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Abstract—Gaussian process (GP) is arguably the most widely
used machine learning method in the surrogate model-assisted
antenna design optimization area. Despite many successes, two
improvements are important for GP-based antenna global op-
timization methods, including (1) the convergence speed (i.e.,
the number of necessary electromagnetic simulations to obtain
a high-performance design), and (2) the GP model training
cost when there are several tens of design variables and/or
specifications. In both aspects, state-of-the-art GP-based methods
show practical but not desirable performance. Therefore, a new
method, called self-adaptive Bayesian neural network surrogate
model-assisted differential evolution for antenna optimization
(SB-SADEA), is presented in this paper. The key innovations
include: (1) The introduction of Bayesian neural network (BNN)-
based antenna surrogate modeling method into this research area,
replacing GP modeling, and (2) a bespoke self-adaptive lower
confidence bound method for antenna design landscape making
use of the BNN-based antenna surrogate model. The performance
of SB-SADEA is demonstrated by two challenging design cases,
showing considerable improvement in terms of both convergence
speed and machine learning cost compared to state-of-the-art
GP-based antenna global optimization methods.

Index Terms—Antenna design, Antenna optimization, Bayesian
neural network, Computationally expensive optimization, Differ-
ential evolution, Lower confidence bound, Surrogate modeling

I. INTRODUCTION

Evolutionary algorithms (EAs) are widely used in antenna
design [1], [2]. Due to their ability to jump out of local optima,
without the need of an initial design, and generality, they
are showing advantages for many design cases. Differential
evolution (DE) [3] and particle swarm optimization (PSO) [4]
algorithms are arguably playing the leading role in EA-driven
antenna design [2], [5], [6]. However, considering full-wave
electromagnetic (EM) simulations are often needed to obtain
accurate performance of a candidate design, and EAs often
need tens of thousands of such EM simulations to obtain the
optimal design, the optimization time can be prohibitive.
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Therefore, surrogate models, constructed by machine learn-
ing techniques, are trained to approximate the antenna per-
formance obtained by EM simulations [7]. Hence, in the
optimization process, many computationally expensive EM
simulations can be replaced by computationally cheap surro-
gate model predictions. The optimization time can, therefore,
be largely reduced. Note that this research focuses on online
surrogate model-assisted antenna global optimization, where
the surrogate model keeps being updated in each iteration.

Three critical factors for online surrogate model-assisted an-
tenna global optimization are the surrogate modeling method,
the search operators, and the model management method. The
surrogate modeling method refers to the machine learning
core and its associated bespoke operators for antennas. Search
operators refer to the optimization engine. Model management
method refers to the framework making surrogate modeling
and optimization work harmoniously. Since prediction uncer-
tainty is unavoidable, which may lead to wrong convergence,
identifying high potential candidate designs under uncertainty
to maintain correct convergence and optimal update of the
surrogate model are the goals of model management. The three
factors are strongly interconnected.

Among online antenna global optimization methods, the
surrogate model-assisted differential evolution for antenna
optimization (SADEA) series [8], [9], [10], [11] is one of
the state-of-the-art approaches. For design cases with fewer
than 20 design variables and a few specifications, the latest
P-SADEA method [10], [12] obtains better design quality
than DE and PSO, while improving the speed by up to 30
times without parallel computing. P-SADEA shows success in
challenging antenna cases where DE and PSO fail to obtain
feasible designs, e.g., [13]. For antenna cases with several tens
of design variables and/or specifications, machine learning cost
becomes a new challenge, which may be even higher than
EM simulation cost [11]. To the best of our knowledge, the
TR-SADEA method firstly addresses this challenge and shows
success for complex base station antennas [11].

In the evolution of the SADEA series, the main innovations
locate in the model management method and the search oper-
ators. Considering the surrogate modeling method, to the best
of our knowledge, not only the SADEA series but Gaussian
process (GP) machine learning is also the routine of most
state-of-the-art surrogate model-assisted antenna optimization
methods [14], [15], [16], [17]. For the often highly multimodal
antenna design landscape [10], a strong machine learning
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method is essential. GP stands out due to its mathematical
soundness, leading to stronger learning ability, with very few
empirical parameters, and can provide a rigorous prediction
uncertainty for each candidate design in optimization.

However, GP has its drawbacks, i.e., its training cost [18].
GP’s training time grows cubically with the number of training
data points, which is highly related to the number of de-
sign variables and specifications. Considering normal desktop
computers (e.g., Intel i7 3.0 GHz CPU), for antennas with
a few design variables, GP training time is short. However,
for antennas with more than 20 and even around 50 design
variables with more than 10 specifications, TR-SADEA uses
1-2 days for GP model training [11] (note that 90% of
the expected training time compared to standard SADEA is
reduced by a new GP model sharing method). Clearly, this
training cost is practical but not desirable.

For design cases with very challenging specifications, e.g.,
[13], most surrogate model-assisted antenna global optimiza-
tion methods still need a few thousand EM simulations,
sometimes costing more than a week. Hence, much space
is left for improving the convergence speed (i.e., the nec-
essary number of EM simulations). The long GP training
time restricts the number of surrogate models to be built,
which also affects the convergence speed. For example, an
idea like deep supervision [19], [20] in image recognition is
suitable to many antenna problems to improve the convergence
speed at the cost of training more surrogate models. However,
considering GP modeling time, it is difficult to be used even
for design cases with a moderate but not small number of
design variables/specifications.

Owing to this, this research aims to seek a new machine
learning method to replace GP-based antenna modeling and
propose a method employing the new surrogate model. The
goal is to considerably improve both the convergence speed
and training cost and provide a universal method for antennas
with various numbers of design variables and specifications.
Hence, a new method, called self-adaptive Bayesian neural
network surrogate model-assisted differential evolution for
antenna optimization (SB-SADEA), is proposed. The key
innovations include: (1) The introduction of Bayesian neural
network (BNN)-based antenna surrogate modeling method
into this area to replace GP, and (2) a bespoke self-adaptive
lower confidence bound method for antenna design landscape
making use of the BNN results as a part of model management.

The remainder of the paper is organized as follows. Section
II presents the background knowledge. Section III elaborates
on the SB-SADEA method. Section IV presents the advan-
tages of SB-SADEA using a compact ultrawideband (UWB)
monopole antenna (10 design variables, 2 specifications) and a
compact multiband 5G mm-wave antenna (20 design variables,
12 specifications), both with challenging specifications. The
concluding remarks are provided in Section V.

II. BACKGROUND KNOWLEDGE

A. Online Surrogate Model-assisted Antenna Design Opti-
mization

Machine learning is attracting much attention in electro-
magnetics recently [21], and surrogate model-assisted antenna

optimization is an essential part, which can be classified into
offline and online. In offline methods, a high-quality surrogate
model is firstly built and there are no or few updates of
the surrogate model in the optimization process [22]. The
advantage is that the resulting effective antenna surrogate
model is useful on many occasions, e.g., antenna circuit co-
design, multiobjective Pareto optimization, showing excellent
results [14]. The limitation is the “curse of dimensionality”
[23]. When there are more than a few design variables and/or
the modeling range is not narrow, the necessary number of
EM simulations needed for building a high-quality surrogate
model could be many, which grows exponentially with the
number of design variables. Carrying out those simulations
could cost tremendous time, canceling out the time saved by
using surrogate models. Hence, design optimization is often
a by-product for state-of-the-art antenna surrogate modeling
methods.

Online methods, in contrast, keep improving the surrogate
model quality in the optimization process. In each iteration,
(a) surrogate model(s) is/are built using available simulated
candidate designs. New candidate designs are generated by
search operators, which are then predicted by the surrogate
model. Using the prediction result, candidate designs with high
potential are simulated and used to update the surrogate model
for the next iteration. Hence, the surrogate model quality is
not always high but is gradually improved. Particularly, at the
beginning stage, the surrogate model quality may be poor due
to the lack of training data points.

Unlike assuming an accurate surrogate model like offline
methods, prediction quality and uncertainty largely affect the
optimization. When the prediction quality is insufficient and
the prediction uncertainty is not appropriately considered, the
optimization is highly likely to converge to a local optimum
far away from the design specifications [23], [24]. Therefore,
appropriate collaboration of the surrogate modeling method,
the search operators, and the model management method (i.e.,
the three key factors in Section I) is essential.

An important task in model management is to co-use the
prediction uncertainty together with the predicted value to
judge the potential of a candidate antenna design. This is also
called prescreening or acquisition function [25], which will
be discussed in the next subsection. Explicitly providing the
prediction uncertainty for each candidate design (instead of
the overall uncertainty of the surrogate model) is necessary
for most prescreening methods.

B. GP Modeling and Prescreening, Advantages and Draw-
backs

The basic principle of GP is as follows [18]. Giving n
observations of y(x) (x = (x1, . . . , xn) and y = (y1, . . . , yn)),
GP assumes that y(x) is a sample of a Gaussian distributed
stochastic process with mean µ and variance σ. GP then
predicts the value of y(x) for a new x using its relation with
the n observations. For example, a correlation function can be
described as (1).

Corr(xi, xj) = exp(−
∑d
l=1 θl|xil − x

j
l |pl)

θl > 0, 1 ≤ pl ≤ 2
(1)
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where d is the dimension of x. θl and pl are hyper-parameters,
which are determined by maximizing the likelihood function
in (2).

1

(2πσ2)n/2
√

det(R)
exp

[
− (y − µI)TR−1(y − µI)

2σ2

]
(2)

where R is a n × n covariance matrix and I is a n × 1
vector having all its elements as unity. By maximizing the
likelihood function that y = yi at x = xi(i = 1, . . . , n) and
handling the prediction uncertainty based on the best linear
unbiased prediction, for a new point x∗, the predicted value
and prediction uncertainty are ŷ(x∗) and ŝ2(x∗), which are as
follows.

ŷ(x∗) = µ+ rTR−1(y − Iµ) (3)

where

Ri,j = Corr(xi, xj), i, j = 1, 2, . . . , n
r = [Corr(x∗, x1),Corr(x∗, x2), . . . ,Corr(x∗, xn)]
µ̂ = (ITR−1y)(ITR−1I)−1

(4)

ŝ2(x∗) = σ̂2[I−rTR−1r+(I−rTR−1r)2(ITR−1I)−1] (5)

where
σ̂2 = (y − Iµ̂)TR−1(y − Iµ̂)n−1 (6)

Based on the above, two advantages of GP include: (1)
There are almost no empirical parameters in GP modeling
except deciding the type of correlation function; A few
appropriate correlation functions are already found by an-
tenna surrogate modeling researchers [14], [15], [16], [8].
Hence, overfitting or underfitting like artificial neural networks
(ANNs) is less likely to happen, which improves the prediction
quality. (2) The prediction uncertainty (5) is rigorous, which
can play an important role when judging the full potential
of a candidate antenna design in prescreening or acquisition
function.

In contrast, many fitting-based machine learning methods,
such as most kinds of ANN, radial basis function [26],
response surface models either cannot provide a prediction
uncertainty for each candidate design or the prediction uncer-
tainty is not rigorous. They are, therefore, less suitable for
online surrogate model-assisted antenna global optimization
because this largely affects the convergence speed and the
ability to jump out of local optima. Although researchers
suggest using the dropout method in ANN training to provide
a prediction uncertainty [27], [28], [29], our experiments using
antenna problems show much worse results than GP.

With the prediction uncertainty, widely used prescreening
methods include expected improvement [25], probability of
improvement [30], and lower confidence bound (LCB) [31].
LCB is the fundamental of the new prescreening method in
this paper and is introduced as follows. Given the objective
function y(x) has a predictive distribution of N(ŷ(x), ŝ2(x)),
an LCB prescreening of y(x) is:

ylcb(x) = ŷ(x)− ωŝ(x)
ω ∈ [0, 3]

(7)

where ω is a constant, and is often set to 2 in the AI domain
[23], and is applicable to antenna problems [8].

However, the main drawback of GP is its training cost. In
online surrogate model-assisted antenna global optimization,
the total training time of GP models in the optimization
process can be estimated as TGP ×Nspecs×Npop×Nit [11],
where TGP is the training time of each GP model, Nspecs is
the number of specifications, Npop is the number of candidate
designs in a population, and Nit is the number of iterations
in antenna design optimization.

For a GP model, the computational complexity is O(Non
3d)

[23], where No is the number of iterations spent in hyper-
parameter optimization (i.e., (2)) and n is the number of
training data points. n is highly affected by d in order to
construct a reliable surrogate model. [8], [11] shows that
at least 4 × d training data points are needed for antenna
problems. Often, when d reaches 20, TGP could be in minutes
for a normal computer and then grows cubically [11]. Also, to
maintain the exploration ability, Npop is also highly affected
by d (e.g., often at least 4 × d when using DE operators).
This makes the GP modeling time in antenna optimization
become long when d is large and could be even longer than
EM simulation time.

To the best of our knowledge, TR-SADEA [11] is the first
method addressing this challenge. A self-adaptive GP model
sharing method is proposed aiming to highly decrease the
number of GP modeling while maintaining correct conver-
gence. Although this method decreases the GP model training
time to be practical, the time consumption (e.g., 1-2 days
for complex base station antennas with several tens of design
variables and specifications) is not desirable.

C. Antenna Design Optimization and the DE Algorithm
Antenna design optimization can be classified into local

optimization [32] and global optimization [1], [6]. When an
initial design is available, the former is more appropriate;
otherwise, the latter is more appropriate, on which, this paper
focuses. In antenna global optimization, EAs were introduced
into this area two decades ago and are widely used. Multi-
start local search and surrogate model-assisted multi-start local
search for antenna global optimization are introduced recently
[17], [33], showing successful results. This paper focuses on
using EAs. As said in Section I, DE and PSO are arguably the
most widely used EAs in antenna global optimization [2], [5],
[34], [35], and DE operators are used in this work. A brief
introduction to DE is as follows [3].
P is a population composed of Npop individual solutions

x = (x1, . . . , xd) ∈ Rd. To create a child solution u =
(u1, . . . , ud), firstly, mutation happens to generate a donor
vector:

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (8)

where xi is the ith vector in the current population; xbest is the
best candidate solution in the current population P ; xr1 and
xr2 are two mutually exclusive solutions randomly selected
from P ; vi is the ith mutant vector; F ∈ (0, 2] is the scaling
factor. The mutation strategy in (8) is called DE/current-to-
best/1, which is used in SB-SADEA.
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The crossover operator then happens to produce the child
solution u:

1 Randomly select a variable index jrand ∈ {1, . . . , d},
2 For each j = 1 to d, generate a uniformly distributed

random number rand from (0, 1) and set:

uj =

{
vj , if (rand ≤ CR)|j = jrand
xj , otherwise (9)

where CR ∈ [0, 1] is the crossover rate.

III. THE SB-SADEA ALGORITHM

A. The Algorithm Framework

As discussed in Section I, this research aims to seek a
new machine learning core to replace GP and propose a new
prescreening method for it. The resulted SB-SADEA algorithm
is expected to significantly improve both the convergence
speed (i.e., the number of EM simulations used to obtain
the optimal design) and the surrogate model training cost
compared to GP-based methods. Also, it should be universal
for antenna cases with various numbers of design variables
and specifications. In the following, the general framework of
SB-SADEA is first provided and details of the two innovations
are then described in Section III (B) and (C).

The SB-SADEA framework is shown in Fig. 1, and the
algorithm works as follows.

Step 1: Sample α (often a small number of) candidate
designs from the design space [LB,UB]d (LB and
UB are the lower and upper bounds of design vari-
ables, respectively) using Latin Hypercube Sampling
(LHS) [36]. Carry out EM simulations to obtain their
performance values and form the initial database.

Step 2: If a preset stopping criterion is met (e.g., the
computing budget is exhausted, satisfy the specifi-
cations), output the best candidate design from the
database; otherwise go to Step 3.

Step 3: Select the λ best candidate designs from the
database to form a population P .

Initialize the 
database

Stopping criterion?

Output

Select the λ best 
designs

DE operations

BNN-based 
modeling

Select the most 
promising design

EM simulation

Yes

Self-adaptive LCB 
prescreening

No

Select training data

 

Figure 1. Flow diagram of SB-SADEA

Step 4: Apply the DE/current-to-best/1 operator (8) to P to
create λ new child solutions.

Step 5: For each child solution, select τ nearest samples
(based on Euclidean distance) as the training data
points and construct a Bayesian neural network
(BNN)-based surrogate model (Section III (B)).

Step 6: Prescreen the child solutions generated in Step 4
using the BNN model and the self-adaptive LCB
method (Section III (C)).

Step 7: Carry out EM simulation to the estimated best child
solution from Step 6. Add this evaluated candidate
design and its performance values to the database.
Go back to Step 2.

It can be seen that some model management operators are
borrowed from standard SADEA [8]. This model management
method is attracting much attention in the AI domain [22]
and its advantages are detailed in [8], [10], [22]. The two
novel methods, including the BNN-based antenna surrogate
modeling (Step 5) and the self-adaptive LCB method (Step
6), which are red blocks in Fig. 1 are introduced in the
following subsections. Note that they are compatible with
model management frameworks in other SADEA versions
as well as some other online antenna global optimization
methods.

B. The Bayesian Neural Network-based Antenna Surrogate
Modeling Method

To replace GP modeling, the machine learning core must
satisfy the following requirements: (1) Can provide a high-
quality predicted value comparable to GP and has less risk to
be overfitted; (2) The prediction uncertainty of each candidate
design is statistically grounded; and (3) The training cost is
much lower than GP when the targeted antenna has many
design variables/specifications.

To meet the above requirements, an alternative is a stochas-
tic neural network, in particular, a Bayesian neural network. To
the best of our knowledge, BNN has not been used in antenna
design optimization and is seldom considered for surrogate
model-assisted optimization even in the AI domain. In the
following, BNN concepts are introduced.

Considering the antenna design variables as x, and the
performance as y, for an ANN, the model parameters are
θ = [w1, . . . , wj , b1, . . . , bk], where w are the weights and
b are the biases. In a multi-layer ANN, each layer is a linear
transformation, followed by a nonlinear activation function.
The training optimizes the cost function, which is often the
log likelihood of the training data points, i.e., maximize∑n
i=1 log(p(xi; θ)) with a regularization term. The optimized

θ, which are fixed values, are then used for prediction.
For BNN, the network structure does not change compared

to a standard ANN, but θ become stochastic variables with
their probability distribution p(θ). Fig. 2 shows an illustrative
figure of BNN. By applying Bayes’ theorem, the Bayesian
posterior can be expressed as:

p(θ|x, y) =
p(y|x, θ)p(θ)∫

θ
p(y|x, θ′)p(θ′)dθ′

∝ p(y|x, θ)p(θ),
(10)
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Figure 2. An illustrative figure of a basic BNN.

where p(y|x, θ) is the likelihood, p(θ) is the prior, the de-
nominator is the evidence, and p(θ|x, y) is the posterior. The
posterior is what we acquire, which is used in obtaining the
predicted value and prediction uncertainty. Obtaining p(θ|x, y)
by standard sampling method is intractable. Hence, the varia-
tional inference method [37] is proposed.

In variational inference, a new distribution q(φ) (φ are the
model parameters), called a variational distribution, is pro-
posed to approximate p(θ|x, y). By minimizing the Kullback-
Leibler (KL) divergence between q(φ) and p(θ|x, y), the
closest distribution can be found to replace the posterior.
Compared to the posterior, q(φ) has a smaller set of pa-
rameters, which are often considered as means and variances
of a multivariate Gaussian distribution, and are optimized in
training.

The cost function to be maximized is:

Eφ∼q(logp(y|x;φ))−DKL(q(φ)||p(θ)) (11)

(11) is called the evidence lower bound. The first term is
the standard maximum likelihood loss and the second term
is the regularization loss, which is a closed form for Gaussian
distribution. The first item can be obtained by sampling.
After the optimization or training, the posterior, p(θ|x, y), is
approximated, and the BNN is ready to be used.

When performing prediction by BNN, given the posterior,
p(θ|x, y), the model’s prediction uncertainty can be derived
from p(y|x, x, y). Mathematically, it can be written as

p(y|x, x, y) =
∑
θ

p(y|x, θ′)p(θ′|x, y)dθ′, (12)

In practice, this is done by sampling [38].

θ ∼ p(θ|x, y). (13)

The predicted value is the average of BNN model output
samples.

ŷ =
1

|Θ|
∑
θi∈Θ

Φθi(x), (14)

where Φθ(x) is the BNN model and ŷ is the estimated output.
The uncertainty quantification is given by the covariance
matrix Σy|x,x,y , which is:

Σy|x,x,y =
1

|Θ| − 1

∑
θi∈Θ

(Φθi(x)− ŷ)(Φθi(x)− ŷ)T . (15)

Some clarifications in terms of the requirements at the
beginning of this subsection are as follows.

• BNN has a good potential to provide high-quality pre-
diction results. BNN can be interpreted as a special
case of ensemble methods [39]. Ensemble methods are
well known for taking advantage of the fact that the
aggregation of multiple averaged and independent predic-
tors may outperform a single expert predictor, given the
same training information [40]. BNN’s stochastic com-
ponents similarly improve a normal ANN. Also, BNN
can avoid overfitting when learning from a small dataset
(i.e., available training data points via EM simulations)
by considering both aleatoric uncertainty and epistemic
uncertainty, as evidenced in [41].

• The prediction uncertainty of BNN is statistically
grounded [42], [43]. Intuitively, as in (15), for any input
x, low uncertainty is given when multiple sample models
yield close estimated outputs ŷ; high, otherwise.

• BNN has much less training complexity compared to GP.
As discussed earlier, the computational complexity of a
single GP model is O(Non

3d). In the SADEA series, n is
linearly increased with d and there are m specifications.
Hence, the complexity is O(Nod

4m). For the BNN
used in SB-SADEA, which uses two hidden layers, the
computational complexity is O(Nbd(d+m)2s), where s
is the sampling cost, Nb is the number of iterations in
training. More verifications are in Section IV.

Due to the considerably reduced training cost of BNN, an
idea inspired by deeply supervised nets [19] for image recog-
nition is proposed, which we call it “fine supervision”. Often,
the antenna response over the operating band is considered
as a whole and a maximum or minimum is obtained as the
performance (e.g., max(|S11|)). By using a point to represent
a whole curve, much information is lost.

In the proposed fine supervision, the response curve is
divided by resonances, and for each part of the response curve,
its maximum or minimum value is used. In this way, much
more information participates in the learning with the cost
of increasing the number of specifications (i.e., number of
surrogate models). This is a significant burden to GP modeling
when the number of design variables is large because several
times more GP models need to be trained [11]. However, for
BNN, this is affordable because only the number of neurons
in the output layer increases. This conclusion is verified by
case study 2 (4-band 5G mm-wave antenna) in Section IV.

The parameter setting of BNN is as follows. The BNN
structure has 2 hidden layers and the number of neurons are
d (input layer), 2d (the first hidden layer), max([d, 2m]) (the
second hidden layer) and m (the output layer), respectively.
The prior standard deviation is defaulted to be 0.1. The Adam
optimizer is used for training with the initial learning rate
of 0.05, and a decay rate of 0.999 in every step of the
model parameter optimization. An early stop criterion is set
within the training to stop any training proceeding with an
insignificant loss decrease. All the above are based on rules
of thumbs or empirical settings and are verified by antennas
with various characteristics.
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Figure 3. GP and BNN predicted values and prediction uncertainty during
early, middle and late stage of the optimization (ground truth is from EM
simulations).

C. The Self-adaptive Lower Confidence Bound Method

For a machine learning core (i.e., BNN-based model in this
case), a corresponding prescreening method (Step 6 in SB-
SADEA) is often needed considering its own data character-
istics. Most existing prescreening methods consider the data
characteristics of the GP model. In our pilot experiments, the
widely used expected improvement [25] and probability of
improvement [30] prescreening are employed together with
the BNN-based model for multiple antenna cases and more
than 50% of the runs are stuck in local optima. This invites us
to study the difference in data characteristics between BNN
and GP in terms of predicted values and prediction uncertainty,
so as to propose a prescreening method that can jump out of
local optima and also improve the convergence speed for the
BNN-based model.

Using case study 1 in Section IV (i.e., UWB monopole
antenna), Fig. 3 shows the GP’s and BNN’s predicted values
and prediction uncertainty for three sample populations of
candidate designs during the early, middle, and late stages
in the optimization process. max(|S11|) is used. It can be
observed that: (1) In terms of the predicted values, the BNN-
based model and GP-based model are comparable, and both
show reasonably low prediction error compared to the simu-

lated values (i.e., ground truth) considering all three sample
populations. (2) In terms of the prediction uncertainty, the
BNN-based model shows much smaller values than that of
GP, and the gap between them is much clearer in the later
iterations. For example, when the optimization is at its late
stage and nearly converges, the BNN prediction uncertainty is
at the level of 0.05, while GP prediction uncertainty is at the
level of 0.5.

The reason why a surrogate model-assisted antenna global
optimization method falls into local optima is the lack of
exploration ability. In the optimization theory, exploration
refers to exploring the search region that currently lacks
knowledge, while exploitation refers to finding the optimum in
the search region with sufficient knowledge. Antenna design
landscapes are often highly multimodal, and strong exploration
ability is required [10]. Fully considering prediction uncer-
tainty is important for exploration, which is the reason for
prescreening methods. For the popular expected improvement
and potential of improvement prescreening methods, there are
no hyperparameters controlling the extent of exploration, and
the prediction uncertainty obtained by the BNN-based model
is small. Hence, it is not a surprise that using a BNN-based
model often leads to falling into a local optimum for antenna
cases compared to using the GP model.

A solution is using the LCB prescreening method (7) [31],
which has a hyperparameter ω to control the extent of explo-
ration. The value of ω can be set empirically using experiments
with various antenna design cases, and the recommended
value is 14. Clearly, using a large value for ω can promote
the exploration ability, but high exploration ability inevitably
slows down the convergence (i.e., more EM simulations)
due to no-free-lunch. Hence, a novel method to obtain the
appropriate trade-off, called self-adaptive LCB, is proposed.
Given the λ current best candidate designs, called Pb, and a
vector called S, where Si(i = 1, 2, . . . , k) saves the smallest
distance between the current predicted best candidate design
to all candidate designs in Pb in each iteration, self-adaptive
LCB (Step 6 in SB-SADEA) works as follows.

Step 1: Select the best candidate design xb in the child
population in Step 4 of SB-SADEA using the BNN-
based model predicted values.

Step 2: Calculate the distance between xb and each indi-
vidual in Pb and obtain the smallest distance, Sk+1.

Step 3: Taking the last 10 elements of S, check if Sk+1

from Step 2 is smaller than Ŝ(k − 9 : k) − 0.5 ×
σ(S(k − 9 : k)). If yes, go to Step 4; Otherwise,
output xb.

Step 4: Prescreen the child population using the LCB
method (7) with the recommended ω value.

Step 5: Output the best candidate design according to LCB
values.

Some clarifications are as follows.

• The self-adaptive LCB method alternatively uses the
BNN model predicted value and the LCB prescreened
value for selecting the estimated best candidate design
from the child population. The former is for promoting
exploitation so as to improve the convergence speed,
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7

while the latter is for promoting exploration for jumping
out of local optima.

• Whether the algorithm has sufficient exploration ability
or not highly depends on the diversity of Pb (Step 3 of
SB-SADEA). Hence, the predicted values are used when
the diversity is reasonable, while LCB values are imposed
when the diversity is small.

• The method to judge the extent of introduced diversity is
to compare with the smallest distance to any individual
in Pb with those in the last 10 iterations. Assuming
Si(i = 1, 2, . . . , k) is Gaussian distributed, the 0.5 × σ
value is used as the threshold to find those introducing
low diversity to Pb when using them.

D. Parameter Settings

Compared to standard SADEA [8], SB-SADEA only intro-
duces one new parameter, ω, in the self-adaptive LCB method.
Using various challenging antennas from fewer than 10 design
variables to 45 design variables, from a few specifications to
nearly 20 specifications, ω is suggested to be set to 14 for
successfully jumping out of local optima. In BNN modeling,
the network parameters are pre-decided by the rules of thumb
and do not need the users to alter. For all other parameters,
the setting rule in other SADEA versions is still applicable to
SB-SADEA, which are: α = 4×d, λ = 4×d, τ = 4, F = 0.8,
CR = 0.8. They are used in all the test cases in Section IV.

IV. EXPERIMENTAL RESULTS AND VERIFICATIONS

SB-SADEA is tested by 7 challenging antennas with various
characteristics and the comparisons show the same conclusion.
In this section, two typical cases from them are used to
demonstrate SB-SADEA’s performance in different aspects.

The first case study is a slotted monopole antenna for UWB
microwave imaging applications [44]. The antenna has 10
design variables and 3 specifications. The design optimization
of this antenna is challenging due to its compact size to
ensure proper physical placement and integration of its an-
tenna structure with compact components on the same printed
circuit board. For antennas with 10 design variables and 3
specifications, the machine learning cost using most methods
is often small. Hence, the purpose of this case study is to
test SB-SADEA’s convergence speed (i.e., the number of EM
simulations needed to obtain the optimal design) when facing
stringent design specifications.

The second case study is a 4-band mm-wave antenna for
wearable 5G and beyond applications [45]. It has 20 design
variables and 12 specifications. The design optimization of
high-performance 5G mm-wave antenna is often challenging
[46] and this case study has particular challenges due to
its compact size, lightweight, low profile, and low mainte-
nance with a simple off-centered microstrip feeding structure.
Moreover, maintaining a multi-band, high gain operation in
wearable scenarios for body-centric wireless communications
at mm-wave frequencies increases the design complexity and
sensitivity. Considering the number of design variables and
specifications, the machine learning cost can be considered
computationally expensive for GP-based methods. Although

antennas with more design variables and specifications can
make the advantages of SB-SADEA even clearer, considering
the time to draw statistical conclusions (i.e, using sufficient
runs), this antenna is selected as a representative. Hence, the
purpose of this case study is to test SB-SADEA’s performance
in terms of both convergence speed and machine learning cost.

For both antennas, because no reasonably good initial
designs can be provided, the search ranges provided by the
antenna designers are relatively wide, although restricted by
the compact size. The antennas are optimized in a workstation
with an AMD Ryzen™ 9 3900X 12-core processor (3.8GHz)
and an NVIDIA® GeForce® GT 710 GPU. 40 MATLAB
parallel workers are activated for GP/BNN-based surrogate
model training.

The SADEA series are stochastic algorithms and 10 inde-
pendent runs are carried out for case study 1 to draw statistical
conclusions. 10 runs of design optimization are expected to
be over a month for case study 2, and 5 independent runs are
carried out. P-SADEA [10], [12] is selected as the reference
method for case study 1 since it is one of the state-of-the-art
methods for antenna design global optimization with fewer
than 20 design variables with a few specifications. PSO, as
one of the most popular evolutionary algorithms for antenna
global optimization, is also used a reference.

TR-SADEA [11] is selected as the reference method for
case study 2, since to the best of our knowledge, it is the only
published method for antenna global optimization with many
design variables and specifications, addressing the challenge
in machine learning cost. DE, as one of the most popular
evolutionary algorithms for antenna global optimization, is
also used as a reference. In terms of parameter setting, SB-
SADEA follows Section III (D), P-SADEA follows [10] and
TR-SADEA follows [11]. The PSO optimizer with default
parameters in Computer Simulation Technology - Microwave
Studio (CST-MWS) is used. The setting of the DE optimizer
follows [3].

A. Case Study 1: A Compact UWB Slotted Monopole Antenna

The layout of the slotted monopole antenna is shown in
Fig. 4. The antenna is implemented on an FR-4 substrate with
a thickness of 0.8 mm, a relative permittivity of 4.4, and a
loss tangent of 0.02. It consists of a driven circular patch
radiator and two uniform rectangular metal planes separated
by the microstrip line. Two slots are fused at the center of
the driven circular patch radiator to form a quasi-cross slot,
and the geometry of the slot helps control the surface current
distribution. Meanwhile, the rectangular planes act as a co-
planar partial ground.

The slotted monopole antenna is modeled and discretized
in CST-MWS with over 162,000 mesh cells in total. Each
EM simulation costs about 1 minute on average. For the
optimization of the slotted monopole antenna, the design
variables shown in Fig. 4 and their search ranges in Table
I are considered. The optimization goal is to minimize the
fitness function, Fmonopole, to satisfy the design specifications

Page 10 of 15

http://mc.manuscriptcentral.com/tap-ieee

IEEE Transactions on Antennas & Propagation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

Initialize the 
database

Stopping criterion?

Output

Select the λ best 
designs

DE operations

BNN-based 
modeling

Select the most 
promising design

EM simulation

Yes

Self-adaptive LCB 
prescreening

No

Select training data

 

 

 

Figure 4. Layout of the compact UWB slotted monopole antenna.

Table I
SEARCH RANGES OF THE DESIGN VARIABLES AND THE OPTIMAL

DESIGN BY SB-SADEA (ALL SIZES IN MM) (CASE STUDY 1)

Parameters Lower bound Upper bound SB-SADEA
Optimum

Circular patch radius (DPR) 2 25 7.14
Substrate width (SW) 2×DPR 3×DPR 14.40
Width of slot throat (SLT) 0 2×DPR 8.21
Vertical slots’ depth (SLV) 0 2×DPR 0.75
Horizontal slots’ depth (SLH) 0 2×DPR 0.11
Microstrip width (ML) RPL 50 26.21
Partial ground plane length (RPL) DPR ML 8.21
Microstrip length (MW) 0.50 7.50 1.20
Microstrip gap (MG) 0 21.5 0.34
Feed guide width (PW) 6×MW 10×MW 8.90
Substrate width (SL) = ML + 2×DPR + 0.2 (mm)
Partial ground plane width (RPW) = (SW − 2×MG − MW) ÷ 2 (mm)

shown in Table II, mathematically,

Fmonopole =w1 ×max(|S11|+ 10, 0) + w2 ×max(Gmax − 3, 0)

+ w3 ×max(1−Gmin, 0)
(16)

where w1, w2 and w3 are the penalty coefficients set to 1,
50 and 50, respectively. When all the design specifications in
Table II are satisfied, Fmonopole is equal to 0. 10 independent
runs are carried out for SB-SADEA and all other reference
methods except PSO. Three runs are carried out for PSO
because more runs are not affordable.

In all the 10 runs, SB-SADEA satisfies the design spec-
ifications shown in Table II using an average of 924 EM
simulations (15 hours). Fig. 5 shows the convergence trends.
Fig. 6 shows the reflection coefficient and the realized gain
of a typical optimal design mentioned in Table II. The size of

Table II
DESIGN SPECIFICATIONS AND THE PERFORMANCE OF A TYPICAL
OPTIMAL DESIGN OBTAINED BY SB-SADEA (CASE STUDY 1)

Item Specification SB-SADEA
Optimum

Maximum Reflection Coefficient
(|S11|) (3.1 to 10.6 GHz) ≤ -10 dB -10.13 dB

Maximum Realized Gain (Gmax) ≤ 3 dB 2.90 dB
Minimum Realized Gain (Gmin) ≥ 1 dB 1.19 dB
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Figure 5. Convergence trends of SB-SADEA (Case Study 1, 10 runs).
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Figure 6. Response of the optimal design obtained by SB-SADEA (Case
Study 1)

the antenna shrinks about 60% compare with a state-of-the-art
reference design [47].

As discussed earlier, as one of the state-of-the-art methods
for antennas with stringent specifications but without many
design variables and specifications, P-SADEA is considered as
the reference method. P-SADEA also shows a 100% success
rate but uses an average of 1574 EM simulations to satisfy all
the specifications. Therefore, SB-SADEA saves 40% of the
EM simulations compared to P-SADEA. Note that compared
to standard SADEA [8], P-SADEA improves the convergence
speed at the cost of more GP modeling [10], [12] by its
new model management framework. SB-SADEA, on the other
hand, only uses the model management framework of standard
SADEA [8], and the comparison result shows the effectiveness
of BNN-based modeling and self-adaptive LCB techniques.
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9

Table III
NUMBER OF EM SIMULATIONS (AVERAGE NUMBER) USED TO SATISFY

THE SPECIFICATIONS FOR DIFFERENT METHODS (CASE STUDY 1)

SB-SADEA GP-ALCB FBN-LCB BN-ALCB GP-LCB
ML models BNN GP BNN BNN GP
Fine-supervision Yes No Yes No No
Prescreening AdapLCB AdapLCB LCB AdapLCB LCB
number
of EM simulations 924 1262 1329 1104 1991

Moreover, they are compatible with the model management
framework of P-SADEA, forming an even faster method.

To verify the effectiveness of the BNN-based antenna mod-
eling, including the fine supervision, and the self-adaptive
LCB-based prescreening, more comparisons are shown in
Table III. When the GP model is used, the ω value for LCB
is set to 2 as other SADEA versions, instead of 14 for the
BNN-based model.

The following conclusions can be drawn from Table III:
(1) By comparing SB-SADEA with GP-ALCB, when both
make use of the self-adaptive LCB-based prescreening, nearly
25% fewer EM simulations are saved by the BNN-based
surrogate modeling compared to GP. (2) By comparing SB-
SADEA with FBN-LCB, when both make use of the BNN-
based surrogate modeling, nearly 30% fewer EM simulations
are saved. This indicates the effectiveness of the self-adaptive
LCB prescreening and its co-working with the BNN-based
model. For the BNN-based model, the prediction uncertainty
is smaller than that of GP (Section III), and a larger ω has
to be used in LCB prescreening to guarantee the exploration
ability, which inevitably slows down the convergence speed.
Hence, the self-adaptive LCB technique is essential for the
BNN-based model. (3) By comparing SB-SADEA with BN-
ALCB, where the only difference is the use of fine supervision,
about 15% fewer EM simulations are saved, showing the effect
of fine supervision. (4) GP-LCB (i.e., standard SADEA) is
the slowest and SB-SADEA decreases 53% of the necessary
EM simulations to obtain the optimal design, showing the
combined effect of the BNN-based antenna surrogate model
and the self-adaptive LCB method.

In the three PSO runs, the specifications on realized gain
are satisfied, but the specification on max(|S11|) is not, and
the average value is -5.2 dB. This can be attributed to the
compactness of the structure and the stringency of the design
specifications. Considering all these comparisons, this case
study verifies the advantages of SB-SADEA in terms of
convergence speed.

B. Case Study 2: A 4-band mm-wave Antenna

This case is designed to exhibit a quad-band operation with
significant band discrimination and high gain at mm-wave
frequencies of 28 GHz, 38 GHz, 50 GHz, and 60 GHz. It
aims to achieve a minimum realized gain of 4.5 dB and a total
efficiency better than 80% for all four operating bands. This
low-profile antenna employs a patch geometry combining a
square patch with an L- and an F-shaped slot on a Rogers
RT/Duroid 5880 substrate of 0.254 mm thickness, relative
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Figure 7. The layout of the 4-band 5G mm-wave antenna.

0 200 400 600 800 1000 1200 1400

Number of EM simulations

0

5

10

15

20

25

30

F
it

n
e

s
s

 v
a

lu
e

 o
f 

th
e

 c
u

rr
e

n
t 

b
e

s
t 

c
a

n
d

id
a

te
 d

e
s

ig
n

Figure 8. Convergence trends of SB-SADEA (Case Study 2, 5 runs).

permittivity of 2.2, and loss tangent of 0.0009. This single
layer 5.1 mm × 5 mm × 0.254 mm antenna is excited
by a 50Ω off-centered single-feed microstrip line. The slots
positioned close to the edges of the patch make the current
mostly concentric there and generate inductive and capacitive
effects resulting in the multi-frequency operation.

The 4-band mm-wave antenna is modeled and discretized
in CST-MWS with nearly 300,000 mesh cells in total. Each
EM simulation costs about 2.5 minutes on average. For the
optimization of the targeted antenna, the design variables
shown in Fig. 7 and their search ranges in Table IV are
considered. The optimization goal is to minimize the fitness
function, Fmmwave, to satisfy the design specifications shown
in Table V, mathematically,

Fmmwave =
4∑
i=1

w1 ×max(|Si11|+ 10, 0)

+
4∑
i=1

w2 ×max(4.5−Gimin, 0)

+
4∑
i=1

w3 ×max(0.8− Eitotal, 0)

(17)

where i is the index for the current frequency band out of the 4
frequency bands. w1, w2 and w3 are the penalty coefficients set
to 1, 50 and 50, respectively. When all the design specifications
in Table V are satisfied, Fmmwave is equal to 0.

Five independent runs are carried out to test SB-SADEA.
All of them satisfy the design specifications shown in Table
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Table IV
SEARCH RANGES OF THE DESIGN VARIABLES AND A TYPICAL OPTIMAL
DESIGN OBTAINED BY SB-SADEA (ALL SIZES IN MM) (CASE STUDY 2)

Variable Lower bound Upper bound SB-SADEA
Optimum

slot1_w 0 3 0.059
slot2_w 0 3 0.72
slot3_w 0 3 0.033
slot4_w 0 3 2.23
slot5_w -3 0.2 -0.71
slot6_w -3 0.2 -0.081
slot7_w -2.2 0.9 -1.34
slot7_offset 0 2.5 2.24
feedw 0.1 0.45 0.18
feed_offset 0 3-feedw 0.017
slot1_l 0 3 0.18
slot2_l 0 3 1.98
slot3_l 0 3 1.95
slot4_l 0 3 0.60
slot5_l 0 3 1.40
slot6_l 0 3 2.15
slot7_l 0 3 0.87
feed_tol 0 3 2.02
patchl 0.5 4.3 4.26
patchw 0.5 5 4.55

Table V
DESIGN SPECIFICATIONS AND THE PERFORMANCE OF A TYPICAL
OPTIMAL DESIGN OBTAINED BY SB-SADEA (CASE STUDY 2)

Items Specification SB-SADEA
Optimum

Maximum in-band reflection coefficients
(|S11|) (27.75 to 28.25 GHz) ≤ -10 dB -12.28 dB

Maximum in-band reflection coefficients
(|S11|) (37.75 to 38.25 GHz) ≤ -10 dB -13.04 dB

Maximum in-band reflection coefficients
(|S11|) (49.75 to 50.25 GHz) ≤ -10 dB -10.54 dB

Maximum in-band reflection coefficients
(|S11|) (59.75 to 60.25 GHz) ≤ -10 dB -16.18 dB

Minimum in-band realized gain
(Gmin) (27.75 to 28.25 GHz) ≥ 4.5 dB 5.67 dB

Minimum in-band realized gain
(Gmin) (37.75 to 38.25 GHz) ≥ 4.5 dB 4.88 dB

Minimum in-band realized gain
(Gmin) (49.75 to 50.25 GHz) ≥ 4.5 dB 6.75 dB

Minimum in-band realized gain
(Gmin) (59.75 to 60.25 GHz) ≥ 4.5 dB 7.01 dB

Minimum in-band total efficiency
(Etot) (27.75 to 28.25 GHz) ≥ 80% 82.4%

Minimum in-band total efficiency
(Etot) (37.75 to 38.25 GHz) ≥ 80% 86.2%

Minimum in-band total efficiency
(Etot) (49.75 to 50.25 GHz) ≥ 80% 84.4%

Minimum in-band total efficiency
(Etot) (59.75 to 60.25 GHz) ≥ 80% 89.3%

V using an average of 1202 EM simulations. Fig. 8 shows
the convergence trends. Fig. 9 shows the reflection coefficient,
realized gain and the total efficiency of a typical optimal design
in Table IV.

As discussed earlier, TR-SADEA [11] is selected as the
reference method. In all the 5 runs, it also has a 100%
success rate but uses an average of 2426 EM simulations.
Hence, SB-SADEA decreases the number of EM simulations
by more than 50% compared to TR-SADEA in this case study,
verifying the advantages in convergence speed again.

The other aim of this case study is to compare the machine
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Figure 9. Response of the optimal design obtained by SB-SADEA (Case
Study 2)

Table VI
COMPARISON BETWEEN SB-SADEA AND TR-SADEA (CASE STUDY 2,

AVERAGE VALUES)

SB-SADEA TR-SADEA
ML models BNN GP (model sharing)
Fine-supervision Yes Yes
Prescreening AdapLCB LCB
Number of surrogate models 102,000 426,000
Modeling time (hours) 2.8 15.5
Number of EM simulations 1202 2426
Total optimization time (hours) 55.8 128

learning cost. TR-SADEA is proposed for antennas with many
design variables and specifications, where GP modeling time
becomes a challenge. By its GP model sharing method, TR-
SADEA often reduces the GP modeling time by 90% [11].
Still, for the targeted antenna, an average of over 426,000
GP surrogate models are built in the optimization using TR-
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SADEA, taking 15 hours on average. This time consumption
is practical but not desirable. With BNN-based surrogate
modeling in SB-SADEA, only 2.8 hours of surrogate model
training time on average is used. Table VI demonstrates the
number of EM simulations used, the number of surrogate
models trained, and the total time used for the two methods.
The average values of the 5 independent runs are used. The
significant improvement in terms of the machine learning cost
of SB-SADEA is also shown. The total optimization time
decreased by more than a half compared to the reference
method.

DE is carried out for the 5G mm-wave antenna. After
two weeks’ optimization, none of the reflection coefficient
specifications is satisfied and only half of the gain and total
efficiency specifications are met. Longer run may improve the
performance, but the optimization time is too long for practical
use. Considering all these comparisons, this case study verifies
the advantages of SB-SADEA in terms of both convergence
speed and machine learning cost.

V. CONCLUSIONS

In this paper, the SB-SADEA method has been proposed,
which is a universal global optimization method for antennas
with various numbers of design variables and specifications.
Its effectiveness and efficiency are demonstrated by two real-
world challenging antenna design cases. Thanks to the BNN-
based surrogate model, which is introduced into antenna
global optimization area by this research, and the new self-
adaptive LCB method, which is essential for using the BNN-
based surrogate model, significant advantages in terms of both
convergence speed (i.e., the number of EM simulations needed
to obtain the optimal design) and the machine learning cost
are obtained. Future works will include behavioral analysis of
SB-SADEA and its improvement.
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