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Abstract:  
Purpose: Numerous simulation software has been used to evaluate energy performance with 12% of the research 
focusing on long-term energy consumption prediction. This paper aims to utilize machine learning  to predict the energy 
performance of building envelope wall materials over extended periods.  
Methodology: In our work, machine learning  model learns from a large set of building envelopes simulated using the 
Integrated Environmental Solutions Virtual Environment as follows:  

• The data generation via building performance analysis applications IES-VE software using different wall 
construction scenarios and stored as a CSV file for the second stage.  

• The dataset is partitioned into training (70%) and testing (30%) samples using 10-fold cross-validation. 
• Extensive simulations are performed to optimize the model parameters in predicting the energy efficiency of 

buildings via ML algorithms. 
Findings: Machine Learning models can also be used to predict the impact of building design and construction 
characteristics on energy consumption, showing that factors such as wall thickness, orientation, and thermal mass 
indicated lower relative standard error (<0.001); however, not all of them were statistically significant (p>0.05). While 
the overall model indicates statistical significance (p = 2e-16), the multivariate linear regression  model produces  R2 
value of 0.42, indicating a weak relationship between predictor variables and target attributes. 
Originality: The utlisation of Random forset algorithm for the wall enveolp enegry consuption  
Research Implecation: different to other technqiues, our proposed approach addressed the issue related to building 
envelop for new constructions to assist professional from construction industry. 

Keywords: Energy; Building Envelop, Indoor Environment Quality, Machine Learning; Multivariate Linear Regression, Random 
Forest  

1. Introduction 
Buildings are constructed to improve occupant health and well-being while consuming minimal construction materials 
and energy usage. Globally, indoor air quality is one of the crucial health matters, as individuals spend around 85–90% 
of their daily activities in indoor spaces for different purposes (Dong, et al., 2022). In this context, the choice of building 
materials and design approach affect thermal comfort and the entire indoor environment quality. In the global market, 
where potential energy may be significantly costly, guidance for the Architecture, Engineering, and Construction 
industry (AEC) will be crucial for refurbishment and new buildings (Hussien, et al., 2023). Thus, using appropriate 
construction materials will considerably reduce energy demands, lower CO2 emissions, and improve thermal comfort 
in buildings. 
According to the geographical climate zone, building materials can be categorized into insulating and preserving 
(Jannat, et al., 2020; Aditya, et al., 2017). The former prevents outer heat gain (hot climate zones), while the latter targets 
renal heat loss (cold climate zones). Indeed, the appropriate use of building materials is critical, effectively managing 
the temperature gradients between indoor and outdoor environments. In the heat insulation climate zone, where high 
humidity, high temperature, and solar radiation are the main stressors, materials provide shading and heat protection 
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(Sudhakar, et al., 2019). Several researchers argued the possibility of controlling the indoor thermal comfort 
environment without using any mechanical system by maintaining the indoor temperature within adaptive comfort 
levels (De Dear & Brager, 2022). In the latter case, the building's envelope and other variables relating to the wall 
thickness and climate condition play an essential role in adjusting indoor air temperature (Deshko, et al., 2020). Thus, 
to achieve average indoor thermal comfort, suitable materials for the building envelope would be a legitimate option 
(Jannat, et al., 2020; Hussien, et al., 2023). A research study by (Hwang & Chen, 2022), discussed the effect of glazed 
facades on energy consumption and thermal comfort in office buildings in a hot climate. The results showed that it is 
essential to link the facades' design with the external environment to ease energy consumption and improve thermal 
comfort. Different locations offered different thermal comfort when using identical glazed facades.  
The study demonstrated an evident lack of connection between the façade design and the building environment which 
led to increased energy usage and occupant discomfort.  The researchers in (Wu, et al., 2020) evaluated the energy 
consumption between two office rooms with solar radiation and a controlled Heating, Ventilation Airconditioning 
(HVAC) system via Predicted Mean Vote (PMV) based; the results verified that the PMV-based control provided better 
thermal comfort in the highly glazed office room, and still shows savings in the energy usage. While a study by 
(Merabet, et al., 2021) discussed the conflict objectives when trying to reduce energy consumption while maintaining 
comfortable conditions in buildings, this required intelligent system design. Thus, the study implemented artificial 
intelligence (AI) techniques to find the AI-based control between energy usage and appropriate indoor comfortable 
level for buildings' occupants. On the other hand, (Alghamdi, et al., 2022) aimed to determine the most influential 
architectural design parameters that improve thermal comfort and reduce energy usage. The result showed that the 
different selections of construction materials assisted in reducing the temperature and improved occupant comfort by  
20%, reducing energy consumption by 41%. The study by (Nematchoua, et al., 2014) compared the energy consumption 
and thermal comfort between traditional and modern buildings. The results demonstrated that  traditional buildings 
were more comfortable with less humidity, while the modern houses required more air ventilation, leading to more 
energy consumption. This was due to the different construction materials used for both types of houses. The effect of 
the building envelop on energy usage and thermal comfort was discussed by (Mirrahimi, et al., 2016) in a multi-story 
building in Malaysia; the results showed that buildings' wall thickness has a crucial impact in determining the energy 
consumption due to the thermal resistance and the rate of the heat transmission from outdoor to indoor. Despite global 
efforts to decrease energy usage and reduce CO2 emissions, Green House Gag (GHG) emissions and energy usage have 
risen over the years. Among all industries, the construction industry has a crucial role in global energy demand. As 
such, improving building efficiency has become a vital objective in decreasing gas emissions and consumption of fossil 
fuels, in addition to lowering 'buildings' CO2 emissions at an early design stage. Moreover, efficient energy management 
could enhance the performance of existing stock. For instance, a potential solution would involve detailed energy 
estimations for ideal decision-making. 
Nevertheless, explanatory energy consumption in buildings remains challenging due to the variety of factors that 
impact consumption. These include physical properties, weather conditions, and the energy usage performance of the 
building occupants. Furthermore, numerous tools and software have been developed to perform energy simulations in 
buildings, relying on physical models that require thermodynamic inputs for detailed energy modeling and analysis. 
For example, EnergyPlus and Design builder have widely used software platforms that calculate energy consumption 
based on environmental parameters, construction details, HVAC systems, and climate conditions (Jannat, et al., 2020). 
However, these software have limitations as comprehensive data may not always be available for all building properties 
and environmental parameters, leading to weaker energy predictions (Mechouet, et al., 2021). In (Al-Homoud, 2001), 
the author reviewed the energy analysis methods and the possible applications for energy simulation that help decision-
making; the results demonstrated several difficulties, like; the non-linear correlation among building elements that 
affect the selection of the appropriate optimization techniques, in addition to the buildings being composed of several 
components, and an optimal solution of all components is not feasible. To be achieved, it should be noted that these 
software need a series of individual optimum decisions resulting in complicated interpretations of the problem and 
incompetence to reach an actual optimum. As such, these methods calculate energy consumption depending on current 
environmental parameters.  However, some of these data may not be available during the simulation, leading to errors 
in the predication of energy usage, as data may not be available during the simulation.  
On the other hand, the utilization of Machine Learning (ML) to predict energy consumption does not require the 
utilization of comprehensive and complete information in a similar way to the current available building software; since 
it learns from available/historical data, and as a result it gained many research interests recently including project 
management improvement, reduce risk, site safety management, cost estimation, and schedule management (Jannat, et 
al., 2020). However, our extensive literature review indicated that there is limited literature available on the use of ML 
in the context of building envelopes and construction materials. 
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Akinosho et al. (2020) compared two buildings, where data was simulated for their energy usage generated via Energy 
Plus and Ecotec. In this case, the authors studied high-performance ML models for predicting the cooling and heating 
loads of buildings, and optimizing their hyperparameters in regard to the specific application. The study implemented 
grid search coupled with a cross-validation method to evaluate the performance of the combined model parameters. 
The results revealed the ability to recognize insignificant variables, resulting in efficient model fitting. Another study 
by  (Olu-Ajayi, et al., 2022) presented a comprehensive overview of ML approaches, including artificial neural networks, 
support vector machines, and Gaussian process regression, which are popular in explanatory prediction and 
enhancement of energy performance in buildings. The study revealed that determining the best ML model is not 
straightforward and model performance depends on the sample number and the appropriate tuning of the ML method 
parameters. Another study   (Mousavi, et al., 2022) focused on analyzing the advances in the state-of-the-art machine 
learning models combined with Building Information models (BIM), computer vision, and their related technologies to 
enable the digital evolution of tunneling and underground construction. The results revealed a significant gap in the 
literature related to the use of ML in BIM. 
Bhamare et al (2021) employed ML model to predict the thermal performance of building roofs. Five hundred data were 
generated via numerical simulation using five ML models, including extreme gradient, extra trees regression, random 
forest regression, gradient boosting, and gate boost. The results showed that gradient boosting was the best-performing 
model providing training efficiency, good generalization in the testing data, and robustness. In another study by 
(Zhang, et al., 2022) , ML was used to predict shear walls' strength and deformation capacity. Their simulation results 
revealed that RF model was the best prediction method for shear wall strength and deformation capacity estimation.   
Despite the extensive utilization of ML in predicting energy usage, our literature review indicated that there is limited 
literature available on the use of ML in the context of building envelopes and construction materials. 
This study focuses on the various characteristics of the wall materials used in building envelopes, which affect energy 
efficiency and indoor' thermal comfort in the UAE's hot climate aiming to utilize ML to predict the energy performance 
of building envelope wall materials over extended periods.,  
As such, the novelty proposed in this paper involves:  

• To the best knowledge of the authors, we are the first to implement ML models for building envelope energy 
prediction. 

• Develop parametric simulation analysis via the IES-VE platform, addressing the findings and evaluating the 
thermal reactions of different construction materials for moderating indoor temperature with the possibility of 
energy-saving.  

• Presenting the interpretable ranking for energy reduction, lower CO2 emissions, and improved thermal comfort 
that could be useful for experts in the field. 

The remainder of the paper is organized as follows. Section 2 presents the detailed proposed methodology along with 
the dataset utilized in this study. Section 3 demonstrates the statistical outcomes and performance evaluation of various 
ML models used to predict energy consumption. Finally, Section 4 concludes the study outcomes and presents future 
directions.  

2. Methods 
The proposed approach for the Buildings' energy performances comprises a composite of several data analysis and ML 
algorithms, including: a) Dataset compilation, consisting of building materials, wall thickness, construction 
configuration, orientation, and construction shape prepared using IES-VE software b,) pre-processing, to eliminate the 
noisy samples and to standardize the dataset to the required form c) predictive modeling, to predict the energy 
consumption in buildings and d) model interpretation particularly, identifying the importance of input factors and 
performance evaluation of predictive models. Figure 1 shows an overview of the research methodology for this work. 
Further details about each component are provided in the following sub-sections.   
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Overview of the research methodology. 

As shown in Figure 1, the proposed system consists of 2 stages, first, the associated models are generated, and 
simulations are performed via IES-VE ApacheSim. The data is stored as a CSV file in the second stage and split into 
training (70%) and testing (30%) samples using K-fold cross-validation (K=10) (Wong & Yeh, 2019). Extensive 
simulations are then performed to optimize the model parameters in predicting the energy efficiency of buildings. One 
hotkey encoding is used to transform the categorical variables of the dataset into numerical form. Once data conversion 
is completed, data cleansing (e.g., outlier removal, data imputation) and standardization (i.e., normalization) are 
performed. Outliers are removed using the interquartile range (IQR) (Han, et al., 2021).  
 

2.1. Dataset 
The dataset was simulated using the IES-VE software to measure the thermal performances of the building envelope in 
the context of energy efficiency improvements. Simulation stages included in Table 1 which shows the different options 
used in the simulation: 
Stage 1: Different Wall Materials 
Stage 2: Different Thicknesses of the Wall 
Stage 3: Different Orientation of the Space 
Stage 4: Different Wall Construction  
Stage 5: Different Shape Factors 
 
For example, a wall built with HCB was simulated with 200mm thickness and 0 orientation (North), with wall construction W1 and 
shape A. then HCB was simulated with 200mm thickness and 0 orientation (North), with wall construction W1 and shape B. 
 
Table 1 The simulation input details used for use IES-VE software 

Materials Thicknesses of the 
Wall (222-300) 

Orientation of the 
Space (0, 45, 90, 135) 

Wall Construction 
Types (13 types) 

Shape Factors (total 
3shapes) 

 
Heavy-weight 
Concrete Block(HCB) 

222 0 45 90 135 1-13 (figure 1) A B C 
300 0 45 90 135 1-13 (figure 1) A B C 

Aerated Concrete 
Block (ACB) 

222 0 45 90 135 1-13 (figure 1) A B C 
300 0 45 90 135 1-13 (figure 1) A B C 

Common Fried Brick 
(CFB) 

222 0 45 90 135 1-13 (figure 1) A B C 
300 0 45 90 135 1-13 (figure 1) A B C 

Unfired Brick (UFB 222 0 45 90 135 1-13 (figure 1) A B C 

Design Scenario analysis 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

13 wall construction  

Orientation  

temperature 

Wall thickness 

Formula calculation  Best wall  

ML stage 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dataset from IES 
Define training 

Test data/training 

   

Train and optimize 

prediction 



 

300 0 45 90 135 1-13 (figure 1) A B C 

 
 

Orientation diagram Building shapes A, B, and C 

 
 
A total of 1119 data were stimulated according to the different options for each wall. The outcomes related to the samples of 
the data used are presented in Table 2. 
 

Table 2: a sample of walls details used in the simulation with different Thermal Performance and energy consumption. 
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W-1 222 N ACB A 1.64 0.43 0.33 136.89 11.74 
W-2 222 N ACB A 0.91 0.53 0.13 8.53 10.72 
W-3 222 N ACB A 0.96 0.72 0.17 156.80 9.72 
W-4 222 N ACB A 1.83 0.96 0.52 154.74 12.25 
W-5 222 N ACB A 1.22 0.83 0.63 202.10 9.52 
W-6 222 N ACB A 0.93 0.98 0.42 174.92 8.34 
W-7 222 N ACB A 0.63 1.26 0.53 90.63 8.62 
W-8 222 N ACB A 0.74 1.96 0.64 264.95 11.71 
W-9 222 N ACB A 0.61 1.48 0.52 207.92 10.00 
W-10 222 N ACB A 0.64 1.38 0.17 73.05 10.31 
W-11 222 N ACB A 0.84 1.31 0.09 72.77 9.26 
W-12 222 N ACB A 0.71 1.23 0.21 73.05 9.62 
W-13 222 N ACB A 0.63 0.88 0.12 78.23 9.81 

 
The building envelope walls and energy-use case data in this research study were simulated using the IES-VE software 
via a range of applications, including ApacheSim, to evaluate heat deviation, cooling and heating, heat transfer, and 
energy demand. In addition, a variety of brick materials were used to model wall spaces, including Heavyweight 
Concrete Block (HCB), Aerated Concrete Block (ACB), Common Fried Brick (CFB), and Unfired Brick (UFB). At the 
same time, wall thickness varies from 222 to 300 mm depending on the materials used and the construction 
configurations. Furthermore, the spaces were simulated with various construction methods and orientations, including 
0 (representing North), 45, 90, and 135 degrees, to investigate the impact of the orientation of the building on its energy 
demand. Figure 2 shows the details of the 13 walls used in the simulations to determine the thermal efficiency of 



 

materials via various wall constructions. The objective of the simulations is to assess the impact of the construction 
method and wall layers on the thermal performance of buildings. Table 3 shows examples of the different ApacheSim 
simulations with the associated equations used in this research study.  
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Figure 2. The details of the 13 walls used in the IES-VE A ApacheSim simulations. 
 
Table 3. Examples of the different ApacheSim simulations with their equations 
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(Eq. 1) 
 

⍺ is the thermal conductivity 
(m2/s) 
 
𝜆𝜆 is thermal conductivity 
(W/mK)  
 
𝜌𝜌 is the density (kg/m3) 
 
𝐶𝐶𝜌𝜌 is the specific heat 
capacity J/(kgK). 
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(Eq. 2) 

 

To find the speed at 
which the surface of 
the materials gets 
warm. 
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(Eq. 3) 
 

(𝑇𝑇𝑛𝑛) is the temperature 
(oC), at a node n and 𝛿𝛿𝑛𝑛 is 
the local node spacing (m). 

To find the heat 
differentiation and to 
ensure accuracy. 
Several nodes 
distributed within the  
layers ensure 
accurately 
modeling the transfer 
of heat and storage 
characteristics for the 
chosen time-step. 
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(𝑇𝑇𝑛𝑛
𝑗𝑗) is the temperature 

(oC) 
(𝑇𝑇𝑛𝑛

𝑗𝑗) is the temperature 
time derivative (K/s) at 
node n and time-step (j). 

To express the 
temperature time 
derivative  
∂T / ∂t  
at present time: 
Explicit methods use 
a forward-difference 
scheme, which uses 
present and 
future values of the 
nodal temperature  
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(Eq. 5) 
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Are the energy demand 
for heating and cooling of 
the building zone (MJ), 
respectively. 
 
𝑄𝑄𝐿𝐿,𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝐿𝐿𝐿𝐿  are the total 
heat losses. 
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(Eq. 6) 
 

QL is the total heat 
transfer (MJ), QT is the 
total heat transfer by 
transmission (MJ), and QV 
is the total heat transfer by 
ventilation (MJ). 

To calculate the   total 
heat transfer 

 
The heat transfer ratio via building structure, whether composite or single, is known as the thermal transmission or U-
value, which is normalized by the variations in the temperature across the building structure, depending on the thermal 
resistance (R-value). The latter depends on the thickness of the materials and their thermal conductivity. The lower the 
heat loss is, the higher the resistance (Jannat, et al., 2020). Thermal diffusivity relates to the status of heat transfer, 
indicating how fast the temperature of a material achieves a thermal balance with the adjacent temperature. A higher 
thermal diffusivity value reveals faster heat transmission through the material (Zhang, et al., 2019). Figure 3 shows the 
monthly and annual minimum, maximum, and mean air temperatures in the UAE, where the data for this study is set.. 
 



 

 
 
  

Figure 3. A depiction of the UAE minimum, maximum, and mean air temperatures per month and year (Alqasemi, 
2022). 
 
2. 2. Machine leaning methods for the energy consumption prediction  
In  this section two machine learning models are utilized for the prediction of energy consumption of building envelops 
using MLR and RF since they represent the state of the art models that showed good performance in various 
applications. 

2.2.1. Multivariate Linear Regression (MLR) 
Multivariate Linear Regression (MLR) is a popular regression technique where multiple explanatory variables 
contribute to the dependent variables. The research study used MLR for the multi-attribute analysis to investigate the 
inter-relationships of multiple factors, shown in Table 4, and the target variable (i.e., energy consumption). The 
algorithm calculates a set of coefficients for the independent explanatory variables, which can be written as: 

𝑌𝑌𝒾𝒾 = 𝛼𝛼 + 𝛽𝛽1𝓍𝓍𝔦𝔦
(1) + 𝛽𝛽1𝓍𝓍𝔦𝔦

(2)+. . . . . +𝛽𝛽1𝓍𝓍𝔦𝔦
(𝓃𝓃)           (Eq. 7) 

where Yi is the estimated value of ith component of the dependent variable Y (Energy consumption), n is the number of 
independent variables (n=26, in this study), 𝑥𝑥𝑖𝑖

𝑗𝑗 is denoted by the ith component of jth explanatory variable.  
The parameter α in Eq. 7 represents the constant term, while the parameter βi represent the corresponding coefficients 
for each explanatory variable, which are given in Table 4.  
 
The associated cost function (i.e., model error, also known as residuals) is given by: 

 
𝐸𝐸�𝛼𝛼,𝛽𝛽1,𝛽𝛽2…..,𝛽𝛽𝑛𝑛,) =

1
2𝑚𝑚

∑ (𝓎𝓎𝒾𝒾 − 𝑌𝑌𝒾𝒾)          𝑚𝑚
𝑖𝑖=1     (Eq. 8) 

 
Where m is the number of training data patterns (m=936 in this study) and yi is the dependent variable's observed data 
(i.e., ground truth). Table 4 summarizes the parameters defined in Eq.8 in the context of the proposed model. It can be 
noticed that β  (i.e., slope coefficient for each explanatory variable) varies for different explanatory variables. A higher 
positive and negative β  indicates strong positive and negative relationship with the target variable (Y), respectively. 
For instance, β = 0.4 (for thermal mass) in Table 4 shows that the target variable (Y) will increase by 0.4 units if the 
thermal mass increases by 1 unit, indicating a positive relationship between these variables. Likewise, the energy 
consumption will decrease by 0.15 units with 1 unit rise in Construction type-WL (indicating a negative relationship with 
target variable). 
 
 
 
 
 

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Year
Min (oC) 15 17 19 22 26 29 31 32 29 25 21 17 23.7
Max (oC) 24 26 29 34 38 40 41 42 39 36 31 26 33.9
Mean (oC) 19.9 21.2 23.8 28 32.1 34.4 36.4 36.7 34.2 30.6 25.9 21.9 28.7

0
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Min (oC) Max (oC) Mean (oC)

Linear (Min (oC)) Linear (Max (oC)) Linear (Mean (oC))



 

Table 4. The intercept and coefficient values for the proposed MLR model for the prediction of yearly energy 
consumption 

Explanatory Variable (x) β Standard Error  
Construction type_WA -0.04 0.033 
Construction type_WB -0.06 0.034 
Construction type_WC -0.08 0.033 
Construction type_WD -0.14 0.033 
Construction type_WE -0.08 0.034 
Construction type_WF -0.04 0.033 
Construction type_WG -0.10 0.033 
Construction type_WH -0.08 0.034 
Construction type_WI -0.11 0.033 
Construction type_WJ -0.12 0.034 
Construction type_WK -0.12 0.033 
Construction type_WL -0.15 0.034 

Wall thickness -0.04 0.025 
Orientation 0.03 0.025 

Material_ACB -0.003 0.031 
Material_CFB 0.022 0.031 
Material_HCB -0.02 0.031 

Shape_A -0.0001 0.028 
Shape_B 0.01 0.029 
Shape_C 0 0 

Thermal transmittance  0.17 0.028 
Thermal resistance  0.02 0.027 

Decrement factor/ summer day 0.31 0.028 
Thermal Mass 0.40 0.027 

Constant term (α) 0.008 0.025 
 

Further details and mathematical formulation of MLR can be found in (Maulud & Abdulazeez, 2022). The magnitude 
of the altered R2, the relative standard error (RSE) for the regression, and the significance value results of the t-test for 
the individual explanatory variables can be used as the performance measure of the MLR. Furthermore, visualizations 
of the diagnostic plots for the residuals versus the fitted values and R2 are useful to visualize the performance of the 
regression model.  

2.2.2 Random Forest (RF) 
Random Forest (RF) can be thought of as a potentially non-linear alternative to MLR. RF is a very popular method used 
in various classification and regression tasks. The RF algorithm can effectively and efficiently produce high-dimensional 
feature partitions based on the strategy of divide-and-conquer, where the distribution probability is situated. 
Additionally, it enables density estimation for random functions, which can be used in classification, clustering, and 
regression tasks. The main concept is to use multiple weak models (in the form of decision trees), where each model is 
trained over bootstrapped samples from the dataset. In Bootstrap process, random samples of subsets are generated 
from a given dataset (for specific number of iterations) for given number of variables. Bootstrap RF aggregation in this 
context, combines ensemble learning methods leading to reduced variance of the learning model, which is a major 
challenge in regression tasks. In the aggregation step, the average outcome of each observation across all models is 
calculated as the final prediction for the corresponding observation (i.e., test data sample). This study uses the 
Random Subspaces method and bagging to achieve robust regression results (i.e., utilizing the concept of bagging 
predictors).  
It is important to note that identifying the best trade-off between bias and variance (i.e., low bias-low variance) is one 
of the common challenges with ML models, particularly decision tree. A single model (e.g., a single decision tree) can 
possibly have either low-bias high-variance, high-bias low-variance, or high-bias high-variance, which is controlled in 
the present study by utilizing an ensemble modelling approach with bagging. Using the bagging technique, multiple 
regressors with varying structures (i.e., with different depths, number of trees, different subsets of input attributes and 



 

different samples in each bag for each regressor) are created to identify the optimal regression points. Based on the 
results from multiple regressors, prediction error from each tree is aggregated to reduce the overall prediction error, 
thus simultaneously reducing the bias and variance in model predictions. In addition, bootstrapping (sampling with 
replacement) helps perform the splits among different input attributes at varying levels with lowest Entropy/highest 
information gain which makes the decision trees highly uncorrelated and strong regressors as compared to non-
ensemble learning. We further perform model tuning (using randomized search and cross-validation) with varying 
parameters (e.g., number of trees, no. of variables in a split, tree depth etc.,), to achieve optimal outcomes. 
Mathematically, the mean squared error (MSE) from a RF regression model can be represented as:   
 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁
∑ (𝑓𝑓𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1     (Eq. 9) 

Where 𝑁𝑁 is number of data points, 𝑓𝑓𝑖𝑖 is the model output, and 𝑓𝑓𝑦𝑦 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖. Equation 9 
calculates the distance of each node from the model predicted actual value to identify which tree provides better 
decision in the forest. Further technical details, including explanations of the decision tree structures and the feature 
bagging approach can be found in related works (Khan, et al., 2021; Breiman, 2001). 
 

3. Results and Discussions 
Experiments were conducted using the dataset described in Section 2.1, and multiple predictive ML models to predict 
the energy consumption as a target variable. For evaluation and comparison purposes, we used R2 and the relative 
standard error (RSE) criteria for MLR, while the variance in the proportion and RSE criteria were chosen for RF, as 
suggested in similar works (Oukawa, et al., 2022). Furthermore, we used  10-fold cross-validation method to evaluate 
the model generalization and reliability on the unseen samples. The first set of experiments utilized MLR to model the 
energy consumption, as shown in Table 1. The RSE values ranged from 0001 to 0.4. It can be noticed that wall thickness, 
orientation, and thermal mass indicated lower RSE (<0.001); however, not all of them were statistically significant 
(p>0.05). For instance, the RSE for the orientation is 0.001, whereas the statistical significance test did not indicate a 
strong relationship with the target attribute (p=0.23). In contrast, the feature of DF summer day showed a relatively 
higher RSE (0.23). However, it indicated statistical significance for the relationship with the output (p = 2e-16). While 
the overall model indicated statistical significance (p = 2e-16), the overall MLR model produced an R2 value of 0.42, 
indicating a weak relationship between explanatory variables and target attributes. We used 25% of the data to predict 
using the MLR model, which resulted to a mean squared error (MSE) of 0.6. The statistical outcomes of the MLR model 
in predicting energy consumption are presented in Table 5. 

 

Table  5. Overview of the MLR model's statistical outcomes in predicting energy consumption. 

Variable RSE Significance (p-value) 
Overall 0.70 0.73 

construction.type_WA 0.41 0.52 
construction.type_WB 0.40 0.26 
construction.type_WC 0.40 0.0.05 
construction.type_WD 0.41 0.0003 
construction.type_WE 0.40 0.23 
construction.type_WF 0.41 0.45 
construction.type_WG 0.41 0.004 
construction.type_WH 0.41 0.001 
construction.type_WI 0.41 0.002 
construction.type_WJ 0.40 0.0001 
construction.type_WK 0.41 0.001 
construction.type_WL 0.40 0.0001 

Wall thickness 0.002 0.24 
Orientation 0.001 0.23 

Material_ACB 0.22 0.88 
Material_CFB 0.22 0.53 
Material_HCB 0.22 0.32 



 

Shape_A 0.19 0.75 
Shape_B 0.19 0.98 

Thermal transmittance  0.13 8.27e-08 
Thermal resistance 0.16 0.28 

Decrement factor/summer day 0.23 2e-16 
Thermal Mass 0.001 2e-16 

 
As we used one-hot encoding for several explanatory variables (e.g., construction type), we further performed a 
correlation analysis to visualize the inter-relationship between the encoded variables. Figure 4 shows the correlation 
plot for the entire dataset. It can be noticed that there is no inter-relationship between the sub-types of construction wall 
type, while there was a weak negative relationship between material sub-types (i.e., the encoded variables). On the 
other hand, the thermal mass, U-value, and DF variables indicated a weak positive inter-relationship with the target 
variable. This also aligned with the outcomes from the MLR model (in Table 5), which indicated the statistical 
significance of these variables. 

 

 
Figure 4. Correlation analysis between explanatory and target variables.  

 
Figure 5(a) shows the prediction performance of the MLR model for the unseen proportion of the dataset (30% of the 
dataset). It can be noticed that the overlapping between the ground truth (red line) and the predicted values (green line) 
has substantial deviations, which shows the poor prediction of the MLR on the unseen data. By further observing the 
performance of the MLR model, it can be concluded that it followed the trend of the data. However, it cannot precisely 
track the extreme energy consumption values, possibly due to its linear nature. Moreover, we employed the pseudo-r-
square tool (Di Franco & Santurro, 2021), a well-known statistical measure for the goodness of model fit. Figure 5(b) 
shows that the predicted values are dispersed from the actual values (ground truth), producing an R2 value of 0.42, 
which indicates poor MLR model prediction on the testing set.  

 



 

 
(a) 

 
(b) 

Figure 5. MLR performance on the testing set. (a) Plot of predicted vs. actual energy consumption. (b) R-square fitness 
test.  

 
Alternatively, we evaluated the predictive performance of Random Forest approach (as described in Section 2.3). Figure 
6(a) shows the configuration of the number of trees used in RF, indicating a stable error value for 100 trees 
(approximately). Likewise, Figure 6(b) shows the optimal selection of several variables randomly sampled as candidates 
at each split (mTry = 6), producing a minimum out-of-bag error (OOB error).  
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(b) 

Figure 6. Random forest performance. (a) Plot of the mean squared versus the number of trees used in RF, (b) Plot of 
the Out-of-Bag error vs candidates at each split. 

One of the main benefits of tree-based ML models is their ability to deal with various data types, including categorical 
data. Thus, the RF model was trained over the original dataset, i.e., without using any data conversion (one hotkey 
encoding). Similar to MLR model, the RF model was trained on 70% of the data and evaluated on the remaining 30% of 
unseen instances. Figure 7(a) shows the RF model's prediction performance for the dataset's unseen proportion. It can 
be noticed that there is a high degree of overlap between the ground truth (red line) and the predicted values (green 
line), which demonstrated the superior prediction performance of the RF model on the unseen data. Statistical analysis 



 

of outcomes indicated a 92.5% variance, explained by the model, resulting in an MSE of 0.07 in the training set. Figure 
7(b) shows the statistical measure of goodness of fit, indicating the variation of energy consumption, explained by the 
explanatory variables in the RF regression model. It can be noticed that for the testing set, the model produced a pseudo 
R2 = 0.92, which indicated the robustness of the RF as compared to MLR (with R2 = 0.42). 

 

 

(a) 

 

(b) 

Figure 7. RF performance on the testing set using the original data representation. (a) The plot of predicted vs. actual 
energy consumption. (b) R-square fitness test.  

 

Figure 8 shows the importance of variables in the prediction task, which is one of the powerful features of the RF model, 
i.e., explainability. It should be noted that the Y-axis represents the variable's name, while the x-axis represents the 
increase of %IncMSE in prediction.   



 

The outcomes showed that the parameters of DF summer day, R-value, thermal mass, and U-value are significant 
contributors to the regression model. Interestingly, this aligned with the MLR outcomes of statistical significance (with 
p-values<0.05) for most cases (e.g., thermal mass, DF, thermal transmission) except R-value (i.e., thermal resistance), 
which was identified as significant in the RF model but not in the MLR model. The R-Value is related to the wall 
thickness and measures heat flow resistance through different construction materials. Therefore, the greater the R-value, 
the better the material's thermal resistance. Thus, this is considered a significant contributor to the building wall 
envelopes.  
 

 

Figure 8. Attribute importance to the original data representation (without encoding) using the RF model. 

 
While the RF model produced promising regression outcomes, it is essential to note that the original data representation 
was used (i.e., without the use of one-hot key encoding). For fairness of comparison with the MLR model, further 
experiments were conducted using the transformed dataset, i.e., the data configuration used in the MLR model. Figure 
8 shows the prediction performance of the RF model in the case of unseen samples, indicating a perfect overlap between 
ground truth and predictions. It can also be noticed that the R2 score has also significantly improved to 0.95, indicating 
the optimal fitness of the regression model.  
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                                                       (b) 

Figure 9. RF performance on the testing set using the transformed data representation. (a) Plot of predicted vs actual energy 
consumption. (b) R-square fitness test. 



 

 

Figure 10. Using the RF model, attribute importance for the transformed data representation (with one-hot key 
encoding). 

Figure 10 shows the variable importance of the encoded data retrieved from the RF model. Similarly to Figure 9 (a, and 
b), which presented the variable importance identified by the RF model on the original data representation, the variables 
of DF summer day, R2 value, thermal mass, and U-value were significant contributors to the regression model. In 
addition, we can easily identify the attribute significance for the discrete level factors (e.g., construction types W1-W13). 
For instance, construction type W1 contributes more towards the model prediction than W2, W6, and W11.  

Table 6. Performance comparison and findings between the use of the RF model on the original vs. the one-hot 
key encoded data. 

Parameter Original data Encoded data 
Type of RF Regression Regression 

mTry 6 19 
No. of trees 100 100 

Var explained 92.5 93.15 
MSE 0.073 0.06 

Attribute 
importance 

Df summer day, R-value, thermal mass, 
and U-value 

Df summer day, R-
value, thermal mass, 

and U-value 
Thermal 

resistance 
0.68 0.95 

R2 0.92 0.95 
 

Finally, Table  6 compares the statistical outcomes from the RF model for both scenarios (original data vs. encoded data). 
It can be noticed that the RF performed better for the encoded data, indicating a slight reduction in MSE (from 0.073 to 



 

0.06) and an increase in R2 (0.92 to 0.95). Similar outcomes are shown from the test of significance, where the R-value 
increased from 0.68 (for the original data) to 0.95 (for the encoded data), indicating higher similarity between ground 
truth samples and model prediction. The attribute importance remained unchanged in both scenarios; however, 
encoded data was useful in identifying attribute importance at a discrete level (i.e., for sub-types of attributes, such as 
construction wall types).  
The research study by (Bhamare, et al., 2021), implemented five different ML-based models (XGBR, RFR, GBR, ETR, 
and CatBoost Regression) to predict the PCM integrated roof envelopes. The data set for the study involved melting 
enthalpy, density, specific heat, thermal conductivity, and melting temperature for the direct building thermal 
performance calculations via 500 data generated via the MATLAB algorithm. The results showed that the GBR model 
performed best among the other 4 ML models. It showed the root mean squared error values and a least mean absolute 
error of 0.3741 and  0.23, respectively, compared with the other ML models. They demonstrated an R2 value of 97.92%. 
CatBoost Regression and RFR have indicated decent accuracy prediction with R-Square values of 97.54% and 97.70%, 
respectively. The ETR model showed a root mean absolute error and root mean squared error values of 0.34 and 0.36, 
respectively, and a minimum R2 value of 94.56%. 
Table 2. Benchmark of various ML learning algorithms for energy consumption 

Reference ML Utilization Results 

(Bhamare, et al., 
2021) 

XGBR, RFR, 
GBR, ETR, 
and 
CatBoost 
Regression 

PCM integrated 
roof envelopes least mean absolute 0.3741 

(Quevedo, et al., 
2023) 

SVM, ANN, 
MLR 
 

Energy 
benchmark for a 
university 
building in Brazil 

The SVM method had the lowest 
mean absolute error, root mean 
absolute error, and the highest 
R2 value 

(Ngo, et al., 2022) 
SVR, GWO, 
RF, M5P, 
REPTree 

Energy use 
forecast 
for a commercial 
building in 
Vietnam 

The average root-mean-square 
error (RMSE) of the WIO-SVR 
was 2.02 kWh which was more 
accurate than those of the SVR 
model with 10.95 kWh, the RF 
model with 16.27 kWh, the M5P 
model with 17.73 kWh, and the 
REPTree model with 26.44 kWh. 

(Mohammadiziazi & 
Bilec, 2022) 

RF, MLR, 
XGBoost, 
single 
regression 
tree 

climate change 
analysis in USA 

RF model provided better 
performance and reduced the 
mean absolute error by 4%, 11%, 
and 12% compared to XGBoost, 
single regression tree, and MLR, 
respectively. 

(Dong, et al., 2021) 
ANN, SVR, 
MLR 
 

Hourly energy 
consumption 
prediction of an 
office building 
 

The Method not only improved 
the prediction accuracy of SVR, 
ANN and stacking model but 
also maintaining the stability of 
SVR algorithm. The limitation of 
this strategy is that energy 
consumption patterns are based 
on the results of an analysis of 
particular building usage over 
some time. When the research 
subject changes or a new running 
pattern appears, it cannot be 
updated in time 

Our proposed 
technique 

RF, and 
MLR 

Buildings' 
Envelope Wall 
Materials 

RF performed better for the 
encoded data, indicating a slight 
reduction in MSE (from 0.073 to 



 

0.06) and an increase in R2 (0.92 
to 0.95). 

 
As it can be shown in Table 7, various ML models have been utilized in the context of building energy consumption 
prediction in which the researcher works focused on integrated roof envelopes, energy forecast for commercial 
buildings, climate change analysis, hourly energy consumption prediction, which were specific and narrowed down 
experiments that did not take extensive considerations to the surrounding environments, various construction 
materials, wall thickness, orientation, wall configuration, and construction shapes at the same time. This is different 
from our proposed approach, which utilized RF and looked extensively at all these parameters that affect energy 
consumption in buildings. In addition, all ML techniques provided in Table 7 looked at existing building conditions to 
benchmark the energy usage, forecast energy consumption and climate change analysis while our proposed approach 
addressed the issue related to building envelop for new constructions to assist professional from construction industry 
to select the optimum wall thickness, orientation, construction methods and shape in advance and before the 
construction of the building. This is significant since it provides an improved carbon footprint for new buildings.  
 

4. Conclusion 
This research aimed to develop a thermal performance prediction model for wall envelopes in buildings in the UAE via 
ML methods. RF was utilized in this work to predict energy consumption, in which our extensive simulation results 
indicate that RF outperformed conventional approaches, including MLR. The proposed models were trained and 
validated using a dataset simulated in the IES-VE to assess their thermal performances as potential energy efficiency 
improvements. The RF model was evaluated using one-hot key encoding, in which the model demonstrated superior 
performance. In addition, the proposed RF-based energy consumption prediction is useful for interpreting and 
visualizing the attributes’ ranking as a feature extraction model. This might be useful for building life cycle assessments 
as they can lead to more efficient and effective utilization of energy resources. The findings can help to reduce energy 
consumption, resulting in cost savings and lower carbon emissions. 
The findings of our work contribute and provide valuable inputs as follows. 
• A ML framework is proposed as a powerful prediction methodology to improve energy performance in the 

construction industry and enhance the energy efficiency of buildings. 
• RF can be suggested as an efficient method for explanatory energy consumption in the building sector. 
• Prediction results were evaluated with statistical tests. These were identified as significant in the case of the RF 

model but not for the MLR model. The prediction performance of the RF model over unseen samples demonstrates 
a perfect overlap between ground truth and predictions. It can be noticed that RF generates R2 value equal to 0.95, 
indicating the optimal fitness of the regression model. In the case of the MLR, the results showed an R2 value of 
0.42, which indicates poor prediction performance on the testing set. 

Although ML models have been implemented widely within the construction sector, various gaps and limitations were 
discovered. For example, some studies are yet in the research and development stage, while the sector has approved 
very few for use in real-world settings. This could be due to deficiencies in the training data. In addition, if implemented, 
the cost benefits of ML cannot be accurately estimated because a potential model working well for number of buildings 
may not be appropriate for others. 
Future works will involve using larger and more diverse data sets to train various ML models, including but not limited 
to recurrent neural networks, long short-term memory (LSTM), and adaptive models.  
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Abbreviations 

A list of the abbreviations used in this paper is given as follows. 
IES-VE Integrated Environmental Solutions- Virtual environment  
CSV Excel Sheets 
ML Machine Learning 



 

R2 Regression correlation Coefficient 
AEC Architecture Engineering and construction  
CO2 Carbon dioxide  
PMV Predicted Mean Vote 
AI artificial intelligence 
GHG Green House Gag 
HVAC Heating, ventilation and airconditioning  
BIM Building Information models 
RF Random Forest  
MLR Multivariate Linear Regression 
HCB) Heavy-weight Concrete Block( 
ACB Aerated Concrete Block 
CFB Common Fried Brick 
UFB Unfired Brick 
U-value the rate of transfer of heat through a structure 
R-value the ability of insulation material to resist heat flow 
R-Square the coefficient of determination 
RSE the relative standard error 
MSE mean squared error 
OOB error out-of-bag error 
XGBR  Extreme Gradient Boosting 
RFR Recursive Feature Elimination 
GBR Gradient boosting 
SVM support vector machine 
ANN Artificial neural network 
GWO grey wolf optimization 
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