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Abstract—Abstract pattern is very commonly used in the 

textile and fashion industry. Pattern design is an area where 

designers need to come up with new and attractive patterns 

every day. It is very difficult to find employees with a sufficient 

creative mindset and the necessary skills to come up with new 

unseen attractive designs. Therefore, it would be ideal to identify 

a process that would allow for these patterns to be generated on 

their own with little to no human interaction. This can be 

achieved using deep learning models and techniques. One of the 

most recent and promising tools to solve this type of problem is 

Generative Adversarial Networks (GANs). In this paper, we 

investigate the suitability of GAN in producing abstract 

patterns. We achieve this by generating abstract design patterns 

using the two most popular GANs, namely Deep Convolutional 

GAN and Wasserstein GAN. By identifying the best-performing 

model after training using hyperparameter optimization and 

generating some output patterns we show that Wasserstein 

GAN is superior to Deep Convolutional GAN. 

Keywords—Abstract Pattern, Image Synthesis, Generative 
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I. INTRODUCTION 

The textile industry is growing rapidly worldwide. In 
2021, the global textile market size was estimated at USD 
993.6 billion and is anticipated to grow at a rate of 4.0% from 
2022 to 2030 [1]. To keep the revenue coming, textile 
designers need to come up with creative ideas every day. Since 
this task is something that depends on a person’s skill and 
experience, it is becoming very difficult for apparel designers 
to continuously design unseen, realistic, and eye-catching 
patterns for clothes. This is not limited to just apparel, it also 
consists of all other types of fabrics such as curtains, 
bedsheets, etc. Exploring this area with the help of deep 
learning neural networks can resolve this problem. Since not 
much work is done in the industry of fashion, it can generate 
insights that were not known earlier. 

The common approach to resolve this problem is to have 
an automated design generation mechanism that could 
generate unique attractive designs which can further be 
enhanced by human intervention otherwise can be used as is. 
And this process should inculcate classes so that designs are 
generated based on a specific class. For instance, there can be 
classes such as floral patterns, checks, quotes, solids, 

abstracts, and many more. The research that has happened for 
now is limited to classifying the different classes of textiles 
and generating basic designs, though the need to have 
attractive patterns is not achieved yet. 

Generative Adversarial Network (GAN) [2] is a neural 
network architecture that can be used to generate synthetic 
images that are similar but not identical to the images used to 
train the network. This is a relatively new technology that was 
only been introduced in 2014 but has received a lot of attention 
in the Artificial Intelligence research communities. We will be 
investigating this exciting and relatively new technology in 
generating or synthesizing new abstract images that is suitable 
to be used as patterns in apparel design. In particular, we 
would like to find out what pre-processing techniques can be 
applied to the input images to improve the quality of the 
generated images. We will also investigate how the GAN 
models can be evaluated when generated images are abstract 
in nature. The main aim of this research study is to propose a 
model that can generate abstract design patterns for apparel in 
the textile industry using a publicly available dataset of 
abstract pattern images. We will achieve these by 1) 
generating abstract design patterns using two state-of-the-art 
GAN models, 2) identifying the best-performing model after 
hyperparameter optimization, and 3) generating textile design 
patterns using the final models. 

II. LITERATURE REVIEW 

A. Overview of Generative Adversarial Networks 

GANs architecture (shown in Figure 1) is based on a zero-
sum game. There are two opponents, one is the “generator” 
and the other is the “discriminator”. Random noise is added as 
an input to a generator and the generator creates an output. 
This output acts as an input for the discriminator. The 
discriminator assigns a score from 0 to 1, the more realistic the 
generated output is, the highest score is provided by the 
discriminator and vice versa [2]. The generator loses the battle 
when the discriminator correctly classifies the generated 
images. In this case, the generator needs to continuously 
improve the quality of images to win over the discriminator. 
On the other hand, the discriminator loses when it fails to 
distinguish the original images from the generated ones. 

 



  

 

  

 

 

Fig. 1. An overview of Generative Adversarial Networks architecture. 

The initially generated images will never be like the 
original images and so it is important to continuously train the 
model and optimize it so it can improve the quality. Although 
this type of training is not like how other neural networks are 
trained. In this, either the generator or the discriminator is 
made stationary one at a time and the other respective 
component is optimized [3], i.e., when the generator is made 
stationary then the discriminator will be worked upon and 
when the discriminator is made stationary then the generator 
will be worked upon. 

During the training of the generator, the discriminator is 
made stationary and once that is done, the generator starts 
generating images. On these images, the discriminator checks 
and assigns a score, and this output from the discriminator is 
transferred to the generator. Since there is some difference 
between the original images and the generated images at the 
start, loss from the discriminator is fed to the generator. The 
outcome of this iteration will be that generator is able to fool 
the discriminator by producing real-like images and the score 
of the discriminator is very close to one. Likewise, during the 
training of the discriminator, the generator is made stationary. 
The discriminator scores the output of the generator regularly 
and differentiates between original images and generated 
images. This allows a discriminator to efficiently score fake 
images near zero. 

GANs have been used in a variety of applications ranging 
from image synthesis to image enhancement. Silva et al. have 
used Conditional GANs to generate post-treatment PET 
images of lymphoma using pre-treatment images [4]. This was 
done to avoid subjecting human beings to harmful radiation 
and save costs. To achieve this, PET scan images were 
converted from 3D to 2D and sliced manually for maximum 
intensity projection. Once the images were extracted, then 
they were co-registered for achieving the best outcomes based 
on metrics such as structural similarity index and peak signal-
to-noise ratio. 

Eltahan et al. implemented GANs to model the spatial 
distribution of Earth’s surface’s radiation fluxes in the upward 
direction [5]. They used the ERAS dataset in the 2000-2020 
period. This model was able to reproduce fluxes within the 
range of ±10% root mean square error. This approach requires 
additional work to assess the uncertainty of the model and the 
response. The model’s capability can further be improved by 
increasing the number of filters in the generator to extract 
more features or by weakening the discriminator. 

Abramian and Eklund implemented a CycleGAN model 
that is based on an unsupervised image-to-image translations 
framework [6]. This model reconstructs facial image that has 
been anonymized for data sharing purposes. The reason 

behind using CycleGAN was to solve the problem of data 
being unpaired and the problem of identifying a mapping 
within two domains. Here CycleGAN resolved the problem 
by employing a cyclic constraint in which the data is 
converted to a new or different domain and reverted to the 
original. Results suggested that face blurring does not provide 
enough protection against attempts to identify the test subject 
however face removal can be more robust. 

Akimoto et al. proposed something new which was never 
been done earlier which is the generation of 360-degree high-
resolution images using GANs [7]. To achieve this, a two-
stage generation with series and parallel convolution layers 
(dilated) was used. In this way, 360-degree input images can 
be fed and the remaining part of the image would be 
completed by the GANs. The results of this research indicated 
that the distortion observed in the final generated images of 
structures such as buildings was much clear than the other 
baseline model such as Pix2pixHD [8]. 

Ali et al. implemented a model which could remove ink 
marks added by pathologists on detected tumor regions [9]. 
Ink marks are generally added as they form a part of a medical 
record and once the record is digitalized, there is no way of 
removing ink from images. With this model, ink-free images 
are generated without losing information or image resolution. 
In this model, a convolution neural net is used to first classify 
whether it contains ink or not, then a consistent cycle 
generative adversarial network model for pixel restoration. 
Results show that this model generates ink-free images. This 
model was evaluated using Peak Signal to Noise Ratio 
(PSNR), Structure Similarity, and VIF with final values of 
28.73 dB, 0.71, and 0.78 respectively. 

Han et al. implemented a model which generates synthetic 
magnetic resonance images of the most crucial part of the 
body which is the human brain using GANs [10]. Some 
difficulties faced during the implementation were fewer 
contrast images as well as high consistency in different brain 
images. This model generated 128 x 128 resolution images 
which even the expert physician couldn’t distinguish between 
synthetic and original during Turing Test. The dataset used for 
this model is Brats 2016 which contains brain tumor image 
data. Different types of GAN architectures used in this model 
are DCGAN and WGAN whereas WGAN showed the most 
promising results. 

More related to our work, researchers have been able to 
classify and generate specific patterns such as checks and 
floral designs for apparel, hence generating abstract designs 
would be an extension of the previous research. Fayyaz et al. 
designed a model to generate textile designs using GANs [11]. 
In their approach, they first tried to improve the overall 
accuracy of state-of-the-art results in the classification of 
textile design patterns by 2% with the help of data cleaning 
and labeling. Then on a newly obtained dataset, they applied 
various generative models such as Wasserstein Generative 
Adversarial Networks Gradient Penalty (WGANs GP), Deep 
Convolutional GANs (DCGANs), and Convolutional 
Variational Autoencoders (CVAEs) for all classes separately 
and compared the performance of these using the inception 
score. As per the findings, WGANs seemed more promising, 
style transfer model was used along with it to generate more 
appealing textile design patterns. 

Our study will be equipped with all modern tools and 
technologies such as powerful deep-learning libraries and 



  

 

  

 

high-specification machines with powerful GPUs which can 
be useful in reducing model training times and improving 
model accuracy. With this, the trained models will be able to 
generate good-quality synthetic images specifically different 
from the ones present in the learning dataset. Since these 
models have never been trained on these types of abstract 
images, it will generate new insights and metrics which will 
be an addition to previous research. 

III. MATERIAL AND METHOD 

Every machine learning or neural network model 
undergoes a set of steps in the model-building process. These 
steps can vary based on the tasks’ requirements and 
objectives. In our research, these steps are shown in Figure 2. 
The figure identifies the first phase of the model building 
which consists of Data Gathering, Data Pre-Processing, and 
Exploratory Data Analysis steps. 

 

 

Fig. 2. The first phase of the workflow. 

A. Data Gathering 

Data gathering or data acquisition is a crucial step in any 
machine learning or deep learning model creation and any 
person from the data science community knows that it is better 
to have too much data than to have less data than is needed. 
Since this research is based on abstract image synthesis and 
generation, the dataset required for this research must contain 
images of this specific kind. There are many datasets available 
that are specifically created for image syntheses such as the 
Celeb-500k dataset [12], Facial Features dataset [13], or 
MNIST dataset [14] but none of these are compatible with the 
generation of artistic design patterns that can be used in 
apparel designing. So, a custom dataset that only consists of 
abstract design images and artistic design images can fulfill 
our needs. For this research, the data has been acquired from 
the well-known website Kaggle where the required data is 
publicly available [15]. Images presented here were originally 
scraped from the WikiArt website [16]. With the help of 

scraping, only images that contained artistic patterns were 
fetched and other images were discarded. The dataset contains 
2782 abstract images which will be used for model creation 
and training. 

B. Data Pre-processing 

While manually going through the image, it was observed 
that some images do not contain any artistic design pattern 
such as those shown in Figure 3. These images were removed 
from the dataset. Once we have a cleaned dataset, then we will 
reload the updated dataset to our code and apply further pre-
processing techniques to the image dataset. 

 

Fig. 3. Examples of images that do not contain artistic or abstract patterns. 

Images in our dataset are of varied sizes as they all 
originated from a different source and were clubbed together 
in a single dataset. But these are still raw images and need to 
be processed so that all images are the same in size and color 
channels having RGB encoding. The default setting for a 
GAN model is 64x64 dimensions so all images will be resized 
to this size. 

Data normalization is an important step to maintain numerical 

stability during training. Normalizing the data increases the 

probability of quicker training and more stable gradient 

descent. As a result, the pixel values of the input images will 

be standardized to a range of 0–1. There can be several ways 

of normalizing the image, the first one is common for RGB 

images and other approaches depending on the project 

requirements. 

C. Data Augmentation 

This technique is used when the quantity of data or image 
samples is not enough for a classification problem or when 
there is very little data available. Augmentation is mostly used 
in the case of image data to increase the sample count and 
variance. Augmentation technique is required to be applied on 
images where images will be rotated at certain degrees, scaled 
to a certain limit, and flipped horizontally. All these methods 
will be used in multiple runs to achieve good performance. 



  

 

  

 

D.  Building the GAN model 

We developed two GAN models based on different GAN 
architectures, namely 1) Deep Convolution GAN (DCGAN) 
[17] and b) Wasserstein GAN (WGAN) [18] with weight 
clipping. Once the models are trained and generate results, 
then both models will be evaluated as per the next steps as 
shown in Figure 4. The diagram shown in this figure is a 
continuation of that shown in Figure 2 and portrays a common 
flow chart for both GAN architectures. 

The DCGAN model uses convolution layers instead of 
fully connected layers. Convolution layers are very powerful 
and have been used in the field of computer vision for many 
years. They are capable to extract features from an image by 
applying different filters without affecting the correlation 
within neighbor pixels. This substitution of dense layers with 
convolution layers has a great impact on training efficiency. 
Other changes that further stabilize the GAN training are the 
replacement of pooling layers with strided convolution layers. 
This approach boosts the performance, and it is recommended 
to use strided layers in both Generator and Discriminator. The 
use of Batch Normalization in the DCGAN model helps in 
convergence by reducing noise and improving the diversity of 
generated images. We use Rectified Linear Unit (ReLU) 
activation function for the hidden layer of the Generator and 
the Hyperbolic Tangent (tanh) activation function for the outer 
layer of the Generator. Likewise, we use Leaky ReLU and 
Sigmoid activation functions for the hidden layer and outer 
layer of the Discriminator. 

 

Fig. 4. The second phase of the workflow. 

In a typical GAN model, let � represent an image, ���� 
will represent the discriminator network that will output a 
probability number which states if � is a real image (labeled 
0) or a fake image (labeled 1) i.e. whether � is coming from 
training data or is it generated as a fake by generator network. 
The input �  to the discriminator should be a three-channel 
image of dimension 64x64 and based on model functionality 
����  should be high for training image data and low for 
generated fake images. Similarly, for the generator network, 
let �  represents a vector from latent space of a similar 

dimension. ����  function when the generator network is 
applied on vector � would result in a new vector from training 
data space. The generator function tries to learn the data 
distribution of real images and with help of that training, it 
tries to generate fake images like the identified distribution. 

The discriminator is trained to maximize the log������  �
log�1 
 �������� function. We achieve this by following the 
following steps: 

1. Fetch real samples from training data and create a small 
batch. 

2. Propagate forward this batch through model � 

3. Calculate the loss log������ 

4. Calculate the gradients using stochastic gradient descent 
in the backward propagation 

5. Now create fake samples by passing a latent vector z from 
generator model � 

6. Propagate forward this batch of fake images from � and 
calculate the Loss as log�1 
 �������� 

7. Calculate the gradients with backward propagation 

8. Pass these gradients obtained for real and fake batches 
from �’s Adam optimizer 

The generator is trained to maximize the log�1 

��������   function. We achieve this by following the 
following steps: 

1. Classify �’s output from the previous �’s training step 
and calculate �’s loss 

2. Calculate gradients for � in backpropagation 

3. Update the params for � using the �’s Adam optimizer 

The progress of model training can be observed by 
generating images after each complete iteration. The statistics 
generated such as Discriminator loss, Generator Loss, the 
output of Discriminator on real batch, the output of 
Discriminator on fake batch, etc can also be observed after 
each iteration and plotted on a time-series graph. 

When developing the WGAN architecture, the 
Discriminator model is replaced by a critic which rates the 
generated image for its real-ness and fake-ness value. The 
model development is similar to that of DCGAN with the 
following modifications: 

1. While creating a WGAN model, we will replace the 
sigmoid or ReLU activation function with a linear 
activation which will predict the score for the real or fake 
image instead of just classifying it as real or fake. 

2. The class labels of 0 and 1 in DCGAN are replaced by -1 
(real) and +1 (fake) as there is nothing fixed in the case 
of scores. 

3. The Wasserstein loss function [19] will be used as a critic 
instead of a classifier. 

4. The model weights for the critic will be constrained to a 
limited range after every mini-batch update 

5. The critic model will be updated more than the generator 
model. 



  

 

  

 

6. The Adam optimizer [20] in the DCGAN model will be 
replaced by RMSProp [21] with a smaller learning rate. 

7. The gradients of the critic in the WGAN model require 
clipping unlike the gradients in the DCGAN model and 
so this step will also be applied while creating the WGAN 
model. 

The training of a WGAN model is more stable than that of 
a DCGAN as it is not affected by model architecture or by the 
hyperparameters. 

IV. EXPERIMENT AND RESULT ANALYSIS 

The model implementation is one of the phases of the deep 
learning lifecycle in which models are trained on initialized 
weights and retrained again on tuned hyperparameters to 
achieve the required results. For both DCGAN and WGAN 
models, it is crucial to initialize weights randomly from a 
normal distribution. The value of mean and standard deviation 
must be 0 and 0.02 for convolution and convolution transpose 
layers, and 1 and 0.02 for batch normalization layers, 
respectively. This is the first step which is applied after both 
Generator and Discriminator models are initialized. The Loss 
function for the DCGAN model is Binary Cross Entropy loss 
(BCE) [22] and the optimizers used are Adam [20]. The loss 
function for the WGAN model is Earth Movers Distance or 
Wasserstein distance [23] and the optimizers used are 
RMSProp [21]. Some examples of the input images used for 
the models’ training are shown in Figure 5. 

 

Fig. 5. Some examples of the input images used for the models' training 

before conversion to tensors. 

Hyperparameter optimization is carried out during the 
training steps on eight hyperparameters. The name and the 
final values of the optimized hyperparameters are summarized 
in Table I. 

TABLE I.  OPTIMIZED HYPERPARAMETER VALUES 

Parameters DCGAN Final WGAN Final 

Batch Size 24 32 

Image Size 64 x 64 64 x 64 

Latent Vector 100 100 

Feature Maps (fm_g) 64 64 

Feature Maps (fm_d) 64 64 

Number of Epochs 400 400 

Learning Rate 0.0002 0.0002 

Optimizer Parameter 0.5 0.01 

 

The Generator and Discriminator losses during training of 
the best DCGAN and WGAN models are shown in Figure 6. 

 

Fig. 6. Generator and Discriminator Losses during training of the DCGAN 

model (top) and the WGAN model (bottom). 

Figure 7 shows some examples of the output images 
generated by the best DCGAN model. The images all have 
identical dimension, which is 64x64 pixels. The patterns 
generated in this image are distinguishable from the input 
image set and the quality is very good. It can be observed that 
some images in this model are very similar and seem repeated. 
This problem is known as Mode Collapse in which similar 
images are generated even though the inputs are different. 

 

Fig. 7. Some examples of output images of the best DCGAN model. The 

occurrence of similar-looking images in A1-B1-D1-C6, A2-D6, and A8-B6 
cells suggests the presence of a Mode Collapse problem in the model. 

Figure 8 shows some examples of the output images 
generated by the best WGAN model. As before, the images all 
have identical dimension, which is 64x64 pixels. The patterns 
generated in this image are also distinguishable from the input 
image set. 

 

Fig. 8. Some examples of output images of the best WGAN model. No 

similar-looking images were observed. 



  

 

  

 

The quality and diversity of images generated by the 
WGAN model are far better than the DCGAN model’s 
generated images. All patterns generated are unique and no 
mode collapse issue occurred in this model. Patterns generated 
are completely abstract in design are represents an artistic 
form. 

V. CONCLUSION 

In this paper, we have presented the results of our 
investigation into using Generative Adversarial Networks on 
abstract images to produce abstract motif designs. We have 
investigated the different pre-processing techniques that can 
be used on an abstract image dataset and how the GAN models 
can be evaluated when the generated images are abstract in 
nature. We achieved these by generating abstract design 
patterns using two state-of-the-art models DCGAN and 
WGAN, by identifying the best-performing model, and by 
generating textile design patterns with the finalized model. 
Our findings showed that both DCGAN and WGAN models 
have generated very good abstract design patterns however the 
WGAN model has generated better quality and more diverse 
outcomes than the DCGAN model where image patterns are 
not as diverse and where some of the images are repeated due 
to Mode Collapse. 
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