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Abstract  42 
 43 
Background: Arjunolic acid (AA) is a potent phytochemical with multiple therapeutics 44 

effects. In this study, AA is evaluated on type 2 diabetic (T2DM) rats to understand the 45 

mechanism of β-cell linkage with Toll-like receptor 4 (TLR-4) and canonical Wnt signaling. 46 

However, its role in modulating TLR-4 and canonical Wnt/β-catenin crosstalk on insulin 47 

signaling remains unclear during T2DM. Aim: The current study is aimed to examine the 48 

potential role of AA on insulin signaling and TLR-4-Wnt crosstalk in the pancreas of type 2 49 

diabetic rats. Method: Multiple methods were used to determine molecular cognizance of AA 50 

in T2DM rats, when treated with different dosage levels. Histopathological and 51 

histomorphometry analysis was conducted using masson trichrome and H&E stains. While, 52 

protein and mRNA expressions of TLR-4/Wnt and insulin signaling were assessed using 53 

automated Western blotting (jess), immunohistochemistry, and RT-PCR. Results: 54 

Histopathological findings revealed that AA had reversed back the T2DM-induced apoptosis 55 

and necrosis caused to rats pancreas. Molecular findings exhibited prominent effects of AA in 56 

downregulating the elevated level of TLR-4, MyD88, NF-κB, p-JNK, and Wnt/β-catenin by 57 

blocking TLR-4/MyD88 and canonical Wnt signaling in diabetic pancreas, while IRS-1, PI3K, 58 

and pAkt were all upregulated by altering the NF-κB and β-catenin crosstalk during T2DM. 59 

Conclusion: Overall results, indicate that AA has potential to develop as an effective 60 

therapeutic in the treatment of T2DM associated meta-inflammation. However, future 61 

preclinical research at multiple dose level in a long-term chronic T2DM disease model is 62 

warranted to understand its clinical relevance in cardiometabolic disease.   63 

 64 
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1. Introduction  72 

Ageing is characterized by the gradual increase of low-grade inflammation, contributing to the 73 

incidence of chronic diseases and associated complications (George and Baker, 2016, Ottaviani 74 

et al. , 2012). Important factors that contribute to the onset of persistent low-grade 75 

inflammation is directly linked to the activation of innate immune receptors, the stimulation of 76 

immune cells, and the subsequent polymorphic alterations in the binding areas of numerous 77 

genes encoding pro-inflammatory cytokines (Frasca and Blomberg, 2016). In addition, a poor 78 

diet, irregular eating schedules, and a sedentary lifestyle plays an enormous role in the 79 

stimulation of innate immune receptors, which in turn triggers a form of inflammation called 80 

inflammaging. Obesity, cancer, atherosclerosis, and metabolic syndrome/diabetes are all linked 81 

to inflammaging, a prominent relationship between ageing and metabolic inflammation. 82 

Inflammaging is a condition where the innate immune system is triggered, setting up a chain 83 

reaction leading to an increase in pro-inflammatory cytokines. Insulin resistance and 84 

subsequent metabolic syndrome are surfaced by the interaction between inflammatory and 85 

insulin signaling (Hotamisligil, 2017). T2DM, a chronic metabolic condition is caused due to  86 

inadequate insulin production or poor sensitivity to insulin, either as a result of genetic 87 

predisposition or environmental factors (Almalki et al. , 2019). Hypertriglyceridemia, 88 

hyperglycemia, and the production of reactive oxygen species (ROS) are linked with T2DM 89 

caused by defective insulin function  (Frasca et al. , 2017).   90 

Moreover, excessive free fatty acids (FFA) production is due to the pancreatic failure and 91 

body organs switch from using glucose to FFA as their primary energy source (Nolan et al. , 92 

2011). Consequently, excessive fatty acid metabolism increases pancreatic ROS generation 93 

and worsens oxidative stress (Singh et al. , 2022), that leads to activation of toll like receptors 94 

(TLRs), which then blocks insulin signaling and causes T2DM (Hameed et al. , 2015). TLRs 95 

are pattern recognition receptors (PRRs) which can trigger an inflammatory response in the 96 
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islets of Langerhans. Importantly, TLR-4 is particularly significant in the development of type 97 

2 diabetes, by triggering FFA and ROS, which then stimulates myeloid differentiation factor 98 

88 (MyD88), which in turn activates nuclear factor kappa-light chain enhancer of activated B 99 

cells (NF-κB), kicking off an inflammatory response (Singh et al. , 2023). This situation further 100 

worsens by the recruitment of monocytes and macrophages by NF-κB mediated pro-101 

inflammatory cytokines; tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and 102 

mono-attractant protein 1 (MCP-1) (Yang et al. , 2016).   103 

In addition to TLR4, Wnt signaling which is highly implicated in the regulation of 104 

physiological mechanisms such as cell migration, adhesion and differentiation are also 105 

involved in various chronic disorders including aging, cancer, diabetes and cardiometabolic 106 

disease (Arnold and Robertson, 2015). Canonical and non-canonical pathways have been 107 

identified in Wnt ligands and β-catenin as a sub-components of the canonical pathway, whereas 108 

the Wnt/Ca2+ and planar cell polarity (PCP) pathways are subsets of the non-canonical system 109 

(Aamir et al. , 2019b). Various findings suggest that T2DM is caused by the aberrant activation 110 

of either Wnt pathways or its differentiation cofactors which intersects and plays critical role 111 

in the TLR pathways (Ackers and Malgor, 2018). At this point, crosstalk between the TLR and 112 

Wnt pathway enhances the chances of  proinflammatory cytokines release by further 113 

exacerbating metabolic inflammation. (Aamir et al., 2019b).   114 

Phytochemicals and natural substances contain potential bio-chemicals of significant 115 

importance in the treatment and prevention of cardiometabolic diseases. However, compounds 116 

with potential therapeutic value are being extracted from plants prior to their testing on certain 117 

in-vivo disease models (Aamir et al. , 2019a). We have isolated AA from the bark of 118 

Combretacae family tree; Terminalia arjuna, which has been used for ages in the Ayurvedic 119 

System of Medicine to treat cardiovascular diseases and its associated complications. In 120 

Ayurveda, “Arjunaristha” is a famous cardiotonic prepared from the bark of Terminalia arjuna 121 
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which helps to control the symptoms of heart disease and improve cardiac muscles 122 

functionality.  Importantly, several bioactive compounds are abundantly found in the barks, 123 

such as flavonoids, tannins, phytosterols, and triterpenoid saponins.  The triterpene saponins 124 

present in the T. arjuna bark includes; arjunic acid, arjungenin, arjunone, arjunolone and 125 

arjunolic acid (AA) (Facundo et al. , 2005, Ghosh et al. , 2010). Interestingly, arjunolic acid 126 

(2,3,23-trihydroxyolean-12-en-28-oic acid) exhibited diverse therapeutic potential on various 127 

preclinical approaches  like, acute toxicity and preliminary screening on  subacute T2DM rat 128 

model (Aamir et al. , 2022).  However, current study is aimed to investigate the potential of 129 

AA in modulating pancreatic dysfunction and determine the linkage between pattern 130 

recognition receptor and the molecular mechanism involved in the canonical Wnt pathway 131 

activation and insulin resistance in type 2 diabetic rats.  132 

2. Materials and Methods  133 

Trichrome staining kit (ab150686, Abcam, Cambridge, UK), protein quantification kit 134 

(ab102536, Abcam, Cambridge, UK), Jess separation module (12-230 kDa) KIT (Protein 135 

Simple, SM-PN01-1), EZ standard pack (Protein Simple, PS.ST01EZ-8) containing 136 

biotinylated ladder, 5X fluorescent master mix, dithiothreitol (DTT), 10X sample buffer, 137 

antibody diluent, luminol-S, peroxide sample buffer, streptavidin HRP conjugate, wash buffer, 138 

protein normalization module, anti-rabbit and anti-mouse secondary antibodies were purchased 139 

from Protein Simple (San Jose, California, U.S.A).  140 

Primary antibodies  141 

Mouse monoclonal β-catenin (1:10 dilution, NBP1-54467, Novus Biologicals), rabbit 142 

monoclonal Wnt3a (1:10 dilution, ab210412, Abcam), mouse monoclonal PI3K (1:10 dilution, 143 

NBP2-67058, Novus Biologicals), mouse monoclonal cMyc (1:25 dilution, NB200-108, 144 

Novus Biologicals), rabbit polyclonal p-JNK1/2 (1:10 dilution, ab131499, Abcam), rabbit 145 

polyclonal IRS-1 (1:25 dilution, NB100-82001, Novus Biologicals), rabbit polyclonal p-146 
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Akt1/2/3 (1:25 dilution, AF887, R&D), mouse monoclonal TLR-4 (1:10 dilution, NB100-147 

56566, Novus Biologicals), mouse monoclonal NF-κB (1:10 dilution, NB100-56712, Novus 148 

Biologicals), goat polyclonal MyD88 (1:25 dilution, AF3109, R&D), mouse monoclonal TNF-149 

 (1:5 dilution, MAB510-100, R&D), mouse monoclonal MCP-1 (1:5 dilution, NBP2-22115, 150 

Novus Biologicals), mouse monoclonal IL-1 (1:5 dilution, MAB5011-100, R&D), goat 151 

polyclonal notch1 (1:10 dilution, AF1057, R&D), rabbit polyclonal Dll4 (1:10 dilution, 152 

NB600-892, Novus Biologicals), rabbit polyclonal RBPJ-κ (1:5 dilution, NBP1-33427, Novus 153 

Biologicals), goat polyclonal IL-6 (1:5 dilution, AF506, R&D), rabbit monoclonal Hes-1 (1:10 154 

dilution, NBP2-67642, Novus Biologicals), rabbit monoclonal p-GSK3 (1:10 dilution, 155 

ab107166, Abcam), rabbit monoclonal p-IKK / (1:5 dilution, 2697, Cell Signaling), rabbit 156 

polyclonal Wnt2 (1:5 dilution, ab27794, Abcam) and rabbit polyclonal Wnt5a (1:10 dilution, 157 

ab235966, Abcam).   158 

2.1  Experimental Design  159 

The present work is the continuation of our previous study in which AA was isolated from 160 

the dried bark of T. arjuna and identified using NMR (Aamir et al., 2022). Briefly, thirty male 161 

Sprague Dawley rats of 8-10 weeks old with the average body weight of 250-300 grams were 162 

procured from the Animal Experimental Unit, Faculty of Medicine, University of Malaya, 163 

Kuala Lumpur, Malaysia. The facility was kept at 24°C, with a relative humidity of 50–60% 164 

and a 12-hour light/dark cycle. After arrival, all the animals had access to standard pellet diet 165 

and ad libitum. After one week acclimatization, T2DM was induced in 24 overnight fasted rats 166 

(80%) via single intraperitoneal (i.p) injection of 60 mg/kg STZ, after i.p administration of 167 

nicotinamide (120 mg/kg). All animals were divided into five groups containing 6 rats each 168 

(n=6). Group 1 served as non-diabetic control, while group 2 served as diabetic control. 169 

Whereas, Group 3 and 4 were orally administered with AA 25 and 50 mg/kg body weight 170 

respectively once in a day for 28 days and group 5 received metformin 250 mg/kg via oral 171 
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gavage. Later, all animals were euthanized under 35-50% carbon dioxide (Aamir et al., 2022). 172 

All the experiments were conducted upon approval from the Institutional Animal Care and Use 173 

Committee (IACUC) with Ethics No. 2019-210108/TAY/R/AA, Faculty of Medicine, 174 

University of Malaya.  175 

2.2 Histopathological analysis  176 

After euthanizing animals pancreas from diabetic and non-diabetic rats were carefully 177 

harvested and fixed in 10% formalin buffered solution. Later, pancreas were cut into small 178 

pieces and enclosed in cassettes, placed in 10% formalin (fixing) to start tissue processing. All 179 

steps of tissue processing was performed in a mechanical tissue processor (SLEE medical 180 

GmbH, SN: K13 0014, Mainz, Germany)  and finally embedded in paraffin wax. Subsequently, 181 

embedded tissue sections were cut into 5 μm using microtome (SLEE medical GmbH, SN: B 182 

13 0010, Mainz, Germany). In order to reveal morphological changes in the architecture of the 183 

pancreas, hematoxylin and eosin (H&E) staining was performed using our previously described 184 

protocol (Aamir et al., 2019a). Further, to visualize collagen fiber deposition in the pancreas, 185 

a masson trichrome staining kit (ab150686, Abcam, Cambridge, UK) was used to stain tissue 186 

as per manufacturer’s protocol (Aamir et al., 2019a, Clayton et al. , 2016, Khan et al. , 2020).  187 

2.3  Histomorphometric analysis  188 

To further elucidate the morphology of β-cells, histomorphometric analysis was performed 189 

on three different histological sections per slide from six animals. For this purpose, H&E-190 

stained sections of pancreas were analyzed for counting and measuring islet number and size 191 

in 10 different, randomly selected microscopic fields by using ImageJ (1.52, National Institute 192 

of Health, USA). Before starting measurements, the software was calibrated for the conversion 193 

of measurement units (pixels) to millimeter (mm). The average number of islets from each 194 

selected field and their average size was computed for each group of rats. The result was 195 
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expressed as N/10 mm2 of selected pancreatic fields as described previously. (Noor et al. , 196 

2017). While, mean islets size was calculated from each group of animals  after analyzing three 197 

different microscopic field as described by Mega and his colleagues (Mega et al. , 2014).  198 

2.4 Automated Western Blot (Jess)  199 

Automated western blot (jess) analysis was performed to highlight expression of selected 200 

protein targets in isolated pancreatic tissues from treated and non-treated rats. Tissue protein 201 

was extracted from the frozen pancreas by using 1X RIPA buffer (ab156034, Abcam, 202 

Cambridge, UK) followed by centrifugation at 15000 rpm at 4 oC for 15 min. Later, protein 203 

quantification was performed using bicinchoninic acid (BCA) kit (ab102536, Abcam, 204 

Cambridge, UK). Capillary jess analysis was performed according to predefined protocol on 205 

an automated “Jess system” (Protein Simple. JS-3076, San Jose, California, U.S.A). Initially, 206 

Jess standard reagents such as DTT, fluorescent master mix, biotinylated ladder, sample buffer, 207 

streptavidin HRP standards, separation matrix, running buffer, chemiluminescence substrates, 208 

normalization reagent, antibody diluents and wash buffers were prepared and used according 209 

to the manufacturer’s instructions. After dilution of tissue lysate with 0.1X sample buffer, 210 

sample was mixed with fluorescent master mix in the ratio of 4:1with subsequent heating at 95 211 

oC on heating plate for 5 min. Afterwards, antibodies were diluted with antibody diluent 212 

provided by Protein Simple. All primary antibodies were optimized to check the optimum 213 

dilution based on the information provided in the datasheet of individual antibodies and from 214 

the test run on jess equipment before starting original experiments. Finally, 3 μl of protein 215 

sample, prepared reagents, primary and secondary antibodies were dispensed into a delicate 216 

microplate with pre-defined layout. The plate was centrifuged at 2500 rpm at room temperature 217 

for 5 minutes. Filled microplate was installed into Jess equipment followed by several 218 

automated steps of electrophoretic separation as per default setting of the machine. At the end 219 
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of the operation, chemiluminescence was detected and quantified by the software Compass for 220 

simple western (SW), version 4.0.0. 221 

2.5 Immunohistochemistry  222 

To further support the jess analysis, immunohistochemistry (IHC) was carried out on the 223 

paraffin embedded pancreatic tissue sections from normal and treated groups to evaluate 224 

localization of target proteins using triple stain IHC kit (ab 183298, Abcam, Cambridge, UK). 225 

Primary antibodies including TLR-4 (1:2500), MyD88 (1:100), NF-κB (1:100), p-JNK1/2 226 

(1:1000), IRS-1 (1:25), Wnt3a (1:100) and β-catenin (1:200) were diluted and used to stain 227 

tissue specimen as per manufacturer’s guidelines. Briefly, slides were baked on hot plate at 60 228 

oC for 40 minutes followed by clearance in xylene and hydration in graded alcohol. Later, slides 229 

were heated in antigen retrieval solution pH 6 (S169984, DAKO, Denmark) in microwave 230 

(NN-ST25JB, Panasonic, Malaysia) at 100oC for 10 minutes and allowed to cool at room 231 

temperature. All slides were washed with Tris buffer saline tween 20 (TBST, S330630, DAKO, 232 

Denmark) and tissue specimens were encircled with DAKO pen (S200230, DAKO, Denmark). 233 

Following, 200 μl hydrogen peroxide (H2O2) was applied to cover tissue for 10 min. After 234 

incubation with H2O2, diluted primary antibody (200 μl/slide) was applied and incubated 235 

overnight at 4 oC and next day, all slides were washed with TBST. For primary antibodies of 236 

mouse origin, mouse primer was applied to the slides for 10 minutes, followed by mouse HRP 237 

polymer for 30 minutes of incubation, while for rabbit origin antibodies, rabbit HRP polymer 238 

was added directly for 15 min. Again, slides were washed with TBST and 3,3’-239 

diaminobenzidine (DAB) was applied for 5-10 min. Afterwards, distilled water was added on 240 

all slides to stop the reaction and counterstain in hematoxylin followed by rinsing in acid 241 

alcohol for differentiation (30 sec) and air dried with dryer. Lastly, all slides were rehydrated 242 

and cleared in graded alcohol and xylene respectively, and mounted with dibutylphthalate 243 
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polystyrene xylene (DPX) mounting media and observed under a microscope (Eclipse Ni-U, 244 

Nikon Corporation, Tokyo, Japan). 245 

2.6  Real-time PCR    246 

Expression of genes were analyzed to investigate the selected target mRNA at the 247 

transcriptional level. The whole experiment was divided into three steps comprising of mRNA 248 

isolation, cDNA strand synthesis and real time PCR analysis for the assessment of gene of 249 

interest. After harvesting, section of pancreas was kept in RNA Later solution (Cat No. 76104, 250 

Qiagen, Hilden, Germany) and directly stored at -80oC for further use. Total RNA was isolated 251 

from pancreas using RNeasy plus Mini Kit (Qiagen, Hilden, Germany) according to 252 

manufacturer protocol. Quantification of isolated RNA was determined via 260/280 UV 253 

absorption ratios (Gene Quant 1300, GE Healthcare UK Limited, Buckinghamshire, UK). 254 

After quantification, 1g of total RNA was reverse transcribed to complementary DNA 255 

(cDNA) using high capacity RNA to cDNA kit (Applied Biosystems, Foster City, CA, USA). 256 

Real-time PCR was performed on the Realplex2 Mastercycler (Eppendorf, USA) PCR system 257 

using Taqman probe as per manufacturer guidelines. Briefly, pre-incubation and pre-258 

denaturation at 95 oC for 10 min, denaturation at 95 oC for 5 s, annealing at 60 oC for 30 s and 259 

extension at 72 oC for 30s followed by amplification of polymerase chain reaction with total 260 

40 cycles. In order to determine, the relative expression of the target gene, glyceraldehyde 3-261 

phosphate dehydrogenase (GAPDH) was used as an internal control. The gene expression was 262 

quantified by 2-Ct method.  263 

2.7  Statistical analysis  264 

Results were expressed as the mean ± standard deviation (SD). Normality of the data was 265 

analyzed by Kolmogorov-Smirnov and Shapiro-Wilk test. The statistical variations between 266 

groups were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s 267 
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range test using GraphPad Prism 8 version 8.3.1 (San Diego, CA, U.S.A). Differences were 268 

considered significant at (p< 0.05). 269 

3. Results  270 

3.1 AA attenuated pancreatic degenerative changes during T2DM  271 

Histopathological examination of H&E stained pancreas from non-diabetic animals 272 

demonstrated regular morphology. We observed, well defined circular or oval shaped islets of 273 

Langerhans in the pale stained area, bordered by the darkly stained pancreatic acini. The islets 274 

were organized in a cord-like structure, branched and anastomose with intertwining blood 275 

vessels. While, exocrine portion showed normal histoarchitecture characterized by closely 276 

arranged acini lined with pyramidal cells (Figure 1A).   277 

Streptozotocin triggered multiple degenerative alterations to the islets of Langerhans and 278 

leads to cell apoptosis and necrosis, including islet shrinkage and karyolysis. Some islets were 279 

skewed with vacuolated cytoplasm, smaller and darkly stained nuclei with congested blood 280 

capillaries. Exocrine portion exhibited distorted acini with derangement of pyramidal cells 281 

(Figure 1B). AA (25 and 50 mg/kg) and metformin (250 mg/kg) significantly reduced islet 282 

degeneration during T2DM. Although, darkly stained pyknotic nuclei and vacuolated 283 

cytoplasm were visible with 25 mg/kg of AA (Figure 1C), however, treatment with AA 50 284 

mg/kg and metformin significantly attenuated these effects. Moreover, the pancreatic acinar 285 

cells were typically arranged as shown in figure 1D and E.  286 

Conversely, masson trichrome staining of pancreas sections from normal rats showed 287 

typical architecture, characterized by regular arrangment of alpha and beta cells surrounded by 288 

a densely stained zone of tightly packed well-organized pancreatic acini (Figure 2A). 289 

Nevertheless, extensive deposition of collagen fiber around pancreatic acini and in the area 290 

surrounding of islets showed fibrotic signature associated with STZ-mediated injury in the 291 
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diabetic rats. Similarly, islets with karyolysis and distorted acinar cells were also observed 292 

(Figure 2B). However, both the dosage of AA and metformin (250 mg/kg) treatment reduced 293 

deposition of collagen and regular outline was exhibited by acinar and islets cells, as compared 294 

to non-treated diabetic control (Figure 2C, D and E). 295 

3.2 Islets morphometric analysis   296 

Multiple degenerative alterations in islets of Langerhans were induced by STZ. Therefore, 297 

quantity and size of islets were drastically diminished in untreated diabetic rats as shown in 298 

Figure 3B. Moreover, distorted shape of islets was evident in non-treated diabetic animals 299 

compared to normal rats. Treatment with 25 and 50 mg/kg of AA and metformin (250 mg/kg) 300 

demonstrated marked improvement in the size and number of islets. Furthermore, the acinar 301 

cells in the pancreas section of treated groups restored their normal shape as shown in figure 302 

3. 303 

3.3 Automated Western Blot (Jess) 304 

3.3.1 AA downregulated TLR-4/MyD88 pathway in pancreas  305 

To evaluate markers of meta-inflammation, jess was used to investigate the 306 

inflammatory cascade in the pancreas by examining the expression of selected protein targets 307 

from the TLR-4/MyD88 pathway. TLR-4 expression was higher in the pancreas of untreated 308 

diabetic rats, as compared to normal control, although not statistically significant (p>0.05). 309 

Likewise, the expression of TLR-4 was not significantly lowered by AA (25 and 50 mg/kg) 310 

and metformin when compared with untreated diabetic rats (p>0.05) as shown in Figure 4. 311 

Then, we further investigated expression of TLR-4 adaptor protein and MyD88. Interestingly, 312 

we observed significant increase in the expression of MyD88 in diabetic control vs normal 313 

control (p<0.005). However, MyD88 expression was observed to be considerably decreased 314 

by AA 50 mg/kg (p<0.001) and metformin (p<0.05), but the expression was non-signficantly 315 
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reduced by AA 25 mg/kg as compared to DC (p>0.05) (Figure 5). To further reveal the 316 

activation of downstream target of MyD88, phospho-IKK/ and NF-B were investigated. 317 

Unfortunately, no expression for p-IKK/ could be observed, however, NF-B expression 318 

was found to be upregulated in non-treated diabetic control as compared to normal rats 319 

(p<0.005). Administration of 25 and 50 mg/kg of AA and metformin substantially reduced 320 

expression of NF-B, as compared to diabetic control (p<0.005) as shown in Figure 6. These 321 

results are in consistent with our previous findings in which level of proinflammatory cytokines 322 

including TNF-, IL-1 and IL-6 was raised due to elevated expression of NF-B (Aamir et 323 

al., 2022).  324 

3.3.2 AA ameliorated JNK mediated defective insulin signaling in pancreas  325 

A major contributor to T2DM is a malfunction in the insulin signaling pathway. Due to 326 

apoptosis and necrosis of islet cells, insulin signaling was attenuated in the present STZ-327 

induced diabetes model. On the molecular ground, these events are associated with JNK 328 

activation which leads to the development of insulin resistance (Feng et al. , 2020). Therefore, 329 

the expression of p-JNK1/2 was studied in the pancreatic lysate of normal and treated diabetic 330 

rats. Interestingly, significantly elevated expression of p-JNK1/2 was observed in DC vs NC 331 

(p<0.001). Although, treatment with AA (25 and 50 mg/kg) and metformin significantly 332 

reduced the expression of p-JNK1/2 as compared to DC (p<0.05) (Figure 7).     333 

Mechanistically, activated JNK1/2 phosphorylates serine residue of IRS-1 and inhibits 334 

insulin signaling in the -cells (Yung and Giacca, 2020). Hence, we analyzed pancreatic lysate 335 

for IRS-1 protein expression along with PI3K and p-Akt 1/2/3, two downstream targets of 336 

insulin signaling. The blots showed significant downregulation of IRS-1 (p<0.0001), PI3K 337 

(p<0.005) and p-Akt 1/2/3 (p<0.05) in non-treated diabetic control vs NC. Treatment with AA 338 

(25 and 50 mg/kg) and metformin increased expression of insulin signaling proteins, although 339 
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this effect was not statistically significant when compared with DC (p>0.05) presented in 340 

Figures 8-10. 341 

3.3.3 Effect of AA on Wnt/-catenin signaling in pancreas 342 

In order to confirm the crosstalk between the TLR-4-NF-B axis and the components 343 

of canonical Wnt pathway including Wnt3a and its downstream targets, -catenin and c-Myc 344 

were studied in the pancreas T2DM rats. Remarkably, upregulated expression of Wnt3a 345 

(p<0.001), -catenin (p<0.005) and c-Myc (p<0.05) were noted in untreated diabetic group as 346 

compared to non-diabetic rats. T2DM linked elevated expression of Wnt3a was substantially 347 

suppressed by AA (25 and 50 mg/kg) and metformin (p<0.001) shown in figure 11. Similarly, 348 

immediate effector of Wnt3a, -catenin expression was also significantly downregulated by 25 349 

and 50 mg/kg AA (p<0.05) but not with metformin (p>0.05) vs DC (Figure 12). Whereas, c-350 

Myc expression was also downregulated by AA (25 and 50 mg/kg) and metformin, but the 351 

difference was not statistically significant compared to DC (p>0.05) (Figure 13). 352 

3.4 Immunohistochemical observations   353 

Immunohistochemical analysis was used to investigate the localization of TLR-4, MyD88, 354 

NF-B, p-JNK1/2, IRS-1, Wnt3a and -catenin in the islets of Langerhans. All the selected 355 

targets were expressed and distributed normally in non-diabetic rats. Conversely, non-treated 356 

diabetic rats exhibited increased expression of TLR-4, MyD88, NF-B, p-JNK1/2, Wnt3a, and 357 

-catenin, while IRS-1 expression was nearly undetectable (p<0.05). TLR-4 (Figure 15), 358 

MyD88 (Figure 16) and NF-B (Figure 17) expressions were significantly high in non-treated 359 

diabetic rats. The expression and distribution of TLR-4 and NF-B were greatly reduced after 360 

treatment with AA at 25 and 50 mg/kg (p< 0.0001), whereas expression of MyD88 was 361 

reduced non-substantially with AA. Likewise, immunostaining showed that p-JNK1/2 was 362 

considerably overexpressed in diabetic rats compared to normal control (p< 0.0001) presented 363 
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in Figure 18. However, AA treated groups (25 and 50 mg/kg) demonstrated drastic decrease in 364 

the p-JNK1/2 localization in the pancreas (p<0.0001). Conversely, distribution of IRS-1 was 365 

significantly diminished in the islets of diabetic animals (p<0.0001) (Figure 19). But the 366 

expression of IRS-1 was considerably increased in diabetic rats given AA 50 mg/kg and 367 

metformin when compared to non-treated diabetic animals (p<0.05). However, high 368 

distribution of Wnt3a and -catenin was noticed in the pancreatic sections of T2DM rats 369 

(p<0.0001) as compared to normal littermates. Interestingly, the increased expression of 370 

Wnt3a/-catenin was dramatically decreased in diabetic rats treated with AA and metformin 371 

(p<0.05) as shown in the Figures 20 and 21. 372 

3.6  AA downregulated mRNA expression of TLR-4, Wnt and insulin pathway 373 

The trend in mRNA expression of TLR-4/MyD88 pathway is similar to that observed in 374 

the protein expression in the pancreas. T2DM was associated with markedly increased gene 375 

expression of TLR-4, MyD88, and NF-B (p<0.05) vs normal rats. Likewise, mRNA 376 

expression of pro-inflammatory cytokines such as TNF- and IL-1 were significantly 377 

increased in DC vs NC (p<0.05). Consequently, elevated mRNA transcripts of cytokines 378 

significantly downregulated expression of IRS-1 at transcriptional level in the pancreas of 379 

diabetic rats indicating suppression of insulin signaling (p<0.05) as shown in figure 22. Gene 380 

expression of TLR-4 was downregulated, but not considerably (p>0.05) following 28 days of 381 

treatment with 25 and 50 mg/kg of AA and metformin, while mRNA expression of MyD88 382 

and NF-B was markedly downregulated (p<0.05). These results are in line with our protein 383 

expression analysis. Similarly, mRNA expression of TNF- and IL-1 was also substantially 384 

decreased by 50 mg/kg AA and metformin but not with 25 mg/kg of AA (p>0.05) as compared 385 

to DC (p<0.05). However, gene expression of IRS-1 was upregulated non-significantly by AA 386 

(25 and 50 mg/kg) and metformin (p>0.05) vs DC (Figure 22).  387 
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In contrast, Wnt3a, -catenin, and c-Myc transcripts were markedly higher in untreated 388 

diabetic rats compared to normal control animals (p<0.05). The increased gene expression of 389 

Wnt3a was significantly decreased (p<0.05) in 50 mg/kg of AA and metformin treated groups. 390 

On the other hand, elevated mRNA expression of -catenin in diabetic rats was considerably 391 

decreased by AA (25 and 50 mg/kg) and metformin (p<0.05). Whereas, c-Myc transcript was 392 

not considerably altered by AA (25 and 50 mg/kg) and metformin when compared to DC 393 

(p>0.05) (figure 22). 394 

4. Discussion   395 

The prevalence of diabetes and the consequences that arise from insulin resistance is a 396 

common effect of uncontrolled diabetes and over time leads to serious damage to many of the 397 

body's systems, especially the nerves and blood vessels (Aamir et al., 2019b). The current 398 

findings expand on preceding investigations and stipulate a crosstalk between TLR-4-Wnt axis 399 

which has a negative impact on insulin signaling in pancreatic tissues of T2DM rats. The 400 

pleotropic factors NF-B and β-catenin are stabilized after being recruited to the membrane 401 

following aberrant activation of TLR-4, Wnt, and Notch pathways  affecting pancreatic cells 402 

and leading to development of T2DM (Aamir et al. , 2020). In the current study, an in-depth 403 

investigation is performed at the molecular level on pancreatic tissues to assess how AA acted 404 

on various targeted signaling proteins and revealed some interesting insight on the selected 405 

signaling pathways to flame the fire of meta-inflammation.  406 

Pathogenesis of T2DM is heavily reliant on chronic low-grade inflammation, which is 407 

carried out by pro-inflammatory cytokines, whereas, insulin resistance, develops as a response 408 

to metabolic inflammation (Cam et al. , 2019). After analyzing the biochemical parameters 409 

(Aamir et al. , 2021), we further proceeded to assess the histoarchitecture of the pancreas. We 410 

observed the structural degradation and collagen deposition in the exocrine portion and the 411 

islets of Langerhans were seen in H&E and masson trichrome stained sections of pancreas 412 
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obtained from untreated diabetic control rats (Figures 1 and 2). Several mechanisms have been 413 

proposed to elucidate pancreatic damage in the setting of T2DM. These pathological 414 

mechanisms comprise of metabolic stress mediated activation of inflammatory pathways, 415 

which further accelerate oxidative and endoplasmic reticulum stress (Halban et al. , 2014). In 416 

morphometric analysis diabetic rats have exhibited significant decrease in number of islet cells 417 

and the size, compared to normal rats, which is in line with the histopathological findings 418 

(Figure 3). It is to be noted that, rate of insulin secretion are relatively expressed to islet insulin 419 

content, which is dependent of differences in the size and number of islet cells (Aamir et al., 420 

2021). Moreover, masson trichrome staining of diabetic control specimens showed aberrant 421 

deposition of collagen surrounding pancreatic acini and islets, highlighting fibrotic hallmark 422 

due to activation of inflammatory pathways (Figure 2). Similar results was observed by Zhou 423 

and Hussien in the rats pancreas after STZ-NIC treatment (Hussien et al. , 2017, Zhou et al. , 424 

2013). Interestingly, as a result of AA treatment, the morphology of islet cells was significantly 425 

improved in the number and size, including aberrant collagen stroma in the pancreas (Figure 426 

3).   427 

Streptozotocin destruct pancreatic -cells and increases oxidative stress, disruption of lipid 428 

metabolism, hyperglycemia, and excess FFA generation due to insulin insufficiency, which 429 

results in reactive oxygen (ROS) and reactive nitrogen species (RNS). In addition, STZ also 430 

liberates nitric oxide (NO) during its metabolism in -cells and increases expression of pro-431 

inflammatory cytokines (Manna et al. , 2010). Disturbances in glucose metabolism, FFA and 432 

ROS generation is the hallmark of T2DM and serves as an internal ligand for the activation of 433 

PRR or TLR. However, the TLR family of receptors are important for both the innate immune 434 

system and act as the major cause of inflammation in an advert condition. TLR-4 is basically 435 

a pattern recognition receptor, its overexpression in the pancreas of diabetics is associated with 436 
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MyD88 and NF-B activation and a consequent elevation of pro-inflammatory cytokines that 437 

leads to deactivation of the innate immune system.   438 

However, results from various preclinical findings and computational simulation have 439 

demonstrated that phytochemicals and natural products have an ability to target TLR4 which 440 

blocks the TLR4-nuclear factor-kappa B (NF-κB) pathway and reduces the inflammatory 441 

response and complications associated with T2DM (Baffy, 2009, Li et al. , 2012, Shi et al. , 442 

2006). Our current findings have demonstrated that administration of AA (25 and 50 mg/kg) 443 

inhibited MyD88-dependent TLR-4 signaling pathway. In line with this, immunohistochemical 444 

examination provides further support for our findings by decrease in the widespread 445 

distribution of TLR-4, MyD88, and NF-B in diabetic rats. Based on these data, we postulated 446 

that the TLR-4/MyD88/NF-B axis might have significant role in metabolic inflammation 447 

during type 2 diabetes. The anti-inflammatory activity of AA are in line with the earlier 448 

research, which showed that Averrhoa carambola roots reduced TLR-4/NF-B-mediated 449 

inflammation in the pancreas of STZ-induced diabetic rats (Xu et al. , 2015).   450 

Next, we explored TLR-4-mediated insulin resistance in the pancreas of T2DM rats. 451 

Various findings have shown that TLR-4/MyD88 mediated NF-B activation increases pro-452 

inflammatory cytokines such TNF- and IL-1, these cytokines are crucial contributors to 453 

insulin resistance and -cell dysfunction (Aamir et al., 2021) (Guilherme et al. , 2019). 454 

Pancreatic insulin signaling is disrupted at the molecular level by the activation of 455 

serine/threonine kinases by cytokines such c-Jun NH2-terminal kinase (JNK) and inhibitor of 456 

nuclear factor-B. In a healthy organism, JNK1/2 are involved in the stress response 457 

mechanism by contributing to -cell differentiation and proliferation.   458 

However, FFA and pro-inflammatory cytokines continuously phosphorylate JNK1/2 459 

(active state), resulting in -cell dysfunction (Lanuza-Masdeu et al. , 2013, Yung and Giacca, 460 
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2020). Due to increased serine phosphorylation by p-JNK1/2, insulin receptor substrate 1 (IRS-461 

1) activation was blocked. Inhibition of IRS-1 hampers activation of downstream PI3K and p-462 

Akt proteins and further reduced p-Akt activity and overexpressed p-JNK1/2 enhanced nuclear 463 

translocation of forkhead box protein O1 (FOXO1) to inhibit insulin gene transcription (Yung 464 

and Giacca, 2020). Our results have shown that the treatment of AA had reversed back the 465 

downregulated IRS-1, PI3K, and p-Akt1/2/3 in T2DM animals via p-JNK1/2. Interestingly, 466 

these results are in agreement with the immunohistochemical examination of pancreatic 467 

sections which demonstrated similar results in normal and AA-treated rats. Previous findings 468 

by Manna and colleagues (Manna and Sil, 2012) showed AA reduced JNK expression in the 469 

spleen and renal tissues of murine model of type 1 diabetes. Taken together, our findings 470 

suggest that AA might have immunomodulatory effects which reduced metaflammation and 471 

insulin resistant states in T2DM.     472 

Moreover, the Wnt/-catenin pathway has been shown to play a significant role in 473 

preserving -cell function. According to the study conducted by Sorrenson et al. (2016), -474 

catenin plays an important role in increasing insulin release from -cells and  it is well 475 

established that canonical Wnt signaling is responsible for the development of pancreas 476 

(Scheibner et al. , 2019). However, at the same time there are evidences which support the 477 

opposite impact of Wnt/-catenin pathway in provoking T2DM (Nie et al. , 2021). Although, 478 

Wnt/-catenin activation in the pancreas has been well-documented, its precise involvement in 479 

the pancreas during metabolic syndrome remains a mystery. To reveal this fact, we have 480 

examined the crosstalk between the canonical Wnt/-catenin pathway and the TLR-4 signaling 481 

in the pancreas. In this finding, we observed overexpression of Wnt3a in the pancreatic lysate 482 

of untreated diabetic rats, when compared to normal animals (Figure 11). Notably, upregulation 483 

of Wnt3a is essential to indicate the presence of ligand in activating the pathways.  484 
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Next, the activation of soluble Wnt in the islets was validated by the overexpression of 485 

stabilized -catenin by Wnt3a in non-treated diabetic pancreas (Figure 12). Remarkable 486 

activation of -catenin in this setting might relates to diabetes through the mechanism 487 

involving insulin-mediated regulation of p-GSK3 via the PI3K/Akt pathway (Cross et al. , 488 

1995). This suggests that hyperinsulinemia, a hallmark of STZ-NIC-induced T2DM, may result 489 

in an increased level of -catenin, a site of interaction with insulin signaling. Unfortunately, 490 

expression of p-GSK3 was not detected in the pancreatic lysate of treated and non-treated 491 

rats. Activation of Wnt/-catenin pathway also raised an important question, whether this 492 

activation is an adaptive response or pathologic response during type 2 diabetes. Possibly, this 493 

might be due to the canonical Wnt activation, an adaptive response in early stages of T2DM to 494 

enhance -cell proliferation.  495 

However, it has another side to consider, chronic activation causes cell death, a well-496 

established role of c-Myc, an effector protein of canonical Wnt signaling. Previous findings on 497 

transgenic mouse model of diabetes, c-Myc had emerged as a strong candidate as an inducer 498 

of -cell death (Radziszewska et al. , 2009). High levels of c-Myc expression were observed 499 

in the pancreas of untreated diabetics (Figure 13), correlating with the decreased number of 500 

islet cells, observed by histomorphometric analysis. Intriguingly, metabolic inflammation is 501 

also exacerbated by interaction between Wnt/-catenin and NF-B. The TNF- produced by 502 

the TLR-4/NF-B axis may inactivate GSK3 to boost -catenin level, which in turn increases 503 

c-Myc expression (Ma and Hottiger, 2016). In consistent with the previous research, our data 504 

demonstrated that Wnt3a/-catenin activation in the pancreas has a detrimental role in T2DM. 505 

Interestingly, diabetic rats treated with AA for four weeks, reduced canonical Wnt activity by 506 

demonstrating its critical role in diabetic conditions. In addition, immunostaining revealed the 507 

same pattern, including the widespread distribution of Wnt3a/-catenin, in diabetic rats. 508 
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Although, these expression levels were decreased gradually after AA administration (Figure 509 

20 and 21). Taken together, AA exhibited anti-inflammatory, antidiabetic effects by 510 

modulating TLR-4/Wnt/-catenin signaling in the pancreas.   511 

In line with an evolutionary conserved signaling pathways, we examined the functionality 512 

of Notch signaling, which is responsible for maintaining islets cell homeostasis. Its persistent 513 

activation was seen in -cells during T2DM, which is responsible for impairing glucose 514 

stimulated insulin secretion from islets of Langerhans (Bartolome et al. , 2019, Billiard et al. , 515 

2018). Considering the fact, we studied Notch1, delta like ligand 4 (Dll4, Notch ligand) and its 516 

downstream adapter protein, recombination signal binding protein for immunoglobulin kappa 517 

J region (RBP-J) and hairy enhancer of split 1 (Hes 1). However, we did not find any 518 

expression pertaining to the Notch signaling protein via automated jess analysis in pancreatic 519 

lysates of T2DM rats.   520 

Recent progress in RNA-mediated changes during T2DM and accompanying 521 

complications raised the need to investigate mRNA expressions of several protein targets. It is 522 

also well-established that one gene can synthesize many proteins by the use of short non-coding 523 

RNAs (snRNAs) and other transcriptional components which generate wide variety of mRNAs 524 

in complex three-dimensional structures (Aamir and Arya, 2023, Marchese et al. , 2016). 525 

Therefore, mRNA expression of selected protein targets is investigated and we observed that 526 

the expression of the TLR-4, MyD88 and NF-B genes were upregulated in the untreated 527 

diabetic animals (Figure 22), which is in agreement with the protein expressions examined via 528 

jess (western blot) analysis. The mRNA expression of TNF- and IL-1 were also upregulated, 529 

as compared to normal rats, highlighting activation of MyD88 dependent TLR-4 signaling at 530 

transcriptional level. Effectively, AA had suppressed the selected gene transcriptions in the 531 

diabetic rats. Conversely, AA administration downregulated the elevated level of Wnt3a, -532 
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catenin and c-Myc mRNA expression in diabetic rats. These outcomes resemble most of the 533 

protein expression observed during Jess analysis and correlate the crosstalk between TLR-534 

4/Wnt pathway at the transcription level, which is essentially downregulated with the treatment 535 

of AA. On the other hand, IRS-1 was also upregulated upon treatment with AA, which clearly 536 

indicates restoration of insulin signaling at transcriptional to the translational level. However, 537 

these findings support the relative protein expressions, highlighted by the suppression of 538 

insulin signaling by TLR-4 and canonical Wnt pathway in pancreas during T2DM.   539 

In the present work, AA showed promising effect by ameliorating T2DM in subacute 540 

disease model of type 2 diabetes by exposing short-term treatment efficacy. Nevertheless, these 541 

findings need to be replicated in a long-term chronic disease model of type 2 diabetes with 542 

multiple dose testing at cellular level, to further elucidate effects of AA on mitochondrial 543 

dysfunction and ER stress during T2DM. Evaluation with multiple dosage would be an 544 

important strategy to characterize pharmacokinetic (PK) and pharmacodynamic (PD) 545 

movement with regards to concentration and time.  546 

Additionally, PK/PD modeling would establish the chance to understand mechanism of 547 

action by identifying PK properties that would enhance AA optimal design on translational 548 

platform to study progressive stages in diabetes at clinical level. Effective and successful 549 

PK/PD studies might establish AA as a potential drug candidate in the discovery and 550 

development process. Further, preclinical studies on small cohort of type 2 diabetic patients 551 

would be a good initiative to approach clinical trials on AA.  552 

Conclusion  553 

The current pharmacological investigation revealed potential antidiabetic effects of AA in 554 

diabetic rats by mediating through TLR-4 and canonical Wnt/-catenin pathway. These 555 

findings highlight the lethal crosstalk between TLR-4, Wnt and insulin signaling that 556 
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significantly reduced elevated protein and mRNA expression of TLR-4/MyD88 and Wnt/-557 

catenin pathway. Therefore, in the light of these findings we suggest that AA is beneficial in 558 

the treatment of T2DM by mitigating meta-inflammation and insulin resistance. 559 
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Figure 1. Photomicrographs of H&E stained pancreas of different groups. (A) Normal control displayed 727 
granulated cytoplasm, islets with large nuclei (beta-cells) (arrowhead) and small dark nuclei present in periphery 728 
(alpha-cells) (arrow). Exocrine portion represent regular shape of acinar cells (broad arrow). (B) Non-treated 729 
diabetic rats showed shrinked islets with reduced size and number, vacuolated cytoplasm (circle), congested blood 730 
vessels (arrow with box-head) and karyolysis. (C) Treatment with low dose AA presented increment in cell 731 
number with slight improvement in shape. Few islets still exhibit darkly stained nuclei and vacuolated cytoplasm, 732 
however slight restoration in shape of acinar cells. (D) Treatment with high dose of AA exhibited marked 733 
improvement in shape and number of islets (alpha and beta cells) and acinar cells. (E) Metformin treatment further 734 
improved overall histoarchitecture and cytology. NC normal control; DC diabetic control; ALD arjunolic acid 735 
low dose; AHD arjunolic acid high dose; MET metformin (H&E stain x200).  736 

Figure 2. Photomicrographs of Massion trichrome stained pancreas sections of different groups. (A). Normal 737 
control showed regular tissue architecture with proper outlined alpha (arrow) and beta cells (arrowhead). (B). 738 
Diabetic rats displayed shrinked, pyknotic nuclei with drastic decrease in islets size and number, distorted shape 739 
of pancreatic acini (broad arrow) and deposition of collagen fiber (rectangle). (C). Treatment with 25 mg/kg AA 740 
increase cell size and number with reduction in collagen deposition. (D). Treatment with 50 mg/kg AA completely 741 
abolished collagen stroma with nearly regular outline of islets. (E). Treatment with metformin (250 mg/kg) 742 
improved islets shape and number as compared to diabetic control. NC normal control; DC diabetic control; ALD 743 
arjunolic acid low dose; AHD arjunolic acid high dose; MET metformin (MT stain x200). 744 
 745 
Figure 3. Histomorphometric analysis of H&E stained pancreas of different groups. (A) Normal control displayed 746 
regular morphology and size of islets. (B) Non-treated diabetic rats showed shrinked islets with reduced size 747 
(arrow) and congested blood vessels (broad arrow). (C) Treatment with low dose AA presented increase in cell 748 
number with slight improvement in shape. Few islets still exhibit disorganized shape (arrow) and congested blood 749 
vessel (broad arrow). (D) Treatment with high dose of AA exhibited considerable improvement in shape, size and 750 
number of islets (arrow). (E) Metformin treatment displayed near to normal islets shape and size. (F) Graphical 751 
presentation of islets size from control and treated groups. NC normal control; DC diabetic control; ALD arjunolic 752 
acid low dose; AHD arjunolic acid high dose; MET metformin (H&E stain x400). Non-significant (ns), *p<0.05, 753 
**p<0.005 when compared with DC. 754 

Figure 4. Jess analysis showing expression of TLR-4 in pancreas of control and treated groups. (A) Protein 755 
normalization. (B) Band density representing expression of TLR-4 in normal, diabetic and treated groups. (C) 756 
Gradual peaks presenting AUC for expression of TLR-4. (D) Graph plotted between groups and AUC presenting 757 
statistical analysis for the expression of TLR-4. NC normal control; DC diabetic control; ALD arjunolic acid low 758 
dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. Non-significant (ns) when 759 
compared with DC. 760 

Figure 5. Jess analysis presenting expression of MyD88 in pancreas of control and treated groups. (A) Protein 761 
normalization. (B) Band density representing expression of MyD88 in normal, diabetic and treated groups. (C) 762 
Gradual peaks presenting AUC for expression of MyD88. (D) Graph plotted between groups and AUC presenting 763 
statistical analysis for the expression of MyD88. NC normal control; DC diabetic control; ALD arjunolic acid low 764 
dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. Non-significant (ns), *p<0.05, 765 
**p<0.005, ***p<0.001 when compared with DC. 766 

Figure 6. Jess analysis presenting expression of NF-κB in pancreas of control and treated groups. (A) Protein 767 
normalization. (B) Band density representing expression of NF-κB in normal, diabetic and treated groups. (C) 768 
Gradual peaks presenting AUC for expression of NF-B. (D) Graph plotted between groups and AUC presenting 769 
statistical analysis for the expression of NF-B. NC normal control; DC diabetic control; ALD arjunolic acid low 770 
dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. **p<0.005 when compared with 771 
DC. 772 
 773 
Figure 7. Jess analysis showing expression of p-JNK1/2 in pancreas of control and treated groups. (A) Protein 774 
normalization. (B) Band density representing expression of p-JNK1/2 in normal, diabetic and treated groups. (C) 775 
Gradual peaks presenting AUC for expression of p-JNK1/2. (D) Graph plotted between groups and AUC 776 
presenting statistical analysis for the expression of p-JNK1/2. NC normal control; DC diabetic control; ALD 777 
arjunolic acid low dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. **p<0.005, 778 
***p<0.001 when compared with DC. 779 
 780 
Figure 8. Jess analysis showing expression of IRS-1 in pancreas of control and treated groups. (A) Protein 781 
normalization. (B) Band density representing expression of IRS-1 in normal, diabetic and treated groups. (C) 782 
Gradual peaks presenting AUC for expression of IRS-1. (D) Graph plotted between groups and AUC presenting 783 
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statistical analysis for the expression of IRS-1. NC normal control; DC diabetic control; ALD arjunolic acid low 784 
dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. Non-significant (ns), ****p<0.0001 785 
when compared with DC. 786 
 787 
Figure 9. Jess analysis showing expression of PI3K in pancreas of control and treated groups. (A) Protein 788 
normalization. (B) Band density representing expression of PI3K in normal, diabetic and treated groups. (C) 789 
Gradual peaks presenting AUC for expression of PI3K. (D) Graph plotted between groups and AUC presenting 790 
statistical analysis for the expression of PI3K. NC normal control; DC diabetic control; ALD arjunolic acid low 791 
dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. Non-significant (ns), **p<0.005 792 
when compared with DC. 793 
 794 
Figure 10. Jess analysis showing expression of p-Akt1/2/3 in pancreas of control and treated groups. (A) Protein 795 
normalization. (B) Band density representing expression of p-Akt1/2/3 in normal, diabetic and treated groups. (C) 796 
Gradual peaks presenting AUC for expression of p-Akt1/2/3. (D) Graph plotted between groups and AUC 797 
presenting statistical analysis for the expression of p-Akt1/2/3. NC normal control; DC diabetic control; ALD 798 
arjunolic acid low dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. Non-significant 799 
(ns), *p<0.05 when compared with DC. 800 
 801 
Figure 11. Jess analysis showing expression of Wnt3a in pancreas of control and treated groups. (A) Protein 802 
normalization. (B) Band density representing expression of Wnt3a in normal, diabetic and treated groups. (C) 803 
Gradual peaks presenting AUC for expression of Wnt3a. (D) Graph plotted between groups and AUC presenting 804 
statistical analysis for the expression of Wnt3a. NC normal control; DC diabetic control; ALD arjunolic acid low 805 
dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. ***p<0.001 when compared with 806 
DC. 807 
 808 
Figure 12. Jess analysis showing expression of β-catenin in pancreas of control and treated groups. (A) Protein 809 
normalization. (B) Band density representing expression of β-catenin in normal, diabetic and treated groups. (C) 810 
Gradual peaks presenting AUC for expression of -catenin. (D) Graph plotted between groups and AUC 811 
presenting statistical analysis for the expression of -catenin. NC normal control; DC diabetic control; ALD 812 
arjunolic acid low dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. Non-significant 813 
(ns), *p<0.05, **p<0.005 when compared with DC. 814 

 815 
Figure 13. Jess analysis showing expression of c-Myc in pancreas of control and treated groups. (A) Protein 816 
normalization. (B) Band density representing expression of c-Myc in normal, diabetic and treated groups. (C) 817 
Gradual peaks presenting AUC for expression of c-Myc. (D) Graph plotted between groups and AUC presenting 818 
statistical analysis for the expression of c-Myc. NC normal control; DC diabetic control; ALD arjunolic acid low 819 
dose; AHD arjunolic acid high dose; MET metformin; AUC area under curve. Non-significant (ns), *p<0.05 when 820 
compared with DC. 821 
 822 
Figure 14. Heatmap showing protein expression of selected protein targets from pancreas of control and treated 823 
groups. NC normal control; DC diabetic control; ALD arjunolic acid low dose; AHD arjunolic acid high dose; 824 
MET metformin. 825 

Figure 15. Representative immunohistochemistry images showing TLR-4 localization in pancreas as indicated 826 
by dark brown staining along with graphical presentation demonstrating AUC for expression of TLR-4 in control 827 
and treated groups. NC normal control; DC diabetic control; ALD arjunolic acid low dose; AHD arjunolic acid 828 
high dose; MET metformin; AUC area under curve. ****p<0.0001 when compared with DC. 829 
 830 
Figure 16. Representative immunohistochemistry images showing MyD88 localization in pancreas as indicated 831 
by dark brown staining along with graphical presentation demonstrating AUC for expression of MyD88 in control 832 
and treated groups. NC normal control; DC diabetic control; ALD arjunolic acid low dose; AHD arjunolic acid 833 
high dose; MET metformin; AUC area under curve. Non-significant (ns), **p<0.005 when compared with DC. 834 
 835 
Figure 17. Representative immunohistochemistry images showing NF-κB localization in pancreas as indicated 836 
by dark brown staining along with graphical presentation demonstrating AUC for expression of NF-κB in control 837 
and treated groups. NC normal control; DC diabetic control; ALD arjunolic acid low dose; AHD arjunolic acid 838 
high dose; MET metformin; AUC area under curve. ***p<0.001, ****p<0.0001 when compared with DC. 839 
Figure 18. Representative immunohistochemistry images showing p-JNK1/2 localization in pancreas as indicated 840 
by dark brown staining along with graphical presentation demonstrating AUC for expression of p-JNK1/2 in 841 
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control and treated groups. NC normal control; DC diabetic control; ALD arjunolic acid low dose; AHD arjunolic 842 
acid high dose; MET metformin; AUC area under curve. ****p<0.0001 when compared with DC. 843 
 844 
Figure 19. Representative immunohistochemistry images showing IRS-1 localization in pancreas as indicated by 845 
dark brown staining along with graphical presentation demonstrating AUC for expression of IRS-1 in control and 846 
treated groups. NC normal control; DC diabetic control; ALD arjunolic acid low dose; AHD arjunolic acid high 847 
dose; MET metformin; AUC area under curve. Non-significant (ns), **p<0.005, ***p<0.001, ****p<0.0001 when 848 
compared with DC. 849 
 850 
Figure 20. Representative immunohistochemistry images showing Wnt3a localization in pancreas as indicated 851 
by dark brown staining along with graphical presentation demonstrating AUC for expression of Wnt3a in control 852 
and treated groups. NC normal control; DC diabetic control; ALD arjunolic acid low dose; AHD arjunolic acid 853 
high dose; MET metformin; AUC area under curve. Non-significant (ns), ****p<0.0001 when compared with DC. 854 
 855 
Figure 21. Representative immunohistochemistry images showing β-catenin localization in pancreas as indicated 856 
by dark brown staining along with graphical presentation demonstrating AUC for expression of β-catenin in 857 
control and treated groups. NC normal control; DC diabetic control; ALD arjunolic acid low dose; AHD arjunolic 858 
acid high dose; MET metformin; AUC area under curve. ****p<0.0001 when compared with DC. 859 
 860 
Figure 22. Graphs presenting mRNA expression of TLR-4, MyD88, NF-B, TNF-, IL-1, IRS-1, Wnt3a, -861 
catenin and c-Myc in pancreas of control and treated groups. NC normal control; DC diabetic control; ALD 862 
arjunolic acid low dose; AHD arjunolic acid high dose; MET metformin. Non-significant (ns), *p<0.05, 863 
**p<0.005, ***p<0.001 when compared with DC. 864 
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