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Abstract: Due to the development of ship size and the traffic increase in port, ships having long 7 

turnaround time in port often result in port congestion, which seriously affects the efficiency and 8 

environmental sustainability of ship navigation. It has been evident that effective ship scheduling 9 

presents a solution of fundamental and strategic importance to port congestion. In this paper, a mixed-10 

integer linear programming mathematical model is developed to realise the optimization of ship 11 

scheduling in port to minimize the total time spent by ships in port. Its methodological novelty is 12 

gained by an innovative adaptive genetic simulated annealing algorithm based on a reinforcement 13 

learning algorithm (GSAA-RL) to support the developed mathematical model, in which the genetic 14 

algorithm is considered as the basic optimization algorithm, and Q-learning with a unique property of 15 

selecting suitable parameters dynamically is developed to adjust the parameters of crossover and 16 

mutation to improve the search ability of the algorithm. Meanwhile, the dynamic parameter turning 17 

process is formulated into a Markov decision process (MDP) model with well defining the state, action, 18 

and reward function in GSAA-RL. Specifically, the state sets are proposed by analyzing the key factors 19 

affecting the scheduling efficiency and a new reward mechanism that can reduce the objective value 20 

significantly based on the quality of selected parameters is designed. The annealing operation is 21 

performed on some excellent individuals to further expand the search scope. Simulation experiments 22 

demonstrate that the proposed GSAA-RL algorithm can significantly shorten the total time spent by 23 

ships in port compared to existing approaches. The findings hence make contributions to ship owners 24 

for their improved operation efficiency and to port operators/authorities for the reduction of port 25 

congestions.  26 

Keywords: Q-learning; Adaptive genetic simulated annealing algorithm; Ship traffic scheduling; 27 

Maritime transportation. 28 

1. Introduction  29 

Since the new century, we have witnessed the fast growth of the maritime industry to respond to 30 

the tremendous development of global trade. The volume of world maritime trade increased from 8.4 31 

billion tons in 2010 to 10.6 billion tons in 2020 [1]. As an essential part of maritime transportation, 32 

ports undertake the vital mission of radiating and driving the economic development of coastal areas, 33 

hence receiving widespread attention from academia and industry. However, the rapid increases of 34 

both ship size and traffic in ports have posed ship delays and traffic congestion in port, leading to a 35 

significant increase in operating costs and a serious decline in service quality. It is extremely costly to 36 

alter a port layout and infrastructure after its initial establishment, rationally organizing and 37 

dispatching the inbound and outbound ships is deemed to be a realistic and  effective solution to 38 

alleviation of traffic congestion and ships delay [2]. 39 

According to the surveys of port, it is found that the current ships entering and leaving the port 40 
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are mainly scheduled by VTS staff based on human experience under the guidance of port navigation 41 

rules. Obviously, this method takes more human factors into consideration and lacks a certain 42 

theoretical guidance. It is difficult to ensure the efficiency and rationality of scheduling, which further 43 

leads to the unnecessary waiting time of ships entering and leaving the port. Therefore, for port 44 

managers and ship owners, it is urgent to shift the current scheduling paradigm towards a new and 45 

efficient scheduling method which enables the optimal scheduling even under a complex traffic 46 

circumstance. 47 

In light of this practical demand, many scholars have proposed different types of methods to study 48 

the complex problem of ship scheduling. Table 1 presents some classical methods in the relevant area. 49 

Some scholars have proposed precise approaches to provide optimal solutions. Specifically, it includes 50 

a branch and bound algorithm [3], a column generation algorithm [2,4], and a lagrangian relaxation 51 

algorithm [5]. However, the precise algorithms take long computational time, and it is difficult to 52 

obtain a global optimal solution even for small-scale calculation examples. Therefore, heuristic 53 

methods are proposed to solve the problem, including a simulated annealing multi-population genetic 54 

algorithm [6], a simulated annealing algorithm [7,8], and a hybrid algorithm combining heuristic rules 55 

and simulated annealing algorithm [9], a meta-heuristic algorithm [10,11,12], a non-dominated sorting 56 

genetic algorithm [13,14], a genetic algorithm [16,17,18], a tabu search algorithm [19], a large 57 

neighborhood search algorithm [15]. Although showing much attractiveness in ship scheduling 58 

optimization, previous studies still revealed some concerns of which the theoretical implications have 59 

yet been well addressed in the existing literature. Among the significant ones is the determination of 60 

the optimization algorithm parameters which is crucial in terms of the improvement of solution quality.    61 

With the rapid development of machine learning technologies in recent years, a few scholars have 62 

put effort on reinforcement learning to adaptively adjust the parameters of heuristic algorithms. 63 

Compared with the limitations of heuristic algorithms that directly give specific parameters in a 64 

specified solution space, reinforcement learning has the advantage of being able to select suitable 65 

parameters by revealing the internal structure of the population [20,21]. Shahrabi et al. [22] proposed 66 

to use a Q-learning algorithm in reinforcement learning to improve the performance of the variable 67 

neighborhood search algorithm for the dynamic workshop scheduling problem of machine failure. In 68 

order to obtain a feasible shop scheduling sequence in a limited period, Cao et al. [23] proposed a 69 

knowledge-based cuckoo search algorithm, which incorporated the Sarsa algorithm into the cuckoo 70 

algorithm to effectively improve the cuckoo algorithm’s performance. Pettinger et al. [24] proposed a 71 

hybrid system for the traveling salesman problem. The system used Q learning algorithm to estimate 72 

the state-action value, which is used to realize the advanced adaptive control of the genetic algorithm. 73 

Based on the reserve selection mechanism, Chen et al. [25] proposed an optimal reserve scale learning 74 

method based on reinforcement learning technologies and conducted experimental verification. The 75 

verification results proved that the proposed algorithm is effective in finding the optimal reserve scale. 76 

Meng et al. [26] proposed an improved reinforcement learning-based dynamic priority algorithm for 77 

parameter optimization to solve the problem of selecting scheduling performance index in a dynamic 78 

priority algorithm. The experimental results demonstrated that the improved reinforcement learning 79 

algorithm can not only optimize the weight parameters but also reduce the deadline error rate. 80 

Although the methods of adjusting and optimizing heuristic algorithm parameters by 81 

reinforcement learning have been applied in the fields of job shop scheduling, product manufacturing, 82 

and power systems, there is little evidence to the authors’ best knowledge that that the reinforcement 83 

learning has been used to optimise heuristic algorithm parameters in maritime transport and less in 84 
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ship scheduling for the purpose of shortening the total  time of ships for entering and leaving the port 85 

The key to using reinforcement learning to adjust the parameters of the heuristic algorithm lies in the 86 

setting of the Markov decision process (MDP) adjustment parameter model (e.g. state sets, action sets 87 

andreward functions). The MDP model constructed in other fields is obviously not appliable in the 88 

shipping field, due to its unique characteristics.  89 

In this paper, an adaptive genetic simulated annealing algorithm based on a reinforcement 90 

learning algorithm (GSAA-RL) is designed. In GSAA-RL, the dynamic parameter turning process is 91 

formulated into a MDP model with well defining the state, action, and reward function. Specifically, 92 

by analyzing the key factors affecting ship scheduling, a state set that conforms to the realistic situation 93 

of ships entering and leaving the port is divided. A new reward mechanism that can significantly reduce 94 

the objective value based on the quality of selected parameters is developed to improve the learning 95 

efficiency of Q-learning, and reduce the number of iterations of the GSAA-RL algorithm. In addition, 96 

the annealing operation is performed on some excellent individuals to further expand the search scope. 97 

The proposed solution algorithm is evaluated and benchmarked against the First Come First Service 98 

(FCFS) strategy, CPLEX solver, genetic algorithm (GA), and genetic simulated annealing algorithm 99 

(GSAA), which have been frequently used as the norms for the ship scheduling literature. 100 

The main contributions of this paper are summarised as follows: 101 

First, a new GSAA-RL algorithm is proposed based on the characteristics of the specific shipping 102 

scheduling problem to solve a mixed-integer linear programming (MILP) model. Compared to the 103 

existing methods, the algorithm is new in a sense that it aids more reduction of the total time spent of 104 

ships entering and leaving the port.  105 

Second, an MDP model with a property of turning parameter dynamically is constructed, where 106 

the state sets for the ship scheduling optimization problem are proposed through the analysis of the 107 

key factors affecting the scheduling efficiency. It is more consistent with the real situation to be 108 

modelled.  109 

Third, a new reward mechanism is designed to effectively minimize the total time spent by ships 110 

in port based on the quality of selected parameters. It significantly improves the learning efficiency of 111 

Q-learning and reduces the number of GSAA-RL algorithm iterations.  112 

The remainder of this paper is organized as follows. Section 2 describes the problem statement 113 

and modeling. Section 3 presents the details for the implementation of the GSAA-RL algorithm. 114 

Computational experiments are conducted in Section 4. Section 5 concludes the paper and provides 115 

the possible directions for future studies. 116 

Table 1 117 

Summary of methods for solving ship traffic scheduling problems. 118 

AUTHORS 
OM 

EM HM RL 

Jia et al. 2019 CG   

Liu et al. 2021 CG   

Li et al. 2019 LR   

Wu et al. 2021 BB   

Lalla et al. 2016  SA  

Pei et al. 2018  SA  

Zhang et al. 2016  GA+SA  

Zheng et al. 2018  SA+HR  
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Meisel et al. 2019  MHM  

Andersen et al. 2021  MHM  

Soroush et al. 2020  MHM  

Zhang et al. 2020  GA  

Liu et al. 2021  GA  

Zhang et al. 2018  NSGA-II  

Zhang et al. 2019  NSGA-II  

Li et al. 2021  NSGA-II+TS  

Liu et al. 2021  LNSA  

This study  GA+SA RL 

OM: optimization method; EM: exact method; HM: heuristic method; RL: reinforcement learning; 119 

CG: column generation algorithm; BB: branch and bound algorithm; LR: lagrangian relaxation 120 

algorithm; SA: simulated annealing algorithm; GA: genetic algorithm; HR: heuristic rule; MHM: meta 121 

heuristic method; TS: tabu search; LNSA: large neighborhood search algorithm; NSGA-II: non-122 

dominated sorting genetic algorithm II. 123 

2. Problem statement and modeling 124 

Ship operation in port is a complex process, involving a safe and feasible scheduling plan to 125 

anticipate and avoid ships facing urgent situations in the nearby waters (e.g. channels) in advance. The 126 

key to ship scheduling in one-way navigable ports is to reasonably arrange the sequence and time of 127 

ships entering and/or leaving the ports for ensuring the ships’ safety and improving their navigation 128 

efficiency. 129 

The ship scheduling problem in this paper can be described as follows: under the condition that 130 

the pre-docking berths of ships are known, all the ships expected to arrive and depart from the port in 131 

a fixed planning period are taken as the research objects, focusing on the avoidance of realistic 132 

constraints such as risky encounters and tidal time windows. It takes into account various ship driving 133 

service rules, while minimizing the total waiting time of all arriving ships as the optimization goal, 134 

and giving the best time for each ship to enter and leave the port. It should be noted that the basic ship 135 

data used in the ship scheduling model established in this paper are deterministic, leaving the effect of 136 

uncertainty in data against the relevant factors on ship scheduling to be separately presented. 137 

2.1. Model assumptions 138 

There are many complex factors that affect the ship traffic scheduling in port. The key factors are 139 

extracted with the following assumptions rationally made in this paper.  140 

(1) For the in-wharf ships, the application time refers to the time when they apply to enter the 141 

port; For the out-wharf ships, the application time refers to the time when they apply for leaving the 142 

berth; 143 

(2) The berths by incoming ships have been allocated in advance; 144 

(3) The number of pilots is sufficient; 145 

(4) During the ship scheduling process, the influence of weather, accidents, and other possible 146 

disturbances on the ship is not taken into account;  147 

(5) All ships entering and leaving the port are in the same position away from the channel; 148 

(6) When the ship applies for entering and leaving the port, the pilot and tugboat have been 149 

allocated and ready to use. 150 
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Table 2 151 

The main components of the proposed mathematical model. 152 
Sets and parameters 

inV  set of all inbound ships,  1,2,..., ini V  

outV  set of all outbound ships,  1, 2,..., outi V  

V  set of all ships,  1,2,..., , in outi V V V V    

B  set of all berths,  1,2,...,i B  

1id  the distance for ship i  from the entry of the channel to its anchor, i V  

2d  the distance from the entrance to the exit of the channel 

3id  the distance for ship i  from the exit of the channel to its berth, i V  

iv  the speed of ship i , i V  

M  a sufficiently large positive integer 

Decision Variables  

sit  the starting time of ship i  needs to enter or leave the port by the tide, i V  

eit  the ending time of ship i  needs to enter or leave the port by the tide, i V  

_a in

it  the application time of ship i , 
ini V  

'_a in

it  the adjusted application time of ship i , 
ini V  

_s in

ibt  
the beginning scheduling time of ship i  which will berth in berth b  when entering 

the port, 
ini V , b B  

1_ in

ibt  
the time when the ship i  allocated to berth b  approaches the channel, 

ini V , 

b B  

2 _ in

ibt  
the time when the ship i   associated to berth b   leaves the channel, 

ini V  , 

b B  

_f in

ibt  
the time when the ship 

ini V  finishes scheduling, which is the time of arriving at 

berth b , 
ini V , b B  

_a out

it  the application time of ship i , 
outi V  

'_a out

it  the adjusted application time of ship i , 
outi V  

_s out

ibt  
the beginning scheduling time when ship i  in berth b  leaves the port, 

outi V , 

b B  

1_ out

ibt  
the time when the ship i  allocated in berth b  approaches the channel, 

outi V , 

b B  

_f out

ibt  
the time when the ship i   allocated in berth b   finished scheduling, 

outi V  , 

b B  

1g  a minimum safe time interval is required for the ship to avoid an overtaking situation 

2g  
a minimum safe time interval is required for the ship to avoid a cross-encounter or 

confrontation situation 

iT  binary, equal to 1 if ship i  needs to take tide to the port, and 0 otherwise, i V  

ijR  binary, equal to 1 if ship j  is scheduled after ship i  when entering, , ini j V  

ijZ  binary, equal to 1 if ship j  is scheduled after ship i  when leaving, , outi j V   

iIO  binary, equal to 1 if ship i  is entering the port, and 0 otherwise, i V  

2.2. Model building 153 

According to the sets, parameters, and decision variables shown in Table 2 and the above 154 

assumptions, the one-way ship traffic scheduling problem is modeled as an MILP model as follows. 155 

Minimize 156 
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_ _ _ _OS ( ) ( )
in out

s in a in s out a out

ib i ib ib

b B b Bi V i V

t t t t
  

       (1) 157 

Subject to  158 

1_ _ 1 ,in s in ini

i i

i

d
t t i V

v
     (2) 159 

2 _ 1_ 2 ,in in in

i i

i

d
t t i V

v
     (3) 160 

_ 2 _ 3 ,f in in ini

i i

i

d
t t i V

v
     (4) 161 

1_ _ 3 ,out s out outi

i i

i

d
t t i V

v
     (5) 162 

_ 1_ 2 ,f out out out

i i

i

d
t t i V

v
     (6) 163 

_

'_

_ _

,
1 ,

,

a in

si i sia in in

i i a in a in

i si i ei

t t t
T t i V

t t t t

 
    

 

 (7) 164 

_

'_

_ _

,
1 ,

,

a out

si i sia out out

i i a out a out

i si i ei

t t t
T t i V

t t t t

 
    

 

 (8) 165 

'_

_

_

, 1
,

, 0

a in

i is in in

i a in

i i

t T
t i V

t T

 
  



 (9) 166 

'_

_

_

, 1
,

, 0

a out

i is out out

i a out

i i

t t
t i V

t t

 
  



 (10) 167 

1_ 1_

1 (1 ), , ,in in in

ib jb ijt t g M R i j V b B         (11) 168 

1_ 1_

1 (1 ), , ,out out out

ib jb ijt t g M Z i j V b B         (12) 169 

1 22
2( ) ( ) 0

js _ out s _ in in out

jb ib i j

j i

d d
t t g IO IO ,i V , j V ,b B

v v

é ù
ê ú+ - + - ´ - ³ Î Î Îê ú
ê úë û

 (13) 170 

1 232
2( + ) ( ) 0

js _ in s _ out in outi

jb ib i j

j i i

d dd
t t g IO IO , j V ,i V ,b B

v v v

é ù
ê ú+ - + - ´ - ³ Î Î Îê ú
ê úë û

 (14) 171 

 0,1 ,iIO i V    (15) 172 

 0,1 ,iT i V    (16) 173 

{0,1}, in

ijR i, j VÎ " Î  (17) 174 

{0,1}, out

ijZ i, j VÎ " Î  (18) 175 

The objective function (1) aims to minimize the total time spent by ships entering and leaving the 176 

port, it includes sailing time and waiting time of all ships in port. Constraints (2)-(4) state the sailing 177 

continuity of in-wharf ships. The time at which the ship sails to the entrance of the channel, the exit 178 

of the channel and the berth at which it is berthed can be determined in turn. Constraints (5)-(6) 179 

guarantee the sailing continuity of out-wharf ships. The time when the ship sails to the exit of the 180 

channel and the entrance to the channel can be determined in turn. Constraints (7)-(8) ensure that the 181 

ship taking a tide adjusts the application time to enter or leave the port. Constraints (9)-(10) state ship 182 

can begin scheduling. Constraints (11)-(12) guarantee that a certain safety clearance should be 183 

maintained between ships in the same direction and Constraints (13)-(14) ensure that ships in different 184 

directions should maintain a safe clearance. Constraints (15)-(18) specify binary variables. 185 
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3. Adaptive genetic simulated annealing algorithm based on 186 

reinforcement learning (GSAA-RL) 187 

3.1. Genetic simulated annealing algorithm 188 

Because the ship traffic scheduling problem belongs to a combinatorial optimization problem, it 189 

is difficult to enumerate all the solutions by an enumeration method. Therefore, the optimization 190 

algorithm is required to have high computational efficiency. Genetic algorithm is widely used to solve 191 

combinatorial optimization problems due to their strong global searching ability and short computing 192 

time. However, the traditional genetic algorithm has the disadvantage of local convergence, while the 193 

simulated annealing algorithm has a strong local search ability [27] to further expand the search scope 194 

of solutions. A simulated annealing algorithm is first introduced in this paper to accept a worse solution 195 

with a certain probability. 196 

3.1.1. Chromosome representation and population initialization 197 

This process of generating a chromosome is regarded as chromosome initialization. In this paper, 198 

a chromosome includes two layers, namely ship number and navigation direction respectively. An 199 

example of a chromosome is shown in Fig. 1 and the population can be initialized according to the 200 

number of individuals NIND. 201 

 202 

Fig. 1. An example of a chromosome  203 

3.1.2. Genetic operations  204 

This paper selects the objective function of the total time spent by ships entering and leaving the 205 

port as the fitness function (the first and fourth rows in Algorithm 1). According to the fitness function, 206 

the regenerated individuals are selected. The selection strategy in this paper adopts stochastic universal 207 

selection (line 9 in Algorithm 1), with the probability of GGAP selecting some individuals with higher 208 

fitness value from the parent as the offspring. After completing the selection operation, the selected 209 

excellent individuals are paired and crossed. A single-point crossover is used for the crossover 210 

operation (line 10 in Algorithm 1). Mutation operation plays an important role in improving the local 211 

search ability of the genetic algorithm, and it is also an important step to generate new individuals,. In 212 

the process of mutation operation, the genes of individuals in the population are randomly changed 213 

according to a certain probability. The reverse mutation is used to carry out mutation operation (line 214 

11 in Algorithm 1). 215 

3.1.3. Repair operation 216 

The repair operation is mainly to repair the illegal chromosomes generated by some genetic 217 

operations. A ship i is about to dock at a berth m and another ship i is loading and unloading cargo on 218 

the berth m, the ship i can only be scheduled after the ship j has loaded and unloaded the cargo. 219 

However, after the initial chromosome has performed a series of genetic operations, the ship i may be 220 

scheduled earlier than the ship j. Therefore, it is necessary to design a repair operation to repair illegal 221 

chromosomes, that is, to readjust the order of ships entering and leaving the port. The repair method 222 

is mainly to first identify the situation where two ships entering and leaving the port are served by a 223 

berth at the same time, and then determine the scheduling order of the two ships. If ship i has priority 224 
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over ship j, then the gene positions corresponding to the two ships in the chromosome are exchanged. 225 

Otherwise, it means that the chromosome is feasible and there is no need to repair it. 226 

3.1.4. Simulated annealing operation 227 

When a certain number of new individuals are generated after genetic and repair operations, an 228 

annealing operation is used to determine whether the new individual should replace the old one. The 229 

Monte Carlo criterion in the simulated annealing algorithm is defined as follows. 230 

2 1

2 1

( ( ) ( ))

2 1

1, ( ) ( )

, ( ) ( )

y x y x

T

y x y x

P

e y x y x

 

  


 
   

 (17) 231 

Here, it is assumed that 2 ( )y x is the target value of the new individual and 1( )y x is the target value of 232 

the old individual. If the target value of the new individual is smaller than that of the old one, the new 233 

individual will replace the old; otherwise, the new individual is accepted with probability 
2 1( ( ) ( ))y x y x

Te

 

. 234 

If endT T , the temperature is lowered through *T q T  until the algorithm terminates. 235 

3.2. MDP model construction 236 

Q-learning is one of the most effective value-based RL algorithms. The construction of the MDP 237 

is regarded as the most important step in Q-learning [30]. The MDP can generally be described by four 238 

elements: state set S , action set A , reward function R , and strategy function  . In addition, the Q 239 

table is updated in Q-learning based on the comprehensive consideration of the experience state, the 240 

selected behavior, and the reward obtained by the agent, the Q table updated is performed by the 241 

following formula. 242 

1 1( , ) ( , ) [ max ( , ) ( , )]t t t t t a t t t tQ s a Q s a r Q s a Q s a       (18) 243 

( , )t tQ s a is the Q value after the agent performs 
ta ; 

tr  is the instant reward;   is learning rate;   244 

is discount rate; 
1 1max ( , )a t tQ s a 

 is when the agent is in the state 
1ts 
, after executing the action 245 

1ta 
, it expects to get the maximum Q value. 246 

3.2.1. Design of state sets 247 

In GSAA-RL, two key factors that affect the ship scheduling efficiency are selected to define the 248 

state sets. Through the comprehensive analysis of the in-wharf and out-wharf process, the number of 249 

ships (n) and the average total time spent by in port ( AOS ) are finally selected as the main factors. In 250 

order to limit the AOS  value calculated in each generation to a certain range, we normalize it to 251 

eliminate the adverse effects caused by singular value. AOS'  represents the average total time of 252 

entering and leaving the port normalized by the average total time spent by entering and leaving the 253 

port of the first generation population. AOS'  can be calculated by the formula (19). Table 3 is the 27 254 

state sets finally divided through multiple experiments. 255 

1

1 1

( ) ( )

AOS'

N N
t

i i

i i

Fit x Fit x

N N

 
 

 (19) 256 

Where ( )t

iFit x   represents the fitness function of the i-th individual in the t-th iteration, 
1( )iFit x257 
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represents the fitness function of the i-th individual in the first iteration, and N  is the number of 258 

individuals in the population. 259 

Table 3  260 

Definition of state sets. 261 

State ship number(n)  
Average total time spent by ships in port 

( AOS' ) 

1s  2 10n   0.8 AOS' 0.85   

2s  2 10n   0.85 AOS' 0.9   

3s  2 10n   0.9 AOS' 0.95   

4s  2 10n   0.95 AOS' 1.0   

5s  2 10n   1.0 AOS' 1.05   

6s  2 10n   1.05 AOS' 1.10   

7s  2 10n   1.10 AOS' 1.15   

8s  2 10n   1.15 AOS' 1.20   

9s  2 10n   1.20 AOS' 1.25   

10s  11 19n   0.8 AOS' 0.85   

11s  11 19n   0.85 AOS' 0.9   

12s  11 19n   0.9 AOS' 0.95   

13s  11 19n   0.95 AOS' 1.0   

14s  11 19n   1.0 AOS' 1.05   

15s  11 19n   1.05 AOS' 1.10   

16s  11 19n   1.10 AOS' 1.15   

17s  11 19n   1.15 AOS' 1.20   

18s  11 19n   1.20 AOS' 1.25   

19s  20n   0.8 AOS' 0.85   

20s  20n   0.85 AOS' 0.9   

21s  20n   0.9 AOS' 0.95   

22s  20n   0.95 AOS' 1.0   

23s  20n   1.0 AOS' 1.05   

24s  20n   1.05 AOS' 1.10   

25s  20n   1.10 AOS' 1.15   

26s  20n   1.15 AOS' 1.20   
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27s  20n   1.20 AOS' 1.25   

3.2.2. Design of action sets and reward functions 262 

During each iteration, the agent will choose different actions to get the appropriate crossover and 263 

mutation probabilities. For the crossover probability, we usually take the value from 0.4 to 0.9. The 264 

paper divides it into 10 intervals and the interval value is 0.05. As shown in Table 4. For the mutation 265 

probability, the value is usually from 0.01 to 0.21, which is divided into 10 intervals and the interval 266 

value is taken as 0.02, as shown in Table 5. For example, when an action 1a  is selected from action 267 

sets Pc, Pc  is randomly selected from 0.4 to 0.46; Similarly, when an action 2a  is selected from 268 

action sets Pm, Pm   is also randomly selected from 0.01 to 0.03. Next, the reward functions of 269 

crossover and mutation probabilities should be designed to evaluate whether the selection of their 270 

values is reasonable. Different reward functions may have different results under the same algorithm 271 

[28]. The setting of reward functions determines the convergence speed and efficiency of the algorithm. 272 

Chen et al. [29] set the following reward functions to evaluate the crossover and mutation probabilities 273 

in each iteration. They are defined as follows, respectively. 274 
1

cos 1

( ) ( )

( )

t t

best i best i

sover t

best i

Fit x Fit x
R

Fit x






  (20) 275 

1

1 1

1

1

( ) ( )

( )

N N
t t

i i

i i

mutation N
t

i

i

Fit x Fit x

R

Fit x



 








 


 (21) 276 

Here, ( )t

best iFit x  represents the minimum fitness value of the i-th individual in the t-th generation, 277 

and
1( )best iFit x  represents the minimum fitness value of the i-th individual in the first generation. But 278 

in the process of finding the target state, we must not only consider the situation of 1( ) ( )t t

best i best iFit x Fit x 279 

and 1

1 1

( ) / ( ) /
N N

t t

i i

i i

Fit x N Fit x N

 

   , but for the situation 1( ) ( )t t

best i best iFit x Fit x   and 280 

1

1 1

( ) / ( ) /
N N

t t

i i

i i

Fit x N Fit x N

 

    that appears in each iteration, the agent must be punished and given 281 

a negative reward value to force its state to change towards a good trend. Therefore, the following 282 
improved segmented reward functions are generated in the paper. 283 
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 (23) 285 

Table 4  286 

Definition of action sets Pc . 287 

Action Range of parameter Pc  

1a  0.4 0.45Pc   
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2a  0.45 0.50Pc   

3a  0.50 0.55Pc   

4a  0.55 0.60Pc   

5a  0.60 0.65Pc   

6a  0.65 0.70Pc   

7a  0.70 0.75Pc   

8a  0.75 0.80Pc   

9a  0.80 0.85Pc   

10a  0.85 0.90Pc   

Table 5  288 

Definition of action sets Pm . 289 

Action Range of parameter Pm  

1a  0.01 0.03Pm   

2a  0.03 0.05Pm   

3a  0.05 0.07Pm   

4a  0.07 0.09Pm   

5a  0.09 0.11Pm   

6a  0.11 0.13Pm   

7a  0.13 0.15Pm   

8a  0.15 0.17Pm   

9a  

 

 

0.17 0.19Pm   

10a  0.19 0.21Pm   

3.2.3. Action selection strategy 290 

This paper selects the greedy   strategy of reinforcement learning as the action selection 291 

strategy. The strategy balances utilization and exploration, where the largest selected action value 292 

function is used, and other non-optimal actions still have a probability of being searched. The 293 

greedy  strategy can be expressed by formula (24), where   is the greedy rate and r is a random 294 

number between 0 and 1. When r , the probabilities of crossover and mutation that maximizes Q  295 

value are chosen, when r , probabilities of crossover and mutation at random are chosen. 296 

max ( , ),
( , )

,

a t t

t t

Q s a r
s a

random value r


 

 





 (24) 297 
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3.3. Design of GSAA-RL algorithm 298 

This section describes the process of the Q-learning algorithm dynamically adjusting the 299 

crossover probability Pc  and mutation probability Pm  in detail. 300 

Crossover and mutation operations play an extremely important role in the genetic algorithm, and 301 

the key parameters of crossover and mutation operations are Pc  and Pm . In the iterative process 302 

of the algorithm, if Pc   and Pm   are too large, the solution will converge too slowly and if the 303 

values are too small, it will be difficult to generate new individuals [32]. However, reinforcement 304 

learning has the advantage of being able to select the suitable parameters dynamically. Therefore, 305 

reinforcement learning is introduced to adjust Pc and Pm , so that the solution effect can better meet 306 

the actual situation.  307 

It can be divided into four steps by reinforcement learning to adjust two main parameters in the 308 

genetic algorithm. First, the agent obtains the state ts  of the time step t  in the iterative process of 309 

the genetic simulated annealing algorithm (line 5 in algorithm 1). Secondly, it performs the 310 

corresponding action ta  according to the specified action selection strategy (line 6 in algorithm 1). 311 

Then, it is followed by the genetic, repair, and simulated annealing operations (lines 9-13 in algorithm 312 

1). At this time, the state of the genetic simulated annealing algorithm is shifted to 1ts   , and the 313 

feedback is returned to the agent. Finally, the agent will conduct the action 1ta  . The agent records 314 

the learning process according to the existing state, action, the feedback received and updates the Q 315 

table at the same time (line 8 in algorithm 1). If the reward is positive, the action selection of the 316 

genetic simulated annealing algorithm will be strengthened; if the reward is negative, it will be 317 

weakened accordingly [31]. The process of continuously acquiring states, executing actions, obtaining 318 

feedback, and adjusting strategies constitutes of the reinforcement process.  319 

After several iterations, the reinforcement learning process is activated, and the selection of Pc  320 

and Pm  will be optimized based on the past and current learning experience.  321 

Based on the above series of descriptions, the complete pseudo code of the GSAA-RL is shown 322 

in Algorithm 1, and the flow chart of GSAA-RL algorithm is presented in Fig. 2. 323 

Algorithm 1. GSAA-RL 

MGGSAA-RL parameters: population size (NIND), maximum iteration number (MAXGEN), probability 

of selection operation (GGAP), Q table, state set (S), action set (A). 

Input: ( 0)initPop t   

1: tF  fitness value calculation for the current time step 

2: ,t ta s  choose action and state randomly 

3: While t<MAXGEN do 

4:  1tF 
 fitness value calculation   

5:  1ts 
 calculate the state of GSAA-RL according to Eq.(19) 

6:  1ta 
 choose action according to greedy  

7:  1tr 
 calculate reward value for the next time step according to Eqs.(22-23) 

8:  1 1( , )t tQ s a 
 update Q table according to Eq.(18) 

9:  1tPop 
 selection operation 

10: 1tPop 
 crossover operation 

11: 1tPop 
 mutation operation 

12: 1tPop 
 repair operation 

13: 1tPop 
 simulated annealing operation 

14: 1t t   
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15: End while  

Output: Optimal schedule sequence  

 324 

Fig. 2. Flow chart of the GSAA-RL algorithm 325 

4. Computational experiments based on real cases 326 

In this section, computational experiments are given to validate the effectiveness of the proposed 327 

model and solution algorithm using the field survey data of Comprehensive Port in Huanghua. Fig. 3. 328 

is the sketch of Comprehensive Port in Huanghua, with a 200,000 ton one-way narrow and long 329 

channel with a total length of 31 nautical miles. In particular, because of the limit of channel depth, 330 

ships with a draft of more than 18m and a length of more than 280m must take the tide to enter the 331 

port. Due to a large number of ore importers and small batches, in addition to 200,000 ton ships 332 

entering and leaving the port every day, 50,000-100,000 ton ships also occupy a certain proportion, 333 

which will cause port detention to a certain extent. Therefore, it is significantly important to find a 334 

feasible dispatching plan for ships entering and leaving the port to alleviate the congestion 335 

phenomenon. There are 8 anchorages and 15 berths in the Comprehensive Port in Huanghua. For the 336 

convenience of calculation, the anchorage numbers are marked as 1-8, and the berth numbers are 337 

marked as 1-15. The detailed information for the berth, anchorage of Comprehensive Port in Huanghua 338 

is presented in Appendix A. The scope of the numerical experiments also included a detailed 339 

evaluation of the convergence patterns and boxplot for the considered solution algorithms, which can 340 

be found in Appendix B. 341 

There are two groups of instances used in this paper. The first group with different number of 342 

ships (6-35 ships for small-scale instances as well as 42-83 ships for large-scale instances) are 343 

considered to examine the efficiency of the proposed algorithm with GA, GSAA, CPLEX, the 344 

instances of 35 ships can be expressed as V35. The second group with different number of ships (5-80 345 

ships) is used to compare the GSAA-RL with the real port scheduling scheme (FCFS). All experiments 346 

are conducted on a computer with a CPU of 3.5 GHz, RAM size of 64 GB, and running version 12.6. 347 
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 348 

Fig. 3. The sketch of Comprehensive Port in Huanghua 349 

4.2 Benchmark methods 350 

To evaluate the performance of the proposed GSAA-RL algorithm, four benchmark methods are 351 

introduced to solve the MILP model and compared with our algorithm. The first benchmark method 352 

is the CPLEX solver, and the maximum computational time is set to the 3600s. The second benchmark 353 

method is the First-Come-First-Served (FCFS) strategy simulating the decision of a VTS operator, 354 

which is commonly used in ports at present. The other two methods are heuristic algorithms, namely 355 

genetic algorithm (GA) and genetic simulated annealing algorithm (GSAA).  356 

4.3 Parameter settings 357 

The developed GSAA-RL algorithm will be compared with 4 state-of-the-art methods (i.e., 358 

CPLEX solver, FCFS strategy, GA algorithm, and GSAA method), which have been frequently used 359 

in ship scheduling literature. Each of the considered algorithms has a set of parameters, which remain 360 

constant during the search progress. The parameters related to the GSAA-RL algorithm are set as 361 

follows: learning rate 0.6  , discount rate 0.65  , greedy rate 0.5  , crossover and mutation 362 

probabilities are adjusted dynamically according to Q-learning, and initial Q value are all 0. The 363 

parameters related to the GA and GSAA algorithms are set as follows: the maximum number of 364 

iterations 400MAXGEN   , the number of population 200NIND   , selection probability 365 

0.9GGAP  , initial temperature 0 2T  , cooling factor 1 0.9  , crossover probability 0 85Pc .= , 366 

mutation probability 0 21Pm .=  . The other parameters are set as follows: same-direction safety 367 

clearance 1 5g  , different-direction safety clearance 2 5g  . Each instance is run for 10 times.  368 

4.4. Experimental results and analysis of 13 ships 369 

In this subsection, the proposed model and algorithm are tested using the 13 ships in the 370 

Comprehensive Port in Huanghua on a certain day in May 2021. The basic data of 13 ships includes 371 

the direction of the ship entering and leaving the port, ship speed, berth ID, and anchorage ID, etc., as 372 

shown in Table 6. Table 7 reports the optimal scheduling scheme of the 13 ships solved by the proposed 373 

GSAA-RL algorithm. From the results shown in Table 7, it is revealed that the sequence of ships 374 

entering and leaving the port, the navigation continuity of all ships, and the time when the ships 375 

approach the channel, leave the channel and reach the berth, respectively. At the same time, it can be 376 

observed that the first ship scheduled is inbound no.1, its scheduling start time is at 0 min, and the last 377 
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ship to leave the channel is inbound no.13 at 957 min. Table 8 is the chromosome with the shortest 378 

total time spent by the 13 ships entering and leaving the port. It is also clear that the optimal scheduling 379 

scheme and navigation direction of all ships by reading this chromosome from Table 8, for example, 380 

121 indicates that ship no.12 in the state entering the port and the ranking is 8. To further show the 381 

scheduling results of the 13 ships in Table 8, the Gantt chart is drawn in Fig. 4. From Fig. 4, we  better 382 

visualize the waiting time, sailing time, sailing direction of each ship. 383 

The evolution process of parameters Pc and Pm is presented in Fig. 5. As shown in Fig. 5, in the 384 

initial and intermediate stages of the algorithm, Pc and Pm almost change between large and small 385 

values. After the rapid convergence of two phases, Pc and Pm only evolute within a small range. It 386 

can be observed that Pc and Pm are constantly searching for optimization until the objective value 387 

reaches the minimum. The experimental results of comparing the unimproved and new reward 388 

functions are shown in Fig. 6. Reward function 2 represents the convergence result of GSAA-RL 389 

without improving the reward function. The minimum total time spent by entering and leaving the port 390 

is found around 180 generations, and it is 2615min. Reward function 1 represents the convergence 391 

result of GSAA-RL with an improved segmented reward function, it can be obtained that after around 392 

170 generations, the minimum total time of entering and leaving the port is found and the total time is 393 

2546min. It is obvious that new segmented reward function 1 can improve the learning efficiency of 394 

Q-learning and reduces the number of GSAA-RL algorithm iteration.395 

Table 6 396 

Data of 13 ships. 397 

NO. IO Berth ID 
Anchorage 

ID 

Ship 

length 

(m) 

Ship 

width 

(m) 

Ship 

speed 

(kn) 

Application 

time (min) 

Ship draft 

(m) 

Tidal time 

window(min) 

1 1 13 2 225 32 13.65 0 10.35/10.75  

2 0 13 - 225 37 11.24 90 13/13.1  

3 0 5 - 292 45 14.24 153 6.36/8.7  

4 0 4 - 240 38 7.4 185 5.17/7.12  

5 1 5 5 229 32 13.65 225 12.88/12  

6 1 2 2 150 21 9.25 275 8.7  

7 1 4 3 190 32 12.12 302 12.88/13.13  

8 0 6 - 289 45 11.6 356 13.5/13.5  

9 0 7 - 295 46 9.01 396 6.5/8.6  

10 0 15 - 157 21 7.7 425 8.3  

11 

12 

13 

1 

1 

1 

6 

15 

7 

2 

6 

2 

292 

122 

325 

45 

21 

57 

12.31 

8.48 

12.97 

470 

493 

560 

18.10/18.22 

6 

11.38/12.5 

[540,750] 

398 



 399 

Fig. 4. Gantt diagram of the optimization result of 13 ships experiments 400 

Table 7 401 

Optimal results of 13 ships experiments using GSAA-RL algorithm. 402 

No. IO 

Average 

speed 

(kn) 

Adjusted 

average 

speed (kn) 

Application 

time (min) 

Begin 

scheduling 

time (min) 

Approach 

channel time 

(min) 

Leave 

channel 

time (min) 

1 1 13.65 13.65 0 0 68 205 

2 0 11.24 11.24 90 224 241 407 

3 0 14.24 11.24 153 213 246 412 

4 0 7.4 7.4 185 203 251 503 

8 0 11.6 7.4 356 356 364 616 

9 0 9.01 7.4 396 396 405 657 

10 0 7.7 7.4 425 425 455 707 

12 1 8.48 8.48 493 555 712 932 

5 1 13.65 8.48 225 601 717 937 

6 1 9.25 8.48 275 613 722 942 

11 1 12.31 8.48 470 618 727 947 

7 1 12.12 8.48 302 650 732 952 

13 1 12.97 8.48 560 628 737 957 

Table 8 403 

Chromosome with the shortest total time spent by ships entering and leaving the port. 404 

11 20 30 40 80 90 10 121 51 61 111 71 131 

 405 
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 406 

Fig. 5. The evolution process of parameter Pc and Pm. 407 

 408 

Fig. 6. Comparison of the optimization process with unimproved and of new reward functions. 409 

4.5. The verification of the model rationality with the case of the13 ships 410 

The rationality of the model can be verified from the perspective of constraints such as ship speed 411 

adjustment, tidal time window, safe clearance between the same and different direction ships, and 412 

navigation continuity in Table 7. Speed adjustment is to adjust the speed of ships successively in the 413 

same direction to avoid overtaking on the channel. For example, the outbound ship no.8 follows the 414 

outbound ship no.4 on the channel. The speed of ship no.8 cannot exceed that of ship no.4, which 415 

should be adjusted from 11.6kn to 7.4kn. In addition, ships can only be dispatched after they apply for 416 

entry and exit. With reference to this rule, an illustrative example is that only after the outbound ship 417 

no.4 approaches the channel, a safe clearance later, the outbound ship no.8 can approach the channel. 418 

However, the outbound ship no.8 has not applied for leaving the port at this time. Consequently, the 419 

outbound ship no.8 cannot be arranged to leave the port until the application is made at 356min. The 420 

inbound ship no.11 completes entering the port within the time window [540,750], meeting the 421 

constraint of the tidal time windows. 422 

4.6. Effectiveness of the proposed GSAA-RL algorithm 423 

4.6.1 Comparison of the results of the GSAA-RL with CPLEX and GSAA, GA 424 
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In this subsection, we first solve the MILP described in Section 2.2 using the proposed GSAA-425 

RL algorithm and three benchmark methods, namely GSAA, GA, and CPLEX methods. We set the 426 

same parameters for all five methods, for example, 1 25, 5g g  . We compare the results of GSAA-427 

RL with GSAA, GA, and CPLEX in terms of the total time spent by ships entering and leaving the 428 

port, and the computational efficiency under different scale instances. All scale instances in the 429 

experiment are generated from the Comprehensive Port in Huanghua, each instance is run for 10 times. 430 

Table 9 and 10 presents the computational results of the proposed GSAA-RL, GA, GSAA, and CPLEX 431 

methods for small-scale and large-scale instances respectively, where the notation “OSIP”, “OSGA”, 432 

“OSGSAA”, “OSGSAA-RL” denote the objective values of the MILP, the optimal solution generated by 433 

the GA algorithm, GSAA algorithm, and the GSAA-RL, respectively. 434 

 435 

 436 

 437 

 438 

Table 9  439 

Computational results for the small-scale instances. 440 

Instance CPLEX  GA  GSAA  GSAA-RL  Gap1(%) Gap2(%) 

 CPU(s) OSIP  CPU(s) OSGA  CPU(s) OSGSAA  CPU(s) OSGSAA-RL    

V6 6.72 1261  9.04 1288  25.75 1261  26.89 1261  2.10 0 

V10 33.14 2038  13.37 2674  37.56 2071  39.22 2038  23.78 1.59 

V13 665.12 2546  17.01 2867  49.07 2607  49.54 2546  11.20 2.34 

V18 1534.23 3908  23.88 4234  56.89 4177  62.97 3722  12.09 10.89 

V23 3245.21 5220  64.34 7385  82.16 6840  83.24 6649  9.97 2.79 

V28 3600.00 -  85.25 13208  106.22 12054  107.25 11806  7.00 5.54 

V35 3600.00 -  47.18 15442  161.27 15337  169.90 13508  12.52 11.93 

Average 1812.06 -  37.01 6730  74.13 6335  77.00 5933  11.24 5.01 

Notes: Gap1=( OSGA – OSGSAA-RL)/OSGAⅹ100%; Gap2=( OSGSAA – OSGSAA-RL )/ OSGSAAⅹ100%; 441 

It becomes obvious that compared with the GSAA-RL, the CPLEX is faster only when solving 442 

the instances with 6, 10, 13, 18 ships. The computational time of the CPLEX in solving NILP shows 443 

an exponential growth with the increase of the instance scale. In particular, CPLEX cannot even obtain 444 

any feasible solution for some large-scale instances with 63, 68, 73, 78, 83 ships due to the complexity 445 

of the problem. Therefore, such a solution method cannot meet the actual needs of the port. The GA 446 

and GSAA-RL algorithms can obtain a feasible solution under the one-hour time limit, but the quality 447 

of the solutions is relatively poor for the small-scale and large-scale instance. This is because the 448 

solution is obtained by fixing the values of key parameters in each iteration, thus leading to faster 449 

convergence. In contrast to these two methods, the solutions obtained by the GSAA-RL are not inferior 450 

to the solutions obtained by the GA and GSAA, and the advantage of the GSAA-RL becomes more 451 

remarkable with the increase of the instance scale. The solution obtained by GSAA-RL is 11.24% and 452 

5.01% better than that of the GA and GSAA for small-scale instances, and 18.58% and 11.58% for 453 

large-scale instances, reflecting the superiority of the proposed algorithm. Concerning the time 454 

consumption, relatively higher computation time is recorded in GSAA-RL compared to that of GSAA, 455 

because the additional time is required to reselect the crossover and mutation probability values from 456 

the Q table to complete the evolution operations in each iteration in order to expand the search scope. 457 

However, the maximum GSAA-RL computational time did not exceed 15.75min (83 ships). Therefore, 458 
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the port operators will be able to develop and revise ship scheduling plans in a timely manner. Based 459 

on the conducted computational experiments, the developed GSAA-RL algorithm outperformed the 460 

CPLEX solver, GA, and GSAA algorithms, demonstrating the effectiveness of the proposed algorithm. 461 

4.6.2 Comparison of the results of the GSAA-RL and the real port scheduling schemes. 462 

To validate the effectiveness of the model, the scheme provided by the GSAA-RL is compared 463 

to the real port scheduling schemes. According to the field surveys of Comprehensive Port in 464 

Huanghua, the real port scheduling scheme mainly adopts a FCFS rule for ship scheduling. 465 

Specifically, it arranges ships to enter and leave the port successively according to the application time 466 

of ships and preferentially assigns tide-dependent ships in the tidal time windows.  467 

Table 11 shows the comparison among the results of the proposed scheme and the FCFS 468 

scheduling scheme. It is found that for all instances, the GSAA-RL is constantly better than the FCFS 469 

scheme, and the average gap arrives at  46.04%. It is because the order of ships has been determined 470 

in the FCFS strategy in advance, and it is difficult to arrange a reasonable scheduling order. This result 471 

indicates that the proposed model can significantly help port operators to reduce the total time spent 472 

by ships in port, thus achieving higher throughput and better emission performance. 473 

  474 

Table 10  475 

Computational results for the large-scale instances. 476 

Instance CPLEX  GA  GSAA  GSAA-RL  Gap1(%) Gap2(%) 

 CPU(s) OSIP  CPU(s) OSGA  CPU(s) OSGSAA  CPU(s) OSGSAA-RL    

V42 3600 -  62.06 25479  219.96 22176  233.41 20410  19.89 7.77 

V48 3600 -  79.85 33234  272.78 32314  281.40 28454  14.38 11.95 

V55 3600 -  195.25 41095  367.55 39125  377.10 36135  12.07 7.67 

V63 3600 -  249.71 49283  452.32 48188  455.19 47381  3.86 1.67 

V68 3600 -  305.88 68996  510.93 58417  526.71 52737  23.57 9.72 

V73 3600 -  420.66 83429  660.42 80082  672.13 67574  19.00 15.62 

V78 3600 -  506.07 128196  723.44 112967  735.27 85254  33.50 24.53 

V83 3600 -  745.45 138458  856.23 124584  945.12 107545  22.33 13.68 

Average 3600 -  320.62 71021  507.95 64731  528.29 55686  18.58 11.58 

477 

 478 

5. Conclusion and scope of future work 479 

The rapid development of ships tonnage has caused great challenges on the capacities of ports, 480 

leading to frequent ship delays and heavy port congestion. Thus, effective ship scheduling scheme is 481 

required to cope with the phenomenon. This article presents an MILP mathematical model for the ship 482 

schedule problem with minimizing the total time spent by ships in port. The novel GSAA-RL 483 

algorithm is designed to solve the MILP model. In the proposed GSAA-RL, the genetic algorithm is 484 

considered as the basic optimization algorithm, and Q-learning with a unique property of selecting 485 

suitable parameters dynamically is developed to adjust the parameters of crossover and mutation to 486 

improve the search ability of the algorithm. In addition, given the fact that the genetic algorithm may 487 

fall into local optimum, a simulated annealing operation is implemented to some excellent individuals 488 

after genetic operations to further enhance the search ability of solution space.  489 
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To verify the effectiveness of the proposed GSAA-RL algorithm, taking the data of 490 

Comprehensive Port in Huanghua as an example, we compare the computational results of the 491 

proposed solution algorithm in this paper with those of a MILP/CPLEX solver, a FCFS strategy, a GA 492 

method, and a GSAA algorithm. Computational experiments demonstrate that the GSAA-RL 493 

algorithm proposed significantly outperforms three existing methods (i.e., the CPLEX, GA, and 494 

GSAA) in terms of solution quality when solving the small-scale and large-scale instances. In contrast 495 

to the real port scheduling schemes (i.e., FCFS strategy), the scheme obtained by the proposed GSAA-496 

RL algorithm can reduce the total time spent by ships entering and leaving the port by an average of 497 

43.91%. These computational performances highlight the effectiveness of the proposed solution 498 

algorithm in the practical applications. The algorithm proposed in this paper provides a new tool for 499 

ship traffic scheduling and makes up for the shortcomings of some existing scheduling optimization 500 

methods.  501 

Current research can be expanded from the following two aspects. First of all, from the 502 

perspective of the model, taking into account the actual situation, some input parameters (such as the503 

Table 11  504 

Comparison of the results of the GSAA-RL and the real port scheduling schemes. 505 

Instance FCFS  GSAA-RL  Gap(%) 

 CPU(s) OSFCFS  CPU(s) OSGSAA-RL   

V5 0.34 1095  25.30 1078  1.55 

V9 0.35 2362  37.98 1910  19.14 

V15 0.35 5490  58.80 3317  39.58 

V20 0.35 9478  77.65 5784  38.97 

V25 0.39 15026  100.47 8597  42.79 

V30 0.38 21460  124.03 11037  48.57 

V36 0.39 30846  173.18 13950  54.78 

V43 0.37 44134  231.63 22906  48.10 

V49 0.39 58919  295.71 28829  51.07 

V54 0.36 75304  355.24 31001  58.83 

V60 0.39 98214  423.92 39117  60.17 

V65 0.37 119935  468.75 46345  61.36 

V70 0.38 142863  548.05 55727  60.99 

V75 0.36 167731  636.11 75478  55.00 

V80 0.38 195503  821.45 98452  49.64 

Average 0.37 65891  291.88 29569  46.04 

Notes: Gap=(OSFCFS-OSGSAA-RL)/OSFCFSⅹ100%; 506 

ship's expected arrival time) may be affected by the weather and its own mechanical failure, which 507 

may cause the arrival time to be uncertain and affect the initial ship scheduling plan. Therefore, the 508 

ship scheduling problem under the uncertain conditions has practical significance, and this part is 509 

being studied as a key content of the authors’ current work and will be presented in a separate cover 510 

in the future. Secondly, from the perspective of algorithm applications, the GA-RL algorithm can be 511 

applied to the optimization problem of ship scheduling in two-way, compound and restricted channels, 512 

in order to shorten the total waiting time of ships in port and improve the efficiency of channel 513 

navigation. Finally, methodologically, ues of reinforcement learning to adjust the key parameters of 514 

other optimization algorithms, such as tabu search algorithm, particle swarm optimization algorithm, 515 



2 
 

can be further investigated to improve the search performance of the algorithm. 516 
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Appendix A: berth, and anchorage information for Comprehensive port in Huanghua 531 

The length of the planning horizon in this paper is set to 2 days for small-scale instances (6-35 532 

ships) and 3 days for large-scale instances (42-83 ships) to show the applicability of the model. We set 533 

both the safe navigation distance and the unit of the time step to 10 minutes. Table A1 records the 534 

distance between the anchorage and buoy no.201, and the distance between the berth and the buoy 535 

no.262 is depicted in Table A2. 536 

Table A1 537 

Distance between the anchorage and the buoy no.201. 538 

Anchorage ID Distance(nm) 

1 15.472 

2 15.396 

3 11.459 

4 16.381 

5 16.256 

6 22.111 

7 17.123 

8 10.39 

Table A2 539 

Distance between the berth and the buoy no.262. 540 

Berth Berth ID Distance(nm) Berth Berth ID Distance(nm) 

HG1 1 4.691 GC2 9 1.159 

HG2 2 4.798 GC3 10 2.372 

HG3 3 5.617 GC4 11 3.337 

HG4 4 5.845 GC5 12 2.893 

HG5 5 6.002 GC6 13 3.164 
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K01 

K02 

GC1 

6 

7 

8 

0.914 

1.083 

1.035 

GC7 

GC8 

- 

14 

15 

- 

3.395 

3.622 

- 

Appendix B: convergence curve and boxplot comparison for different algorithms 541 

The analysis of convergence patterns allows keeping track of the objective function value 542 

improvements from one generation to another (in case of the considered GA, GSAA, GSAA-RL). The 543 

convergence patterns were shown only for the some small-scale and large-small instances [V13, V18, 544 

V23, V28, V35, V42, V48, V55, V63] and presented in Fig. 7. Based on the convergence pattern 545 

analysis, it can be noticed that GSAA-RL was able to identify the promising solutions of the search 546 

space much faster as compared to the GA, and GSAA algorithms, and allows effective exploration of 547 

the search space and identification of the domains with high-quality solutions. Besides, the boxplot 548 

figure of OS value (i.e., the total time spent by ships in port) from GA, GSAA, GSAA-RL is shown in 549 

Fig. 8 for the some small-scale and large-small instances [V10, V13, V18, V23, V28, V35, V42, V48, 550 

V55], which could further validate the effectiveness of the GSAA-RL algorithm. It can be observed 551 

from Fig. 8 that the OS values obtained by GSAA-RL algorithm have smaller median and range, which 552 

further illustrates the effectiveness of the proposed GSAA-RL in this paper for solving the ship 553 

scheduling problem.  554 

555 

Fig. 7. The convergence curves of different algorithms for small-scale and large-scale instances 556 

[V13, V18, V23, V28, V35, V42, V48, V55, V63]. 557 
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 558 

Fig. 8. The boxplot of three algorithms for for small-scale and large-scale instances [V10, V13, V18, 559 

V23, V28, V35, V42, V48, V55]. 560 
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