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Abstract—Early and accurate detection of brain tumors is 

very important to save the patient's life. Brain tumors are 

generally diagnosed manually by a radiologist by analyzing the 

patient’s brain MRI scans which is a time-consuming process. 

This led to our study of this research area for finding out a 

solution to automate the diagnosis to increase its speed and 

accuracy. In this study, we investigate the use of Residual 

Network deep learning architecture to diagnose and segment 

brain tumors. We proposed a two-step method involving a 

tumor detection stage, using ResNet50 architecture, and a 

tumor area segmentation stage using ResU-Net architecture. We 

adopt transfer learning on pre-trained models to help get the 

best performance out of the approach, as well as data 

augmentation to lessen the effect of data population imbalance 

and hyperparameter optimization to get the best set of training 

parameter values. Using a publicly available dataset as a testbed 

we show that our approach achieves 84.3% performance 

outperforming the state-of-the-art using U-Net by 2% using the 

Dice Coefficient metric. 
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I. INTRODUCTION 

Fluid attenuated inversion recovery (FLAIR) is an MRI 
sequence that uses a special inversion recovery sequence with 
a long inversion time. This technique removes the signal from 
the cerebrospinal fluid (CSF) that makes brain tissue appear 
similar to that in T2-weighted sequence images but with grey 
matter brighter than white matter, and the CSF is dark instead 
of bright. The usefulness of FLAIR sequences in identifying 
many diseases of the central nervous system has been reported 
in the literature. This includes the detection of multiple 
sclerosis lesions [1], subarachnoid hemorrhage [2], and head 
injuries [3]. More importantly, FLAIR imaging has also been 
shown to be a valuable imaging modality in the assessment of 
intra-axial brain tumors [4]. 

Some types of brain tumors are very aggressive. They are 
reported to be the biggest killer of children and adults under 
40 years old. Brain tumors account for between 85% and 90% 
of all primary central nervous system tumors. It is estimated 
that around 308,102 people worldwide were diagnosed with a 
primary brain tumor or spinal cord tumor in 2020 alone [5]. 

Although they are more common in older adults, brain tumors 
have also been seen in children as well. Around 88,000 
children and adults are estimated to be living with a brain 
tumor in the UK currently [6].  

The effectiveness of the treatment mainly depends on the 
accuracy of the diagnosis. Brain tumors are usually diagnosed 
through biopsies and brain scans. They can also be diagnosed 
through a neurological exam, which is a variety of 
neurological tests that examine neurological functions. It 
consists of several questions to check the patient’s mental 
status and find out any abnormalities related to hearing, vision, 
senses, balance, reflexes, etc. Biopsies are the least safe way 
to perform a diagnosis since it involves tissue collection from 
the affected area. If the procedure is possible, doctors would 
be able to identify the grade of the tumor very accurately, 
which is the most important factor in determining the best line 
of treatment. Lastly, brain tumors can be diagnosed using 
imaging technologies. Several imaging technologies such as 
Computed Tomography (CT) scan, Positron Emission 
Tomography (PET) scan, and Magnetic Resonance Imaging 
(MRI), are commonly used in the diagnosis process, with the 
latter believed to be the most popular [7]. 

There are more than 150 different types of brain tumors 
with three different ways of classifying them. The first 
classification is based on the origin of the tumors, whether 
they originate from the tissue of the brain (primary brain 
tumors) or from elsewhere in the body (metastatic brain 
tumors). The second classification is based on whether the 
tumor started from glial or non-glial cells. And lastly, brain 
tumors can be classified as either benign or malignant. 

The detection of brain tumor areas in the brain is 
performed through segmentation and is based on its size, 
shape, position, and boundaries. The process is performed 
manually by an expert radiologist. The speed and accuracy of 
the manual segmentation process depend on the level of 
expertise of the radiologist. In this paper, we detail the result 
of our investigation into using a deep learning approach to 
perform automatic segmentation of brain tumor regions in 
brain MRI. We use brain FLAIR MRI scans from a publicly 
available dataset. This should allow other researchers to 
reproduce our results to confirm our findings. 



II. LITERATURE REVIEW 

There are various popular deep learning architectures used 
by the computer vision community, including convolutional 
neural networks (CNNs), recurrent neural networks (RNNs), 
long-short term memory (LSTM), encoder-decoders, and 
generative adversarial networks (GANs). With the rise in 
popularity of deep learning, various other deep neural 
architectures, such as transformers, capsule networks, gated 
recurrent units, spatial transformer networks, etc., have also 
been developed. The use of CNNs has been proposed 
extensively in the healthcare domain.  A few examples are; 
early detection of fetal heart diseases [8], measurements of 
organ sizes [9], semantic segmentation of organs [10][11] or 
cancerous tissues [12], and finding the causes of disease [13].  

In the domain of brain tumor detection and segmentation, 
the deep learning approach is very popular. Raut et al. [14] 
automate the detection of brain tumors using CNN and the 
segmentation of tumor areas using K-mean and autoencoders. 
The study reported an accuracy of 95.6% on testing data with 
an F1 score of 96%. Ezhilarasi and Varalakshmi proposed a 
system that marks the tumor area and defines the type of brain 
tumor using the AlexNet model along with Region Proposal 
Network derived using the Faster R-CNN algorithm [15]. The 
use of Faster R-CNN is mainly to detect the tumor object in 
an MRI image and create a bounding box on the tumor with 
its class along with the score. 

Luo et al. [16] used lightweight HDC-Net, a hierarchical 
decoupled convolution network for brain tumor segmentation. 
The paper concludes that, despite the promising performance 
in terms of the time taken by the model to run, it could not 
reach the expected accuracy. Another study by Rahimpour et 
al. [17] is based on multiple combinations of multi-sequence 
MRI datasets. They evaluated early fusion and late fusion 
CNN models based on DeepMedic architecture [18] for the 
segmentation task. The feature maps are concatenated in low-
level feature space for the early fusion strategy; thus, the 
network can only evaluate a basic link between multiple MRI 
sequences. The late fusion strategy, on the other hand, 
integrates the feature maps extracted for each type of sequence 
in the high-level layer, allowing it to better use the distinctive 
information of each type of sequence. While both techniques 
perform similarly in terms of segmentation, the late fusion 
strategy is more versatile and offers greater flexibility in terms 
of incorporating all available MRI data.  

While many papers reported the superiority of deep 
learning approaches when compared to machine learning 
classifiers, there have also been some works using the hybrid 
approach where both methods are combined to get the best out 
of it. One such study was done by Cui et al. where the authors 
[19] proposed a two-stage process. In the first stage, a CNN 
model is trained to map the tumor label space. The predicted 
label by the CNN model then gets transferred to the SVM 
classifier where the segmentation task is done. The study 
observed that the performance of the hybrid model based on 
CNN and the SVM classifier performed better than the 
individual segmentation models based on CNN or SVM only. 

In this study, we will also adopt a two-stage process 
similar to several methods proposed in the literature. The 
description of our methodology and the dataset used are given 
in the next section. 

III. MATERIAL AND METHOD 

A. Dataset 

The dataset used in this study contains 3929 brain MRI 
scans of  110 brain tumor patients suffering from lower-grade 
glioma. The image data is from The Cancer Genome Atlas - 
Low-Grade Glioma (TCGA-LGG) collection published by the 
Cancer Imaging Archive [20]. The data is taken from five 
institutions in the United States, 16 patients from the Thomas 
Jefferson University (TCGA-CS), 45 from the Henry Ford 
Hospital (TCGA-DU), one from the University of North 
Carolina (TCGA-EZ), 14 from the Case Western (TCGA-
FG), and 34 from the Case Western – St. Joseph's (TCGA-
HT). The assessment of tumor regions was based on fluid-
attenuated inversion recovery (FLAIR) abnormality from 
which the manual segmentation masks are developed. This 
dataset is public [21] and has been used in several research 
works in the past [4]. 

The characteristics of the patients whose data is taken from 
and the characteristics of the tumor are shown in Tables I and 
II, respectively [4]. 

TABLE I.  PATIENTS’ CHARACTERISTICS 

Characteristics Value 

Total Patients 110 

Age (Median) 47 

Age (Range) 20-75 

Gender (Female) 56 

Gender (Male) 53 

Gender (Unknown) 1 

 

TABLE II.  TUMOR CHARACTERISTICS IN THE DATASET 

Characteristics Value 

Grade II Astrocytoma 8 

Grade III Astrocytoma 25 

Grade II Oligoastrocytoma 14 

Grade III Oligoastrocytoma 15 

Grade II Oligodendroglioma 29 

Grade III Oligodendroglioma 18 

Not Available 1 

IDH wild type (Glioblastomas) 25 

IDH mutation with 1p/19q co-deletion 26 

IDH mutation without 1p/19q co-deletion 56 

Not Available 3 

 

 Although the data is taken from patients who have been 
confirmed to suffer from a brain tumor, not all of the 3929 
images contain areas marked as a brain tumor, There are 1373 
images has brain tumor regions and 2556 images that do not. 
An example image that has a brain tumor region is shown in 
Figure 1. 

 

 



 

Fig. 1. An example image of a brain MRI FLAIR scan (left) with its 
associated mask marking the area of the glioma (right). 

B. Methodology 

The methodology we adopted in this study is illustrated in 
Figure 2. There is a two-step process that involves the tumor 
detection stage and tumor area segmentation stage. 

 

Fig. 2. A flowchart illustrating the two-step process adopted as the 

methodology. The first is to determine if the image contains a brain tumor 

using the ResNet50 classifier and the second is tumor region segmentation 
using ResU-Net. 

ResNet50, one of the variants of the ResNet model [22] 
will be used in this study in the tumor detection stage. This 
architecture is 50-layer deep including 48 Convolution layers, 
one MaxPool layer, and one Average Pool layer. Overall, the 
model architecture is composed of five stages, each 
comprising an Identity block and a Convolution block, each 
having three Convolution layers. The three layers are 1×1, 
3×3, and 1×1 convolutions. The reduction and subsequent 
restoration of the dimensions are accomplished using the 1×1 
layers. The 3×3 layer is left as a bottleneck with smaller 
input/output dimensions. There are, in total, around 23 million 
trainable parameters in the ResNet50. 

We will use a pre-trained model using the ImageNet 
database [23].  Transfer learning will be utilized in this model 
by replacing the final layers with a new classification layer of 
two outputs (either tumor or non-tumor image). The weights 
of the feature extraction layers are fixed during the training 
process. 

We will use ResU-Net, or Residual U-Net,  architecture 
for the tumor area segmentation stage. U-Net is a very popular 
and successful deep-learning network for semantic 

segmentation[24]. ResU-Net combines U-Net backbone 
architecture with residual blocks. This way it overcomes the 
problem of vanishing gradients which is observed in many 
deep-learning models. This customized U-Net architecture is 
based on fully convolutional networks. ResU-Net is very 
effective for image segmentation tasks that allow pixel-wise 
classification or localization. 

Our method addresses the issue of data imbalance through 
data augmentation. This process artificially increases the 
amount of data by generating new data from existing data. Our 
data augmentation method applies some minor alterations to 
the original dataset to generate new images in the same latent 
space of the original data to amplify the dataset size. Our 
method also applies hyperparameter optimization when 
training the ResU-Net models to get the best possible models. 
We do not apply hyperparameter optimization when training 
the ResNet50 model since we manage to get a very good 
model with default parameter values. 

IV. EXPERIMENT AND RESULT ANALYSIS 

In our experiment, the dataset is split into three sets namely 
training, validation, and testing with a ratio of 70:15:15, 
respectively. The data augmentation is done with the 
parameters range shown in Table III. 

TABLE III.  DATA AUGMENTATION PARAMETERS VALUES 

 Value 

Rotation Range 90 

Width Shift Range 0.3 

Heigh Shift Range 0.3 

Shear Range 0.5 

Zoom Range 0.3 

Fill Mode Reflect or Nearest 

Horizontal Flip True 

Vertical Flip True 

 

As mentioned in the previous section, the ResNet50 model 
is trained using transfer learning and without hyperparameter 
optimization. This is because the classification performance 
of the model has met our target the first time. This is shown in 
Table IV. 

TABLE IV.  CLASSIFICATION PERFORMANCE OF THE RESNET50 

MODEL 

 Precision Recall F1-

Score 

Support 

0 0.97 1 0.98 362 

1 1 0.95 0.97 214 

Micro Average 0.98 0.98 0.98 576 

Macro Average 0.98 0.97 0.98 576 

Weighted Average 0.98 0.98 0.98 576 

 

The ResU-Net model on the other hand is trained with 
hyperparameter optimization. The list of hyperparameters in 
which space is searched is shown in Table V. We repeat the 
training three times, one for a different number of maximum 
epochs which are 25, 60, and 150. The values of the 
hyperparameters of the final best models are shown in Table 
VI. 

 

 

 



TABLE V.  HYPERPARAMETERS LIST 

Hyperparameters Value 

Optimizers SGDM/ADAM 

Learning Rate 1e-04 – 5e-02 

Kernel Initializer Normal/Uniform 

Dropout Rate 0.1/0.2/0.3 

Epsilon 0.1/None 

Batch Size 8/16/32 

 

TABLE VI.  OPTIMIZED HYPERPARAMETERS VALUES FOR DIFFERENT 

EPOCH LENGTHS 

Hyperparameters Model A Model B Model C 

Epochs 25 60 150 

Optimizers ADAM ADAM ADAM 

Learning Rate 5e-02 1e-04 1e-04 

Kernel Initializer Normal Uniform Uniform 

Dropout Rate 0.3 0.3 0.3 

Epsilon 0.1 None None 

Batch Size 16 32 32 

 

We show the training logs of the training process of the 
best model in each experiment in Figures 3, 4, and 5. These 
logs show that the training processes are relatively stable, and 
produce reasonable training and validation accuracies 
throughout the training period which indicates good 
generalization performance. 

The segmentation performance of the three models is 
measured using Loss, Intersection over Union (IoU), and Dice 
Coefficients. The results are shown in Table VII. The table 
shows that the hyperparameter optimization process produces 
better models as we increase the number of epochs for 
training. The IoU metric appears to remain relatively high for 
all models. This suggests that it is the result of class population 
imbalance between tumor and non-tumor pixels, so we can 
argue that IoU is not a good metric to use. On the other hand, 
Dice Coefficient and Loss do manage to differentiate the 
performance of the models well. 

TABLE VII.  MODEL PERFORMANCE ON TESTING SET 

Optimized 

Model 

No. of 

Epoch 

Loss IoU Dice 

Coefficient 

Model A 25 0.755 0.996 0.635 

Model B 60 0.900 0.998 0.821 

Model C 150 0.912 0.998 0.843 

 

 

 

Fig. 3. Training log of the best ResU-Net model (Model A) after 
Hyperparameter optimization when max epoch is set to 25. 

When compared to a similar experiment on the same 
dataset using U-Net [4], the result of our best model (Model 
C) using our method seems to perform better. The paper 
reported a mean Dice Coefficient of 82% compared to 84.3% 
in ours. 

 

 



 

Fig. 4. Training log of the best ResU-Net model (Model B) after 

Hyperparameter optimization when max epoch is set to 60. 

 

 

Fig. 5. Training log of the best ResU-Net model (Model C) after 

Hyperparameter optimization when max epoch is set to 150. 

V. CONCLUSION 

We have presented in this paper the results of our 
experiment of using deep learning approaches to perform 
brain tumor segmentation in MRI FLAIR images. Our two-
step method involves a tumor detection stage and a tumor area 
segmentation stage performed in sequence. The tumor 
detection stage uses ResNet50 architecture whereas the tumor 
area segmentation stage uses ResU-Net architecture. We 
adopt transfer learning on pre-trained models to help get the 
best performance out of the approach, as well as data 
augmentation to lessen the effect of data population imbalance 
and hyperparameter optimization to get the best set of training 
parameter values. Our method is implemented on a publicly 
available dataset and we have shown that our best-developed 
model outperforms the state-of-the-art using the U-Net model 
reported in the literature.  
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