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INTRODUCTION 
Structural dynamic responses of a built-up structure are highly dependent on the properties of structural components 

and joints [1]. The responses are often investigated and evaluated using FRFs due to overwhelming data [2–4]. FRFs can 
be obtained from the structure analytically and experimentally [5, 6]. However, obtaining experimentally rotational FRFs 
that are crucial in substructuring methods is perceived to be very challenging and time-consuming in comparison with 
that of translational FRFs [7–9]. There has been substantial research regarding measurement techniques of rotational 
FRFs. For instance, previous works showed that two sensitivity-matched  and spatially separated accelerometers could 
be employed to estimate the rotational acceleration [10, 11]. Furthermore, the rotational FRF (RFRF) could be  indirectly 
obtained using an attachment of T-block [8, 12]. The FRFs measured at the T-block was then decoupled from the system 
to obtain the rotational FRFof the test structure [4]. Another alternate method used to estimate RFRs is using X-block 
attachment with three translational accelerometers. The X-block method was employed for structural modification of a 
helicopter rear tail [13].  

Recently, the piezoelectric rotational accelerometer was introduced and has gained much attention in the dynamic 
substructuring field. Piezoelectric rotational accelerometers offer direct measurement of RFRFs [14]. The comparison of 
the piezoelectric rotational accelerometer with the previous T-block method was carried out in [15]. The comparison 
revealed that the results obtained from piezoelectric rotational accelerometers were far more accurate and reliable.  
However, there is an obvious drawback of a direct rotational sensor that seemed to be a highly-priced accelerometer 
compared to a classical translational accelerometer. The use of piezoelectric rotational accelerometers on a simple beam 
for the frequency-based substructuring (FBS) method was demonstrated in [16]. However, it was reported that the 
measurements of rotational FRFs were only applicable for force excitation responses, resulting in the coupling matrix of 
the structure becomes an incomplete coupling matrix. Therefore, the analytical modal model was used to expand the 
moment excitation FRFs to acquire a full FRF matrix of the beam [17].  

There are a number of attempts to indirectly obtain the moment excitation or torque [8, 12]. The authors introduced 
and attached the T-beam structure to an end of a shaft, and the torques were excited by forces excitation. The accelerations 
were measured by using linear accelerometers at a certain location of the T-beam. Using the FE model of the T-beam 
attachment, the moment between the torque to the angle of twist of the shaft was derived based on the measured linear 
acceleration to the excitation force. This paper proposes a scheme of estimating the RFRF of an irregular plate structure 
using the mode reduction, mode expansion method (MEM) and FRF synthesis. The FE model of the irregular plate (full 
FE model) was developed and then reduced according to the experimental model using the Guyan reduction and improved 
reduction system (IRS). Later, the reduced FE model is expanded to the EMA model using the system reduction and the 

ABSTRACT – The rotational frequency response function (RFRF) plays a crucial role in increasing 
the accuracy of the calculated results of the frequency-based substructuring method. However, 
RFRFs are often omitted due to the difficulties in the measurement process and limitations of the 
equipment. This paper presents a scheme of estimating the rotational FRF of an irregular plate 
structure using the FE model reduction and expansion method. The reduced FE model was 
introduced using the improved reduction system (IRS) and expanded to the experimental modal 
model (EMA model) using the system reduction and the expansion (SEREP) method. The FRF 
expanded method was then employed to derive the translational and rotational FRFs from the 
expanded EMA model. The accuracy of the expanded FRFs was evaluated with the EMA model 
of the irregular plate. It was found that the translational and rotational FRFs estimated from the 
proposed scheme were in good agreement with the EMA counterparts. Furthermore, the patterns 
of the estimated RFRFs were well correlated with the EMA RFRFs. This work shows that the 
proposed scheme may offer an attractive alternative way of accurately determining the RFRs of 
complex structures or structural components. 
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expansion (SEREP) method to estimate all the RFRFs. For validation purposes, the expanded FRFs were compared with 
the EMA counterparts.  

DESCRIPTION OF CASE STUDY 
The proposed scheme to estimate the rotational FRF was demonstrated on an irregular shape plate structure, as 

presented in Figure 1. The irregular plate is made of steel and 350 mm in length [18]. The rotational FRFs were determined 
at two different points: reference point 1 and reference point 2. The reference points, which are also the connection points, 
were investigated mainly for dynamic substructuring or structural modification purposes. In this work, only the z-axis 
and rotational FRF in the x-axis were investigated due to the limitation of the rotational accelerometer as discussed in the 
Piezoelectric Rotational Accelerometer Section.  

 

 

Figure 1. Irregular plate structure. 

The mode of interest in this work was from 0 Hz and 2000 Hz. The dynamic behaviour in terms of mode shapes and 
natural frequencies of the irregular plate were obtained from experimental modal analysis (EMA) [19]. On EMA, the 
irregular plate was discretised into 30 measurements points (EMA modal model), as presented in Figure 2. The 
measurement points decided to reduce the possibility of losing any mode and obtaining a suitable mesh for animating the 
modes of interest [20]. The configuration of the EMA modal model used in developing the reduced FE model of the 
irregular plate is vital to the mode expansion. 

 

 

Figure 2. A total of 30 measurement points on the irregular plate. 

Finite Element Modelling 
The purpose of using the FE method, model reduction and expansion method in this study was to estimate the 

rotational modal vectors that are difficult to obtain experimentally. Prior to performing the model reduction and expansion 
method, the full FE model of the irregular plate was developed, as presented in Figure 3. A total of 2850 elements and 
3030 nodes were required in the development of the FE model. 2D shell elements that provide both translational and 
rotational modal vectors were used as the element profile. The standard material properties for steel used in this study are 
the modulus of elasticity of 210000 MPa, density of 7,850 kg/m3 and Poisson’s ratio of 0.3. The dynamic behaviour of 
the irregular plate was calculated by using Block Lanzos normal modes solution in free-free boundary conditions. The 
calculated dynamic behaviour was compared with the EMA counterparts for validation purposes [21].  

 

 

Figure 3. FE model of the irregular plate. 
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Experimental Modal Analysis (EMA) 
The natural frequencies and mode shapes were measured using impact hammer testing. The EMA setup is illustrated 

in Figure 4. The setup was designed as to that of the FE model. The EMA was performed by hanging the plate with two 
soft springs to imitate a free-free configuration [22]. A single 10 mV/g uniaxial accelerometer was used to measure the 
dynamic data, and a 21.7mV/N impact hammer was used for the excitation. Siemens LMS data acquisition was used to 
obtain the dynamic data. The frequency range was set between 0 Hz to 2000 Hz with a step size of 1 Hz. To measure the 
natural frequencies and mode shape accurately, the excitation was performed 10 times to attain a high number of 
averaging. Meanwhile, the responses from the excitation were analysed using Siemens LMS Test.lab.  

 

 
Figure 4. EMA setup of irregular plate. 

EXPERIMENTAL RESULTS 
The accuracy of the developed FE model for the irregular plate was evaluated by comparing the FE natural frequencies 

and mode shapes with the EMA counterparts. The FE mode shapes were quantified by applying the modal assurance 
criterion (MAC). A detailed explanation of the MAC analysis is available in [23]. The formulation of MAC used in this 
study is as follows. 

 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟, 𝑞𝑞) =  
�(𝜙𝜙𝐴𝐴)𝑟𝑟𝑇𝑇(𝜙𝜙𝑋𝑋)𝑞𝑞𝑇𝑇�

((𝜙𝜙𝐴𝐴)𝑟𝑟𝑇𝑇(𝜙𝜙𝐴𝐴)𝑟𝑟+)�(𝜙𝜙𝑋𝑋)𝑞𝑞𝑇𝑇(𝜙𝜙𝑋𝑋)𝑞𝑞+�
 

(1) 

 
where, 𝜙𝜙𝐴𝐴 and  𝜙𝜙𝑋𝑋 are finite element and EMA modal vectors. The MAC value that is approaching the value of 1 

conveys the similarity between the FE and EMA mode shapes. Table 1 presents the calculated MAC values, damping and 
comparison of natural frequencies between the EMA and FE model of the irregular plate. It is worth mentioning that the 
measured damping values are used for FRF synthesis purposes.    

Table 1. Comparison of the natural frequencies between the EMA and FE model of the irregular plate.  

Mode Full FE (Hz) EMA (Hz) Percentage error (%) MAC value Damping (%) 
1 346.8 352.2 1.52 0.98 0.011 
2 476.2 474.8 0.30 0.99 0.010 
3 874.0 876.6 0.30 0.91 0.009 
4 1039.2 1038.0 0.12 0.95 0.003 
5 1126.8 1128.0 0.11 0.98 0.007 
6 1895.0 1886.7 0.44 0.91 0.008 
7 1926.2 1935.2 0.46 0.96 0.165 
8 2178.4 2160.5 0.83 0.96 0.028 
 Total error 4.08 %   

 
The comparison showed that the FE natural frequencies were in good agreement with the EMA counterparts with a 

total error of 4.08 per cent, which is within the acceptable level of accuracy. All the MAC values tabulated in Table 1 
were above 0.90, indicating a high correlation between the FE mode shapes and EMA counterparts. A comparison of FE 
and EMA mode shapes is tabulated in Figure 5. The comparison was carried out by mapping the mode shapes of the FE 
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model onto the corresponding EMA mode shapes. From Figure 5, there were no missed or swapped modes identified 
between the FE and EMA model. 

 

(a) 1st mode 
 

 
(b) 2nd mode 

 

 
(c) 3rd mode 

 
 

(d) 4th mode 
 

(e) 5th mode 
 (f) 6th mode 

 

(g) 7th mode 
 

(h) 8th mode 
 

Figure 5. FE and EMA mode shapes comparison. 

Model Reduction Method 
It is important to note that the issue of missed and swapped modes should be carefully addressed before a model 

reduction is carried out. In this work, two model reduction methods which are, the Guyan reduction method and the 
Improved Reduction System (IRS), were performed on the full FE model of the irregular plate to reduce the degrees of 
freedom (DOF) to that of the EMA modal model. The modes of a structure can be derived from the fundamental equation 
of motion (EOM). The linear equation of motion can be described by the following form: 
 

M�̈�𝒖+Cu̇+Ku= f (2) 
 

where M, C and K are the matrices of mass, damping and stiffness, respectively, and f is the load vector. The vectors 
�̈�𝒖, u̇  and u denote the displacement, velocity, acceleration of the system. The general approach of the model reduction 
method is to approximate the state vector by using the transformation; 
 

𝒖𝒖 = 𝑻𝑻𝒖𝒖𝑅𝑅 (3) 
 

where 𝑻𝑻 and 𝒖𝒖𝑅𝑅 is the transformation matrix and a reduced state vector, respectively. By applying the transformation 
in Eq.(3) into Eq. (1), the reduced system can be described as; 
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𝑴𝑴𝑅𝑅�̈�𝒖𝑅𝑅+𝑪𝑪𝑅𝑅�̇�𝒖𝑅𝑅+𝑲𝑲𝑅𝑅𝒖𝒖𝑅𝑅= 𝒇𝒇𝑅𝑅 
 

(4) 
 

𝑴𝑴𝑅𝑅 =  𝑻𝑻𝑻𝑻𝑴𝑴𝑻𝑻,       𝑪𝑪𝑅𝑅  =  𝑻𝑻𝑻𝑻𝑪𝑪𝑻𝑻,     𝑲𝑲𝑅𝑅 =  𝑻𝑻𝑻𝑻𝑲𝑲𝑻𝑻,      𝒇𝒇𝑅𝑅 =  𝑻𝑻𝑻𝑻𝒇𝒇   (5) 
 
where 𝑴𝑴𝑅𝑅, 𝑪𝑪𝑅𝑅 and 𝑲𝑲𝑅𝑅 are the reduced order of mass, damping and stiffness matrices. In this work, two condensation 

reduction methods were investigated for the FE model reduction of the irregular plate. The first one was the Guyan 
reduction method [24]. The other one was the Improved Reduction System (IRS) [25], which its formulation is solely 
based on the 𝑲𝑲𝑅𝑅 and 𝑴𝑴𝑅𝑅 from the Guyan reduction method 

FE Model Reduction using the Guyan Reduction Method 
In the condensation-based reduction method, the degrees of freedoms (DOFs) of the irregular plate are separated into 

masters, 𝑚𝑚, and slaves, 𝑠𝑠. It is worth noting that the Guyan Reduction method only provides the transformation matrix, T 
based on the K matrix. The slave DOFs are condensed in the reduction process resulting in the reduction of the state 
vector that contains only the master DoFs. The stiffness matrix in Eq. (2) can be partition as; 
 

�𝑲𝑲𝑚𝑚𝑚𝑚 𝑲𝑲𝑚𝑚𝑚𝑚
𝑲𝑲𝑚𝑚𝑚𝑚 𝑲𝑲𝑚𝑚𝑚𝑚

� �
𝒖𝒖𝑚𝑚
𝒖𝒖𝑚𝑚 � =  �  𝒇𝒇𝑚𝑚  𝒇𝒇𝑚𝑚

� (6) 
 

assuming that there is no load acting on the slaves DoFs, with   𝒇𝒇𝑚𝑚 = 0, the equation yields; 
 

  𝒇𝒇𝑚𝑚 = (𝑲𝑲𝑚𝑚𝑚𝑚 −  𝑲𝑲𝑚𝑚𝑚𝑚𝑲𝑲𝑚𝑚𝑚𝑚
−𝟏𝟏𝑲𝑲𝑚𝑚𝑚𝑚) 𝒖𝒖𝑚𝑚 (7) 

 
from which 𝑲𝑲𝑅𝑅 can be identified as;  

 
𝑲𝑲𝑅𝑅 =  𝑲𝑲𝑚𝑚𝑚𝑚 −  𝑲𝑲𝑚𝑚𝑚𝑚𝑲𝑲𝑚𝑚𝑚𝑚

−𝟏𝟏𝑲𝑲𝑚𝑚𝑚𝑚 (8) 
 

Neglecting the inertia from the M matrix results in the Guyan reduction transformation matrix, 𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 in the form of; 
 

�
𝒖𝒖𝑚𝑚
𝒖𝒖𝑚𝑚 � =  �

𝐼𝐼
−𝑲𝑲𝑚𝑚𝑚𝑚

−𝟏𝟏𝑲𝑲𝑚𝑚𝑚𝑚
�𝒖𝒖𝑚𝑚 =  𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝒖𝒖𝑚𝑚 (9) 

 
and the 𝑲𝑲𝑅𝑅 is; 

 
𝑲𝑲𝑅𝑅 =  𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑻𝑻𝑲𝑲𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (10) 

 
The same transformation procedure is applied on M matrix to obtain the 𝑴𝑴𝑅𝑅 in the form of;  

 
𝑴𝑴𝑅𝑅 =  𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑻𝑻𝑴𝑴𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (11) 

 
The master DOFs were acquired from the 30 measurement points of the EMA modal model of the irregular plate. The 

reduced model of the irregular plate is shown in Figure 4. The natural frequencies and mode shapes of the reduced model 
of the irregular plate were calculated using the normal modes solution. They were then compared with those of the full 
FE model for validation purposes. Note that a normal mode solution is a mathematical procedure of determining a set of 
normal coordinates describing the collective motion of the system. Table 3 presents the calculated MAC values and the 
comparison of the natural frequencies between the full FE model and the reduced FE model using Guyan reduction 
method.  

 

 
Figure 5. Reduced model of the irregular plate. 

From Table 3, the 6th and 7th modes recorded a low correlation as compared with the natural frequencies between the 
full FE and Guyan FE model. The 6th mode with 6.60 per cent of percentage error was the largest contributor to the total 
percentage error of 18.75 per cent. Furthermore, it was found that the natural frequencies obtained from the Guyan FE 
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model were slightly higher compared with the full FE ones. The higher discrepancies obtained are because the Guyan 
reduction method only provides the transformation matrix T, which is based on the K matrix and the 𝑴𝑴𝑅𝑅 , as stated in Eq. 
(11). Furthermore, there are no inertia terms as pseudo-static forces to the transformation matrix T in the 𝑴𝑴𝑅𝑅. A detailed 
discussion of results comparison between the Guyan FE and full FE model is available in [26].  

Table 3. MAC values and comparison of the natural frequencies between the full FE and Guyan model.  

Mode Full FE (Hz) Guyan (Hz) Percentage error (%) MAC value 
1 346.8 347.4 0.18 1.00 
2 476.2 478.4 0.46 1.00 
3 873.7 884.5 1.20 0.99 
4 1039.2 1057.5 1.76 1.00 
5 1126.8 1135.4 0.76 1.00 
6 1895.0 2020.1 6.60 0.72 
7 1926.2 2023.5 5.05 0.73 
8 2178.4 2238.1 2.74 0.99 
 Total error 18.75 %  

 
Table 4 presents MAC values calculated from the comparison between the full FE model and Guyan FE model. On 

MAC analysis, low MAC values with 0.73 and 0.73 were observed in the 6th and 7th modes, respectively. In contrast, the 
other four modes (1st, 2nd, 4th and 5th modes) recorded high MAC values with approximately 1.0.  

Table 4. MAC values between full FE (column) and Guyan FE (row) mode shapes 

 1 2 3 4 5 6 7 8 
1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.73 0.27 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.25 0.73 0.00 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 

FE Model Reduction using IRS 
The previous section showed that the Guyan reduction method is incapable of accurately predicting the natural 

frequencies and mode shapes. The inaccuracy in the prediction can be clearly seen in the 6th and 7th modes, which are the 
largest contributor to the total percentage error and the lowest MAC values calculated. The IRS method introduced by 
[25], which consider of the inertia in term of pseudo-static forces to the transformation matrix, is adopted to improve the 
Guyan reduction method.  The detailed information on the derivation of the Guyan reduction and IRS methods is available 
in [26]. The transformation matrix for IRS, 𝑻𝑻𝐼𝐼𝑅𝑅𝐼𝐼 can be written as; 
 

𝑻𝑻𝐼𝐼𝑅𝑅𝐼𝐼 =  �
𝐼𝐼

−𝑲𝑲𝑚𝑚𝑚𝑚
−𝟏𝟏𝑲𝑲𝑚𝑚𝑚𝑚 + −𝑲𝑲𝑚𝑚𝑚𝑚

−𝟏𝟏(𝑴𝑴𝑚𝑚𝑚𝑚 −𝑴𝑴𝑚𝑚𝑚𝑚𝑲𝑲𝑚𝑚𝑚𝑚
−𝟏𝟏𝑲𝑲𝑚𝑚𝑚𝑚)𝑴𝑴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

−𝟏𝟏𝑲𝑲𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
� (12) 

 
or  

 
𝑻𝑻𝐼𝐼𝑅𝑅𝐼𝐼 =  𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑺𝑺𝑴𝑴𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑴𝑴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

−𝟏𝟏𝑲𝑲𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (13) 
  

𝑺𝑺 =  �
0 𝟎𝟎
𝟎𝟎 𝑲𝑲𝑚𝑚𝑚𝑚

−𝟏𝟏� (14) 
 

by inserting Eq. (12) into Eq. (5), the reduced stiffness and mass matrices are: 
 

𝑲𝑲𝐼𝐼𝑅𝑅𝐼𝐼 =  𝑻𝑻𝐼𝐼𝑅𝑅𝐼𝐼𝑻𝑻𝑲𝑲𝑻𝑻𝐼𝐼𝑅𝑅𝐼𝐼 (15) 
  

𝑴𝑴𝐼𝐼𝑅𝑅𝐼𝐼 =  𝑻𝑻𝐼𝐼𝑅𝑅𝐼𝐼𝑻𝑻𝑴𝑴𝑻𝑻𝐼𝐼𝑅𝑅𝐼𝐼 (16) 
 

the transformation, 𝑻𝑻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, reduced stiffness, 𝑲𝑲𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and mass 𝑴𝑴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 matrices introduced in the previous section 
were used to calculate the 𝑻𝑻𝐼𝐼𝑅𝑅𝐼𝐼, 𝑲𝑲𝐼𝐼𝑅𝑅𝐼𝐼 and 𝑴𝑴𝐼𝐼𝑅𝑅𝐼𝐼 of the irregular plate. The dynamic behaviour of the IRS reduced model of 
the irregular plate was calculated by using the same solution with the Full FE. Table 5 presents the MAC values and 
comparison of the natural frequencies between the full FE model and IRS FE model.  
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Table 5. MAC values and comparison of the natural frequencies between the full FE model and IRS FE model. 
Mode Full FE (Hz) IRS (Hz) Percentage error (%) MAC value 
1 346.8 346.8 0.00 1.00 
2 476.2 476.2 0.00 1.00 
3 874.0 874.0 0.00 1.00 
4 1039.2 1039.2 0.00 1.00 
5 1126.8 1126.8 0.00 1.00 
6 1895.0 1895.0 0.00 1.00 
7 1926.2 1926.2 0.00 1.00 
8 2178.4 2178.4 0.00 1.00 

 
The natural frequencies calculated from the IRS FE model showed identical results with the full FE model. 

Furthermore, the results of MAC analysis also showed a tremendous improvement in the MAC values, in which each 
mode being associated with unity. Moreover, the low MAC values of the 6th and 7th modes calculated from the Guyan FE 
model were improved as well with no swapped mode issue (as in Table 6). 

Table 6. MAC values between full FE (column) and IRS FE (row) mode shapes. 
 1 2 3 4 5 6 7 8 
1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Mode Expansion of Irregular Plate 
The purpose of the mode expansion of the irregular plate is to derive the rotational modal vectors in the light of the 

IRS reduced model mode shapes [10]. System equivalent reduction expansion process (SEREP) was implemented by [27] 
for the expansion of the mode shapes of the EMA model.  The mode expansion was performed based on the modal vectors 
of the IRS FE model. The expended EMA modal vector with a full set of DOFs, 𝝓𝝓𝒏𝒏is expressed in the form of: 
 

𝜙𝜙𝐺𝐺 =  �𝜙𝜙𝐼𝐼𝑅𝑅𝐼𝐼𝜙𝜙𝐸𝐸𝑋𝑋𝐸𝐸
� = 𝐓𝐓𝐼𝐼𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝜙𝜙𝐼𝐼𝑅𝑅𝐼𝐼 (17) 

 
    where,  
 

 

𝐓𝐓𝐼𝐼𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸 =   �𝜙𝜙𝐼𝐼𝑅𝑅𝐼𝐼𝜙𝜙𝐸𝐸𝑋𝑋𝐸𝐸
� 𝜙𝜙𝐼𝐼𝑅𝑅𝐼𝐼𝑔𝑔 (18) 

 
so the expanded mode shapes are; 
 

𝜙𝜙𝐺𝐺 =   �𝜙𝜙𝐼𝐼𝑅𝑅𝐼𝐼𝜙𝜙𝐸𝐸𝑋𝑋𝐸𝐸
� 𝜙𝜙𝐼𝐼𝑅𝑅𝐼𝐼𝑔𝑔𝜙𝜙𝐸𝐸𝑋𝑋𝐸𝐸 (19) 

 
where 𝜙𝜙𝐸𝐸𝑋𝑋𝐸𝐸, 𝜙𝜙𝐼𝐼𝑅𝑅𝐼𝐼 and 𝐓𝐓𝐼𝐼𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸  are EMA modal vectors, IRS modal vectors and SEREP transformation matrices. The 

natural frequencies of the expanded model were preserved based on the original natural frequencies obtained from the 
EMA. The MAC values comparison between expanded and EMA mode shapes is presented in Table 7.  

Table 7. Comparison of MAC values of the mode shapes between expanded model (column) and EMA model (row). 
 1 2 3 4 5 6 7 8 
1 0.98 0.00 0.10 0.00 0.01 0.00 0.10 0.03 
2 0.00 1.00 0.00 0.02 0.00 0.07 0.00 0.00 
3 0.10 0.00 0.98 0.00 0.02 0.00 0.15 0.06 
4 0.00 0.02 0.00 0.97 0.00 0.14 0.00 0.00 
5 0.01 0.00 0.02 0.00 0.99 0.00 0.00 0.02 
6 0.00 0.08 0.00 0.14 0.00 0.94 0.00 0.00 
7 0.10 0.00 0.16 0.00 0.00 0.00 0.97 0.00 
8 0.03 0.00 0.06 0.00 0.02 0.00 0.00 0.97 

 
The mode shapes calculated from the expanded model were in a good correlation with those obtained from the EMA 

model, with the MAC value of each mode being above 0.94 (in Table 7). A mode shapes comparison between the 
expanded model and EMA model with a correct pairing mode is shown in Figure 6.  
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(a) 1st mode 

 
 

(b) 2nd mode 

 
(c) 3rd mode 

 

 
(d) 4th mode 

 

 
(e) 5th mode 

 

 
(f) 6th mode 

 

 
(g) 7th mode 

 

 
(h) 8th mode 

 

Figure 6. Expanded and EMA mode shapes comparison. 

FRF Synthesis Method 
The FRFs of the expanded model of the plate is derived via the FRF synthesis method [28]. For this method, the 

expanded model’s synthesised FRF matrix Hexp (ωk) and mode shapes 𝜙𝜙 are expressed in the form of: 
 

H𝑒𝑒𝑒𝑒𝑒𝑒(ωk) =  �
{𝜙𝜙}𝑖𝑖{𝜙𝜙}𝑖𝑖𝑇𝑇

�𝜔𝜔𝐺𝐺𝑖𝑖
2 − 𝜔𝜔𝑘𝑘

2� + 𝑗𝑗2𝜉𝜉𝑖𝑖𝜔𝜔𝑘𝑘𝜔𝜔𝐺𝐺𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (20) 

 
where N represents the number of modes, {𝜙𝜙}𝑖𝑖 represents the ith expanded mode shapes, 𝜔𝜔𝐺𝐺𝑖𝑖 represents ith natural 

frequency and 𝜉𝜉𝑖𝑖 represents the i-th modal damping ratio. The expanded model’s synthesised FRFs are compared with 
the EMA counterparts and presented in the next subsection. Note that only the z-axis FRF was used in the comparisons 
because all modes of the irregular plate mostly are presented in the z-direction.  

Validation of FRF between Expanded and EMA model 
Figure 7(a) to 7(c) present the direct comparisons of the translational FRF between the expanded and EMA models. 

The FRFs were obtained at reference points 1 and 2. The cross axis FRF between the two pints were also compared for 
reciprocity check. From Figure 7(a) to 7(c), all the resonance peaks calculated from the expanded model showed a strong 
correlation with those of EMA, particularly the peaks at connection point 1. On the other hand, the anti-resonance peaks 
of the expanded model were slightly mismatched, particularly at the frequency range between 1000-2000Hz.  
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(a) 

 
(b) 

 
(c) 

Figure 7. Comparison of FRF at point (a) 1z1z (b) 2z2z and (c) 1z2z between expanded and EMA models. 
Validation of Rotational FRF 

Rotational FRFs (RFRFs) are less frequently considered in the experimental modal analysis compared to the 
translational FRFs. Nevertheless, RFRFs have an important role in particular structural dynamics applications, for 
instance, structural modifications, substructuring, FE model updating and model validation. Even though the RFRFs 
represents 75 per cent of all the FRF matrix, they are often excluded due to the difficulties in measuring them. In this case 
study, the RFRFs derived from the expanded test model were evaluated with the EMA FRF. The rotational FRFs was 
measured using a piezoelectric rotational accelerometer. A brief presentation and technical specifications of the 
piezoelectric rotational accelerometer are given in this section as they are used in the rotational FRFs validation. 

Piezoelectric Rotational Accelerometer 

Kistler 8840 piezoelectric direct rotational accelerometer, as presented in Figure 8, was used in measuring rotational 
FRFs. This sensor is quartz crystal-based and powered by a 20-30 VDC power supply. The technical specification of the 
rotational accelerometer can be found in [14, 15] and presented in Table 9. In this study, only the force excitation rotational 
FRF was acquired as the moment-excite rotational FRF cannot be performed currently.  
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Figure 8. Kistler 8840. 

Table 9. Technical specification for Kistler Kshear 8840. 

Specification Unit Value 
Sensitivity μV/rad/s 35 
Frequency response, ±10% Hz 0 - 2000 
Acceleration Range krad/s2 ±150 
Maximum Limit krad/s2 ±200 
Source Voltage V 20-30 
Source Current mA 4 

 
Figure 9 presents the mounting configuration of the rotational accelerometer. The rotational accelerometer was 

mounted to the connection points of the irregular plate using an M5 Hex socket cap bolt facing the x-axis direction 
(rotational x-axis). In this work, only one rotational accelerometer was mounted at a time to minimise the mass loading 
effect on the measured data. The test structure was excited by using the same modal hammer used in the previous section. 
The frequency range was set from 0 Hz to 2000 Hz due to the limitation of the sensor according to the technical 
specification stated in Table 10.   

 

  
Figure 9. Rotational accelerometer mounting configuration. 

RFRFs of the Expanded Model 

Figure 10(a) to 10(c) present the direct comparisons of the rotational FRFs between the expanded and EMA models. 
The rotational FRFs were obtained at points 1z1rx, 2z2rx and 1z2rx of both models. The patterns and amplitudes of the 
resonance and the anti-resonance estimated from the expanded model were almost similar to those obtained from the 
EMA model, particularly in the frequency range from 0 Hz to 1500 Hz. The resulting outcomes show that the expanded 
model is capable of accurately estimating rotational FRFs for lower modes. However, at high amplitudes of response 
(1500 Hz to 2000 Hz), the rotational FRFs estimated from the expanded model were low quality and deviated from the 
EMA ones.  
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(a) 

 
(b) 

 
(c) 

Figure 10. Comparison of rotational FRF at point (a) 1z1rx (b) 2z2rx and (c) 1z2rx between expanded and EMA 
models. 

CONCLUSION 
A scheme enabling the estimation of experimental rotational FRF using the FE model reduction and expansion method 

is presented. The proposed scheme accurately estimates the rotational FRFs of the structure, particularly for lower modes 
(0 Hz to 1500 Hz) and produces lower quality rotational FRFs for higher modes of 1500 Hz to 2000 Hz. However, the 
higher modes, generally, are not really of concern in dynamic structural analysis. 

The greatest wealth of the proposed scheme over experimental modal analysis for rotational FRF measurements, 
which is usually very challenging, time-consuming and definitely requires rotational accelerometers, lies in the use of the 
FE model reduction and expansion method, which eliminates the great constraints of experimental modal analysis, to 
estimate rotational FRFs accurately.  
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