikiArt. [Online]. Available:

https://www.wikiart.org/. [Accessed: 22-Oct-2022].

[17] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation

learning with deep convolutional generative adversarial networks,”

4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., pp.
1–16, 2016.

[18] M. Arjovsky, S. Chintala, and L. Bottou, “{W}asserstein Generative
Adversarial Networks,” in Proceedings of the 34th International

Conference on Machine Learning, 2017, vol. 70, pp. 214–223.

[19] J. Brownlee, “How to develop a wasserstein generative adversarial
network (wgan) from scratch.” 2019.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv Prepr. arXiv1412.6980, 2014.

[21] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A sufficient condition

for convergences of adam and rmsprop,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 11127–11135.

[22] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A

tutorial on the cross-entropy method,” Ann. Oper. Res., vol. 134, no.
1, pp. 19–67, 2005.

[23] C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. A. Poggio,

“Learning with a Wasserstein loss,” Adv. Neural Inf. Process. Syst.,
vol. 28, 2015.

