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Abstract— In autonomous driving, environment perception 

is an important step in understanding the driving scene. Objects 

in images captured through a vehicle camera can be detected 

and classified using semantic segmentation and depth 

estimation methods. Both these tasks are closely related to each 

other and this association helps in building a multi-task neural 

network where a single network is used to generate both views 

from a given monocular image. This approach gives the 

flexibility to include multiple related tasks in a single network. 

It helps reduce multiple independent networks and improve the 

performance of all related tasks. The main aim of our research 

presented in this paper is to build a multi-task deep learning 

network for simultaneous semantic segmentation and depth 

estimation from monocular images. Two decoder-focused U-

Net-based multi-task networks that use a pre-trained Resnet-50 

and DenseNet-121 which shared encoder and task-specific 

decoder networks with Attention Mechanisms are considered. 

We also employed multi-task optimization strategies such as 

equal weighting and dynamic weight averaging during the 

training of the models. The corresponding models’ performance 

is evaluated using mean IoU for semantic segmentation and 

Root Mean Square Error for depth estimation. From our 

experiments, we found that the performance of these multi-task 

networks is on par with the corresponding single-task networks. 

Keywords—Urban Road Scene Analysis; Deep Learning; 

Multi-Task Networks; Semantic Segmentation; Depth Estimation 

I. INTRODUCTION 

Vehicle environment perception is an important and 
preliminary step in understanding the driving scene in an 
autonomous vehicle. To accurately map the surrounding 
environment from the vehicle, various range and depth 
sensors including radar, ultrasonic, and lidar sensors can be 
used. Camera modules are used to obtain a real-time inference 
of the objects in a scene [1]. It is of utmost importance to have 
an accurate and robust perception prediction system since this 
information is used by safety-critical driver assistance 
algorithms like cruise control, lane change assists, automatic 
lane parking, and automatic emergency braking [2]. The main 
components in scene understanding are object identification 
and its corresponding depth estimate. This can be achieved by 
using semantic segmentation and depth estimation of a scene. 

Semantic segmentation involves pixel-to-pixel prediction 
for the corresponding class of object it belongs to in the 

original image. There are several methods designed to address 
this issue, including some of the prominent state-of-the-art 
deep learning methods including the Mask Region-based 
Convolutional Neural Networks (Mask R-CNN) [3], 
Recurrent Neural Network-based methods [4], [5], and 
Encoder-decoder based fully convolutional neural networks 
[6]. In addition, to improve the accuracy of the prediction, 
multi-scale and multi-feature extracting encoder-decoder 
networks were also proposed [7], [8].  

Depth estimation involves predicting the relative distance 
of each pixel in the scene from the viewpoint. It is 
comparatively a complex and challenging problem because a 
piece of three-dimensional information has to be inferred from 
a two-dimensional image space. Depth estimation methods 
can be broadly categorized into supervised, semi-supervised, 
and unsupervised-based predictions. In the supervised-based 
method, the target ground truth depth estimates are available. 
A convolution neural network-based encoder-decoder 
network is used to find an absolute depth estimate in [9], [10]. 
Several graphical-based networks were designed to establish 
a probabilistic relationship between the neighborhood. One 
such method is based on the condition random field estimate 
[11]. This method used the depth estimate to give a scale-
invariant prediction that leads to relative-depth-based 
networks. On the other hand, unsupervised-based methods 
often use stereo-based image disparity to generate depth 
estimation of a scene [12] whereas semi-supervised-based 
methods use auxiliary information from radar, Lidar, and 
surface normal estimates for depth estimation [13].  

Depth estimation and semantic segmentation are closely 
related tasks and this association has allowed researchers to 
build a multi-task network for training both tasks using a 
single network. Thus, a single network can be used to generate 
both views of an image. It has been empirically shown that 
multi-task networks can outperform the corresponding single-
task networks for a related task [14]. The difference between 
the single-task and multi-task networks is illustrated in Figure 
1. 

The main aim of this research project is to build a multi-
task learning network for joint semantic segmentation and 
depth map estimation from a monocular image in an urban 
driving scene. We will achieve this by investigating suitable 



data preprocessing steps for the multi-task learning model, 
building suitable multi-task learning models that are trained 
using hyperparameters optimization and other multi-task 
optimization strategies, and by evaluating the performance of 
the trained multi-task learning model in predicting the 
semantic segmentation and estimating the depth. 

 

Fig. 1. Architectural difference between single-task and multi-task 

networks. 

II. LITERATURE REVIEW 

A. Deep learning-based Semantic segmentation 

The prominent semantic segmentation network in deep 
learning evolved from various kinds of architecture starting 
from region-based proposal networks like Mask R-CNN [3]. 
Mask R-CNN network generates object instance segmentation 
masks on top of the Faster R-CNN region proposal method 
[15] to obtain pixel-wise segmentation. The path aggregation 
network [16] is an extension of the mask-R-CNN network that 
fuses multi-level features into the network for obtaining more 
accurate predictions. The main advantage of using a region 
proposal network is that it generates both segmentation and 
classification of an object in a single network pass. It lacks 
pixel-to-pixel alignment between input and output and one of 
the major challenges with this method is to fine-tune the 
region proposals based on a certain hyperparameter threshold. 

A breakthrough in semantic segmentation came with the 
introduction of encoder-decoder-based network architecture. 
In this approach, the encoder performs standard feature 
extraction of the given image and this could be any of the 
commonly used networks such as VGG [17] and ResNet [3]. 
The decoder network consists of up-convolution or up-
sampling layers with a skip connection from corresponding 
encoder layers. It utilizes feature information from various 
layers to build predictions from the coarse level to the much 
finer pixel level. And, this contributed to an improvement in 
per-pixel prediction in the case of semantic segmentation. 

B. Deep learning-based Depth estimation 

Depth estimation from a monocular image is a challenging 
and ill-posed problem where 3D information has to be 
reconstructed from a 2D image. Despite this, several deep 
learning methods have achieved landmark performance in 
depth prediction. However, the challenge lies in the 
construction of ground truth labels. The most prominent 
methods are based on a convolutional neural network with 
encoder and decoder architecture that was mentioned 
previously. The encoder extracts a global pool of features 
using convolution operation which is passed on to the decoder 
network to fine-tune the final prediction using up-sampling 
operations. Depth map prediction from a single image using a 
Multi-Scale Deep Network [9] was the first paper to introduce 

monocular depth estimation using a convolution network. It 
consists of a coarse prediction network for extracting global 
features which are concatenated to the fine-scale network for 
giving an absolute depth estimate. 

Most of the CNN-based supervised methods use absolute 
depth for training the network. One such method introduced 
two-streamed parallel networks for estimating fine-scaled 
depth maps from a single RGB image [10]. One network is for 
predicting end-to-end depth maps and the other is for 
obtaining depth gradients of an image that help in fusing 
structural clues to the network. Both predictions are then fused 
to get a finer depth estimate. When compared to absolute 
depth, a relative depth map gives a scale-invariant prediction 
and produces better generalization. One such method, 
monocular depth estimation using relative depth maps [18] 
uses an encoder network for feature extraction and a multiple 
decoder network for generating relative and ordinary depth 
maps at multiple scales which are combined to give a final 
depth estimate. Another method [19] uses a similar approach 
to generate depth estimates at multiple scales which are then 
fused using a Condition Random Field model to generate finer 
depth estimates. 

C. Multi-task Learning 

As the name suggests,  Multi-task  Learning  (MTL) is an 
approach to learning multiple related tasks simultaneously in 
a single network architecture. The inductive transfer 
mechanism between the tasks helps in better generalization 
between tasks considered. In many cases, they perform better 
than their single-task counterparts. MTL works better because 
of statistical data amplification which increases the sample 
size of the related task, attribute selection which is a selection 
of commonly shared feature attributes, eavesdropping that is 
easing out the learning capability, and representational bias 
[14]. Learning both semantic and depth maps simultaneously 
using a multi-task learning framework will help in better 
generalisability and more accurate prediction than their single-
task network since both tasks are related and share common 
geometrical and structural features. 

MTL architecture consists of shared and task-specific 
layers. The shared layers give a generic representation 
between all the related tasks and it could be either a hard or 
soft parameter sharing. Hard parameter sharing has the same 
hidden representation between the tasks and thus shares 
common weights between the tasks. Soft parameter sharing is 
a standalone network for each task where the distance between 
the tasks is considered for network optimization. Task-
specific features are obtained using a task-specific network. 
MTL architecture is divided into two categories; one with an 
encoder-focused network and the other with a decoder-
focused network. The encoder-focused network allows the 
task to share parameters at the encoder stage before they are 
processed with task-specific headers. These networks directly 
predict the task outputs for a given input in a single processing 
cycle. Thus, failing to capture commonalities and differences 
among the results of the tasks resulted in a moderate 
performance. This is overcome by a decoder-focused network 
where the network makes an initial prediction of the tasks and 
later leverages this prediction to refine the final task output.  

The prominent encoder-focused model with hard 
parameter sharing includes Tasks-Constrained Deep 
Convolutional Network [20] which aims to detect landmark 
and face alignment tasks. The network supports auxiliary 
tasks like gender, expression, and appearance attributes. It 



consists of a shared encoder unit for feature extraction and 
task-specific header units for predicting individual tasks. This 
network outperformed the face alignment methods even with 
occlusions and pose variations.  

The encoder-focused soft parameter-sharing network 
includes Cross-Stitch Networks (CSN) [21] that learn task 
relatedness by allowing input to each layer as a linear 
combination of outputs from previous layers. The network 
architecture consists of two parallel independent networks for 
each task. These networks are connected by a cross-stitch 
network for sharing task-related information. Sluice network 
[22] generalizes the idea of CSN. Each layer is composed of 
task-specific and shared entries that are orthogonal to each 
other. Input to the next layer will be a linear combination of 
these parameters, allowing the network to focus on task-
specific or shared values depending on task-relatedness. The 
Neural Discriminative Dimensionality reduction [23] 
approach allows for feature fusion at various layers of single-
task networks. It uses convolution operation to generate 
reduced discriminative features acting as an input for task-
specific headers. It is similar to CSN where the non-diagonal 
elements of the weight matrix are set to zero. One of the 
bottlenecks with this kind of architecture is deciding the 
sharable and task-specific parameter space. This can lead to 
suboptimal results and is not a scalable solution. 

Along with the above-mentioned networks, other 
interesting algorithms focused on obtaining the results in real-
time [24]. Some networks improved the optimization strategy 
by dynamically adapting the weights associated with the 
multi-task loss function for finer prediction [25]. Several other 
kinds of MTL networks can be referred to through these [26], 
[27] survey papers. 

III. MATERIAL AND METHOD 

A. Dataset 

In this study, we used the images from the Cityscapes [28] 
dataset. It is an outdoor dataset for urban road scene 
understanding that consists of high-resolution street-view 
images of 50 different cities. It is captured over several months 
in the daytime with good or medium weather conditions. It 
consists of stereo imagery, with instance and semantic 
segmentation of 30 object classes categorized as flat, human, 
vehicle, construction, object, nature, sky, and void type. It also 
includes a depth map for each scene. The dataset consists of 
5000 annotated images with fine annotation. The dataset is 
split into 2975 training data, 500 validation data, and 1525 
testing data. Each image is captured with a resolution of 1024 
x 2048. A sample image from the Cityscapes dataset showing 
the monocular, semantic, and depth map views of the same 
scenery is shown in Figure 2. 

A count plot was constructed to visualize the class 
distribution in the training dataset. It measures the presence of 
a class in a given image. The other important parameter to 
check is the percentage area occupancy of a class. In each 
image, the percentage area occupancy of a class is measured 
and an average value is obtained over the entire dataset. These 
distributions are shown in Figure 3. 

 

Fig. 2. Sample image from the Cityscapes dataset showing the monocular, 
semantic segmentation, and depth map view of the same scenery. 

 

 

Fig. 3. Percentage Class distribution (left) and per-class percentage area 

distribution (right) in the training dataset. 

B. Semantic Segmentation and Depth Estimation Multi-

Task Algorithm  

In this study, we will use U-Net-based network 
architecture with ResNet50  [3] and DenseNet121 [29] as the 
backbone. The U-Net-based network architecture consists of 
a contracting path and an expanding path. The contracting 
path is used for feature abstraction from low-level information 
to a more compact representation and the expanding path is 
used for the precise localization of objects. The contracting 
path consists of repeated units of convolution layers followed 
by Rectified Linear Unit activation function. Features are 
down-sampled using the max-pooling operation. The 
expansion path consists of an up-sampling unit for expanding 
the feature map. It is concatenated with the corresponding 
cropped feature map from the contracting path to obtain a 
more precise output representation [30]. MTL architecture can 
use a contracting path as a shared unit between tasks and an 
expanding path for a task-specific decoder unit [31]. The 
single-task network architecture of the U-Net models using 
ResNet50 and DenseNet121 are shown in Figures 4 and 5, 
respectively. 



 

Fig. 4. U-Net with ResNet-50 backbone for either semantic segmentation 

or depth estimation task. 

 

Fig. 5. U-Net with DenseNet-121 backbone for either semantic 

segmentation or depth estimation task. 

We adopted attention networks to improve the fusing of 
data in the decoder. It enables the passing of task-correlative 
information to the individual task-specific network to fine-
tune the prediction [32]. Attention-based network mimics the 
human cognition system, that is the ability to focus on relevant 
objects and to ignore non-relevant objects that are present in a 
given scene. These networks gained more popularity because 
of their ability to focus on the important features that are 
beneficial for a given task by a gating mechanism. Attention 
mechanisms can be integrated into the MTL network for 
obtaining spatial or temporal attention [33]–[35]. For semantic 
segmentation and depth estimation tasks, attention networks 
can help in focusing the contextual information present in a 
scene and help in improving the prediction accuracy [19], 
[31], [36]. The multi-task network architecture of the U-Net 
models using ResNet50 and DenseNet121 are shown in 
Figures 6 and 7, respectively. 

Training a multi-task network involves selecting a suitable 
network architecture and a corresponding loss function for 
each task. The overall multi-task loss function can be 
optimized using Stochastic Gradient Descent (SGD) with 
momentum or ADAM-based optimization algorithms [37]. In 
the case of SGD optimization, a suitable learning rate and 
momentum have to be selected. In the case of ADAM 
optimization, a suitable initial learning rate has to be selected. 

The exact optimization algorithm used in the experiment is 
described in the next section. 

 

Fig. 6. U-Net with ResNet-50 backbone for both semantic segmentation 

and depth estimation tasks. 

 

 

Fig. 7. U-Net with DenseNet-121 backbone for both semantic segmentation 

and depth estimation tasks. 



IV. EXPERIMENT AND RESULT ANALYSIS 

As described previously, we used ResNet50 and 
DenseNet121 network architecture for both the single-task 
and multi-task models. The overall training data is split into 
mini-batches containing 2, 4, or 8 images per batch. 
Depending on the batch size the total number of epochs is 
adjusted which starts from 50 and can go up to 200. This can 
also be parameterized depending on the gradient update or 
learning rate per epoch.  

Two loss weighting strategies were adopted in our 
experiment, they are Gradient Weighting and Geometric Loss 
(GWGL) and  Equal Weighting and Dynamic Weight 
Averaging (EWDW) [38]. Therefore, in total, we have four 
multi-task models – in addition to the four single-task models. 
All models are trained to use ADAM optimizer with an initial 
learning rate of 0.0001. A polynomial learning rate decay of 
0.9 is used over the epochs with a min-batch size of 8. The 
model is trained with cross-entropy loss and a dice loss 
individually. All four single-task models are trained with an 
epoch search range between 70 and 85 epochs whereas both 
multi-task models have been trained with an epoch search 
range between 80 and 100 epochs. 

The mean IOU score is used as an evaluation metric for 
semantic segmentation and Root Mean Square Error for depth 
estimation. The results are shown in Table I. 

TABLE I.  MODELS PERFORMANCE IN SEMANTIC SEGMENTATION 

(MEAN IOU) AND DEPTH ESTIMATION (RMSE) 

  RMSE Mean IOU 

Single-Task 
ResNet50 0.042 34.76 

DenseNet121 0.043 36.37 

Multi-Task 

ResNet50 EWDW 0.050 33.73 

DenseNet121 EWDW 0.043 33.64 

ResNet50 GWGL 0.045 31.21 

DenseNet121 GWGL 0.950 30.01 

 

The result shows that multi-task models trained using 
Equal Weighting and Dynamic Weight Averaging strategy 
produce a comparable performance to the single-task 
counterparts. On the other hand, multi-task models trained 
using Gradient Weighting and Geometric Loss strategy seem 
to lag in terms of performance, and more over seem to have 
failed miserably when performing the depth estimation task. 

V. CONCLUSION 

In this paper, we have presented our work in investigating 
the performance of a multi-task network approach to semantic 
segmentation and depth estimation of urban road scene 
images. We developed eight models (four single-task and four 
multi-task) using U-Net architecture with either ResNet50 or 
DenseNet121 network as the backbone. The multi-task 
models are trained using two loss weighting strategies namely 
the Gradient Weighting and Geometric Loss and  Equal 
Weighting and Dynamic Weight Averaging strategies. We 
found that the multi-task models trained using Equal 
Weighting and Dynamic Weight Averaging strategy 
(regardless of backbone architecture choice) produce a 
comparable performance to the single-task models. The 
framework that we have developed can also be extended to 
other network topologies and optimization strategies. This 
gives the flexibility to include more related tasks with a shared 
encoder and a task-specific decoder configuration. 
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