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Artificial Odour-Vision Syneasthesia via
Olfactory Sensory Argumentation

Ryan Joseph Ward , Fred Paul Mark Jjunju, Elias J. Griffith, Sophie M. Wuerger,
and Alan Marshall , Senior Member, IEEE

Abstract—The phenomenology of synaesthesia provides
numerous cognitive benefits, which could be used towards
augmenting interactive experiences with more refined multi-
sensorial capabilities leading to more engaging and enriched
experiences, better designs, and more transparent human-
machine interfaces. In this study, we report a novel frame-
work for the transformation of odours into the visual domain
by applying the ideology from synaesthesia, to a low cost,
portable, augmented reality/virtual reality system. The bene-
fits of generating an artificial form of synesthesia are outlined
and implemented using a custom made electronic nose to
gather information about odour sources which is then sent
to a mobile computing engine for characterisation, classi-
fication, and visualisation. The odours are visualised in the form of coloured 2D abstract shapes in real-time. Our
results show that our affordable system has the potential to increase human odour discrimination comparable to that of
natural syneasthesia highlighting the prospects for augmenting human-machine interfaces with an artificial form of this
phenomenon.

Index Terms— Augmented reality, e-nose, electronic nose, olfaction, syneasthesia, artificial syneasthesia,
human-machine interface.

I. INTRODUCTION

AROMAS are embedded into our everyday life; from the
rich smell of freshly ground coffee to the fresh aroma

after a summers rain. Despite the ubiquity of olfactory stimuli,
the human perception of the olfactory stimulus is still not fully
understood [1]. Olfactory perception varies significantly and is
influenced by cultural factors, social factors, sex, age, memory,
past experiences, and emotions [2]. The olfactory stimulus
has the most variability among humans compared to any
other sense and can act as a powerful memory stimulant [3].
Human classification of odours can be a complicated task,
contemplating the fact there are more than 1000 types of
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olfactory receptors and humans can discriminate, at most,
one trillion different odours [1], making discrimination easy,
but identification difficult. The detection and classification of
aromas can be a difficult task for humans, albeit elementary
for an electronic nose (e-nose). E-noses can discriminate
complex odours but are customarily fine-tuned to solve specific
problems, such as wine classification [4], lung cancer screen-
ing [5], and diabetes diagnosis [6]. Like the human olfactory
stimulus, e-noses are based on an array of gas sensors, where
each gas sensor has a limited capability of detection and its
specificity comes from the quantity of sensors. E-noses often
rely on pattern recognition systems for the characterisation
and classification of odour sources, rather than the output
from a specific sensor [7] and does not rely on the chemical
composition of an aroma. As such, projecting information
from the olfactory stimulus to another more readily understood
in real time would prove to be beneficial for human in the loop
odour localisation, feature identification, information recall,
and human cognition. This study focuses on the latter.

The coupling of different senses naturally occurs in the
neurological condition known as synesthesia, which affects
approximately 1 in 2000 people [8]. This phenomenon,
broadly speaking, occurs when stimulation in one sensory
modality causes unusual, albeit unexpected output in another
modality [9]. Synesthetes sometimes possess superior cogni-
tive benefits relating to their form of synaesthesia [10]–[12].
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Synesthetes with odour to vision synesthesia have been shown
to have a consistent and increased sensitivity for odour and
colour discrimination, as well as the correct identification
of odours [12]. A small body of research [13]–[15] has
shown that it is possible to replicate the phenomenology of
synesthesia in non-synesthetes. Although it is still not fully
understood if the cognitive benefits of synestheisia can be
artificially replicated and to what extent.

Some forms of artificial syneasthesia have been investigated;
Plouznikoff et al. [14] created a head-mounted display that
replicates grapheme-colour synesthesia, their results suggest
that short term memory recall (digit matrices) and visual
information search times can be improved. Konishi et al. [16]
created a suit capable of augmenting the traditional visual
audio paradigm with haptics, this suit has 26 vibrating actu-
ators that are triggered by soundwaves. Foner [17] created
a system that converts light into sound, this allows for the
sonification of both perceivable and unperceivable sources of
light, allowing for the detection of camouflage in a forest envi-
ronment. Most of the work in this area focuses on augmenting
human-computer interfaces with information outside of the
range of human perception, which is comparable with sen-
sory argumentation devices. Meijer created “the vOICe” [18]
that converts multiple visual properties (luminance, vertical
and horizontal position) to the auditory properties (pitch,
frequency, and amplitude), which is consequently presented
to a human user. Prolonged usage of this device has invoked
synesthetic like experiences [15], [19] in some individuals.
Kerdegari et al. [20] created a tactile helmet for firefighters that
presents navigation commands via tactile feedback. This uses
an ultrasound sensor to provide depth information sequentially
relaying information to the actuators situated inside the helmet
of the firefighter. The sensory experience perceived by humans
is rather limited in the sense that we only perceive a small
portion of it, these devices open up opportunities to expand
upon and build new “senses” for humans. The concept of
“artificial synesthesia” will allow for the subtle presentation
of information between the real and virtual worlds, while
minimising functional and sensory overload providing an
overt, low attention human-machine interface using real-world
information [21].

In this article, we report an affordable system for the
synesthetic visualisation of odour sources in real-time using
a low cost, custom made and portable electronic nose and
a mobile computing engine. We then explore to see if our
artificial odour-vision synaesthesia provides the same benefit
as natural odour-vision synesthesia by testing if odour dis-
crimination is improved when an abstract and complementary
visual representation is provided. The experimental system
consists of an odour detector (e-nose), a pattern recognition
system for the creation of distinct colour profiles, and a
visualiser element. Sixteen aromatic oil samples were atomised
in the open air using a piezoelectric transducer based olfactory
display. First, a benchtop commercial mass spectrometer cou-
pled using an ambient ionisation source (DAPCI) was used
to detect and profile the different odours of the atomised
aromatic samples with high sensitivity and specificity in an
open environment [22], [23], and secondly using a custom-

built e-nose with a lesser sensitivity and specificity but with
the advantage of being low-cost and portable. A random forest
classifier was used to generate distinct colour profiles and a
data visualisation algorithm was created to turn the odours
transduced by the e-nose into a coloured 2D abstract shape
that represents the current odour source. An offline version of
the system was then implemented to determine if the system
could increase human odour discrimination that is comparable
to that of natural odour-vision synesthesia.

II. MATERIALS & METHODS

A. Chemicals and Reagents
Sixteen Mystic MomentsTM aromatic oils were used in the

confines of these experiments; banana, black pepper, ceder-
wood, caramel, coffee, euculyptus, fudge, lemon, lime, orange,
patchouli, tea tree, vanilla and ylang ylang. These were chosen
as they were deemed to have a ‘perceptual overlap’ in some
cases to the authors of this article and were readily available.
The samples used in the experiments consist of 4.5 mL of
deionized water combined with 0.5 mL of the respective oils
with a ratio of 9:1 (v/v).

B. Participants
Twelve individuals (4 female and 8 males with a mean age

of 36) took part in the experiment. No participants declared
any olfactory impairments (issues that affect the sense of
smell, such as, a cold or flu). The experiment took approxi-
mately 20 minutes with a 10 minute break half way though to
prevent olfactory fatigue. Ethical approval was obtained from
the University of Liverpool and conducted in accordance with
the standards set in the Declaration of Helsinki for Medical
Research Involving Human Subjects. Participants gave written
consent before taking part in the experiment.

C. Instrumentation
The system consists of three elements (as shown in Fig. 1):

(A) an active odour source (olfactory display), (B) an odour
detector (chemical sensor(s)), (C) A mobile computing engine
with a pattern recognition system and a visualiser. The odour
detection subcomponent (Fig. 1 (B)) transduces the detected
odour and sends packets to a router, which then forwards the
packets to the mobile computing engine, which sequentially
applies a calibration frame to the raw sensor data. This is then
passed to the pattern recognition system (Fig. 1 (C)) followed
by the synesthetic shape generator, for the colouring and vertex
generation respectively.

D. Aroma Generation
A piezoelectric transducer was used for the generation of

different aromas (Fig. 1 (A)), this was attached to a small cir-
cular container (6.5cm × 3cm) that contains the aromatic solu-
tion. The transducer consists of a piezoelectric plate (Seeed
Studio) that heats the aromatic solution using ultrasound and
has a frequency of 105±5 kHz. This creates a vertical bottom-
up diffusion to produce a fine mist. As one aroma was released
at any given time, a single piezoelectric transducer was used,
but to avoid contamination, the transducer was cleaned with
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Fig. 1. Schematic representation of the complete system for our olfactory sensory argumentation system. (A) An active odour source using a
custom piezoelectric transducer based olfactory display for generating different odours presented to the electronic nose. (B) An electronic nose
for detecting the presence and characterising different odours. (C) Mobile computing engine, a mobile phone-based device for the visualisation of
odours via synesthetic shape generation.

cotton wool and new container was used for each aromatic
solution. The aromatic solution placed within the container,
consists of half the created solution (2.5 mL) and was refilled
to the same volume for each recording. The solution was left
sitting in the container for at least 10 minutes to allow the
cotton sliver to absorb the solution. A mount was created to
house the piezoelectric transducer and the cotton sliver, shown
in Fig. S1. To minimise odour plume turbulent, the aromas
were released in a controlled environment with restricted
external airflow. This room was also flushed with clean air
for a minimum of twenty minutes between samples to reduce
contamination. Odours were not pretreated (i.e., temperature
and humidity control) as we wanted to present them to the
e-nose the same manner as how a human would perceive them
to create a “perceptual overlap”.

E. Mass Spectrometry
All mass spectrometry experiments were performed using

desorption atmospheric pressure chemical ionisation mass
spectrometry (DAPCI MS) on a Xevo triple quadrupole mass
spectrometer (TQ MS) (Waters Corporation, Manchester, UK)
operated in positive ion mode using previously optimised
parameters for the molecular ion of interest. Full mass spec-
trometry scan mode was used with a mass acceptance window
of 50 to 400 Dalton (Da). The source temperature was main-
tained at 100 ◦C. The cone voltage was set to 50 V, optimised
to attain good transmission of ions in the range of interest
(50 – 400 amu). The DAPCI ion source was place approx.
3 mm away from the inlet of the mass spectrometer while
the aroma generator was placed in close proximity with the
DAPCI ion source ≈ 4 cm.

F. Electronic Nose
The electronic nose (Fig. 1 (B)) was built at the Immer-

sive Reality Laboratory (University of Liverpool). The sen-
sor array contains five commercially available gas sensors;

TABLE I
GAS SENSORS WITH THEIR RANGE AND DETECTABLE GASES. THE

INFORMATION IN THIS TABLE WAS OBTAINED FROM THE

CORRESPONDING SENSORS’ DATASHEET

MP503, BME680, MQ3, MQ5 and WSP2110 (Seeed Studio)
designed to detect a wide range of odours (Table I) and not
just those in the confines of these experiments. The sensor
array was connected to an Arduino MKR1000 microcontroller
(mouser.co.uk) and controlled using custom software. The
sensor array was mounted into a chamber, aromas were guided
though this chamber and the average output resistance of each
sensor was taken as a response. This is then sent to the mobile
computing engine (Fig. 1 (C)) using user datagram protocol
(UDP) ≈ every 125 ms. The schematic for the e-nose is shown
in Fig. S2. The calibration frame in the mobile computing
engine (Fig. 1 (C)) consists of taking the absolute difference
between the averaged background sensor response over 30 sec-
onds (background subtraction [24]) and sequentially taking the
median value for each sensor response after applying a moving
average over a 1 second interval. The e-nose was flushed with
ambient air for a minimum of twenty minutes between uses.

G. Data Analysis
The data analysis was conducted using MATLABTM

R2018b. The recordings obtained for the data analysis and
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the pattern recognition system consist of 8 columns, one for
each sensor response from the electronic nose, each recording
is a minute in length. Measurements were repeated 5 times for
each odour, with a total of 70 prepared for the experiments.
The e-nose was situated 20 cm away from the odour source,
this distance was chosen as it gave a good response for our
model odour (banana) which allowed for controlled character-
isation of each odour. The e-nose was placed (10 cm, 20 cm,
30 cm and 40 cm) away from the aroma generator; an optimal
signal was achieved at 20 cm away from the e-nose and this
distance was then used in all experiments. To simulate a rising
intensity the outtake of the e-nose was switched off during the
odour recordings and was only turned on to clean the sensor
chamber. Random forest, k-nearest neighbour and a support
vector machine, were trained and tested after applying the
calibration frame to the raw sensor data. Random forest was
consequently chosen as it had the best performance; the trained
model was then used to generate the colour for the synesthetic
shape generator. These algorithms were chosen as they are
commonly used to classify data from e-noses [24]–[27] and
are sufficiently lightweight to be efficiently implemented on a
device with limited processing power.

H. Olfactory Visualisation
A custom augmented reality system was created for this

experiment and consists of an inexpensive head mounted
display (Noon VRTM, [28]) chosen for its ability to mount
a mobile phone without obstructing the view of the camera.
A (SonyTM Xperia Z1, [29]) was used for the mobile com-
puting engine (Fig. 1 (C)). This algorithm was developed to
partially exploit heterogeneous response underlying an e-nose
signal and from each given sensor to create a 2D abstract
shape that represents the current odour source. Typically real-
time e-nose responses are visualised as a radar graph also
referred to as a polar plot or a bar chart [24], we believed
that this representation of the underlying data was not unique
enough for the task at hand. The mobile computing engine
was programmed in C# using Unity 2018.3.0f and uses the
following algorithm to generate the vertices coordinates.

xi = 1

1 + σi sin(
2π i

m1m2

9
+ σi

2

)

, for i = 1, 2, 3, . . . n (1)

yi = 1

1 + σi tanh(
2π i

m1m2

9
+ σi

2

)

, for i =1, 2, 3, . . . n (2)

where n is the number of sensor responses from the electronic
nose, σi is the current value from sensor(i ), m1 and m2 is
the index location for the first and second largest values in
the vector respectively. xi and yi correspond to the vertex
coordinates centred around the origin on a Cartesian plane.

III. RESULTS & DISCUSSION

A. Odour Detection
First, odours were recorded in the open environment using

tandem mass spectrometry (MS/MS) in positive ion mode with

DAPCI coupled to a commercial mass spectrometer. These
experiments were performed to determine the optimum odour
detection method. To confirm the identity and the active chemi-
cal compounds of each aromatic oil tandem mass spectrometry
(MS/MS) was used. The active compound(s) of interest were
detected and isolated using collision induced tandem mass
spectrometry (MS/MS) [30]. Three model compounds were
chosen, due to their presence in a wide variety of aromas
these are; phenyl alcohol, methyl butyrate and allyl hexanoate.
Intense protonated ions [M+H] for each sample were obtained,
as shown in Fig. 2, these CID fragment peaks for the standard
model compounds confirm structure of the model compounds.

Representative mass spectrum’s of the aromatic oil samples
was recorded using DAPCI-MS ≈ 10 μL of each sample was
spotted on the piezoelectric transducer and analysed using a
commercial mass spectrometer. The mass spectra recorded for
the aromatic oil samples (banana, coffee and ylang ylang) and
a mass spectrum for deionised water is shown in Fig. S3.
Sample responses for the e-nose using the aromatic oil samples
is shown in Fig. S4. The solutions for the range of detection
using the e-nose consist of 500 ppm of the respective model
compound in deionised water, is shown in Fig. 3. This revealed
that the e-nose can detect and therefore characterise a wide
variety of aromas and not just the ones chosen in the confines
of this experiment, however, with less sensitivity and speci-
ficity compared to DAPCI-MS. Although DAPCI-MS provides
higher sensitivity and specificity there are certain trade-offs
that make this solution of odour detection unfeasible. First
and foremost, lack of access to the data in real-time and
the cost of the solution, consequently, going against the goal
of making olfaction more accessible to humans in real-time.
In contrast the e-nose offers a cheap lightweight solution for
the real-time detection of odour sources, there is a unique
response pattern for each detectable aroma, allowing for the
discrimination between odour sources. It is important to note
that the pretreatment of chemicals is not essential for e-nose
systems as it relies on the response patterns rather than the
direct output of the sensors’, although in some cases the
chemicals would need to be pretreated dependant of the task
of the e-nose.

B. Principal Component Analysis
Factor analysis using Principal Component Analysis (PCA)

was conducted on the sample aromatic oils (banana, coffee
and ylang ylang). First a dataset was constructed using the
median sensor response after applying a moving average over
1 second intervals. This was done for all five recordings
for background, banana, coffee and ylang ylang, using the
last twenty five seconds of each recording. The dataset was
then logged and underwent z-score normalisation using the
population standard deviation and standardised against inde-
pendent features (gas sensor responses). We decided to use
the last twenty five seconds because the first twenty seconds
of each recording was ambient air (no odour), additionally
we allowed an extra fifteen seconds for the odour to diffuse
into the environment and be presnted to the e-nose. The
first three principal components explain 80.21% of the total
variance, 43.24%, 22.08% and 14.87% respectively. The first
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Fig. 2. Positive ion mode DAPCI-MS collision induced (CIDMS/MS)
mass spectras; (A) deionised water (B) phenyl alcohol (Mw 122) (C)
methyl butyrate (Mw 102) (D) ally hexanoate (Mw 156). Protonated ion
molecules [M+H]+ at m/z 157, 117, 152 and 103.

two components are shown in the score plot Fig. 4A, we can
see that there is overlap between the different odours, but each
odour has its own unique range which provides a ‘fingerprint’
for the identification of odours. This overlap between the
odours allow for the generation of consistent and distinct
colour profiles for each odour. The inclusion of the third
principal component did not visually improve separation.

From the loadings plot Fig. 4B we can see intensity plays
an important part in the separation of the odours shown in
Fig. 4A, that is the loadings plot suggests that the intensity

Fig. 3. Sample e-nose responses for the standard model compounds
and deionised water, samples were spotted on the piezoelectric trans-
ducer for the limit of detection. (A) Deionised water used to dilute (B - D).
(B) Phenyl alcohol at 500ppm mixed with deionised water. (C) Methyl
Butyrate at 500ppm mixed with deionised water. (D) Allyl Hexanoate at
500ppm mixed with deionised water.

component is the most contributory factor for explaining the
variation in the x axis. It is therefore likely that the intensity
of an odour plays the most contributory role in the colour
and shape variation of the system. It also shows that the air
quality sensor (BME 680) is the most responsive sensor in our
array towards the detection of our fragrant oils. The intensity
variable corresponds to the time in which each odour has
been spent being transduced by our olfactory display and was
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Fig. 4. Score plot (A) of 3 different odours and the background response
from the e-nose after pre-processing and the loadings plot. Loadings
(PCA coefficients) plot (B) shows the correlation coefficients. Both the
score plot (A) and loadings plot (B) are based on the PCA correlation
matrix.

included to visualise the role it plays in the synesthetic shape
generator subcomponent.

C. Pattern Recognition
Out of the 15 aromatic oils, 10 were used to train the pat-

tern recognition system (banana, caramel coffee, eucalyptus,
lemon, orange, patchouli, tea tree, vanilla and ylang ylang)
with the addition of the background samples, for a total
of 11 classes. The last 30 seconds of each recording were used
to construct a dataset, and consists of only the pre-processed
sensor responses. This dataset was then programmatically
split into two for training and testing a variety of machine
learning methods, random forest, support vector machine and
k-nearest neighbour. All algorithms were trained and tested
using 50-fold cross validation, the dataset was randomly split
in 50 groups, 49 groups were used for training and 1 group
for testing, this process was repeated 50 times until all groups
had been tested. The accuracy ratings are: 95.57%, 95.0%
and 88.6% for random forest, SVM and kNN respectively.
The discrimination ability of the pattern recognition system
may be improved by including a more diverse range and/or
calibrating the sensor array for specific gases. Sample colour
profiles for aromatic oils not used in the training stage
(black pepper, cederwood, fudge, lime and pine) are shown
in, Fig 5. A one-one mapping between the class output and
colour was implemented to assign a colour to the shape. Ten
interpolated points were taken from the outside of a cylindrical
representation of the L*a*b* colour space at (L* = 70).

Fig. 5. Sample colour profiles for unknown aromatic oils. Frequency
of each colour is the number of of many times the colour occurred
in 150 seconds of recordings for each odour indicated as a percentage.

The L*a*b* colour space [31] was used because of its percep-
tual uniformity, this allowed the selection for colours deemed
to be equally spaced apart perceptually. We assigned the colour
black to be the colour of the background (no odour) class.

D. Olfactory Visualisation
The mobile computing engine programmatically assigns a

visual representation of the current odour source and super-
imposes it onto a live feed of the subjects’ camera, as shown
in Fig. 6A. The augmented reality aspect is combined with a
stereoscopic view of the real-world scene (AR/VR), to allow
the user to move around the environment unhindered. The
visualiser fuses the data from the e-nose and the pattern
recognition system to create a 2D abstract shape the represents
the current odour source Fig. 6B-D. This uses the sensor
responses from the e-nose after applying the calibration frame.
The abstract shape was designed for the ambient abstract
visualisation of odour sources to loosely resemble real odour-
vision syneasthesia, to show the potential of augmenting an
artificial form of syneathesia in human-machine interfaces.
The visual representation of the odour source consists using
sensor data from the e-nose after applying the calibration
frame and undergoing the algorithm shown in Eq. (1) and (2).
This then transforms the one dimensional vector into a two
dimensional shape, the same 1 dimensional vector is provided
as input into the pattern recognition system which determines
the colour of the shape.
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Fig. 6. (A) Sample output of the system while recording the aroma
cederwood. (B, C, D) Sample shape generated by the system for banana,
coffee and ylang ylang respectively.

Fig. 7. Sample shapes and colours generated over time with a rising
intensity for the cederwood aroma. 1 - 5 shows the coloured shape
generated at 30, 37, 45, 52 and 60 seconds respectively.

Fig. 7. shows five different shapes generated from the same
recording (cederwood) with a rising intensity, from this we
can see as the odours’ intensity increases the more consistent
the colour and the shape generated by the system gets. This
compliments the findings from the PCA loadings plot Fig. 4B,
that suggests the intensity is the most influential factor, con-
sidered together this indicates a strong relationship between
the intensity of odour and the generated shape.

Fig. 8. Boxplot showing the median (red line), the minimum and
maximum values (black horizontal lines) and 25th and 75th percentiles
indicated by the bottom and top edges (blue box) respectively.

E. Odour Discrimination Experiment
In this experiment, an offline version of the system was

developed to avoid environmental contamination. The samples
consisted of 200 μL of the respective aromatic oil (16 in
total) placed on a 3cm × 1cm cotton sliver. This was then
sealed in a polypropylene test tube. The samples were then
covered in white tape and numbered, a total of 27 (9 triplet
groupings) were prepared for this experiment. Participants
(N = 12) performed an odour discrimination task, they
were presented triplets of odours in a random permutation,
and modelled after “Sniffin Sticks” [32]. Participants were
untrained with use of the system and were simply asked
to discriminate between the triplets of odours using their
sense of smell and their sense of smell with the abstract
shape. Participants were restricted to a maximum of 5 sec-
onds when smelling each odour and was done twice, first
with no visual aid and second with the coloured shape pre-
generated by the system. Fig. 8 shows that artificial emulation
of odour-vision synaesthesia increases odour discrimination,
a one-tailed paired t-test with a Bonferroni correct alpha of
α = 0.0042 = (0.05/12) was conducted to see if the per-
formance increase was statistically significant. This revealed
that use of the system increased odour discrimination than
without t(11) = −5.84, p < 0.001 and has a mean increase
of 32.40%. This task had a chance performance of 3.7% to
get 100% correct, although the participants were instructed to
use their sense of smell along with the visual aid we can not
be sure if they solely used one sense as opposed to both.

These results show that our system could enhance human
odour discrimination in a simple task, which is comparable
to that of natural synesthesia [12]. Although more prolonged
usage of the system will need to be conducted to determine if
the artificial emulation of odour-vision synesthesia can facili-
tate colour discrimination, odour identification and the extent
of odour discrimination. Although designed to be complemen-
tary, operation without using the human olfactory stimulus
can also be accomplished and might enhance information
recall when coupled with olfaction enhanced tasks [33], [34].
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The system also emulates some of the characteristics of
real syneasthesia in the sense that it is passive, real-
time, and perceived to be argumentation on the users’
visual field.

IV. CONCLUSION

We developed an olfactory sensory argumentation device
based upon an affordable electronic nose and a smartphone
for visualisation. The results revealed that using data fusion
we gain the possibility to represent complex odours in the
visual domain in real-time in the form of a 2D abstract
shape and that applying the ideology of synesthesia to human-
machine interfaces can provide overt, low attention and trans-
parent interfaces with the benefits closely resembling the
advantages of its natural counterpart. A sensory test revealed
that use of our system can significantly enhance human
odour discrimination in a simple task. Thus the proposed
solution can help augment interactive experiences with more
refined multisensorial capabilities leading to more engaging
and enriched experiences, better designs, and more transparent
human-machine interfaces. As well as, providing a framework
for human in the loop odour localisation, real-time feature
identification (e.g., [35], [36]), enhanced information recall,
and improved human cognition (e.g., [37]). We hypothesise
that these shape and colour mappings could be learnt over
time with usage of the system (increasing both olfactory
identification and colour discrimination, see [12]), similar
to sensory substitution systems (i.e., [38]) where partici-
pants learnt to associate sound patterns to images from the
real world.
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