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The earliest galaxies are expected to emerge in the
first billion years of the Universe during the Epoch
of Reionization. However, both the spectroscopic con-
firmation of galaxies at this epoch and the character-
ization of their early dynamical state has been hin-
dered by the lack of bright, accessible lines to probe
the velocity structure of their interstellar medium. We
present the first spectroscopic confirmation of near-
infrared selected sources at z> 6 using the far-infrared
[C II] λ157.74µm emission line, and, for the first time,
measurement of the velocity structure, for two galax-
ies at z = 6.8540±0.0003 and z = 6.8076±0.0002. Re-
markably, the [C II] line luminosity from these galax-
ies is higher than previously found in ‘normal’ star-
forming galaxies at z > 6.51–5. This suggests that we
are sampling a part of the galaxy population differ-

ent from the galaxies found through detection of the
Lyα line. The luminous and extended [C II] detec-
tions reveal clear velocity gradients that, if interpreted
as rotation, would suggest these galaxies have similar
dynamical properties as the turbulent, yet rotation-
dominated disks that have been observed for Hα emit-
ting galaxies 2 Gyr later at cosmic noon. Our novel
approach for confirming galaxies during Reionization
paves the way for larger studies of distant galaxies with
spectroscopic redshifts. Particularly important, this
opens up opportunities for high angular-resolution
[C II] dynamics in galaxies less than one billion years
after the Big Bang.

We have obtained spectroscopy with the Atacama
Large Millimetre Array (ALMA) at 241–245 GHz of
two Lyman-break galaxies (LBGs) COS-3018555981 and
COS-2987030247 at an estimated photometric redshift
just below 7, roughly 800 million years after the Big
Bang. These two sources are luminous in the rest-frame
ultraviolet (UV; LUV ∼ 2×L∗6), but are still representative
of ‘normal’ star-forming galaxies at z ∼ 7 with a UV star-
formation rate (SFR) of 19− 23M� yr−1. They were se-
lected based on their blue rest-frame optical colours mea-
sured in the 3.6 and 4.5µm Spitzer photometric bands7,
which strongly constrains the photometric redshift prob-
ability distribution to the redshift range 6.6 < z < 6.9.
These sources are among the most extreme [O III]+Hβ

emitters known at z ∼ 77, 8. We observed these sources in
a 36 antennae configuration with ALMA (angular resolu-
tion of 1.1"×0.7", equivalent to 5.8×3.7 kpc at z = 6.8)
and 24 min on source integration time for each of the tar-
gets. We use this spectral scan to search for [C II] in the
redshift range z[CII] = 6.74− 6.90. Our results are sum-
marized in Table 1.
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Figure 1 | Spectroscopic line confirmations of the targeted galaxies in this study. ALMA line maps and spectra
of two galaxies with photometric redshifts in the range 6.6 < zphot < 6.9 7. We detect a 8.2σ [C II] line at z[CII] =

6.8540± 0.0003 in galaxy COS-3018555981 (top panels) and a ∼ 5.1σ [C II] line at z[CII] = 6.8076± 0.0002 in
galaxy COS-2987030247 (bottom panels). Left panels: 20” x 20” images of the ALMA cube (before primary-beam
correction) collapsed over 241.85-242.10 GHz and 243.35-243.45 GHz for COS-3018555981 and COS-2987030247
respectively (rms of 0.1 and 0.2 mJy respectively). Middle panels: 5” x 5” zoom-in on the targeted sources. The
HST H160 imaging is shown in grey-scale, while the overlaid red contours show the 3,4,5-σ levels of the spectral
line-averaged maps in the left panels. The filled ellipse in the bottom right corner indicates the beam size (1.1"×0.7"
half-power widths). Right panels: The spectra extracted within a contour of the half-maximum power in the line maps.
The red line shows the best fit Gaussian line profile. The grey line at the top of the panels shows the atmospheric
absorption, while the grey line at the bottom of the panels gives the measured rms for the spectrum (for clarity shown
at a fixed offset of -1.0 and -1.5 mJy for the top and bottom panel respectively).

We detect a line in each of the targets at 241.97±
0.01GHz and 243.42± 0.01GHz, for COS-3018555981
and COS-2987030247 respectively, at > 5σ significance
in both the one-dimensional spectra and the spectral line-
averaged maps (Fig. 1). We derive spectroscopic red-
shifts of z[CII] = 6.8540 ± 0.0003 and z[CII] = 6.8076 ±
0.0002, in excellent agreement with the photometric red-
shift estimates of 6.76± 0.07 and 6.66± 0.14 for COS-
3018555981 and COS-2987030247, and line-widths of
232± 30 and 124± 18 kms−1 respectively. While suc-
cessful line-searches have confirmed far-infrared lines in
submillimetre selected star-bursting galaxies at z > 69, 10,

and a few tantalising "blind" (i.e. with no optical or near-
infrared counterpart) [C II] emitters have recently been
detected at ∼ 4σ 11, this is the first time that normal star-
forming galaxies in this early epoch, selected at optical or
near-infrared wavelengths, have been confidently spectro-
scopically confirmed with ALMA.

We furthermore obtain upper limits on the far-
infrared (FIR) dust continuum emission from the ALMA
data. We find SFRIR < 16− 19M� yr−1, consistent with
‘normal’ star-forming galaxies in the local Universe12

and ruling out the presence of a dusty starburst in these
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Figure 2 | [C II] luminosity and dust continuum of z> 5 galaxies. Left panel: The [C II] line luminosity as a function
of the star-formation rate, derived from the ultraviolet luminosity of COS-3018555981 and COS-2987030247 (red
points; uncertainty on the star-formation rate reflects the upper limits on the infrared continuum). We include [C II]
detections at redshift z ∼ 5− 6 as light grey points 4, 16, 17 and detections and upper limits at z > 6.5 with blue open
squares and arrows1–3, 5. The locally observed De Looze relations15 are indicated by the solid (local star-forming
galaxies) and dashed (starburst and HII galaxies) lines. Low-metallicity dwarfs are found to be systematically offset
from the relation of local star-forming galaxies, with the local ultra low-metallicity dwarf galaxy I Zwicky 18 being
offset by as much as 0.6 dex (dotted line). Right panel: The infrared excess (IRX=LUV/LIR) as a function of the UV-
continuum slope (β ) of our sources compared to the Meurer13 relation (solid grey line) and a similar relation based on
the dust law of the Small Magellanic Cloud14 (dotted grey line). We include [C II] detections at redshift z ∼ 5−6 as
light grey points16 and detections and upper limits at z > 6.5 with blue solid squares and arrows28–30. All upper limits
are 1σ .

sources. Fig. 2 shows that for the colour of the UV-
continuum slope (βUV ∼−1.2) in these galaxies we would
expect a higher dust content (IRX=LIR/LUV) in these
galaxies if they were consistent with having the Meurer
dust law, which is locally observed to apply for star-
burst galaxies13. Scatter in the IRX-βUV relation can be
due to dust geometry effect, galaxy population age or the
shape of the attenuation curve. However, for blue galax-
ies (βUV .−0.5) that scatter below the Meurer13 relation,
such as seen in our galaxies, the most likely way to repro-
duce the low values of IRX is through a steeper attenua-
tion curve, such as has been derived for the Small Mag-
ellanic Cloud14 (consistent with our measurements within
3σ ), in combination with a potential increase in dust tem-
perature at higher redshift.

The [C II] λ158µm line is an important coolant for
the neutral interstellar gas. For local galaxies the [C II]
line luminosity is well correlated with the star-formation
rate of galaxies15. In Fig. 2 we present the measured flux
of the [C II] lines as a function of SFR, which is consistent
with the z ∼ 0 SFR-L[CII] relation15, and consistent with
similarly bright galaxies observed at z ∼ 5 − 616, 17. In
contrast, [C II] observations in the Epoch of Reionization
to-date have shown these galaxies are significantly below
the local relation1–5. This is likely due to the distinctly dif-
ferent selection of our targets compared to previous stud-
ies at z > 6.5, where we select [O III]λλ5007,4959Å+Hβ

emitters as opposed to Lyα emitting galaxies.

Our sources have slightly higher star-formation
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Figure 3 | Velocity structure of the detected [C II] in the two galaxies from this study. The velocity field measured
in our galaxies COS-3018555981 (left panel) and COS-2987030247 (right panel). The observations are spatially
resolved, as shown by the beamsize of the observations indicated by the grey ellipse in the bottom right corner and
reveal a projected velocity difference over the galaxy of 111± 28 and 54± 20 kms−1 respectively. Given the low
angular resolution of the observations, the detected velocity gradients can be interpreted as disk rotation or potentially
a merger with two or more velocity components.

rates and redder UV slopes (βUV ∼−1.2) than previously
studied galaxies at this epoch, which could indicate more
evolved and higher metallicity galaxies. Sources with ex-
tremely low oxygen abundance in the local Universe are
typically found to be [C II]-deficient 15, 18 due to their
hard radiation field and therefore metallicity could be an
important discriminator between [C II]-bright and [C II]-
faint sources19. Moreover, in local galaxies the star for-
mation rate density drives a continuous trend of deepen-
ing [C II] deficit as a function of increasing ΣSFR

18, 20, in-
dicating local processes such as the radiation field inten-
sity are important in driving [C II] luminosity. If [C II]-
faint sources at z > 6, currently unresolved in [C II], have
higher star-formation surface brightness than our galaxies,
this could also explain the different SFR/L[CII] ratios.

Furthermore, our sources have inferred high
equivalent-width optical emission lines, which could sug-
gest an ongoing starburst and potentially a high fraction of
[C II] emission emerging from H II regions. Starbursts and
H II galaxies in the local Universe have slightly elevated
[C II] luminosities for a given SFR15 and therefore we
could specifically be targeting the brightest [C II] galaxies
of the overall z ∼ 7 galaxy population. Finally, while we
do not have spectroscopy covering the Lyα line on COS-

3018555981 and COS-2987030247, our sources could be
weaker Lyα emitters than typically seen in spectroscop-
ically confirmed sources at this redshift. Lyα emission
is suggested to be inversely correlated with neutral gas
column density21 and can therefore affect the visibility of
[C II], which emerges both in the diffuse neutral and the
warm ionized medium of a galaxy.

We determine the [C II] half-light radii (decon-
volved from the beamsize) that extend 2.6±0.8 and 3.1±
1.0 kpc for COS-3018555981 and COS-2987030247,
nearly twice the size of the UV in the brightest LBGs
at this redshift22. We use the spatial extent of the [C II]
detection to investigate the velocity structure of these
sources, which reveals a projected velocity difference over
the galaxy of 111 ± 28 and 54 ± 20 kms−1 for COS-
3018555981 and COS-2987030247 respectively (Fig. 3),
similar to the velocity gradients observed in two galaxies
recently studied at z ∼ 5− 623, 24. Given the low angular
resolution of the observations, there are various ways to
interpret these velocity gradients. A rotating galaxy disk
would be one interpretation of these velocity fields, how-
ever, a merger of one or more [C II] emitting galaxies,
smoothed by the beamsize, could also appear as a regular
rotational field. Furthermore, a bipolar outflow, or per-
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Figure 4 | Dynamical classification and masses of z & 2 galaxies. Left panel: The observed kinematic ratio of the
projected velocity range of a galaxy over the velocity dispersion of the system (∆vobs/2σtot) as a function of stellar
mass. Our measurements at redshift z = 6.8 are indicated in red points and the SINS sample of Hα emitting galaxies at
z ∼ 225 is shown in blue squares. Galaxies with ∆vobs/2σtot > 0.4 are classified as likely rotation-dominated systems,
while sources with ∆vobs/2σtot < 0.4 are likely dispersion-dominated (grey line)25. If the velocity gradient observed in
these galaxies is due to rotation, these sources are expected to be similar in their dynamical properties to the turbulent,
rotation-dominated disks seen for massive galaxies at redshift z ∼ 2. Right panel: The comparison of the dynamical
or total mass within a ∼ 2kpc half-light radius, when assuming a circularly-symmetric thin disk model, and the stellar
mass of our sources (red points). The stellar-mass fractions (grey dotted lines) of 14 and 43% for COS-3018555981
and COS-2987030247, respectively, are in good agreement with the range of values found for galaxies in the AMAZE
survey26 at z ∼ 3 (blue squares) and the SINS survey25 at z ∼ 2 (grey points).
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haps an inflow of gas could provide an additional velocity
component to the [C II] line that might give the impression
of galaxy rotation.

We apply an observational criterion for the clas-
sification of rotation- and dispersion dominated systems
based on the full observed velocity gradient ∆vobs and
the integrated line width σtot of a galaxy, such that
∆vobs/2σtot > 0.4 are likely to be rotation-dominated
sources25. We compare this observed quantity in our
galaxies with those measured from Hα in galaxies at
z ∼ 1 − 325 in Fig. 4. Despite our sources being an
order of magnitude smaller in stellar mass and at an
epoch 2.5 billion years earlier in cosmic time we find
∆vobs/2σtot values of 0.57±0.16 and 0.52±0.21, similar
to the turbulent, yet rotationally supported galaxy disks at
z ∼ 2 25. Assuming a circularly symmetric galaxy disk
model, we estimate a dynamical mass of Mdyn of 1.0+0.3

−0.2

and 0.4+0.9
−0.3 × 1010 M� for COS-3018555981 and COS-

2987030247 respectively. Note, however, that the influ-
ence of turbulence in these sources could increase the
dynamical mass estimates (by at most a factor of 2×).
These sources are a factor of ∼4–10× lower mass than the
bright, UV-selected sources recently observed at z∼ 5−6,
just ∼200–300 Myr later in cosmic time16, which appear
otherwise similar in their [C II] and IR properties (Fig.
2). Furthermore, the stellar mass in our sources makes up
∼14 and 43% of the total dynamical mass that we mea-
sure (Fig. 4), in good agreement with the 33% estimated
in the UV-selected sources at z ∼ 5− 616 and consistent
with the wide range of values observed for star-forming
galaxies at z ∼ 1−325, 26. These results indicate a signifi-
cant gas fraction in the inner few kpc of our galaxies, con-
sistent with hydrodynamical simulations of star-forming
galaxies at this epoch27.

In conclusion, we present the first ALMA spectro-
scopic confirmations of normal star-forming galaxies in
the Epoch of Reionization and a measurement of veloc-
ity structure using the [C II] λ157.74µm emission line.
These observations will serve at a pathfinder study that
will enable larger samples of z ∼ 7 galaxies to spec-

trosopically confirmed with ALMA, while the kinematic
mapping of z > 6 galaxies will adds a remarkable new di-
mension to the study of galaxies in their formative years.
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METHODS

Definitions. Throughout this letter we adopt a Chabrier31

initial mass function (IMF). For ease of comparison with
previous studies we take H0 = 70kms−1 Mpc−1, Ωm =

0.3, and ΩΛ = 0.7, which gives a physical scale of
5.3 kpc/" at z = 6.8. Magnitudes are quoted in the AB
system32.

Data. We obtained ALMA observations centred on
the sources COS-3018555981 (R.A. = 10:00:30.185,
decl. = +02:15:59.81) and COS-2987030247 (R.A. =
10:00:29.870, decl. = +02:13:02.47) as part of a filler pro-
gram (project code: 2015.1.01111.S, PI: Smit) on April
14, 2016, in Cycle-3. Three tunings were requested to
cover the frequency range 1870.74-1971.43 GHz in band
6, in order to scan for [C II] at redshift z = 6.45− 6.90,
corresponding to the 99% photometric redshift probability
range33. One tuning was executed, scanning the redshift
range z[CII] = 6.74−6.90, with 24 min on source integra-
tion time for each of the targets. The precipitable water
vapor (PWV) of the observations were 1.34 mm. The ar-
ray consisted of 36 antennas and three spectral windows
having a bandwidth of 1.875 GHz were used to cover a
frequency range of 4.95 GHz in a single sideband.

The data were calibrated and reduced with the
Common Astronomy Software Application (CASA)34

version 4.5.3, using the automated pipeline, and we im-
aged the data with the CLEAN task (no iterations as no
continuum sources are detected in the data), using a nat-
ural weighting for optimal signal-to-noise. The resulting
observations reached an image rms sensitivity of 0.32 mJy
beam−1 at 243 GHz in a 50 km/s channel in both point-
ings. The primary beam has a resolution of 1.1"×0.7" (PA
= −48◦) for both targets.

We also make use of the HST imaging in the
WFC3/F160W (H160) and the photometry of these objects
that was used in the selection of these galaxies in previous
work33.

Line detections. COS-3018555981. We extract a spec-
trum from the ALMA cube centred on the rest-frame UV
continuum of the galaxy detected in the HST H160 band
of COS-3018555981 as a first guess and find a clear line
detected at ∼242 GHz, removed from any atmospheric
absorption features and with a peak flux > 3.5σ above
the local noise. Next, we extract spectrally averaged map
between 241.85 and 242.10 GHz, which reveals that the
emission line is centred on a faint wing of the UV con-
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tinuum detection, 0.27" removed from the brightest UV
clump (Fig. 1). This offset is similar to the typical uncer-
tainty in the HST astrometry of 0.2"35, however, if instead
the offset is real this could quite reasonably suggest that
the brightest star-forming region in the UV does not spa-
tially coincide with the dynamical centre of the system.

We determine the significance of the detection by
measuring the flux on the spectral line-averaged map in
a 1.1"×0.7" aperture corresponding to the full width at
half max of the beam and we repeat this measurement
9000 times at randomly selected positions of the image,
resulting in an estimated signal-to-noise ratio of 8.2. To
determine the redshift of COS-3018555981 we extract
a new one-dimensional spectrum from all pixels above
the half maximum of the line detection on the spectral
line-averaged map and we fit a Gaussian to the observed
line to determine a line centre of 241.97±0.01GHz, cor-
responding to a [C II] redshift of 6.8540 ± 0.0003, and
a linewidth of 232±30 kms−1 FWHM (Fig. 1). The
only lines other than [C II] λ158µm that are expected
to be bright enough to be able to explain our detec-
tion are [O I] λ63µm and [O III] λ88µm. However, the
[O I] λ63µm and [O III] λ88µm redshifts of 18.6 and
13.02, respectively, are inconsistent with the HST pho-
tometry of this source33. Furthermore, the photomet-
ric redshift of 6.76± 0.0733 is also inconsistent with the
[O I] λ145µm redshift of 7.5, which is the closest infrared
line in frequency, if many times fainter, to [C II] λ158µm.

COS-2987030247. Similar to the procedure for
COS-3018555981 we first search for an emission line in
the spectrum extracted over the rest-frame UV continuum
of COS-2987030247. We find a tentative narrow line at
243.4 GHz, 40 MHz removed from an atmospheric ab-
sorption feature at 243.5 GHz, where the rms is elevated
by 1.5× with respect to the median rms in the data-cube.
The spectral line-averaged map extracted between 243.35
and 243.45 GHz shows a > 5σ detection close to the po-
sition of the HST counterpart, i.e. the peak of the map
is 0.17" removed from the UV-continuum emission (Fig.
1).

By sampling the noise in the spectral line-averaged
map in ellipsoidal apertures of the beamsize, we measure
a signal-to-noise ratio of 5.1 for the detected line at 243.5
GHz, suggesting that the line is indeed a real detection.
To further test the significance of the line we perform a
blind line search of the data-cube. For each pixel in the
cube we extract a one-dimensional spectrum from averag-
ing all pixels within the ellipsoidal aperture of the beam-
size and we fit any tentative lines in the spectrum with
a Gaussian. If the difference between the χ2 of the line
fit and that of a straight line is greater than 25 (i.e. 5σ )
we extract a velocity-averaged image over the FWHM of
the line and inspect the significance of the detection on
this image. To remove spurious line detections we again
assess the significance of any potential line from the ran-
dom sampling of the flux in ellipsoidal apertures on the
line map. While we robustly detect the line over COS-
2987030247, we find no other sources with a > 5σ detec-
tion in both the one-dimensional spectrum and the spec-
tral line-averaged map. This test, in combination with the
small spatial offset from our HST target, confirms that our
line-detection over COS-2987030247 is real, and not due
to a spurious detection showing up close to the rms peak
of the atmospheric absorption feature.

We extract a new spectrum from all pixels with a
flux above the half-max flux in the spectral line-averaged
map and use this to measure a spectroscopic redshift of
z[CII] = 6.8076 ± 0.0002 for COS-2987030247, in good
agreement with the photometric redshift of zphot = 6.66±
0.14.

Dust. We obtain dust continuum measurements after
identification of the [C II] line in our data, by averaging
the remaining part of the data-cubes in frequency. We do
not find any evidence for flux above the 1σ noise-level in
the mean continuum image at the source positions. There-
fore, we put an upper limit on the continuum flux and as-
suming a grey body approximation for the dust continuum
by considering a range of IR slopes where we vary both
the slope in the range βIR = 1− 2 and the dust tempera-
tures in the range Tdust = 20− 60K. We derive a 3σ up-
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Figure 5 | Best fit disk model to the velocity field of the galaxies in this study. The model fits to the velocity
gradients in COS-3018555981 (top panels) and COS-2987030247 (bottom panels), when assuming the gas is rotating
in an exponential circularly-symmetric thin disk. From left to right the panels show the high-resolution disk model
before convolution with the beam, the disk model at the resolution of our observations, our velocity maps as shown in
Fig. 3 and the residuals after subtraction of the model. While the disk model is not a unique solution for these velocity
fields, our galaxies are well described by regular rotation.

per limit on the IR luminosity of 1.3 and 1.1×1011 L� for
COS-3018555981 and COS-2987030247 respectively.

Since the UV-continuum of galaxies is signifi-
cantly attenuated by even small amounts of dust, the
comparison of the UV colour and the infrared excess,
IRX=LUV/LIR, can provide insights into the dust atten-
uation curve in these young galaxies. We derive the
UV-continuum slope βUV, where fλ ∝ λ βUV , from a
power-law fit to the HST J125 and H160 photometry and
find values of −1.22± 0.51 and −1.18± 0.53 for COS-
3018555981 and COS-2987030247 respectively. Often,
the interpretation of the infrared excess as a means to con-
strain the dust attenuation curve can be affected by the
geometry of the dust36. In particular, a spatial offset be-
tween dust-obscured star-forming regions and unobscured
UV emitting regions can produce bluer UV colours for a
given IRX37. The small spatial offsets measured between

the UV continuum and [C II] emission in our sources,
might indicate such a dust geometry in this study. How-
ever, given that our sources already appear significantly
redder than would be predicted by the Meurer38 relation
for a given IRX, our conclusions are not affected by any
spatial offsets of the dust continuum with respect to the
UV light.

Star formation rate and Stellar mass. We obtain con-
straints on the UV star-formation rates from the J125 band
photometry, corresponding to rest-frame ∼1600Å, and on
the IR star-formation rates from the upper limits on the
IR luminosity, and we convert from luminosity to star-
formation rates using the Kennicutt39 scaling relations.
For COS-3018555981 a z = 0.74 foreground object is
visible at a projected distance of 2.6"which could intro-
duce a small boost to the measured fluxes due to grav-
itational lensing. However, the stellar mass of this ob-
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ject is only 4 · 109 M�
40, which suggests a modest halo

mass and therefore we estimate the magnification of this
source to be no more than 0.1 magnitude (i.e. no larger
than the measured random errors) as recently discussed in
the literature41.

Using the deconvolved size of the [C II] emission
as the size of the galaxy we find a star-formation rate
density, ΣSFR, of 0.91 and 0.75M� yr−1 kpc−2. This is
in good agreement with the star-formation rates obtained
using [C II] as a spatially resolved star-formation rate in-
dicator using the relation calibrated for galaxies from the
local KINGFISH sample 42, which predicts a ΣSFR of 0.68
and 0.34M� yr−1 kpc−2 based on the [C II] surface bright-
ness, Σ[CII], of 8.5 and 4.6 ·1040 ergs−1 kpc−2.

While the rest-frame optical photometry of z > 4
galaxies can be heavily affected by strong nebular emis-
sion lines43, the redshift range z ∼ 6.6− 7.0 provides a
unique window where the 4.5µm Spitzer/IRAC band is
free of nebular emission line contamination33, 44, provid-
ing a good constraint to model the stellar population of
galaxies at these redshifts. We use the Bayesian code
MAGPHYS45 with the HIGHZ extension46 to fit the stel-
lar population. We include the continuum constraints at
243 GHz, but we remove the 3.6µm Spitzer/IRAC pho-
tometry as this band is affected by high equivalent width
nebular emission (EW[OIII]+Hβ ∼ 1000− 1500Å33). We
find that both galaxies have best fit stellar masses around
M∗ ∼ 1−2×109 M�.

Velocity structure and dynamical mass. The line maps
extracted in (Fig. 1) suggest that the [C II] emission is
spatially resolved in both galaxies, which allows us to in-
vestigate the presence of any velocity structure in these
galaxies. For the central 4" of the data-cube we extract a
one-dimensional spectrum at every pixel, by averaging all
the flux within an elliptical aperture the size of the beam
centred on the pixel. We fit a Gaussian to these spectra,
using the parameters from the fit to the integrated spec-
trum as initial parameters. We require the fit to the one-
dimensional spectrum to be significant at > 5σ .

We measure a projected velocity difference over
the galaxy of 111 ± 28 and 54 ± 20 kms−1 for COS-
3018555981 and COS-2987030247 respectively, from the
minimum and maximum central frequencies taken from
the fits that are significant at > 5σ . Galaxies with
∆vobs/2σtot > 0.4 (using the measured line widths in
Table 1 to estimate the integrated velocity dispersion)
can be classified as likely rotation dominated systems in
cases where the data quality prevents reliable kinematic
modelling47. This is an approximate diagnostic based
on simulations of disk galaxies with a wide range of in-
trinsic properties. The observed limit of ∆vobs/2σtot ∼
0.4 corresponds to the intrinsic ratio of vrot/σ0 = 147.
We test the robustness of the observed velocity gra-
dient by re-imaging the ALMA data with CASA, us-
ing a Briggs weighting with a robustness parameter 0.5,
which produces images of the [C II] emission at lower
signal-to-noise, but slightly improved spatial resolution
(0.9"×0.7"). We confirm that the same analysis on the
higher resolution data still produces a velocity gradient
with the same projected velocity difference over the two
galaxies.

We will assume that these galaxies can be de-
scribed by symmetric rotating disks. This is a reason-
able assumption given the consistent prediction of high-
resolution hydrodynamical zoom simulations that cool
gas indeed settles into regular rotating disks48–51 and the
prevalence of disks among star-forming galaxies at lower
redshifts 52–54. To derive a dynamical mass for these sys-
tems, we adopt two methods. First, we use use the ap-
proximation that the dynamical mass is estimated from
Mdyn(r < r1/2) = (v2

dr1/2)/G, where vd is derived from
the averaged of the observed velocity gradient over the
galaxy vd sin(i) = 1.3∆vobs and the integrated velocity dis-
persion vd sin(i) = 0.99σtot

47. We estimate a half-light ra-
dius and the inclination of the system from an ellipsoidal
fit to the [C II] emission line map using CASA (corrected
for the beam) and find r1/2 of 2.6±0.8 and 3.1±1.0 kpc
and sin(i) of 0.59±0.15 and 0.88±0.06 for our sources.
We derive dynamical masses of 25.3 ± 15.4 × 109 M�

and 3.4± 1.7× 109 M� for COS-3018555981 and COS-
2987030247 respectively.
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For a second mass estimate, we model the veloc-
ity field assuming that the gas is rotating in a circularly
symmetric thin disk, with a gravitational potential that de-
pends only on the disk mass and assuming an exponential
surface mass density distribution. The circular velocity
is projected along the line of sight, weighted by the in-
trinsic line surface brightness profile and convolved with
the beam size of the observations. Free parameters of our
model are the inclination of the disk, the position angle of
the disk line of nodes, the systemic velocity of the galaxy
and the dynamical mass, measured in a radius of 5 kpc.
Our method has been successfully applied to ALMA ob-
servations of [C II] emitting sources at z∼ 5 55, 56. Our free
parameters are simultaneously constrained from the ve-
locity maps using least-squared fitting. Furthermore, we
fit the coordinates of the disk centre based on the surface
brightness maps, which is a minor uncertainty on our final
results. We estimate uncertainties from the χ2 parame-
ter space, which is constrained with Monte Carlo Markov
chain simulations. The best fit model describes our ve-
locity field well, leaving small residuals, see Fig. 5. The
best fit parameters indicate half-light radii of 1.7+0.4

−0.3 kpc
and 2.1+2.1

−1.1 kpc, inclination angles of sin(i) = 0.87+0.07
−0.10

and sin(i) = 0.64+0.22
−0.30 and dynamical masses of 1.0+0.3

−0.2

and 0.4+0.9
−0.3 × 1010 M� for COS-3018555981 and COS-

2987030247 respectively. These values are all consistent
within the uncertainties with our estimates derived in the
previous section. We therefore adopt this more sophisti-
cated method for our fiducial dynamical mass estimates.

In the methods described above the effect of
turbulence on the estimated dynamical masses is not
included57, 58. For dispersion dominated galaxies the dy-
namical mass including pressure support can be estimated
by Mdyn = 2R1/2(v2

rot +σ2
0 )/G59, where vrot is the inclina-

tion corrected velocity gradient and we estimate σ0 of 55
and 30 kms−1. The resulting dynamical masses are 0.3
and 0.4 dex higher than our previous estimates for COS-
3018555981 and COS-2987030247 respectively. To study
the effect of asymmetric drift on the rotation curve in more
detail, higher resolution observations will be required.
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Table 1 Galaxy properties

ID COS-3018555981 COS-2987030247
zphot 6.76±0.07 6.66±0.14
zb
[CII] 6.8540±0.0003 6.8076±0.0002

S/Na 8.2 5.1
[C II] line flux (Jykms−1)b 0.39±0.05 0.31±0.04
FWHM[CII] (kms−1)b 232±30 124±18
158µm continuum flux (µJy) <87c <75c

L[CII] (108 L�) 4.7±0.5 3.6±0.5
LUV (1011 L�) 1.1±0.1 1.3±0.1
LIR (1011 L�) <1.3c <1.1c

SFRIR (M� yr−1) <19c <16c

SFRUV (M� yr−1) 19.2±1.6 22.7±2.0
M∗ (109 M�) 1.4+0.7

−0.2 1.7+0.5
−0.2

Mdyn (109 M�) 10+3
−2 4+9

−3

∆vobs/2σtot 0.57±0.16 0.52±0.21
r1/2,[CII] (kpc) 2.6±0.8 3.1±1.0
βUV −1.22±0.51 −1.18±0.53
EW([O III]+Hβ ) (Å)33 1424±143 1128±166

a the S/N measured in a beam-sized aperture (centred on the HST coun-
terpart) on a velocity-averaged image extracted over the detected line. b

measured from a Gaussian fit to the integrated spectrum within the half-
peak-power contour. c 3-σ limit.
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