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Abstract 

Seaport operations are characterised by high levels of uncertainty, as a result their risk evaluation is a very 

challenging task. Much of the available data associated with the system’s operations is uncertain and ambiguous, 

requiring a flexible yet robust approach of handling both quantitative and qualitative data as well as a means of 

updating existing information as new data becomes available. Conventional risk modelling approaches are 

considered to be inadequate due to the lack of flexibility and inappropriate structure for addressing the system’s 

risks. This paper proposes a novel fuzzy risk assessment approach to facilitating the treatment of uncertainties in 

seaport operations and to optimize its performance effectiveness in a systematic manner. The methodology 

consists of a fuzzy analytical hierarchy process, an evidential reasoning (ER) approach, fuzzy set theory and 

expected utility. The fuzzy analytical hierarchy process is used to analyse the complex structure of seaport 

operations and determine the weights of risk factors while ER is used to synthesise them. The methodology 

provides a robust mathematical framework for collaborative modelling of the system and allows for a step by step 

analysis of the system in a systematic manner. It is envisaged that the proposed approach could provide managers 

and infrastructure analysts a flexible tool to enhance the resilience of the system in a systematic manner. 

Keywords: Seaport operations; evidential reasoning approach; fuzzy set theory; fuzzy analytical hierarchy 

process  
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1. Introduction 

Critical Maritime Infrastructure (CMI) systems, which are defined as ports, waterways, vessels and their 

intermodal connections are the basis of world economic development. CMI are susceptible to diverse risks in their 

field of operations as a result of the interaction and interdependence among their components and subsystems. 

Additionally, the multiplicity of stakeholders in the system and the complex operational scenarios contributes to 

creating high levels of uncertainty. CMI typically operates in a dynamic environment in which the boundaries of 

safety are pushed, leading to the disruption of operations.  

Serious accidents and cascading events, such as the 9/11 terrorist attacks in 2001, the lock-out of the American 

West Coast Port in 2002, the Fukushima nuclear disaster in 2011, and the recent piracy related activities off the 

Gulf of Guinea are clear examples of systemic failures and disruptions of CMI systems. As these systems become 

highly integrated and play a vital role in advancing the global economy, accidents gradually develop over time 

through a conjunction of several small failures [1, 2]. Consequently, it is imperative to address the diverse risks 

of such accidents or disruptions proactively, particularly as new hazards and threats are constantly evolving due 

to the dynamic nature of the maritime environment. 

When critical systems such as maritime infrastructure do not have the robustness to recover in the face of 

disruption, they present themselves as attractive targets to terrorism related attacks. Given that a large proportion 

of the world’s trade is transported by sea, the global economy is heavily dependent on the effective operation of 

these systems; disruptions at any point within their operation could potentially result in catastrophic and disastrous 

consequences.   

Building resilience in maritime operations requires creating capabilities and a sustained engagement from the 

stakeholders involved in their operations. Additionally, academics and industrialists acknowledge that safety and 

security efforts that are aimed at mitigating risks will always reach a point of diminishing returns. In order to 

optimise the defence capability of the system, it is essential to constantly revise and update its risk model in such 

a manner that it would adapt, cope and recover to a desired level of functionality when facing adverse operational 

constraints. An emphasis on robustness in the system’s operations provides a flexible and collaborative model for 

maritime systems to adopt. 

The risk assessment of a CMI system is a complex task due to the integration of technical, organisational, 

operational and security issues into its daily operations. Conventional techniques such as Fault Tree Analysis 

(FTA), Event Tree Analysis (ETA), Failure Mode, Effects and Criticality Analysis (FMECA) and Bow-Tie (BT) 

have been widely used in reliability analysis of critical systems and have contributed immensely to the literature 
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of risk analysis. However, most of the aforementioned approaches have prescribed setbacks which affect their 

application for quantitative risk analysis and management due to their inability to account for uncertainties 

associated with the system operation. 

Moreover, large numbers of optional maritime safety and security control measures have been proposed by 

various regulations to optimise the operational efficiency of the system in such a manner that it will exhibit 

resilience to disruptions [3, 4, 5, 6]. The use of conventional risk assessment approaches to deal with newly arising 

hazards and threats (e.g. potential terrorist attack) to maritime infrastructure reveals two major challenges they 

face in an uncertain environment. Yang [7] expressed the challenges faced by these systems as the lack of 

capability to process diverse data suitable for input into a risk inference mechanism and the lack of capability to 

analyse the interactive dependence between risk factors. 

One realistic way to analyse unavailable data is to employ subjective assessment using the combination of 

fuzzy logic, Dempster and Shafer (D-S) theory and Evidential Reasoning (ER). Compared to the traditional fuzzy 

inference mechanism (i.e. max-min fuzzy operations), an ER approach has the superiority of avoiding the loss of 

useful information in their inference processes; hence, it can be suitable for modelling complex systems. 

The occurrence of natural disasters and the disruptions caused by man-made attacks on CMI systems are 

imprecise. It is therefore challenging to protect the systems from such perceived scenarios and understand their 

complex operational processes. The purpose of analysing the system in the face of severe disruptions is to promote 

security and reduce its susceptibility to hazards. It is important to emphasise that resilient systems are able to 

recover by delivering their designed expected value and minimising losses in a systematic fashion. Moreover, 

insufficiency of quantitative risk assessment of maritime related literature together with the vision to establish a 

secure and resilient CMI system has resulted in an urgent need for an integrated risk assessment methodology 

capable of tackling the uncertainties associated with the systems operation.   

The aim of this paper is to propose an integrated fuzzy risk analysis model for assessment of seaport operations. 

This has been organised as follows. Section 2 reviews the existing literature on CMI systems, and presents and 

discusses the diverse range of risk factors associated with seaport operations. Section 3 explains the methodology 

of the study. Section 4 provides a case study to demonstrate the applicability of the proposed methodology. 

Sections 5 and 6 present a discussion of results and the conclusion. 

 



4 
 

2.  Literature Review 

CMI systems are faced with high operational constraints due to the dynamic interactions among their interrelated 

components. The level of interdependences and complexity of the system’s operations can be acknowledged 

through its description by the US Department of Homeland Security “as all areas and things of, on, under, relating 

to, adjacent to, or bordering on a sea, ocean, or other navigable waterway, including all maritime related activities, 

infrastructure, people, cargo, vessels and other conveyances” [8]. Analysing the systems in terms of their 

interdependences which include infrastructure characteristics, operational relationships, environmental impacts, 

technical efficiency, failure types and state of operation provides insight into their complexity, enabling 

collaborative modelling to be undertaken.  

Modern seaports, which are an integral component of CMI systems, focus their operations on continuous 

handling of flows and efficient transport. Meersman [9], as shown in Figure 1, revealed that these systems 

progressed from performing cargo handling, stacking and distribution functions to being a complex transportation 

hub in logistic chains. A vessel operator controls a fleet of vessels with a set of characteristics; the land side can 

be understood as a system of ports operating at local, national and regional levels. It is worth mentioning that 

individual ports have several terminals, serving different types of loading technologies and cargoes. 

Comprehensive analysis of maritime infrastructures has revealed that they consist of ports, terminals, intermodal 

connects, navigable waterways and vessels.  

In maritime operations, seaports serves as the business hub and provide critical infrastructure functions such 

as port, roads and rails, and safety and security functions, which involve customs, investments, developments and 

marketing [10]. Detailed analysis of CMI operational processes and their component parts suggests that seaport 

infrastructure systems include not only the infrastructure (e.g. assets that are capable of an intended service 

delivery, such as access channels, turning basins, quay walls, jetties, navigational aids, break waters, pilots, tugs, 

stacking areas), the superstructure (e.g. computer and logistics systems and ICT, handling equipment, warehouses, 

etc.), but also the operating procedures, management practices and complex interactions with the society to 

facilitate trade and the transfer of goods and services for economic development [11].   

Maritime-related activities are operated at seaports which are located within densely populated and industrial 

locations that accommodate chemicals and weapons in their storage facilities [12]. The flexibility in the flows of 

vessels and large amounts of bulk cargoes within these areas has created a huge amount of concern about their 

integrity because of the numerous opportunities for them to be tampered with for terrorism-related acts or sabotage. 

Additionally, their operations can be marred by several organisational and environmental risks that range from 
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natural to man-made disasters with disruption likelihood that can potentially result in a large amount of direct and 

indirect financial losses [13, 14]. External risks that disrupt seaport operations include hurricanes, tornadoes, 

tsunamis, flood and chemical spills.  

When studying the safety aspects of a seaport, a logical approach is to break down the system into functional 

entities comprising sub-systems and components. Safety modelling of these functional entities can be carried out 

to fit such a logical structure, then the interrelationships can be examined and a system safety model can be 

formulated for risk-based decision making in all phases of the system’s life, from its conception and design to its 

operation, maintenance and decommissioning. 

The risks associated with seaport operations are complex. This is evidenced by the fact that different risk 

categories discussed in literature affect the multiplicity of stakeholders involved in their operations. Complexities 

in the systems may further arise when they interrelate with other risk characteristics such as uncertainty and 

dependence. This can be explained through the classification of risk as presented in Table 1 [12, 15, 16, 17]. Each 

risk event as presented in Table 1 is investigated based on its associated causes. These causes are chosen because 

they are regarded as the most significant ones associated with major disruption of seaport processes. The selection 

of such disruption risks and causes is conducted based on extensive discussions with experts and a robust literature 

review.   

 

<Figure 1: Sea-Land Interface of Maritime Transportation Systems> 

<Table 1: Causes of Seaport Disruption> 

 

2.1. Operational Risk Factors 

The evolution of large carrier vessels for maritime operations has necessitated the need to optimise terminal 

infrastructures to systematise the management of risk in loading and unloading operations in ports and maximise 

the possibility of controlling accident risks effectively. Ports cannot afford disruptions caused by unexpected risks. 

Due to the complexity of the systems, disruption and damage may well be inflicted not only on property but also 

to human life and the environment once an accident occurs during a system’s operations. The operational risk 

factors that cause disruption of maritime activities are due to port equipment/machinery failures, ships/vessels 

accident/grounding, and cargo spillage [18]. These are attributed to movement of oil tankers, large and small boats, 

loading and unloading of oil and other cargoes, ferry services, cargo forwarding operations, human errors and 

management [10, 19]. 
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2.2. Security Risk Factors 

Securing maritime business against disruption due to security incidents presents an enormous task to the 

globalised world. Since the 9/11 attacks, security experts have shown serious concerns over the efficiency and 

robustness of CMI system security, with regard to its possible exploitation by terrorists to wreak havoc on the 

system either through sinking of a large vessel in a port channel or attacking a port’s physical infrastructure 

facilities [20, 21].  

Experience has shown that decision makers have invested significant resources on sophisticated security 

measures in order to ensure smooth flows of trade, yet face a severe challenge in the effectiveness of these security 

measures [22]. It is worth mentioning that the effective performance of security systems or measures can be built 

based on the evaluation and aggregation of the security risks associated with seaport operations, such as sabotage, 

terrorism attacks, surveillance system failure and arson [23]. 

  

2.3. Technical Risk Factors 

While technical solutions will continue to play an important role in facilitating smooth operations of maritime 

systems, the need for a systemic understanding and analysis of CMI systems has led to the categorisation of the 

seaport system as marine constructions, port maintenance, port operations and logistics. Because ports are open 

facilities with multiple means of access by both land and sea routes, they involve multiple modes and each is 

managed by a different entity within the system. Due to the importance of maritime operations in global trade and 

logistics, lack of equipment, navigational aid, IT systems and dredging maintenance have been identified as 

significant issues in causing severe disruption of seaport operations with long-term financial consequences [16].   

2.4. Organisational Risk Factors 

Events such as labour unrest, dispute with regulatory bodies, breakdown in organisational communications 

leading to berth congestion, incompatible management goals leading to gate congestion and poor management 

procedures leading to storage area congestions are major factors mentioned in literature which lead to the 

disruption of seaport operations [18, 24]. There is a widespread agreement among safety researchers that the key 

means of tackling the human element contribution to disruptions will be via the incorporation of resilience into 

the operations of the system [18].   
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2.5. Natural Risk Factors 

The dynamics of the natural environment affect the entirety of seaports. Its influences are capable of disrupting 

maritime business and therefore make such business vulnerable to hazards. The most important hazards due to 

natural factors are hydrological, atmospheric and geologic hazards [25]. The impacts of these hazards have 

consistently added more cost to management of seaports in the form of annual maintenance, reconstruction and 

preparedness. Heavy rainfall, flooding and snow are important examples of hydrologic hazards; tsunamis and 

earthquake are categorised as geological or seismic hazards; hurricanes and cyclones are classed as atmospheric 

hazards. 

3. Methodology 

Quantitative risk assessment models are predominantly used over the years to estimate uncertainties in seaport 

operations. However, in situations where there is lack of data, it is necessary to incorporate expert judgements 

into a risk assessment process. Past experience on existing CMI systems have shown that major hazards have the 

potential to cause disruptions of operations with long term consequences. In order to model the complex structure 

of the system and facilitate a flexible implementation approach, different decision making techniques such as 

fuzzy set theory, a fuzzy analytical hierarchy process and an evidential reasoning approach are used. Fuzzy set 

theory has been widely used in different fields of application including system safety, risk assessment and 

reliability engineering; this is due to the fact that fuzzy logic might provide the flexibility needed to represent the 

vague information resulting from the lack of data or knowledge [26]. 

The proposed framework (Figure 2) is capable of quantifying judgements of experts qualitatively and allows for 

a step-by-step analysis of the system in a transparent manner and is described as follows: 

1. Identify risk factors and present them in a hierarchical structure.  

2. Calculate the weight of each criterion in the hierarchy using the Fuzzy Analytical Hierarchy Process (FAHP). 

3. Apply fuzzy set theory and belief degree concept to measure the risks of a seaport. 

4. Implement the Evidential Reasoning (ER) algorithm to synthesise the risk results. 

5. Determine the crisp result of the risk synthesis using expected utility approach. 

6. Perform sensitivity analysis.  

 

<Figure 2: Framework for Risk Assessment of Seaport Operations> 

 

3.1. Identify Risk Factors and Present them in a Hierarchical Structure (Step) 
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Providing a structured and systematic approach for making better decisions about maritime operations requires a 

thorough understanding of the risks and vulnerabilities of the system. It is essential to display the problem in a 

hierarchical structure so that decision makers can have a clear picture of the whole problem, especially when there 

are many criteria to be considered, which in turn may consist of sub-criteria and even sub-sub-criteria.  

As presented in Figure 3, the first level represents the goal of the problem. In the second level, there are several 

criteria, each of which has its contribution to measuring and helping to achieve the goal of the problem. Some of 

these criteria may be broken down further and the process continues up to the level where decision makers are 

able to make practical decisions.  

Based on the literature review [15, 16, 18, 20, 21, 25], as well as the available information presented in section 

2, a generic model with a hierarchical structure is constructed and presented in Figure 3. Due to the complexity 

of the systems, only those criteria that are of significance in causing disruptions are considered. By doing so, it 

can help to reduce the scale and diversity of the model for ease of its modelling. Also, because this analysis is 

based on a short-term projection, rising sea level (RSL) which can only have an input over a long period, is ignored. 

 

<Figure 3: Generic Model for Disruption of Seaport Operations> 

 

3.2. Application of Fuzzy Analytical Hierarchy Process (FAHP) (Step 2)  

As discussed in section 3.1, and because each criterion contributes differently to the risk of disruption, their 

weights have to be taken into account in order to represent their relative importance to the overall estimate of 

disruption. FAHP is employed in this study to obtain the weight of each attribute in the hierarchy and to synthesise 

the risks from the bottom to the top level of the hierarchy in a systematic fashion. Compared to the conventional 

AHP method, which uses crisp values in evaluating the relative importance of each attributes, FAHP uses fuzzy 

ratios for ease of expert knowledge elicitation.  

An advantage of FAHP is its flexibility to be integrated with different techniques such as evidential reasoning 

in risk analysis. Therefore, FAHP leads to the generation of weighting factors to represent the primary risk within 

each category of the model.  

 

3.2.1. Procedure of FAHP Algorithm 

When considering a group of attributes for evaluation, the main objective of the technique is to provide judgements 

on the relative importance of these attributes and to ensure that the judgements are quantified in such a manner 
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that permits simplified quantitative interpretation [26]. In determining the weight of an attribute, an expert’s 

judgement is in the form of pair-wise comparisons based on an estimation scheme, which lists the intensity of 

importance using linguistic terms. Furthermore, each linguistic term has a corresponding triangular fuzzy number 

and can be presented by Equation 1 [27].  

𝑎𝑎�𝑥𝑥 = (𝐿𝐿,𝑀𝑀,𝑈𝑈)                                                                                                                                                      (1)  

where L, M and U stand for the smallest possible number, the most promising number and the largest possible 

number that describe a fuzzy event. Table 2 shows the linguistic variables for a criterion and its corresponding 

triangular fuzzy number (TFN), as modified and adopted from [27], it is used in this study for the purpose of 

weighting factor estimation.  

                                                  

<Table 2: Weight Estimation Scheme> 

 

3.2.2. Formulating a Fuzzy Pair-wise Comparison Matrix 

In a risk assessment group, suppose there are n experts or decision makers with equal weights, the elements in a 

fuzzy pair-wise comparison matrix can be modelled as follows: 

𝑎𝑎�𝑖𝑖,𝑗𝑗=  �1
𝑛𝑛
�  ⊗  �𝑒𝑒1𝑖𝑖,𝑗𝑗 ⊕  𝑒𝑒2𝑖𝑖,𝑗𝑗 ⊕ … . 𝑒𝑒𝑘𝑘𝑖𝑖.𝑗𝑗 … .⊕  𝑒𝑒𝑚𝑚𝑖𝑖,𝑗𝑗�                                                                                         (2) 

𝑎𝑎�𝑗𝑗,𝑖𝑖 =  1
𝑎𝑎�𝑖𝑖,𝑗𝑗

                                                                                                                                                               (3) 

where 𝑎𝑎�𝑖𝑖,𝑗𝑗 is the relative importance by comparing events 𝑖𝑖 and 𝑗𝑗 while 𝑒𝑒𝑘𝑘𝑖𝑖.𝑗𝑗 represents the kth expert judgement 

in TFN format. For a  𝑛𝑛 × 𝑛𝑛 fuzzy pair-wise comparison matrix, 𝐴̃𝐴 can be obtained as follows: 

𝐴̃𝐴 =  

⎝

⎛

𝑎𝑎�1,1 𝑎𝑎�1,2 … 𝑎𝑎�1,𝑛𝑛
𝑎𝑎�2,1 𝑎𝑎�2,2 … 𝑎𝑎�2,𝑛𝑛
⋮ ⋮ 𝑎𝑎�𝑖𝑖,𝑗𝑗 ⋮

𝑎𝑎�𝑛𝑛,1 𝑎𝑎�𝑛𝑛,2 … 𝑎𝑎�𝑛𝑛,𝑛𝑛⎠

⎞                                                                                                                           (4)      

The weight factors of each element in the hierarchy can be computed using the geometric mean technique [28].  

𝑟̃𝑟𝑖𝑖 =  �𝑎𝑎�𝑖𝑖,1  ⊗  𝑎𝑎�𝑖𝑖,2 ⊗ …⊗𝑎𝑎�𝑖𝑖,𝑛𝑛�
1 𝑛𝑛�                                                                                                                       (5)   

𝑤𝑤�𝑖𝑖 = 𝑟̃𝑟𝑖𝑖 ⊗ (𝑟̃𝑟1 ⊕ …⊕ 𝑟̃𝑟𝑛𝑛)−1                                                                                                                                 (6)  

where 𝑎𝑎�𝑖𝑖,𝑛𝑛 is the fuzzy comparison value of the fuzzy pair-wise comparison matrix, 𝑟̃𝑟𝑖𝑖 is the geometric mean of 

the 𝑖𝑖𝑡𝑡ℎ row in the  fuzzy pair-wise comparison matrix, and 𝑤𝑤�𝑖𝑖 is the fuzzy weight of the 𝑖𝑖𝑡𝑡ℎ criterion of a triangular 

fuzzy number (TFN) indicated by 𝑤𝑤�𝑖𝑖 = �𝑤𝑤𝑖𝑖𝑙𝑙 ,𝑤𝑤𝑖𝑖𝑚𝑚,𝑤𝑤𝑖𝑖𝑢𝑢�, while 𝑤𝑤𝑖𝑖𝑙𝑙 ,𝑤𝑤𝑖𝑖𝑚𝑚  𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑖𝑖𝑢𝑢 are the lower, middle and upper 

values of the fuzzy weight of the 𝑖𝑖𝑡𝑡ℎ criterion respectively.  
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The geometrical mean obtained from the triangular fuzzy weight using Equation 6 needs to be defuzzified into a 

crisp weight factor using an approach derived by Tang [29].  

The defuzzified mean value 𝐷𝐷𝐷𝐷𝑤𝑤�𝑖𝑖  for �𝑤𝑤𝑖𝑖𝑙𝑙 , 𝑤𝑤𝑖𝑖𝑚𝑚 , 𝑤𝑤𝑖𝑖𝑢𝑢�, can be obtained as follows: 

𝐷𝐷𝐷𝐷𝑤𝑤�𝑖𝑖 =
�𝑤𝑤𝑖𝑖

𝑢𝑢−𝑤𝑤𝑖𝑖
𝑙𝑙�+�𝑤𝑤𝑖𝑖

𝑚𝑚−𝑤𝑤𝑖𝑖
𝑙𝑙�

3+𝑤𝑤𝑖𝑖
𝑙𝑙                                                                                                                                      (7) 

The normalised weight of the ith  attribute can be obtained using Equation 8. 

𝑤𝑤𝑖𝑖 =
𝐷𝐷𝐷𝐷𝑤𝑤�𝑖𝑖
∑𝐷𝐷𝐷𝐷𝑤𝑤�𝑖𝑖

                                                                                                                                                            (8) 

In order to control and ensure accuracy in the result of the method, consistency ratio for each of the matrices 

needs to be analysed. The consistency ratio (CR) is used to estimate the consistency of the pair-wise comparisons 

as follows: 

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅⁄                                                                                                                                                       (9) 

 𝐶𝐶𝐶𝐶 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚−𝑛𝑛
𝑛𝑛−1

    

n
w

awn
1j

j

n
1k jkk

max

∑
∑

=
=

=

λ
                                                                                                                                         

where CI stands for consistency index, RI stands for average random index (Table 3), n stands for matrix order, 

and λmax  stands for maximum weight value of the n-by-n comparison matrix. When 𝐶𝐶𝐶𝐶 is less than 0.10 the 

comparisons are acceptable, otherwise, they are not acceptable and should be revised in order to obtain a consistent 

opinion [30].  

 

<Table 3: Value of RI versus Matrix Order> [31] 

 

3.3. Application of Fuzzy Risk Assessment (Step 3) 

After identifying risk attributes or hazards associated with the operation of a seaport system based on interviews 

with domain experts and literature review, the next phase of a risk management process is to assess/evaluate the 

risks in order to apply measures to prevent or mitigate their effect on the system [55]. Risk levels in seaport 

operations can be determined using the following parameters: 

𝑃𝑃 = 𝐿𝐿 ⊗ 𝑆𝑆                                                                                                                                                     (10) 

where P is the risk associated with each hazardous event, L represents the occurrence likelihood of the hazard or 

risk factors, S represents the consequence severity of the hazard and ⊗ denotes the multiplication relationship 
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between the occurrence likelihood and the consequent severity. The occurrence likelihood illustrates the expected 

number of occurrences of an undesired event, which can be stated as events per unit time, while the consequence 

severity depicts the scale of the undesired event that can negatively have an effect on subjects of interest. It can 

be expressed as number of people affected (injured or killed), damage to property and amount of spill, area 

affected, and time outage [55]. This definition of risk as presented in Equation 10 has been applied to risk 

assessment in many applications such as software development [54], environment modelling [48], mechanical 

system design [40], process plant modelling [41,42,45], water pipe deterioration analysis [43,44] and offshore oil 

and gas well analysis [52]. In this paper, Equation 10 is used to describe the risk levels associated with each risk 

factor or hazardous event in seaport operations. This definition indicates that, if L and/or S are represented by 

fuzzy numbers, P will also be a fuzzy number. 

3.3.1. Application of the Belief Degrees in Maritime Risk Assessment       

After the determination of the risk level in section 3.3, it is necessary to transform the fuzzy ratings of all 

parameters into belief structures with the same set of evaluation grades. Given that an analyst often cannot provide 

exact estimates for assessing risk in many situations, it is preferred to assess risks using linguistic terms rather 

than numerical values. This paper uses linguistic risk levels to represent the risk profile of each risk parameter. 

A belief degree generally represents the strength to which an answer is believed to be true, and it must be equal 

to or less than 100% or able to be described as the degree of expectation that, given an alternative, will yield an 

anticipated outcome on a particular criterion. The use of individual belief degrees depends on an analyst’s 

expertise, knowledge of the subject matter and experience regarding the operation of the system. The justification 

for the use of belief degrees is as a result of the fact that human decision making involves ambiguity, uncertainty 

and imprecision; individuals make judgements in probabilistic terms with the help of their knowledge.   

In risk analysis, one realistic way to analyse a risk with incomplete objective data is to employ a fuzzy IF-THEN 

rule built from human understanding, where premise and conclusions contain the linguistic variables used to 

describe risk attributes [7]. Fuzzy IF-THEN rules with a belief structure can be constructed to model a risk 

assessment scenario. Based on Li and Liao [47], it is necessary to convert the fuzzy ratings of risk attributes into 

a belief structure with the same set of evaluation grades when measuring their risk levels. The evaluation of risks 

by each of the risk parameters can be explained by the following expression: 

Z = �Z1,Z2, Z3, Z4, Z5� = {Very Low, Low, Medium, High, Very High}                                                 (11) 

The estimation of risk level obtainable in Equations 10 and 11 can be converted using the five steps presented 

in Table 4. The obtained result (i.e. 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿) can be converted into fuzzy risk in order to simplify the computational 
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analysis and present the risk’s level in a unified space of discourse which can subsequently be used as input data 

into the IDS software for aggregation and ranking [47,48].  

3.3.2. Linguistic Variables for Risk Parameters 

Because risk is a fuzzy problem that is uncertain and imprecise, it is usually challenging to quantify it due to 

the fact that potential hazards or threats occur infrequently and their closed interval range can have an assumed 

value of 0 and 1. A practical and efficient way to express risk levels in a seaport is to use qualitative descriptors, 

particularly from the safety analyst or subject matter experts during safety audits.  

The likelihood of hazard can be assessed using such terms as Very Low, Low, Medium, High and Very High 

while the consequence or impact of hazard can be assessed as Negligible, Moderate, Serious, Very Serious and 

Disastrous, as presented in Table 6. 

These subjective variables can further be defined in terms of their membership functions with a curve that 

defines how each point in the input space can be mapped into a membership value between 1 and 0. Bilgiҫ and 

Turksen [50] analysed various methods for determining membership functions. Due to the complexity of 

engineering systems, it is believed that in some cases the expressions of membership functions are not the 

dominant factors used for analysis [45]. Different scales of linguistic terms for expert assessment were proposed 

by Chen and Hwang [51]. However, the most commonly used membership functions are the triangular and 

trapezoidal [32]; this research uses the five-scale method, adapted and modified from Ngai and Wat  [53], to 

represent the L and S levels of risk, as shown in Figure 4 with uniform distribution of linguistic variables and 

Table 6 respectively. 

 

<Figure 4: Fuzzy triangular membership function> 

 

As discussed earlier, the risk level is the combination of the occurrence likelihood (L) of a hazard and its 

consequence severity (S). When the occurrence likelihood (L) of a hazard and its consequence severity (S) are 

assumed to be independent of each other, their combination is equal to the product of the two. Hence, under the 

same assumption of independence, the product of the two fuzzy triangular numbers denoted by 𝐿𝐿� = (𝑎𝑎𝐿𝐿 , 𝑏𝑏𝐿𝐿 , 𝑐𝑐𝐿𝐿) 

and 𝑆̃𝑆 = (𝑎𝑎𝑆𝑆, 𝑏𝑏𝑆𝑆, 𝑐𝑐𝑆𝑆) can yield the desired risk level of each hazardous event under investigation, as presented in 

Equation 11: 

𝑍𝑍 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 ⊗ 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆 = (𝑎𝑎𝐿𝐿 ⊗ 𝑎𝑎𝑆𝑆, 𝑏𝑏𝐿𝐿 ⊗ 𝑏𝑏𝑆𝑆, 𝑐𝑐𝐿𝐿 ⊗ 𝑐𝑐𝑆𝑆)                                                                   (12) 
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where 𝐹𝐹𝐹𝐹𝐹𝐹 represents fuzzy triangular numbers. 𝐹𝐹𝐹𝐹𝐹𝐹 is used because of its computational simplicity and the ease 

with which it can be applied during the calculation process. 

As presented in Table 6, if a risk based on experts’ judgement has an occurrence likelihood (L) of (0.25, 0.5, 0.75) 

(Medium) and consequence severity (S) of (0.5, 0.75, 1) (Very Serious), the corresponding risk P (i.e. the 

multiplication of L and S) will be 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿 (0.125, 0.375, 0.75). The obtained risk result 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿 is mapped over 

𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃 (i.e. 5 grades defined over the universe of discourse of risk (VL, L, M, H and VH)) as shown in Figure 5.  

Based on Figure 5, the point where the newly mapped 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿 intersects each linguistic term of 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃 are circled, 

and maximum values are used at points where  𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿 and a linguistic term of 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃 intersect at more than one 

points, and the corresponding results are presented in Table 5. 𝑍𝑍𝑃𝑃 (i.e. the intersecting points) is normalised to 

obtained  𝑍𝑍. These steps are demonstrated in Figure 5 and Tables 4 and 5 respectively [49]. 

<Table 4: Five Steps of Converting 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿  into Fuzzy Risk 𝑍𝑍> 
 

 

<Figure 5: Example of converting fuzzy ratings to five non-normalized grades> 

 

<Table 5: Example of converting fuzzy 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿 into fuzzy risk> 

 

<Table 6: Qualitative Descriptors for Triangular Fuzzy Numbers> 

 

<Table 7: Definition of linguistic variables used for risk evaluation and risk levels based on TFNs> 

 

Based on Table 7, the standard categories of risk levels can be evaluated using Equation 11, as follows: 

𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐿𝐿𝐿𝐿𝐿𝐿 ⊗ 𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁   

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ⊗ 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ⊗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆                                                                                                               (13) 

𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻ℎ = 𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻ℎ ⊗ 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  

𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻ℎ = 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻ℎ ⊗ 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  

where P denotes fuzzy risk variable; L and S stand for occurrence likelihood and consequence severity 

respectively. Table 7 presents the definitions of risk levels based on TFNs. K is the risk level number used for 

the analysis and can be obtained using Equation 14.  

𝐾𝐾 = 1
2

(𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3)                                                                                                                               (14) 
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3.4. Aggregating Assessment via Evidential Reasoning Algorithm (Step 4) 

The theory of evidence was first generated by Dempster [33] and further developed by Shafer [34]. It is often 

referred to as Dempster-Shafer theory of evidence or D-S theory. The D-S theory was originally used for 

information aggregation in expert systems as an approximate reasoning tool [35]. Subsequently, it has been used 

in decision making under uncertainty [36]. Due to the ever-changing environment and the multiple criteria 

decision making problems having a degree of uncertainty, the ER algorithm was developed. The ER approach can 

be elucidated as follows [37]: 

Let “R” represent the set of the four risk expressions and be synthesised by two subsets R1 and R2 from two 

different assessors. Then, for example, R, R1 and R2 can separately be expressed by: 

R = { β 1  “Low”, β 2  “Medium”, β 3  “Fairly High”, β 4  “High”} 

R1 = { β 1
1  “Low”, β 2

1  “Medium”, β 3
1  “Fairly High”, β 4

1  “High”} 

R2 = { β 1
2  “Low”, β 2

2  “Medium”, β 3
2  “Fairly High”,  β 4

2  “High”} 

where “Low”, “Medium”, “Fairly High” and “High” (the risk expression) are associated with their 

corresponding degrees of belief. Suppose the normalised relative weights of two assessors in the risk evaluation 

process are given as 1ω  and 2ω  ( 121 =+ωω ). 1ω  and 2ω  can be estimated by using an AHP technique. Suppose 

m
1M  and  m

2M  (m = 1, 2, 3 or 4) are individual degrees to which the subsets R1 and R2 support the hypothesis that 

the risk evaluation is confirmed to the four risk expressions. Then, m
1M  and m

2M  are obtained as follows: 

βω

βω
m
22

m
2

m
11

m
1

M

M

×=

×=
                                                                                                                                                   (15)                                                                                                                        

where  m = 1, 2, 3, 4.  

Suppose 1H  and 2H are the individual remaining belief values unassigned for m
1M  and m

2M  (m = 1, 2, 3, 4). 

Then, 1H  and 2H  are expressed as follows [37]: 

222

111

H~HH

H~HH

+=

+=
                                                                                                                                                   (16)                                                                                                                                   

where nH  (n = 1 or 2) representing the degree to which the other assessor can play a role in the assessment, and 

nH~  (n = 1 or 2) is caused by the possible incompleteness in the subsets R1 and R2. nH  (n = 1 or 2) and nH~ (n = 

1 or 2) are described as follows: 
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)1(H~

)1(H~
1H
1H

4

1m

m
222

4

1m

m
111

122

211

∑−=

∑−=

=−=

=−=

=

=

βω

βω

ωω

ωω

                                                                                                                                            (17)                                                                                                          

Suppose β m′  (m = 1, 2, 3 or 4) represents the non-normalised degree to which the risk evaluation is confirmed 

to each of the four risk expressions as a result of the synthesis of the judgments produced by assessors 1 and 2. 

Suppose 'HU  represents the non-normalised remaining belief unassigned after the commitment of belief to the 

four risk expressions because of the synthesis of the judgments produced by assessors 1 and 2. The ER algorithm 

is stated as follows [37]: 

)HMHMMM(K 1
m
22

m
1

m
2

m
1

m ++=′β   

)HH(K'H 21U =   

)HH~HH~H~H~(K'H~ 122121U ++=                                                                                                          

14

1T

4

TR
1R

R
2

T
1 ]MM1[K −

=
≠
=

∑ ∑−=                                                                                                                                 (18)                                                                                                                

After the above aggregation, the combined degrees of belief are generated by assigning 'HU  back to the four 

risk expressions using the following normalization process [37]: 

mβ  = β m′ / 'H1 U−  (m = 1, 2, 3, 4)                                                                                                               

HU = 'H~U / 'H1 U−                                                                                                                                           (19)                                                                                       

where HU  is the unassigned degree of belief representing the extent of incompleteness in the overall assessment. 

The above gives the process of combining two subsets. If three subsets are required to be combined, the result 

obtained from the combination of any two subsets can be further synthesized with the third one using the above 

algorithm. In a similar way, the judgements of multiple assessors or the risk evaluations of lower level criteria in 

the chain systems (i.e. components or subsystems) can also be combined.  

3.5. Obtaining a Crisp Value for Disruption Estimate (Step 5) 

The concept of expected utility is utilised to generate numerical values equivalent to the distributed assessment of 

the top-level criterion or goal of each alternative for ranking in order to obtain the probable risk level of disruption 

for decision making. In light of the above, let the utility value of an evaluation grade 𝐻𝐻𝑛𝑛 be denoted as 𝑢𝑢(𝐻𝐻𝑛𝑛) and 

𝑢𝑢(𝐻𝐻𝑛𝑛+1) > 𝑢𝑢(𝐻𝐻𝑛𝑛) if 𝐻𝐻𝑛𝑛+1 is preferred to 𝐻𝐻𝑛𝑛 [38]. It is worth mentioning that 𝑢𝑢(𝐻𝐻𝑛𝑛) represents utility values of 
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each linguistic term and can be determined using the decision makers’ preference. If there is no preference 

information available, it could be presumed that the utilities of the evaluation grades are equidistantly distributed 

in a normalised utility space. The utilities of evaluation grades that are equidistantly distributed in a normalised 

utility space are calculated as follows: 

minmax

minn
)n VV

VV
H(u

−
−

=                                                                                                                                  (20)                              

where Vn is the ranking value of the linguistic term that has been considered (Hn), Vmax is the ranking value of the 

most preferred linguistic term (HN), and Vmin is the ranking value of the least preferred linguistic term (H1). The 

utility of the top level or general criterion S(E) is denoted by u(S(E)). If 0H ≠β  (i.e. the assessment is incomplete,

∑−=
=

N

1n
nH 1 ββ ) there is a belief interval )](,[ Hnn βββ + , which provides the likelihood that S(E) is assessed to 

Hn. Without loss of generality, suppose the least preferred linguistic term having the lowest utility is denoted by 

)H(u 1  and the most preferred linguistic term having the highest utility is denoted by )H(u N . Then the minimum, 

maximum and average utilities of S(E) are defined as follows [38]: 

2
))E(S(u))E(S(u))E(S(u

)H(u)()H(u))E(S(u

)H(u)()H(u))E(S(u

maxmin
average

NHNn

1N

1n
nmax

1H1

N

2n
nnmin

+
=

++∑=

++∑=

−

=

=

βββ

βββ

                                                                                              (21)                                    

Obviously if all the assessments are complete, then 0H =β  and the maximum, minimum and average utilities 

of S(E) will be the same. Therefore, u(S(E)) can be calculated as follows: 

 )H(u))E(S(u
N

1n
nn∑=

=
β                                                                                                                                    (22)                                                                        

The above utilities are only used for characterising an assessment and not for criteria aggregation. 

3.6. Validation of the Model Using Sensitivity Analysis (Step 6) 

Uncertainties are inherently present in different influencing factors. Since the proposed methodology provides a 

numerical estimation of disruption risk without identifying the most important input event, sensitivity analysis 

(SA) is a systematic approach that can provide managerial insight in evaluating quantitative information in order 

to identify the weakest points or areas of a system in order to improve its designs [39].  

This study employed the SA approach to test how sensitive the model output is to a minor change in the input 

data. The relative change may be the variation of the parameters of the model or changes in the degrees of belief 
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assigned to the linguistic variables used to describe the parameters of the model. If the methodology is sound and 

its inference reasoning is logical, then the sensitivity analysis must at least pursue the following three axioms [7]:  

Axiom 1: Slight increment/decrement of degree of beliefs (DoBs) associated with a risk oriented linguistic 

variables of the lowest criteria will certainly result in the decrement/increment of the safety preference degree of 

the model output.  

Axiom 2: If the degrees of belief associated with the highest preference linguistic variable of a lowest level 

criterion are decreased by p and q (i.e. simultaneously, the degrees of belief associated with its lowest preference 

linguistic variable are increased by p and q (1 > q > p)), and accordingly the utility value of the model’s output is 

assessed as 𝑈𝑈𝑝𝑝 and 𝑈𝑈𝑞𝑞 respectively, then 𝑈𝑈𝑝𝑝 should be greater than 𝑈𝑈𝑞𝑞.  

Axiom 3: If 𝑥𝑥  and 𝑦𝑦  (𝑦𝑦 < 𝑥𝑥) criteria from all the lowest level criteria are selected and the degree of belief 

associated with the highest preference linguistic variables of such 𝑥𝑥  and 𝑦𝑦 criteria is decreased by the same 

amount (i.e. simultaneously, the degrees of belief associated with the lowest preference linguistic variables of 

such 𝑥𝑥 and 𝑦𝑦 criteria are increased accordingly by the same amount), the utility value of the model’s output will 

be assessed as 𝑈𝑈𝑥𝑥 and 𝑈𝑈𝑦𝑦; in this case, 𝑈𝑈𝑥𝑥 should be greater than 𝑈𝑈𝑦𝑦. 

4. Test Case 

This test case is used to illustrate how the methodology can be implemented to assess the impact of risk scenarios 

on the smooth operation of a seaport system. Based on the generic model in Figure 3 and the available information 

in section 2, decision makers can assess the key systems’ elements, and identify areas that need attention.  

4.1. Identify risk factors associated with seaport operations (Step 1) 

This phase of the analysis involves the identification of risk factors associated with seaport disruption through a 

robust literature search and brainstorming session conducted with selected experts whose backgrounds are 

presented in section 4.3. The identified risk factors are presented in Table 1. 

4.2. Develop a generic risk model for seaport operations 

At this stage, the identified risk factors in Table 1 are represented in a hierarchical structure and presented in 

Figure 3. Based on the generic model (Figure 3) and the available information in section 2, a specific model is 

constructed to demonstrate the applicability of the methodology. Following a review of Wang et al. in [40], 

linguistic terms used for safety expression were in the range of four to seven for effective information processing. 

Therefore, this research adopts four to five linguistic terms in representing the assessment of disruptions based on 

the domain expert’s opinion.  

 
<Figure 6: A Specific Model for Disruption of a Seaport Operation> 
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4.3. Model the Hierarchy to Obtain the Weights using FAHP (Step 2) 

FAHP is used to obtain the various weights of the parameters of the model. To conduct the assessment let 𝑅𝑅51, 

𝑅𝑅52  and 𝑅𝑅53  represent geologic, hydrologic and atmospheric factors respectively. Three experts with the 

following backgrounds evaluated the relative importance of each of the risk items for their associated upper level 

criterion (i.e. natural risk factors, Figure 6): 

• A senior operations manager who has been involved with port operational services for over 20 years.  

• A senior marine and safety engineer who has been involved in maritime and port operational management 

for over 20 years.   

• A chief superintendent of maritime transportation systems who has been involved with maritime operations 

for over 20 years. 

As an example, the three experts made these comparisons of 𝑅𝑅51 with 𝑅𝑅53. The first expert’s judgement was 

between ‘equal and weak importance’, (1, 2, 3), the second expert estimated the comparisons as ‘equal 

importance’, (1, 1, 2) and the third expert evaluated the comparisons as ‘equal importance’, (1, 1, 2). By using 

Equations 2 and 3 the combined pair-wise comparison outcomes can be obtained as follows: 

𝑎𝑎�1,3=  �1
3
�  ⊗  �(1,2,3) ⊕  (1,1,2) ⊕ (1,1,2)� 

 = ��1+1+1
3

� , �2+1+1
3

� , (3+2+2
3

)� 

 = (1.00, 1.33, 2.33) ≈ (1, 1, 2) 

𝑎𝑎�3,1 =  1
𝑎𝑎�1,3

= (0.5, 1, 1)  

Similarly, when the experts made their judgements, they assigned values to each criterion until all the elements 

in the pair-wise comparison matrix were obtained. A 3×3 fuzzy pair-wise comparison matrix is constructed as 

follows: 

�
(1, 1, 1) (1, 1, 2) (1, 1, 2)

(0.5, 1, 1) (1, 1, 1) (1, 1, 2)
(0.5, 1, 1) (0.5,1,1) (1, 1, 1)

�    

The consistency ratio was measured by applying Equation 9 and was found to be acceptable. Accordingly, by 

utilising Equations 5 and 6, the weights of the three risk factors can be calculated.                                                                    
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𝑟̃𝑟1 = ((1, 1, 1) ⊗ (1, 1, 2) ⊗ (1, 1, 2))
1
3 

    = �(1 × 1 × 1)
1
3, (1 × 1 × 1)

1
3, (1 × 2 × 2)

1
3� 

    = (1, 1, 1.59), 𝑟̃𝑟2 = (0.79,1,1.26), 𝑟̃𝑟3 = (0.63, 1, 1) 

 𝑟̃𝑟1 ⊕ 𝑟̃𝑟2 ⊕ 𝑟̃𝑟3 = (2.42, 3.00, 3.85) 

𝑤𝑤�1 = 𝑟̃𝑟1 ⊗ (𝑟̃𝑟1 ⊕ 𝑟̃𝑟2 ⊕ 𝑟̃𝑟3)−1 =
(1, 1,1.59)

(2.42, 3.00, 3.85)
=  �

1
3.85

,
1
3

,
1.59
2.42

� 

𝑤𝑤�1 = (0.26, 0.33, 0.66) Similarly,𝑤𝑤�2 = (0.21, 0.33, 0.52)  𝑤𝑤�3 = (0.16, 0.33, 0.41) 

These fuzzy weights obtained are defuzzified into crisp weights by Equation 7 and presented as follows: 

𝐷𝐷𝐷𝐷𝑤𝑤�1 =
(0.66 − 0.24) + (0.33 − 0.26)

3 + 0.26
= 0.14 

In a similar way, 𝐷𝐷𝐷𝐷𝑤𝑤�2 = 0.13 and 𝐷𝐷𝐷𝐷𝑤𝑤�3 = 0.13 

The normalised weight 𝑤𝑤�1 can be calculated using Equation 8 as follows: 

w1 =
0.14

0.14 + 0.13 + 0.13
= 0.35 

In a similar way, the weights of the other risk items are calculated and presented below: 

w2 = 0.325, w3 = 0.325 

The calculated weights of the geological, hydrological and atmospheric factors are presented in Table 5. 

Following the same procedure of calculations, the weights of the remaining risk factors are calculated and their 

consistencies ratio checked. The results are presented in Table 6. 

 

<Table 8: Weights of Natural Risk Factors> 

 

<Table 9: Weights of Disruption Risk Factors> 

 

4.4. Application of Fuzzy Risk Assessment for a Seaport Operation (Step 3) 

During an interview session, the experts utilised for this assessment, whose backgrounds are presented in section 

4.3 used the linguistic variables shown in Table 6 to rate this port by indicating an appropriate grade for the L and 

S of the generated 20 risk factors presented in Figure 6. Based on the experts’ assessment, the grades of L and S 

were confirmed, and the disruption risks obtained from the analysis using Equation 10 are presented in Table 10. 

The risk of disruption obtained in Table 10 is in the form of 𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿. However, the intersection results of all the 
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evaluated risks based on the experts’ assessment are presented in Table 11; these results are subsequently 

normalised using the procedure discussed in section 3.3.2 and Table 4, and the resulting risks obtained are 

presented in Table 12.  

<Table 10: Fuzzy risk of disruption> 

 

<Table 11: Intersection result of disruption risk factors> 

 

<Table 12: Normalised fuzzy risks of disruption> 

 

4.5. Aggregating Assessment via Evidential Reasoning Algorithm (Step 4) 

Given the weights of the risk factors in Table 7, the aggregation calculations for operational risk factors (R11, 

R12, R13 and R14) are conducted using Equations 15 to 19 and the result (Very Low 0.3074, Low 0.4566, 

Medium 0.12223, High 0.0137, Very High 0.0000) is obtained. Using the same technique with which operational 

risk factors was calculated, the main criteria (security, technical, organisational and natural risk factors) are 

evaluated and the aggregation results are presented in Table 13.  

 

<Table 13: Aggregation of the main criteria> 

 

Also, by performing similar calculations using Equations 15-19 based on the aggregation results of the main 

criteria, the assessment risk of disruption is obtained, as presented in Table 13.  

4.6. Evaluating the Final Rate of Disruption’s Risk (Step 5) 

Assessment based on a single value is much easier and is a more realistic tool for a decision maker to rank the 

risk factors in order to design the system for resilience. Therefore, to obtain a single crisp value for the assessment, 

the utility value associated with each linguistic term has to be calculated from Equations 20-22. In view of the 

fact that the fuzzy output set for the goal was characterised by five linguistic terms, the highest preference is given 

to the “Very High” linguistic term and the lowest preference is given to the “Very Low” linguistic term. The 

assessment obtained for disruption risk, as shown in Table 14, is presented as follows: 

DR = {(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐿𝐿𝐿𝐿𝐿𝐿, 0.2349), (𝐿𝐿𝐿𝐿𝐿𝐿, 0.4610), (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 0.2348)(𝐻𝐻𝐻𝐻𝐻𝐻ℎ, 0.0693), (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻ℎ, 0.0000)}  

where DR stands for disruption risk. Based on Table 14, the disruption risk (𝐷𝐷𝐷𝐷𝐷𝐷) was evaluated as 0.285 or 

25.8%. Ultimately, this value represents the experts’ assessment of the risk of disruption regarding the operation 
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of the port under investigation and it belongs to the class of significant risk category as shown in Table 7. This 

value means that the risk must be reduced if practicable. Such a result can be used to help port safety analysts to 

carry out formal safety assessment of a port, and also initiate safety audit and review of key performance indicators 

of various port departments for enhanced operation. This approach may provide a viable approach where there is 

lack of objective or statistical data in such an assessment for the port under investigation. 

 

< Table 14: Calculation of Disruption Risk> 

 

4.7. Sensitivity Analysis (Step 6) 

Sensitivity analysis is conducted to validate the proposed methodology. This is achieved by utilising the three 

axioms introduced in section 3.6. The implementation of the axioms will help to identify the most important 

system elements that contribute to a seaport’s disruptions and to improve its robustness to operational uncertainties. 

To carry out the study the degrees of belief associated with the highest preference linguistic terms of each sub-

criterion are decreased by p and simultaneously, the degrees of belief associated with the lowest preference 

linguistic terms of the corresponding sub-criterion are increased by p; accordingly, the results are obtained. It is 

noteworthy to mention that when decreasing the belief degree of the highest preference linguistic term αβ  of a 

criterion by p, simultaneously the belief degree of its lowest preference linguistic term has to be increased by p. 

However if αβ  is less than p, then the remaining belief degree (i.e. αβ−p   ) can be taken from the belief degree 

of the next linguistic term. This process continues until p is consumed. 

     The utility values obtained after performing the experiment (i.e. decreasing the degrees of belief associated 

with the highest preference linguistic terms (by 10%, 20% and 30% respectively) of each sub-criterion) are 

tabulated in Table 15 and the graph displaying the sensitivity of the result is presented in Figure 7. It is worth 

mentioning that all the results obtained are in harmony with Axioms 1 and 2 respectively.  

According to Axiom 3, if the model is logical and reflects the reality, then the preference degrees of the risk 

attributes at the lower level of the hierarchy associated with 𝑦𝑦 factors (evidence) will always be smaller than the 

one from "𝑥𝑥 − 𝑦𝑦" (𝑦𝑦 ∈ 𝑥𝑥) factors (sub-evidence). This can be examined by comparing the preference degrees of 

the risk attributes for analysis in a transparent manner. For example, if the input data associated with the highest 

preference linguistic values of all the lower level criteria are decreased by 30%, the utility value (i.e. disruption 

risk) is evaluated as 0.158. However, by selecting 15 (i.e. port equipment/machinery failures, vessel 

collision/grounding, cargo spillage, human errors, sabotage, terrorism attacks, surveillance system failures, arson, 
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labour unrest, berth congestion, gate congestion, geologic, hydrologic, atmospheric and lack of equipment 

maintenance) out of 20 lower level criteria of the analysis and decreasing the input data by the same amount of 

30%, the utility value obtained is 0.257. Given that 0.158 is less than 0.257, it can be claimed that the investigation 

of the model is validated to be sound and aligned with Axiom 3. 

 

<Figure 7: Sensitivity Analysis of the Model Output to the Variation of Each Sub-Criterion> 

<Table 15: Decrement/Increment of the Model’s Input Data> 

 

5. Results and Discussion 

As presented in Table 14, the obtained assessment (goal) has the highest belief degree of 46.1% linked to the Low 

linguistic term and lowest belief degree of 6.93% associated with High linguistic term. This result shows the risk 

of disruption associated with the port under investigation. It is noteworthy to mention that all these values are 

obtained from the synthesis of experts’ judgements. 

The risk of disruption to a seaport’s operation is determined by many factors when operating in a complex 

socio-technical environment. It is evident from the analysis that a minor change results in a corresponding change 

of the model’s output.   

Based on the result obtained from the model analysis, as shown in Table 14, the risk of disruption due to the 

occurrence of the models’ parameters for the port under investigation was evaluated as 0.285 or 28.5%. However, 

this value is not fixed as it may vary given the dynamic conditions and the operational uncertainty to which the 

port is subjected over a particular period of time and at a given location. Based on Figure 7, it is clear that the 

model is more sensitive to terrorism attacks (rank 1), sabotage (rank 2), human related errors (rank 3) and lack of 

equipment maintenance (rank 4) than to the other attributes. The result of the sensitivity test has further proved 

the importance of security risk factors in the maritime industry. Literature reviews [18, 12] have shown that the 

major infrastructure systems that seaports accommodate, such as container terminals, petroleum tank farms, oil 

refineries, petrochemical facilities, bridges, and passenger terminals are targets for terrorism attacks, with 

potentially disastrous and long-term consequences.   

The results also reveal that human related errors are a significant factor leading to the disruption of maritime 

operations with high and long-term economic loss to the operator. Figure 7 allows the analysts to say that the lack 

of equipment maintenance and the failures of port equipment/machineries during operations further compound 

the pressures to which these ports are subjected in a dynamic operational environment. The model’s results 



23 
 

highlighted the influence of each attribute in contributing to disruptions of seaport operations. The model equally 

provides an understanding of the system’s performance. Such knowledge is invaluable for the safety analysts and 

decision makers to develop necessary organisational strategies or measures that will enhance the operational 

efficiency of individual port processes and make them robust to unforeseen scenarios.  

 

6. Conclusion 

This paper proposes a novel methodology using fuzzy set theory, a fuzzy analytical hierarchy process and 

evidential reasoning approach for determining the disruption risk of a seaport’s operations using diverse and 

imprecise data which are either quantitative or qualitative in nature, in order to optimize the operational efficiency 

of the system in a systematic manner. Different from the conventional risk assessment methodologies which 

cannot address uncertainty in complex systems operations, the framework is characterized with flexible 

presentation and unification of input and output data.  

Moreover, in the risk-based modelling approach, input data can be expressed by fuzzy values with a belief 

degree structure. This approach presents a favourable means with flexibility where precise data, random numbers 

and subjective judgements can be modelled in a unified manner. By using the FAHP and ER approaches, 

uncertainties and vagueness from the subjective estimates and the experiences of the multiple decision makers 

can be represented and addressed effectively. The ER approach provides a procedure for aggregation which can 

preserve the original features of multiple attributes under high and imprecise situations.  

The methodology has the following advantages compared to other risk analysis techniques currently applied 

in the maritime domain: 

• The methodology provides managerial insights to analysts in a rational, reliable and transparent manner for 

collaborative modelling of complex systems with a group of experts under situations of high operational 

constraints.  

• The methodology provides researchers with an effective tool to make full use of the information generated at 

the lowest level in design to evaluate the safety of the whole system for resilience improvement of its 

operations. 

• The methodology has been versatile, robust yet flexible in application, and can be useful in safety analysis 

and synthesis in many industrial environments. 

• It is easily programmable and could be used as a computerised kit for advanced risk assessment of maritime 

infrastructure systems under high uncertainties. 
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It is envisaged that the proposed approach could provide risk managers and infrastructure analysts with a flexible 

tool for use in understanding the importance of developing organisational strategy in order to increase the 

resilience of the system to unforeseen operational uncertainties in a transparent manner. 
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