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Abstract

Nonalcoholic fatty liver disease (NAFLD) has become the most common
chronic liver disease in children and adolescents, increasing the risk of its
progression toward nonalcoholic steatohepatitis (NASH), cirrhosis, and can-
cer. There is an urgent need for noninvasive early diagnostic and prognostic
tools such as epigenetic marks (epimarks), which would replace liver biopsy
in the future. We used plasma samples from 67 children with biopsy-proven
NAFLD, and as controls we used samples from 20 children negative for stea-
tosis by ultrasound. All patients were genotyped for patatin-like phospholi-
pase domain containing 3 (PNPLAS3), transmembrane 6 superfamily member
2 (TM6SF2), membrane bound O-acyliransferase domain containing 7
(MBOAT7), and klotho-f (KLB) gene variants, and data on anthropometric
and biochemical parameters were collected. Furthermore, plasma cell-free
DNA (cfDNA) methylation was quantified using a commercially available kit,
and ImageStream(X) was used for the detection of free circulating histone
complexes and variants. We found a significant enrichment of the levels of
histone macroH2A1.2 in the plasma of children with NAFLD compared to con-
trols, and a strong correlation between cfDNA methylation levels and NASH.

Diana Buzova, Maria Rita Braghini, and Salvatore Daniele Bianco contributed equally to this work.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is currently
considered the most common chronic liver disease
worldwide in both adults and children. NAFLD preva-
lence has increased significantly in relation to the obe-
sity prevalence.”'z] Based on its link with obesity and
other metabolic derangements, a new name has been
proposed for NAFLD, which is metabolic associated
fatty liver disease (MAFLD). This new definition clearly
establishes this disease as a metabolic disorder, in-
cluding the evidence of hepatic steatosis accompanied
by (i) overweight or obesity, (ii) type 2 diabetes, and (iii)
lean/normal weight associated with metabolic abnor-
malities, such as dyslipidaemia.[3'4]

In many cases, NAFLD/MAFLD further progresses
to nonalcoholic steatohepatitis (NASH), fibrosis, cir-
rhosis, and hepatocellular carcinoma.®) NASH com-
prises different histological traits including steatosis,
inflammation, ballooning and eventually fibrosis, and
is a major leading cause of advanced liver disease,
liver transplantation, cardiovascular morbidity, and
mortality; thus, its early diagnosis and treatment are
now key challenges in hepatology.[6'7] Currently, liver
biopsy remains the gold standard for NASH diagno-
sis, but it is impractical as a diagnostic tool because it
is invasive and expensive.[S] In this context, noninva-
sive approaches to liver biopsy may prove crucial for
the early diagnosis, effective management, and future
treatment of patients with NASH. Imaging-based ap-
proaches and circulating biomarkers have been used
in NAFLD/MAFLD or NASH, but recent studies have
shown that multivariate indexes based on blood bio-
markers represent alternative translatable strategies
for the stratification of patients at diagnosis and during
follow-up.!

Liquid biopsy to detect circulating cell-free DNA
(cfDNA) is emerging as an important diagnostic tool
in several diseases, such as cancer and type 2 di-
abetes.""""l Different amounts of cfDNA have been
described in various pathophysiological states.'214
Moreover, recently it has emerged that the diagnostic
utility of cfDNA as a noninvasive biomarker could be

Receiver operating characteristic curve analysis demonstrated that combina-
tion of cfDNA methylation, PNPLA3 rs738409 variant, coupled with either
high-density lipoprotein cholesterol or alanine aminotransferase levels can
strongly predict the progression of pediatric NAFLD to NASH with area under
the curve >0.87. Conclusion: Our pilot study combined epimarks and genetic
and metabolic markers for a robust risk assessment of NAFLD development
and progression in children, offering a promising noninvasive tool for the con-
sistent diagnosis and prognosis of pediatric NAFLD. Further studies are nec-
essary to identify their pathogenic origin and function.

enhanced by including the parallel characterization of
epigenetic traits, such as global DNA methylation, his-
tone modifications, and histone variants.">'®! Indeed,
cell death may cause genome fragmentation in the
form of nucleosomes that are able to preserve histone
modifications and are released into the circulation.['"®]

It has been reported that, in liver diseases, changes
occur in DNA methylation, nucleosome histone variants
(notably H2A variant macroH2A1), posttranslational
histone modifications, and noncoding RNAs, which
may be crucial for noninvasive early diagnosis and
treatment.[19-28] Accumulating evidence suggests the
involvement of epigenetic mechanisms, which affect
gene expression without altering the DNA sequence,
on the pathogenesis of NAFLD, indicating the potential
use of epigenetic factors as noninvasive biomarkers of
the disease.?°30

Because cfDNA generally is fragmented and re-
leased from dying cells into blood, it is conceivable
that the analysis of its pattern (e.g., amount, fragmen-
tation, methylation) and epigenetic modifications (e.g.,
histone complexes, variants, modifications) could un-
veil efficient circulating biomarkers also for NAFLD. In
line with this evidence, it has been reported that cir-
culating cfDNA fragments are associated with NAFLD
severity, especially in patients with increased liver
stiffness and a high risk of disease progression.B"
Moreover, Hardy et al.B? demonstrated that plasma
DNA methylation signatures at the level of peroxi-
some proliferator-activated receptor gamma (PPARY)
promoter might correlate with fibrosis stage in NASH.
More recently, our pilot study identified a circulating
histone pattern that may be useful to diagnose the se-
verity of steatosis in adults with lean MAFLD.B® These
findings highlight that further studies are needed to
improve not only the mechanistic understanding of
the role of epigenetic marks in NAFLD/MAFLD and its
progressive form, but also their potential use as non-
invasive tools for diagnosis and follow-up. Here, we
evaluated whether cfDNA methylation and circulat-
ing histone signature may correlate with the severity
of disease in a cohort of Italian children with NAFLD/
MAFLD.
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METHODS
Patients

Bio-banked samples of 67 young patients with biopsy-
proven NAFLD/MAFLD were used for the present study.
Bio-banked samples of 20 children negative to steatosis
by ultrasound and without other liver diseases were also
used as controls. The samples were stored at Bambino
Gesu Children's Hospital from March 2018 to June
2021 and included in the EuUPNAFLD protocol (1774 _
OPBG_2019). Written, informed consent for biobanking
and future use was obtained from each child's parent/
legal guardian at the time of enroliment. Patients' anthro-
pometrical, biochemical, and histological data were with-
drawn from electronic medical records.

At time of the enrollment, the patients' height,
weight, and body mass index (BMI) were measured
using standard procedures as already reported,[34]
and as BMI z score, based on the Centers for Disease
Control and Prevention growth charts (https://www.cdc.
gov/growthcharts/zscore.htm). Alanine aminotrans-
ferase (ALT), aspartate aminotransferase, gamma-
glutamyltransferase, total cholesterol, high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol, and triglycerides were measured by stan-
dard laboratory methods. Glucose and insulin were
measured at fasting. The homeostasis model assess-
ment index of insulin resistance (HOMA-IR) B% was
calculated as a surrogate marker of insulin resistance.

Liver biopsy and histology

In all patients, liver biopsies were performed using an au-
tomatic core biopsy 16-gauge or 18-gauge needle under
general anesthesia and ultrasound guidance. The histo-
logical features of steatosis (0—3), lobular inflammation
(0-2), and hepatocyte ballooning (0—2) were combined in
the NAFLD activity score (NAS), ranging from 0 to 8 using
the criteria of the NAFLD Clinical Research Network as
previously described by Kleiner et al.B® |n particular,
hepatic steatosis was graded as 0 = steatosis involving
fewer than 5% of hepatocytes, 1 = steatosis involving up
to 33% of hepatocytes, 2 = steatosis involving 33%—66%
of hepatocytes, and 3 = steatosis involving more than
66% of hepatocytes. Lobular inflammation was graded
as 0 = none, 1 = mild, and 2 = moderate. Hepatocyte
ballooning was graded as 0 = no balloon cells, 1 = few
balloon cells, and 2 = many/prominent balloon cells. The
sum of the scores for steatosis, lobular inflammation, and
ballooning was performed to calculate NAS. Cases with
NAS =4 were evaluated by two expert pathologists to
confirm or exclude diagnosis of NASH.

The stage of hepatic fibrosis was quantified with a
five-point scale: 0 = no fibrosis; 1 = perisinusoidal or
periportal fibrosis ([1a] mild, zone 3, perisinusoidal; [1b]

moderate, zone 3, perisinusoidal; and [1c] portal/peri-
portal); 2 = perisinusoidal and portal/periportal fibrosis;
3 = bridging fibrosis; and 4 = cirrhosis.

Genotyping

The patatin-like phospholipase domain containing 3
(PNPLA3) rs738409, transmembrane 6 superfamily
member 2 (TM6SF2) rs58542926, membrane bound
O-acyltransferase domain containing 7 (MBOAT7)
rs641738, and klotho-p (KLB) rs17618244 variants
were genotyped by allelic discrimination using TagMan
5'-nuclease assays (Life Technologies). Genomic DNA
was isolated from venous blood using a Blood DNA
Extraction Kit (Qiagen). Real-time polymerase chain re-
action (PCR) was performed using Applied Biosystems
7900HT Fast Real-Time PCR System. Positive and
negative controls were included on each reaction plate,
to verify the reproducibility of the results.

Global DNA methylation assay

DNA was extracted from 500pl of plasma using the
QlAamp Circulating Nucleic Acid Kit (QIAGEN) and a
vacuum manifold according to the manufacturer's proto-
col. Quantitative and qualitative DNA analysis was per-
formed using the Nanodrop spectrophotometer. Global
methylation of cfDNA was performed by using 50ng of
extracted DNA that was analyzed by adapting the manu-
facturer's instructions for the Methylamp Global DNA
Methylation Quantification Ultra kit (Epigentek). Briefly,
DNA was immobilized to the well coated with DNA affin-
ity substance; then the methylated fraction of DNA was
recognized by 5-methylcytosine antibody, thus measur-
ing total DNA methylation level as a percentage of total
DNA present in the sample through an enzyme-linked
immunosorbent assay-like reaction and quantification.
The amount of methylated DNA is proportional to the op-
tical density intensity. Samples, standard curve, and both
the positive and negative controls were run in duplicate.

Detection of histone complexes in the
plasma of children with NAFLD

For the detection of histones and histone complexes in
the plasma, we used multispectral imaging flow cytom-
eter ImageStream(X) (AMNIS, part of Luminex Corp.),
which is designed for the acquisition of multiparametric
cellular imagery in up to 6 spectral channels.

Imaging flow cytometry combines the speed and
statistical power of flow cytometry with high-throughput
imaging features of fluorescence microscopy.

As previously described,®¥ we used three stain-
ing sets, each consisting of four different primary
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antibodies and four appropriate secondary anti-
bodies. Six channels of detection are available in
ImageStream(X), but for fluorescence detection,
only four are available, as one channel is dedicated
for bright-field images acquisition and for dark-field
scattering.

In the first staining set, the primary antibodies were
anti-macroH2A1.1 (39871; ActiveMotif), anti-histone
H2B (Ab134211; Abcam,), anti-histone H4 (Ab31830;
Abcam), and anti-histone H3 (Ab12079; Abcam).
Secondary antibodies were anti-rabbit immunoglobu-
lin G (IgG) H&L-Alexa Fluor 488 (Ab150077; Abcam),
anti-chicken immunoglobulin Y (IgY) H&L-DyLight 594
(Ab96953; Abcam), anti-mouse IgG H&L-Alexa Fluor
647 (Ab150115; Abcam), and anti-goat IgG H&L Alexa
Fluor 555 (Ab150130; Abcam).

In the second staining set, the primary antibodies
were anti-macroH2A1.2 (61427; ActiveMotif), anti-
histone H2B (Ab134211; Abcam), anti-histone H4
(Ab31830; Abcam), and anti-histone H3 (Ab12079;
Abcam). Secondary antibodies were anti-rabbit IgG
H&L-Alexa Fluor 488 (Ab150077; Abcam), anti-chicken
IgY H&L-DyLight 594 (Ab96953; Abcam), anti-mouse
IgG H&L-Alexa Fluor 647 (Ab150115; Abcam), and anti-
IgG H&L Alexa Fluor 555 (Ab150130; Abcam).

For the third staining set, the primary antibodies
were anti-macroH2A (Ab18255; Abcam), anti-histone
H2B (Ab134211; Abcam), anti-histone H4 (Ab31830;
Abcam), and anti-histone H3 (Ab12079; Abcam).
Secondary antibodies were anti-rabbit IgG H&L-Alexa
Fluor 488 (Ab150077; Abcam), anti-chicken IgY H&L-
DyLight 594 (Ab96953; Abcam), anti-mouse I1gG H&L-
Alexa Fluor 647 (Ab150115; Abcam), and anti-goat IgG
H&L Alexa Fluor 555 (Ab150130; Abcam).

The procedure for using each of the sets was as fol-
lows (same for each type). Plasma sample (50 pl) from
each pediatric patient was incubated with four primary
antibodies overnight at 4°C (1 pl of each primary anti-
body was added from stock solution 1 mg/ml, sequen-
tially). Following the primary incubation, the samples
were incubated with four compatible fluorescent sec-
ondary antibodies for 2 h at 24°C (1 pl of each second-
ary antibody was added from stock solution 0.05mg/
ml, sequentially).

The samples prepared in this way were analyzed by
imaging flow cytometer ImageStream(X) with the fol-
lowing parameters. For each stained patient plasma
sample, 10,000 objects were collected using the follow-
ing acquisition setup: excitation laser 488nm (5 mW)
for Alexa Fluor 488, fluorescence imaging in channel
2 (480-560nm); excitation laser 561nm (20mW) for
Alexa Fluor 555 and DyLight 594, fluorescence imag-
ing in channel 3 (560-595nm) and channel 4 (595-
642nm), respectively; and excitation laser 642nm
(5 mW) for Alexa Fluor 647, fluorescence imaging in
channel 5 (642-745 nm) (bright-field imaging in channel
1 and the dark-field scatter imaging in channel 6).

The histone level was quantified as relative abun-
dances of detected histone species among all gated ob-
jects in each patient sample. Particularly, macroH2A1.1,
macroH2A1.2, H2A, H2B, H3, H4, dimers, and tetram-
ers were determined by gating of plasma objects with
gates applied to discriminate (a) focused objects (using
the gradient root mean square method for focused ob-
jects filtering) and (b) objects with fluorescence from
secondary antibodies. Single-color controls and flu-
orescence minus one controls were used to find the
threshold for a secondary antibody fluorescence. The
same controls were used to calculate a spectral cross-
talk matrix that was applied to the image files in order
to isolate probed images to single imaging channels.
The resulting compensated image files were analyzed
using image-based algorithms available in the IDEAS
statistical analysis software package (AMNIS, part of
Luminex Corp.), and analysis of the results was done
with the same software.

Statistics

Significant differences of histone expression and meth-
ylation levels between groups of patients were found
using the Mann—-Whitney test. Kendall's Tau test was
used to measure the correlation between NASH or his-
tological variables and both histones expression and
methylation levels. Fisher's exact test was used to eval-
uate the difference between frequencies of genotypes.
Each statistical result was considered to be significant
if its associated p value was lower than 0.05. Histones
profiled in more than one staining set were averaged to
produce a single-point expression per patient. Patients
with missing histone data were excluded from tests in
which they could influence the outcome.

To evaluate the performance of our noninvasive
parameters in differentiating NASH from no NASH,
we implemented a K-nearest-neighbors (KNN) binary
classifier. The parameter K was set to be equal to
the number of patients used as the training set. The
weights of the training patients in the predictions were
assigned as the inverse of their Euclidean distance
from the query point in the features space. The model
was tested by leave-one-out cross-validation, and an
area under the curve (AUC) score was computed on
the leave-one-out predicted probabilities. Various com-
binations of features were explored, still removing all
samples that exhibited at least one missing value in
the feature set. For each training cycle, the features
were standardized on the mean and SD of the train-
ing set. We binary-encoded the sex feature as 1 or 0,
respectively, for males and females; we also encoded
the single-nucleotide polymorphism features as allele
count (0, 1 or 2, respectively, for wild-type, heterozy-
gous, and homozygous patients). For each receiver
operating characteristic (ROC) curve, we tested the
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alternative hypothesis that AUC>0.5 by bootstrapping
the leave-one-out predictions 1000 times, each time
computing the AUC on the bootstrapped data. The re-
sulting p value was the number of bootstrapped AUC
values lower than 0.5 over the total number of boot-
strapped AUC values (1000).

RESULTS

Global methylation of cfDNA and histone
signatures are altered in plasma of
pediatric patients with NAFLD/MAFLD

We evaluated the plasma cfDNA methylation and
circulating histone signatures in 20 control children
without liver diseases, and in 67 children with biopsy-
proven NAFLD/MAFLD. Anthropometrics, biochemi-
cal parameters, and genetics of controls and children
with NAFLD are reported in Tables S1 and S2,
respectively.

Our data showed that median cfDNA levels in
patients with NAFLD/MAFLD were not significantly
higher than in controls (Figure S1). Moreover, our data
revealed a significant increase of methylated cfDNA
levels in children affected by NAFLD/MAFLD com-
pared to controls (Mann—Whitney test, p = 5.58e-6)
(Figure 1A).

According to the dynamics and intermediates on
the process of histone assembly into nucleosomes,
we assayed six individual histones (H2A, H2B, H3,
H4, macroH2A1.1, and macroH2A1.2) together with the
following biological dimers: H2A/H2B, macroH2A1.1/
H2B, and macroH2A1.2/H2B by ImageStream(X), as
previously reported.ml We found a significant enrich-
ment of the levels of histone variant macroH2A1.2 in
the plasma of children with NAFLD/MAFLD versus con-
trols (Mann—Whitney test, p = 0.02) (Figure 1B). None
of the other individual histones or histone complexes
significantly differed (Figure S2).

Next, we stratified the patients with NAFLD, differ-
entiating children without NASH (no NASH, n = 20)
from children with NASH (NASH, n = 47). As indi-
cated in Table 1, in the comparison between the no-
NASH group and NASH group, only the BMI z score
and levels of ALT significantly increased (p = 0.034
and p = 0.027, respectively). No statistical differences
were found in median cfDNA levels in patients with
NASH compared to no NASH (Figure S3). In addition,
the plasma levels of methylated cfDNA were signifi-
cantly higher in children with NASH than in children
with no NASH (Mann-Whitney test, p = 7.49e-5)
(Figure 1C).

On the other hand, individual histones or histone
complexes did not correlate with disease progression,
as their levels did not differ between patients with no
NASH and with NASH (Figure 1D and Figure S4).

Plasma cfDNA methylation and histone
signatures are correlated with histological
traits in children with NAFLD/MAFLD

Because cfDNA methylation increased with NAFLD
progression, we sought to determine its correlation
with the histological traits. Table S3 lists the histological
traits in our study cohort. Among the patients, 11.9%
had severe steatosis (grade 3); 76.1% exhibited lobular
inflammation; 86.6% presented ballooning; and 16.4%
had severe fibrosis (F3). As shown in Figure 2A-C,
correlation analysis indicated a moderate (Kendall's
coefficient of concordance 0.23-0.27) but significant
positive correlation between cfDNA methylation levels
and steatosis (p = 0.01), lobular inflammation (p = 0.02),
and liver fibrosis (p = 0.003). Conversely, as reported
in Figure 2D, no correlation was found between cfDNA
methylation levels and hepatocyte ballooning (Kendall's
coefficient of concordance 0.11; p = 0.26). Of note, the
strongest positive correlation was found between the
NAS and cfDNA methylation levels (Kendall's coeffi-
cient of concordance 0.3; p = 0.001) (Figure 2E).

Moreover, we assayed the correlation be-
tween circulating histones (individual: H2A, H2B,
H3, H4, macroH2A1.1, and macroH2A1.2; dimers:
H2A+H2B, H3+H4, macroH2A1.1+H2B, and mac-
roH2A1.2+H2B; nucleosomes: H2A+H2B+H3+H4,
macroH2A1.1+H2B + H3 + H4, and macroH2A1.2+H2B
+H3+H4), and the histological traits in children with
NAFLD/MAFLD (Figure S5). The levels of the ana-
lyzed histones were not correlated with histological
features, except the histone variant macroH2A1.2.
Indeed, this histone variant was found significantly and
inversely correlated (p<0.05) with steatosis and NAS
(Figure 3A,B), thus reflecting the enrichment of its lev-
els in the plasma of children with NAFLD/MAFLD.

Genetic and epigenetic signatures
predicting NASH phenotype in children
with NAFLD/MAFLD

In children affected by NAFLD/MAFLD, genetic back-
ground has a strong impact on severity of disease.l"
Indeed, the gene variants PNPLA3 rs738409 and
TM6SF2 rs58542926 are associated with NASH pro-
gression[37'38] and KLB rs17618244 is associated with
an increased risk of ballooning and lobular inflamma-
tion,%4% while MBOAT?7 rs641738 does not show any
association with the disease.*! Here, we analyzed the
correlation of these variants with NASH in our study co-
hort. As reported in Figure S6, only PNPLA3 rs738409
significantly correlated with NASH. Therefore, we
sought to test the ability of cfDNA methylation, histone
macroH2A1.2, and PNPLA3 rs738409 to discriminate
among pediatric patients with NAFLD and those with
NASH, using ROC curve analysis. Notably, ROC curve
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FIGURE 1 Global DNA methylation and histone signatures in plasma of pediatric patients with nonalcoholic fatty liver disease (NAFLD).

(A) Percentage of cell-free DNA (cfDNA) methylation in NAFLD (red) and control (green) patients. ***p<0.001 vs. controls. (B) Box plots of
the standardized individual histones expression in NAFLD (red) and controls (green); outliers were removed; the horizontal bars represent
the medians and the whiskers. *p<0.05 vs. controls. (C) Percentage of cfDNA methylation in patients with nonalcoholic steatohepatitis
(NASH) NAFLD (red) and no NASH (yellow). ***p<0.001 vs. controls. (D) Box plots of the standardized histones expression in patients with
NASH (red) and no NASH (yellow); outliers were removed; the horizontal bars represent the medians and the whiskers.

analysis demonstrated that cfDNA methylation was
the more efficient variable to discriminate children with
NASH with an AUC of 0.83, with respect to PNPLA3
and macroH2A1.2 (considered separately) (Figure 4
and Figure S7). The evaluation of a model considering

altogether cfDNA methylation, histone macroH2A1.2,
and PNPLA3 rs738409 showed that this combination
could discriminate children with NASH with an AUC of
0.81, but the removal of macroH2A1.2 from this model
improved the AUC up to 0.86 (Figure 4).
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TABLE 1 Comparison of characteristics
in children without (no NASH) versus

children with NASH

Parameters
Sex (M/F)
Age (years)
Weight (kg)
Height (cm)
BMI (kg/m?)
BMI z score!
WC (cm)
Cholesterol (mg/dl)
HDL-C (mg/dl)
LDL-C (mg/dl)
Triglycerides (mg/dl)

a

Fasting insulin (pUl/ml)
Fasting glucose (mg/dl)
HOMA-IR

AST (IU/L)®

ALT (IU/L)

GGT (IU/L)

MAF (G) PNPLAS3 rs738409
PNPLA3-CC

PNPLA3-CG

PNPLA3-GG

MAF (T) TMBSF2 rs5854292
TM6SF2-CC

TM6SF2-CT

TM6SF2-TT

MAF (T) MBOAT7 rs64173826
MBOAT7-CC

MBOAT7-CT

MBOAT7-TT

MAF (A) KLB rs17618244
KLB-AA

KLB-GA

KLB-GG

No NASH (n = 20)
15/5

12.5 (7.0-19.0)
63.3 (29.0-120.0)
159.5 (127.6-173.7)
24.3 (16.8—49.3)
0.26 (0.1-0.7)
87.0 (54.0-108.0)
163.5 (124.0-203.0)
49.0 (38.0-73.0)
101.0 (48.0-132.0)
83.5 (40.0-211.0)
15.2 (4.6-80.0)
83.5 (77.0-94.0)
3.0 (0.9-15.2)
27.5 (13.0-153.0)
23.5 (10.0-79.0)
15.0 (6.0-62.0)
0.17

8 (40%)

8 (40%)

4 (20%)

0.15

18 (90%)

1 (5%)

1(5%)

0.52

10 (50%)

10 (50%)

0.25

2 (10%)

5 (25%)

13 (65%)

NASH (n = 47)
24/23

12.0 (6.0-17.0)
60.5 (20.1-194.0)
151.0 (118.0-187.5)
25.9 (14.4-57.9)
1.7 (1.2-2.3)

88.0 (65.0-145.0)
149.0 (108.0-214.0)
43.0 (29.0-71.0)
93.0 (36.0-163.0)
85.0 (44.0-268.0)
16.0 (2.6-87.0)
81.0 (68.0-147.0)
3.5 (0.5-26.1)
31.0 (13.0-152.0)
38.0 (10.0-95.0)
16.0 (0.5-53.0)
0.46

15 (31.9%)

21 (44.7%)

11 (23.4%)

0.08

41 (87.2%)

4 (8.5%)

2 (4.3%)

0.46

15 (31.9%)

21 (44.7%)

11 (23.4%)

019

2 (4.3%)

14 (59.8%)°

31 (66%)

Note: Data are expressed as number, median, and range (min—max); Mann—Whitney test was applied
for comparison between no-NASH and NASH anthropometric and biochemical variables.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index;
F, female; GGT, gamma-glutamyltransferase; HDL-C, high-density lipoprotein cholesterol; HOMA-IR,
homeostasis model assessment index of insulin resistance; KLB, klotho-f; LDL, low-density lipoprotein;
M, male; MAF, minor allele frequency; MBOAT7, membrane bound O-acyltransferase domain containing
7; TM6SF2, transmembrane 6 superfamily member 2; WC, waist circumference.

%p =0.034.

bp =0.027. Genotypes are reported as number and percentage, and Fisher's exact test was applied
for comparison.

°p<0.05.

Combining cfDNA methylation,
PNPLAS3 variant, and clinical features
to identify the best-fit model for
predicting NASH

best predictor to discriminate NASH in our cohort of
children with NAFLD/MAFLD. As shown in Figure 5A,
the four parameters most significantly correlated with
NASH were ALT, HDL-C and total cholesterol, in addi-
tion to the epigenetic parameter of cfDNA methylation.
Next, we assessed which one among the anthropo- Therefore, we included all possible combinations of ALT,
metrical and biochemical features could be used as HDL-C, and total cholesterol to the cfDNA methylation +
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FIGURE 2 Correlation between circulating cfDNA methylation and histological traits in patients with NAFLD. Correlation between
percentages of cfDNA methylation in patients with NAFLD (n = 67) stratified by steatosis (A), lobular inflammation (B), fibrosis (C),
ballooning (D), and NAFLD activity score (NAS) (E).
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FIGURE 3 Correlation between circulating histones and histological traits in patients with NAFLD. Correlation between macroH2A1.2
histone expression and steatosis (A) or NAS (B) in patients with NAFLD (n = 60); macroH2A1.2 histone expressions were quantile-
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FIGURE 4 Performance of cfDNA methylation, patatin-like phospholipase domain containing 3 (PNPLA3) rs738409, and macroH2A1.2
in predicting children with NASH. K-nearest-neighbors (KNN) receiver operating characteristic (ROC) curves achieved combining cfDNA
methylation, PNPLA3 rs738409, and macroH2A1.2 features. True positive rate (TPR) and false positive rate (FPR) are indicated in the
graph. Abbreviation: AUC, area under the curve.

PNPLA3 rs738409 model. As shown in Figure 5B,when =~ DISCUSSION
we added HDL-C or ALT, the AUC of the ROC was the
highest (>0.87), demonstrating that the combination of
cfDNA methylation and PNPLA3 rs738409, with the ad-
dition of either HDL-C or ALT levels, strongly predicted

the progression of pediatric NAFLD to NASH.

In this study, we performed the analyses of circulat-
ing levels of histones and cfDNA methylation and as-
sessed whether these two parameters add value to the
prediction of NAFLD/MAFLD severity on top of other
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NASH NAFLD groups. (B) KNN ROC curves achieved by combining additional features to the cfDNA methylation and PNPLA3 rs738409

features. TPR and FPR are indicated in the graph.

well-known risk factors, such as well-known metabolic
and genetic polymorphisms. We obtained different mul-
tivariate prediction models that combined these param-
eters with other disease-related variables.

cfDNA methylation and circulating histones have
now been shown to be useful biomarkers for diagnosis,
prognosis, and/or response to therapy in different type
of cancers, and recently also in some chronic diseases,
such as obesity and type 2 diabetes.l'#243 These find-
ings are of particular relevance for diseases in which

biomarkers may help in understanding their natural his-
tory, such as for NAFLD/MAFLD.

The “natural history” of pediatric NAFLD/MAFLD
is a complex topic, in that there is a paucity of longi-
tudinal data in children with NAFLD/MAFLD. A better
understanding of the severity range, variability, and as-
sociations of pediatric NAFLD/MAFLD is important, as
children may represent different time points on a his-
tory continuum that may involve their whole life. It is of
the utmost importance to stratify pediatric patients with
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NAFLD and discriminate NASH, primarily to offer them
the best management and to reduce the risk of fibrosis
exacerbation. Unfortunately, because of the paucity of
data on noninvasive imaging and biomarkers, liver bi-
opsy remains the gold standard for diagnosis of NASH
in children. 44!

Practice guidelines for the initial screening of pe-
diatric NAFLD/MAFLD include ALT and ultrasound
to assess changes in steatosis over time, but these
methods appear to be unable to provide an indirect
measure of other liver histological features.*? Indeed,
the ALT levels were not found to be elevated in obese
patients with NAFLD diagnosed by imaging proce-
dures, suggesting that ALT elevation could occur at
more advanced stages of NAFLD.! el Draijer et al.
recently compared ALT and ultrasound accuracy in
a cohort of 99 children with NAFLD, demonstrating
that alone or in combination these two parameters
are even incapable of detecting steatosis in children
with obesity.[‘m Therefore, novel screening tools are
needed to replace liver biopsy and to identify which
children with NAFLD/MAFLD have, or will progress
into, NASH and fibrosis.

Genetic and epigenetic factors play a key role in the
development of pediatric NAFLD/MAFLD and its pro-
gression to NASH, and they have a strong potential
as noninvasive disease biomarkers.”*?! In this respect,
liquid biopsies, such as c¢fDNA and circulating his-
tones/nucleosomes (“epimarks”), have been proposed
as promising biomarkers for adult NAFLD.[10-18:31-33]
Although previous evidence in adults with NAFLD
demonstrated that circulating levels of total cfDNA are
different in comparing patients with different stages of
disease,*® we found that total cfDNA concentration in
children was unchanged among the different groups of
comparison (controls, NASH, and no NASH). Even if
this finding suggests that the levels of absolute cfDNA
could not be a good parameter for monitoring disease
progression, further studies on a larger number of pa-
tients are required to support this assumption.

The major finding of this study is that cfDNA meth-
ylation is not only significantly associated with NASH
features, but also with fibrosis. These results are in
agreement with previous studies demonstrating that
the evaluation of liver tissue and plasma DNA meth-
ylation at particular CpG loci in the human PPARYy
gene promoter can be used to stratify fibrosis sever-
ity in NAFLD.13241 A previous study found that DNA
methylation in the serum of patients with NAFLD was
significantly higher in the subjects with cirrhosis than
those without.*®! We found a similar trend in children
with NAFLD who exhibited a more severe pattern of
diseases, but the significance and the origin of this
methylated DNA remains to be explored.

This study explores circulating epimarks as biomark-
ers of disease progression in a cohort of children with
biopsy-proven NAFLD. We found that circulating levels

of histone variant macroH2A1.2 strongly correlates with
the early stages of NAFLD/MAFLD, but not with the pro-
gression toward NASH. This correlation was strongest
with early stages of steatosis and lower levels of NAS,
and therefore decreased with disease severity, consis-
tent with our previous pilot findings observed in adults
affected by NAFLD/MAFLD—independent of body
weight.[33] We have previously shown that hepatocytes
accumulate high levels of macroH2A1.2 during NAFLD/
MAFLD pathogenesis.?>?4 Although the tissue(s) of
origin of circulating macroH2A1.2 remain unknown, we
speculate that the differences in the circulating levels
of macroH2A1.2 may reflect the amount of those his-
tones remained “trapped” within hepatocytes or other
cell types during disease progression.

An additional factor with a clinically relevant impact
on pediatric NAFLD onset and progression is the ge-
netic background.m Several genetic variants have been
found associated with NAFLD, but only few of them,
including PNPLA3 rs738409, TM6SF2 rs58542926,
MBOAT7 rs641738 and KLB rs17618244, have been
correlated with the risk of NASH in children.['3%=41 |n
the present cohort, we found that PNPLA3 rs738409
is the gene variant mostly associated with a NASH
phenotype. Although this variant may explain a large
part of the total heritability of NAFLD, it is possible that
its combination with epigenetic factors could provide a
score that improves NASH diagnosis. However, to date,
there is no evidence about the utility and the accuracy
of the combination of epimarks, gene variants, and
metabolic biomarkers in models that may help to dis-
criminate children with progressive disease.®! Hence,
whether the combination of these biomarkers could im-
prove the accuracy in distinguishing NASH and what
form of combination could achieve better diagnostic
accuracy are key questions.

Here, we have shown that the combination of ge-
netic, epigenetic, and metabolic variables, using a KNN
algorithm that is very fast and does not require a rigid
decision of the hyperparameters, may help in predicting
the NASH onset. The best combination of variables in-
cluded methylation, the PNPLAS3 rs738409 variant, and
the ALT concentration, but also considering HDL-C to
the place of ALT led to good performance. Our findings
are in agreement with previous studies reporting that
diagnostic efficiency of the combined models with com-
posite biomarkers might be higher than that observed
with single biomarkers.®% Stratification of children with
epimarks could be a promising tool for the consistent
diagnosis and prognosis in pediatric NAFLD/MAFLD,
but may also improve patient management and refine
the prediction of their response to a given drug or com-
bination of drugs.”°!

Our study has two main limitations, including the
fact that liver biopsies have been performed in NAFLD
but not in control subjects (unavoidable because the
liver biopsy in these subjects is unethical); and that the
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sample includes only Caucasian subjects, thus sug-
gesting the need for additional studies on a larger co-
hort of children/adolescents with different ethnicity.

CONCLUSIONS

We propose a combinatorial panel of biomarkers to as-
sess the risk of NAFLD and its progression in pediat-
ric patients, suggesting that the early stage of NAFLD
might be monitored by macroH2A1.2 histone variant,
while the presence of NASH could be detected by a
composite algorithm including cfDNA methylation and
PNPLAZ3, together with HDL-C or ALT levels.
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