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Abstract 
Particle image velocimetry (PIV) is a powerful image correlation method for measuring bulk velocity fields of flowing media. 
It typically uses optical images, representing quasi-two-dimensional experimental slices, to measure a single velocity value 
at each in-plane position. However, projection-based imaging methods, such as x-ray radiography or shadowgraph imaging, 
encode additional out-of-plane information that regular PIV is unable to capture. Here, we introduce a new image analysis 
method, named deep velocimetry, that goes beyond established PIV methods and is capable of extracting full velocity distri-
butions from projected images. The method involves solving a deconvolution inverse problem to recover the distribution at 
each in-plane position, and is validated using artificial data as well as controlled laboratory x-ray experiments. The additional 
velocity information delivered by deep velocimetry could provide new insight into a range of fluid and granular flows where 
out-of-plane variation is significant.

Graphic abstract

1 Introduction

Since its initial development in the 1980s, particle image 
velocimetry (PIV) has proved to be an invaluable flow meas-
urement tool, and is now arguably the dominant velocimetry 
technique in experimental fluid mechanics (Westerweel et al. 
2013). This is due to its ability to unobtrusively measure 
instantaneous velocity fields at high spatial and temporal 
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resolutions, which has been facilitated by rapid advances 
in sensor hardware and computer processing power. In 
the most common application of PIV, a transparent flow 
is seeded with opaque tracer particles and a laser sheet is 
used to illuminate an internal slice of a given experiment 
(Fig. 1a). A high-speed camera then captures two images 
in quick succession, each of which are split into a series of 
discrete interrogation windows. By computing the peak of 
the cross-correlation function in these windows, it is possi-
ble to deduce the most likely in-plane particle displacement 
between the two images, hence providing two-dimensional 
velocity fields at each time and spatial location.

The accuracy of this classical PIV method has been thor-
oughly investigated, resulting in a series of guidelines about 
the interrogation window size, in-plane velocity gradients, 
out-of-plane motion and seeding particle density for reliable 
fluid flow measurements (Keane and Adrian 1992). Further-
more, the same principles of PIV can also be applied to opti-
cal imaging of dense granular flows (Lueptow et al. 2000), 
which have the advantage that the grains already provide 
sufficient contrast without requiring additional flow seeding. 
However, unlike regular fluids, PIV of granular materials 
is typically restricted to flow boundaries due to the opaque 
nature of grains, and therefore not necessarily representative 
of the bulk. One method to overcome this difficulty is to 
use refractive index matched scanning (e.g. Dijksman et al. 
2012) to illuminate internal slices, but this involves the intro-
duction of interstitial fluid that changes the flow dynamics.

For flows of both fluids and grains, PIV measurements 
of velocities at different spatial points can be used to derive 

additional quantities of interest such as strain-rate and vor-
ticity fields. Similarly, a sufficient quantity of transient 
measurements can be used to compute mean and fluctuat-
ing velocity components, which provide in-plane Reynolds 
stresses (in fluids) and granular temperature measurements 
(in particulate systems). These statistics are usually obtained 
by computing the instantaneous velocity at each time step 
and assimilating the ensemble properties of such measure-
ments (e.g. Sarno et al. 2018). However, if only the steady-
state fields are required then more accurate results can be 
obtained by averaging all the cross-correlation functions 
before finding the single peak, representing the mean veloc-
ity in each window over time (Delnoij et al. 1999; Mein-
hart et al. 2000). This reduces the signal-to-noise ratio, and 
allows meaningful results to be obtained even when win-
dows of a single pixel are used.

In fact, this average cross-correlation function has been 
shown to actually represent the convolution of the velocity 
probability distribution function (taken over all times and in-
plane positions within the window) with the particle image 
function (Westerweel 2008). Consequently, deconvolution 
can be used to recover the full velocity distribution, which 
has been demonstrated to good effect when computing in-
plane Reynolds stresses in turbulent flows (Scharnowski 
et al. 2012).

In all of the above, each interrogation window gives rise 
to a single spatial measurement, and the effect of spatial 
gradients is usually minimised or explicitly quantified and 
corrected for in the final measurements. However, it is possi-
ble to recover useful spatial information within an individual 

Fig. 1  Schematic of imaging setups for a regular particle image 
velocimetry (PIV) and b the projection-based imaging employed in 
this paper. In a a single two-dimensional slice of a three-dimensional 
volume is imaged. Material motion in the two in-plane directions is 
captured, with out-of-plane motion taking material in and out of view. 
Variation along the two in-plane directions gives rise to in-plane dis-

tributions. On the other hand, the projection imaging system b incor-
porates material from the whole out-of-plane path of the projection, 
although the final image only captures motion in the in-plane direc-
tions. In this case, variation along the out-of-plane direction gives rise 
to out-of-plane distributions
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cell. For example, by assuming Gaussian velocity distribu-
tions (in space) and Gaussian auto- and cross-correlation 
peaks, simultaneous measurements of both the mean veloc-
ity and granular temperature, or velocity fluctuations, can be 
made in each window (Qiao et al. 2007).

All of these classical PIV approaches use optical images, 
and the resulting measurements are confined to in-plane 
velocity components on a two-dimensional experimental 
section (Fig. 1a). For transparent fluids, there are a number 
of ways of extending this planar PIV to obtain additional 
information. For example, by using two cameras focused 
on the same plane, stereoscopic PIV (Prasad 2000) allows 
all three components of the velocity to be computed on 
that plane, and dual-plane stereoscopic PIV (Kähler and 
Kompenhans 2000), where two additional cameras are 
focused on an adjacent plane, gives all components of the 
velocity and velocity gradient tensor on a single plane. Other 
more sophisticated techniques include scanning planar PIV 
(Brücker 1997), tomographic PIV (Elsinga et al. 2006) and 
holographic PIV (Katz and Sheng 2010), which use vari-
ous multi-plane approaches to first recover volumetric data 
that is then correlated to deduce fully three-dimensional 
displacements. Alternatively, volumetric particle tracking 
velocimetry (e.g. Bhattacharya and Vlachos 2020) uses 
multiple cameras to triangulate the three-dimensional posi-
tion of individual particles at each time step. Many of these 
techniques, however, can be expensive to implement and 
difficult to achieve highly accurate measurements with. 
Furthermore, in certain situations, especially in-situ field 
measurements, it is simply not possible to position lasers so 
that they illuminate arbitrary planes, due to obstructions and 
other practical constraints.

A major limitation of all of the above advanced PIV tech-
niques is that they require optical imaging of internal regions 
of the flow. This is possible for transparent fluids, but not 
for opaque granular materials. For this reason, a number of 
unobtrusive imaging methods have been applied to flowing 
granular materials, for example magnetic resonance imag-
ing (MRI) (Stannarius 2017) or positron emission particle 
tracking (PEPT) (Parker 2017). X-ray computed tomography 
(CT) (Hall et al. 2010) is particularly promising, because 
it is applicable to general materials and offers high spatial 
resolution. However, to produce detailed 3D density maps, 
x-ray CT requires large numbers of projections, or radio-
graphs, from different scanning directions, hence severely 
limiting its temporal resolution.

These temporal resolution problems can be avoided 
by working directly with a single set of x-ray projections, 
since it is possible to continuously acquire images from a 
fixed direction as material flows or deforms, which is called 
dynamic x-ray radiography. By applying similar principles 
to planar PIV and correlating subsequent images, the cross-
correlation peak generally gives the most likely in-plane 

velocity in each interrogation window. Unlike planar imag-
ing, the integrated nature of x-ray radiography means that 
these velocities are actually representative of the whole 
depth of the sample, not just at the boundaries (Fig. 1b), 
and thus can be considered beam-averaged quantities. This 
approach has been used to successfully measure such veloci-
ties in both fluid (Kim and Lee 2006) and granular systems 
(Guillard et al. 2017).

Many flows are not satisfactorily described using single 
beam-averaged velocities in each interrogation window, 
especially fully three-dimensional systems with strong 
variation in the out-of-plane direction. In reality, there is 
actually a distribution of velocities through the path of the 
x-ray beam. While each 2D projection does not provide any 
specific depth information, it does encode additional infor-
mation about this velocity distribution. Specifically, analo-
gously to the previously mentioned convolution for planar 
imaging (Westerweel 2008), the cross-correlation function 
of two successive x-ray radiographs is the convolution of the 
auto-correlation of the first image with the velocity distribu-
tion. This relationship has been exploited to recover crucial 
additional velocity information in fluids (Dubsky et al. 2010) 
and granular materials (Baker et al. 2018). Combining with 
multi-directional x-ray imaging, both of these approaches 
were able to measure three-dimensional velocity fields at 
every point in space, a significant feat for optically opaque 
experiments.

This paper further builds on the concept of out-of-plane 
velocity distributions for x-ray radiography. We present a 
simplified convolution equation relating the projected image 
intensities to the velocity distribution, without the need to 
first compute any correlation functions. This relationship 
can be efficiently inverted to recover the full velocity dis-
tribution in each interrogation window, a process we call 
deep velocimetry due to the additional depth-information 
provided over classical planar PIV. We believe that this extra 
capability is a simple yet powerful complementary method 
to PIV and its various extensions. It is motivated by x-ray 
projections, but could equally be applied to other projection-
based imaging methods, such as shadowgraph or schlieren 
imaging (Luthman et al. 2019; Ozawa et al. 2020), which 
are often cheaper and more robust than more complicated 
multi-dimensional methods. We therefore believe that deep 
velocimetry has potential applications to a range of granular 
and fluid flow systems. Indeed, the generality of the method 
makes it suitable for any heterogeneous media with sufficient 
macroscopic texture, for example foams and various types 
of soils.

The rest of this paper is organised as follows: in Sect. 2 we 
introduce the theory behind the new deep velocimetry method. 
Section 3 then demonstrates its effectiveness and robustness 
compared to existing methods on a simple one-dimensional 
test case, before Sect. 4 applies it to a more realistic example 
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representing x-ray imaging of granular materials. Experimen-
tal validation in the form of x-rays of controlled motion of 
granular materials is provided in Sect. 5. Section 6 discusses 
potential applications to other imaging systems, and Sect. 7 
draws final conclusions.

2  Theory of deep velocimetry

In this section we introduce the theory behind the new 
method for an idealised projection-based imaging system, 
which is assumed to directly measure the integrated density 
of material along the projection direction. To transfer these 
results to real imaging systems requires knowledge of the 
relationship between this integrated value and the recorded 
projections, which will depend on the specific system and 
will be discussed later. The theory is restricted to a single 
pair of projected images—an initial projection and a moved 
projection a finite time later—and is used to recover the 
displacements between these images. In practice, these dis-
placements will usually be converted to velocities using a 
known time difference, and a sequence of many image pairs 
is typically used to compute transient measurements or accu-
rate mean quantities.

For a single pair, let �1(x, y, z) denote the initial density 
field of the flowing material, where (x, y, z) represents a 
standard Cartesian coordinate system in three-dimensional 
space. As indicated on Fig. 1b), we assume that the projec-
tions correspond to parallel rays in the z direction, with x 
and y representing the two directions perpendicular to the 
projections. The initial integrated density, or depth of mate-
rial D1 , is then defined as

where zmin and zmax represent the limits of the projection 
and x = (x, y) denotes the two projected in-plane directions. 
Similarly, we can define the moved density field �2(x, y, z) 
and corresponding depth D2 as

Between these two instances, it is assumed that the material 
has moved in the two in-plane directions (x, y) according 
to the displacement field u = (u, v) which will, in general, 
depend on all spatial coordinates (x, y, z). There may also 
be motion in the out-of-plane (z) direction, but this is not 
important as parallel projections are unable to depict such 
motion, providing all material remains confined between the 
limits zmin and zmax . At each in-plane position x , the dis-
placement field u gives rise to a probability density function 
(PDF) f

x
(v) , which reflects the fact that it is not possible 

(1)D1(x) = ∫
zmax

zmin

�1(x, y, z) dz,

(2)D2(x) = ∫
zmax

zmin

�2(x, y, z) dz.

to determine the relative out-of-plane position of material 
when using projection imaging. This PDF represents the 
likelihood of finding a particular displacement v at a pre-
determined in-plane position x yet a randomly chosen out-
of-plane z position, and is given by the explicit expression

where �(s) is the extension of the Dirac delta function to 
two-dimensional domains. Eq. (3) is nonnegative since 
the initial density field �1 cannot be negative, and it is also 
straightforward to see that

where umin , umax , vmin and vmax are the minimum and maxi-
mum displacements in the two in-plane x directions, taken 
over all out-of-plane z locations. Thus, (3) does indeed 
define a probability density function related to the barycen-
tric (density-weighted) velocity profile. Noting that the 
denominator of (3) is equal to D1(x) , it follows that

which represents the integrated density of material that 
moves from initial position x by displacement v . This can 
be related to the moved projection D2 as follows. At a given 
in-plane position x of the moved image, the integrated den-
sity of material that has moved by displacement v is simply 
the amount of material that has moved from position x − v 
by v , i.e.

The moved image D2 is then given by the integral of all such 
displacements, namely

Hence, there is a clear relationship between the initial and 
moved projections and the displacement PDF at each in-
plane position. In general, it is not possible to use expres-
sion (7) to recover every PDF, which would require using 
a function of only one variable ( x ) to solve for a function 
of two variables ( x and v ). However, much progress can 
be made by making one key additional observation. This is 
achieved by considering finite two-dimensional interrogation 
windows of the projected images. In an analogous manner 
to the representative volume elements typically employed in 

(3)f
x
(v) =

∫
zmax

zmin

�1(x, y, z) �(u(x, y, z)−v) dz

∫
zmax

zmin

�1(x, y, z) dz

,

(4)∫
umax

umin
∫

vmax

vmin

f
x
(v) dv = 1,

(5)D1(x)fx(v) = ∫
zmax

zmin

�1(x, y, z) �(u(x, y, z)−v) dz,

(6)D1(x − v)f
x−v(v).

(7)D2(x) = ∫
umax

umin
∫

vmax

vmin

D1(x − v)f
x−v(v) dv.
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continuum mechanics, it is assumed that material properties 
do not vary significantly within this interrogation window 
and can be replaced by single quantities that are representa-
tive of the whole window. For the case of projected images, 
the interrogation window W needs to be chosen so that the 
velocity profile does not have any strong in-plane spatial 
gradients within the window, and also to ensure that the den-
sity profile is approximately constant at different x positions 
within the bounds thatdefine the window. With a suitable 
choice of interrogation window, these facts ensure that the 
resulting PDFs f

x
(v) can be replaced by a single representa-

tive PDF fW (v) in each window W, which is independent of 
the local in-plane position within the window. To see this, 
we can replace the fully spatially dependent densities and 
velocities in the PDF definition (3) by values that depend on 
z only. The resulting depth integrals are thus independent of 
in-plane position within each window. Note that we do not 
require homogenous density or velocity profiles in the out-
of-plane direction. Indeed, it is such non-uniform behaviour 
that leads to more complicated and interesting distributions.

For the remainder of this paper we will only consider a 
single interrogation window, and therefore we drop the W 
subscript and assume

where f (v) is the representative, or mean, displacement PDF 
of the whole in-plane domain. With this approximation, 
equation (7) simplifies to

which can be written as a convolution equation

where ‘ ∗ ’ is the convolution operator. This relates the mean 
PDF f to projected images D1 and D2 . Since these images 
are both given, solving the deconvolution inverse problem 
is a relatively straightforward way to calculate the displace-
ment PDF.

2.1  Relationship to correlation functions

Note that this deconvolution approach is slightly different 
to that taken by Baker et al. (2018), who first calculated 
the auto- and cross-correlation functions of their projected 
images before computing a deconvolution to deduce the dis-
placement PDF. We will show in the next two sections that 
working directly with the images provides accurate results 
without requiring this additional step but, for complete-
ness, we now briefly explain why such a correlation-based 
approach also works from a theoretical perspective. The 

(8)f
x
(v) ≈ f (v),

(9)D2(x) ≈ ∫
umax

umin
∫

vmax

vmin

D1(x − v)f (v) dv,

(10)D2 ≈ D1 ∗ f ,

auto-correlation function A and cross-correlation function 
C are defined in terms of the projected depths D1 and D2 as

where

and the integrals are taken over the appropriate representa-
tive interrogation window. Next, if we assume that D1 , D2 
and f are related by the convolution Eq. (10) then, using 
the basic properties of correlations and convolutions, it is 
straightforward to see that

Hence, A, C and f are also related by an identical convolution 
equation C = A ∗ f  , meaning the auto- and cross-correlation 
functions can alternatively be deconvolved to recover the 
velocity distribution.

3  Example 1: One‑dimensional test case

3.1  Setup

The capability of this new deep velocimetry method is 
first demonstrated on a simple system that consists of two-
dimensional density fields �(x, z) , which are projected onto 
one-dimensional images D(x). The setup is shown on Fig. 2, 
where it is assumed that the initial density field �1(xi, zj) 
is defined at Nx in-plane positions xi and Nz out-of-plane 
positions zj , which are both equally spaced between zero 
and one. The density field is equal to either zero or one at 
each grid point (Fig. 2a), representing a system consisting of 
uniform solid material or void space. The exact configura-
tion is determined by choosing the nonzero positions from 
a uniform distribution and specifying a mean solid volume 
fraction

This initial distribution is then subjected to a one-dimen-
sional displacement field u(z) in the x direction, which is 
chosen to be the quadratic profile

(11)A = D1 ⋆ D1, C = D1 ⋆ D2,

(12)A(s) = ∫ ∫ D1(x)D1(s + x) dx,

(13)C(s) = ∫ ∫ D1(x)D2(s + x) dx,

(14)C=D1⋆D2=D1⋆(D1 ∗ f )=(D1⋆D1)∗ f =A∗ f .

(15)�̄� =
1

NxNz

Nx∑
i=1

Nz∑
j=1

𝜌1(xi, zj).

(16)u(z) = 6ūz(1 − z),
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where ū represents the mean displacement magnitude 
( ∫ zmax

zmin
u(z)dz = ū ). Displacements are rounded to whole pix-

els (Fig. 3a), and the density field is then moved according 
to these values to produce the moved density field �2 
(Fig. 2b), which also consists exclusively of ones and zeros. 

The projected normalised depths D̂1 and D̂2 of these density 
fields are shown on Figs. 2c and d, respectively, which rep-
resent the dimensional quantities D1 and D2 scaled to have 
mean zero and standard deviation one. This scaling is used 
solely for visualisation in this paper, but can also be useful 
to remove the effects of spatial gradients and background 
noise in real imaging systems.

At each in-plane position xi we can define a velocity dis-
tribution in an analogous manner to (4) for discrete posi-
tions, namely

where �(s) = 1 when s = 0 and �(s) = 0 otherwise. In this 
discrete case, Eq. (17) defines probability mass functions 
(PMFs) that each sum to unity, and Fig. 3b shows plots of 
these PMFs. The error bars on Fig. 3b show that there is 
some scatter for different x positions but the PMFs are well 
approximated by the mean function, taken over all positions 
xi.

To further investigate the properties of the velocity distribu-
tion (17) it is useful to think in terms of random variables. 
Specifically, we can consider only the z positions where the 
density is nonzero, since these are the only locations that con-
tribute to the velocity distribution, and assume that each of 
these locations are equally probable during the random genera-
tion process. If there are N� of these nonzero positions, we can 
treat the specific location of each as random variables 

(17)pxi (v) =
1

D1(xi)

Nz∑
j=1

�1(xi, zj)�(u(zj)−v),

Fig. 2  Example density and projected images for the one-dimensional 
test case of Sect. 3, showing a the initial density field �1(x, z), b the 
moved density field �2(x, z) , and c, d the corresponding normalised 
initial and moved projected depths D̂1(x) and D̂2(x) (for visualisa-
tion, dimensional values D1 and D2 are scaled to have mean zero and 

standard deviation one). In a and b black regions denote a density of 
one, and white corresponds to a density of zero. Red arrows denote 
projection direction. Parameters chosen are Nx = 100 , Nz = 10000 , 
�̄� = 0.1 and ū = 10 px
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Fig. 3  Plots of a the imposed displacement profile v = u(z) from (16) 
and b) the corresponding probability mass functions (PMFs). Black 
circles in b represent the theoretical PMF p(v) from equation (18), 
and red error bars are the mean and standard deviation of the actual 
realisations pxi over the Nx different x positions. Displacements have 
been normalised to have maximum one, with other parameters the 
same as Fig. 2
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Z1, Z2,…ZN�
 , and introduce the multivariate random variable 

Z = (Z1, Z2,…ZN�
) to represent the full vector of nonzero 

positions. At each position, the PMF (17) then corresponds to 
a particular realisation of the random variable Z. We omit the 
derivation for brevity, but it can be shown, using the properties 
of random variables, that the expected value of the PMF is 
then

which assumes that every z point contributes equally to the 
PMF. The standard deviation about this mean can also be 
computed as

where � = N�∕Nz is the solid volume fraction at a given x 
position. Note that � → 0 as � → 1 or Nz → ∞ , meaning 
that fluctuations from the mean PMF at each spatial position 
become insignificant. Hence, the assumption that the PMF 
is independent of in-plane position becomes increasingly 
valid as we approach these limits. Conversely, it is expected 
that the assumption will break down in sparse systems as the 
volume fraction � approaches zero, or in shallow systems 
that represents projections over few elements Nz . Both Eqs. 
(18) and (19) have been verified numerically by computing 
many randomly generated density configurations at different 
packing fractions and depths.

3.2  Forward convolution

Having established that the displacement PMF is approxi-
mately independent of in-plane position (within a representa-
tive interrogation window), we next test the result (10) that the 
moved projection is the convolution of the initial projection 
with the PMF. In the discrete, one-dimensional, case this can 
be written

where the discrete convolution is defined as

for Nv distinct displacements. Figure 4 shows an example 
comparison between D2 and D1 ∗ p , with excellent agree-
ment confirming that this is indeed an appropriate approxi-
mation for the particular set of parameters chosen. In gen-
eral, the validity of the approximation will again depend on 
the specific parameters used. From (19) it follows that � and 

(18)p(v) =
1

Nz

Nz∑
j=1

�(u(zj)−v),

(19)�(v) =

√
1 − �

�

1

Nz − 1
p(v)(1 − p(v)),

(20)D2 = D1 ∗ p,

(21)(D1 ∗ p)(xi) =

Nv∑
j=1

D1(xi − vj)p(vj),

Nz again play an important role, although the exact depend-
ence is non-trivial due to the nonlinearity of the convolution 
operator (21).

3.3  Deconvolution

Finally, we use the two projections D1 and D2 to recover the 
PMF p by solving a deconvolution inverse problem. There 
are a number of different ways of achieving this, but here we 
choose to solve a constrained linear least-squares approach 
by first recasting (21) as the matrix equation

where

Note that the top row of the matrix A has been introduced 
to ensure that the probabilities sum to one. Eq. (22) is then 
solved using the lsqlin function in Matlab, subject to the 
additional nonnegativity constraint of probability mass 
functions, x(i) ≥ 0 for all i. This is slightly different to the 
deconvolution approach adopted by Baker et al. (2018), 
who solved a constrained nonlinear optimisation problem 
with an additional Tikhonov regularisation to ensure that 
the distribution did not vary in an unphysical manner. Sec-
tion 3.4 compares the results of these two methods in more 
detail. Note that a third possible deconvolution method 
involves solving the unconstrained linear system (22)–(25) 
directly using, for example, Gaussian elimination. This is a 
constructive method that requires the least computational 
time and was found to sometimes give very accurate results. 
However, since it does not explicitly constrain the system to 

(22)Ax = b,

(23)A=

⎛
⎜⎜⎜⎜⎜⎝

1 1 … 1

D1(Nv) D1(Nv − 1) … D1(1)

D1(Nv+1) D1(Nv) … D1(2)

⋮ ⋱ ⋱ ⋮

D1(Nx) D1(Nx−1) …D1(Nx−Nv+1)

⎞
⎟⎟⎟⎟⎟⎠

,

(24)x = (p(1), p(2),… , p(Nv))
T ,

(25)b = (1,D2(1),D2(2),… ,D2(Nx − Nv + 1))T .
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Fig. 4  Plots of the actual (normalised) moved image D̂2 (solid line) 
and the predicted forward convolution (D̂1 ∗ p) from Eq. (21) (dashed 
line). Other parameters are the same as Figs. 2 and 3
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nonnegative values, it sometimes produces unphysical PMFs 
that are less than zero, and we therefore do not employ this 
direct approach.

Figure 5 shows an example of the reconstructed PMF, 
which is in good agreement with the exact underlying dis-
tribution p(v). This demonstrates the effectiveness of the 
new deep velocimetry method when deconvolving a single 
pair or projected images. However, in practise the reliabil-
ity of individual measurements can be improved by tak-
ing the average of multiple instances. To this end, Fig. 5 
also shows the resulting PMF after computing 100 distinct 
deconvolutions, with differing density configurations, and 
then taking the mean of these PMFs. This shows a sig-
nificant improvement, with the final PMF being almost 
indistinguishable from the exact underlying distribution.

To investigate the effect of averaging further, Fig. 6 
shows the final deconvolution error

as a function of the number of averages Naves , where p̃(v) 
represents the approximation to the true p(v) by averag-
ing the deconvolutions. We see that this error consistently 
decreases with increasing degree of averaging. In fact, it 
appears that E ∝ N

−1∕2
aves  for the range of parameters explored 

here, although the origin and full extent of this scaling law 
remains to be investigated. It is also clear that higher solid 
volume fractions �̄� give more accurate results, which is 
consistent with the earlier observation (19) that the initial 
PMF is closer to the mean value at each spatial position in 
these denser packed regimes. In all cases, the method rap-
idly produces satisfactory errors of less than 10%. This one-
dimensional test case therefore demonstrates the potential of 
deep velocimetry as a highly accurate method of measuring 
full out-of-plane velocity distributions.

3.4  Comparison to correlation‑based methods

In this section we compare the results of deep velocimetry to 
previous correlation-based methods, such as those employed 
by Dubsky et al. (2010) and Baker et al. (2018), to assess the 
relative merits of this new technique.

The correlation-based approaches involve first computing 
the auto-correlation function of an initial image, as well as 
the cross-correlation function of this image with the moved 
image. As described in Sect. 2.1, these correlation functions 
are related to each other and the displacement probability 
density function f by a similar convolution Eq. (14). We fol-
low the procedure described in Baker et al. (2018) to solve 
this deconvolution problem and extract f for the same one-
dimensional test case. When using correlation functions, 
there are actually two different means of averaging over a 
number of distinct results. The first is to follow the same 
averaging procedure as adopted above for deep velocimetry 
and compute Naves distinct deconvolutions. These PMFs are 
then averaged to give the final result. This method will be 
referred to as ‘post-averaging’, because the averaging only 
takes place at the final stage. Alternatively, it is possible 
to ‘pre-average’ by first computing a number of auto- and 
cross-correlation functions and averaging these functions. 
The deconvolution is then only carried out once on these 
average correlation functions. The rationale behind such an 
approach is that deconvolution of the average functions is 
less sensitive to noise than deconvolving a single noisy func-
tion pair. Note this pre-averaging strategy is not a viable 
option when deconvolving the images directly, because the 
pre-averaging will smooth out any heterogeneous texture 
in the images, making deconvolution impossible. The cor-
relation functions, on the other hand, do not tend towards 

(26)E =

Nv∑
j=1

|p(vj) − p̃(vj)|,
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Fig. 5  Plots of the exact underlying PMF (black circles), recon-
structed PMF from a single deconvolution (blue crosses) and average 
reconstructed PMF by taking the mean of 100 deconvolutions (red 
crosses). All parameters are same as previous figure
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Fig. 6  Plots of the error (26) as a function of number of deconvolu-
tion averages for three different mean solid fractions �̄� . Error bars are 
calculated from computing 100 different results for each point. All 
other parameters are same as previous figure
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uniform states upon averaging. Previous authors have 
employed a combination of both pre- and post-averaging 
for their correlation-based methods, but in this paper we will 
focus on pure implementations of both approaches since the 
optimal averaging combination remains an open question.

Figure 7a shows the deconvolution errors E as a func-
tion of the degree of averaging Naves for the three different 
deconvolution methods, at a fixed solid fraction �̄� = 0.5 . 
They all show a similar trend of decreasing error with Naves , 
with the same approximate scaling E ∝ N

−1∕2
aves  for both the 

direct image deconvolution and correlation-based methods. 
While all methods provide satisfactory final results, espe-
cially when using at least Naves = 20 deconvolutions, there is 
a clear difference between the direct deconvolution and cor-
relation-based approaches. The new method performs con-
sistently better than both of the previous techniques, regard-
less of the total amount of averaging. After 100 averages, the 
direct deconvolution approach produces an average residual 
error of 2.2%, whereas the equivalent post-averaging corre-
lation method is significantly higher at 4.6%. Interestingly, 
the pre-averaging correlation method is the least accurate 
for the parameters considered, giving a mean error of 5.6% 

after 100 averages. In general, the difference between the 
two correlation methods is less prominent than that between 
the direct deconvolution and the post-averaging correlation 
approach, although there remains a large region of parameter 
space yet to be fully explored.

Since reconstruction methods typically involve a trade-off 
between accuracy and computational time, we also record 
the CPU time associated with each of the methods. These 
are plotted on Fig. 7b, and we find that both the direct decon-
volution and the post-averaging correlation method display 
an approximately linear relationship between the amount of 
averaging and computational time. The direct deconvolu-
tion method, however, is significantly faster to implement, 
requiring approximately 80 times less computational time. 
Computing the auto- and cross-correlation functions does 
take additional time, but this is relatively fast. The primary 
source of the computational time differences is the differ-
ence between computing the constrained linear problem 
considered here compared to the constrained nonlinear opti-
misation problem of Baker et al. (2018). The latter is much 
slower and forms the majority of the total computational 
time for the pre-averaging correlation-based method. The 
post-averaging method, on the other hand, only requires one 
deconvolution and is therefore considerably faster than the 
equivalent post-averaging approach. The total computational 
time for the pre-averaging method still increases with the 
amount of averaging, but this is much slower as it is only 
due to the fast computation of the correlation functions. 
For low numbers of averages, the pre-averaging approach 
is slower than direct deconvolution due to the large over-
head of a single nonlinear deconvolution. However, as the 
amount of averaging increases the gap quickly closes. For 
the parameters used here, by Naves = 100 the pre-averaged 
correlation method takes less time on average than the direct 
deconvolution, and this will become more exaggerated as the 
number of averages continues to grow.

In summary, the new direct deconvolution approach 
appears to perform favourably compared to the previous 
correlation-based approaches, both in terms of accuracy 
and total computational time. Depending on the system and 
resources available, total computational time may not be 
a limiting factor and hence less relevant when comparing 
methods, or the required degree of averaging may be such 
that the pre-averaging correlation approach actually requires 
less time. Note that this amount of averaging will set the 
transient timescales that can be measured. In the example 
above, the underlying motion was assumed identical for each 
specific realisation, and the final results can therefore be 
interpreted as steady-state velocity measurements. For flows 
that evolve over time, on the other hand, the total averag-
ing window needs to be suitably short to capture transient 
dynamics. This could also affect which of the methods is the 
most suitable for a given application. Finally, it may also be 
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Fig. 7  Plots of a the error (26) and b the total computational time 
as a function of number of deconvolution averages. Three different 
reconstruction methods are employed: direct image deconvolution as 
described in this paper (blue), deconvolution of auto- and cross-corre-
lation functions with post-averaging of the results (red), and a similar 
correlation-based method but first pre-averaging the correlation func-
tions (black). Values are calculated from mean of 100 different com-
putations for each point. Mean solid fraction �̄� = 0.5 , and all other 
parameters are same as previous figures
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possible to improve the speed and accuracy of the corre-
lation-based methods by formulating as constrained linear 
problems similar to the direct deconvolution approach used 
here. However, the purpose of this section is to compare our 
new method to existing reconstruction tools, not to improve 
such tools. This comparison is very agreeable, suggesting 
that deep velocimetry offers promising capabilities.

3.5  Effect of noise

The previous results were all constructed using exact image 
values to test the idealised theory. In reality, this will not be 
the case. Images will most likely include a certain degree of 
experimental noise, and deconvolution is known to be sensi-
tive to such noise. To test how deep velocimetry is affected 
by noise, we repeated a similar set of computations with 
non-exact, or ‘noisy’ simulated images. Specifically, the 
initial and moved projected depths, D1 and D2 , respectively, 
were generated as before and then distorted with noise to 
give the new values, Dnoise

1
 and Dnoise

2
 , where

for i = 1, 2 . At each spatial position, the random variables 
Ni(x) are drawn from a normal distribution of mean zero 
and standard deviation 𝜎D̄i , where D̄i is the mean projected 
depth over a given image, and the magnitude � is systemati-
cally varied.

Figure 8 shows the resulting deconvolution errors after 
Naves = 100 computations as a function of the noise magni-
tude � , for a fixed packing fraction �̄� = 0.5 . For complete-
ness, we compute the errors for all of the three methods 
described in Sect. 3.4. From Fig. 8, we see that the effect 

(27)Dnoise
i

(x) = Di(x) + Ni(x),

of noise is relatively low for small values of � , with only a 
gradual decline in accuracy up to � = 10−2 . Past this point, 
however, all of the methods start to break down more rap-
idly, eventually producing large errors for � ≥ 0.1 . As found 
on Fig. 7a, the direct deconvolution approach again performs 
equally as well as the two correlation-based approaches. 
For low amounts of noise, it is significantly more accurate 
than the previous methods. This gap does begin to close as 
the amount of noise increases, but the direct deconvolution 
remains at least as accurate up until the point that none of 
the methods would be workable in practice. This provides 
further evidence of the robustness of our new method and 
comparable performance compared to existing techniques.

Note that the pointwise Gaussian noise introduced for 
the computations of Fig. 8 is designed to test the robustness 
of deep velocimetry, and not to precisely match the exact 
nature of noise encountered for a given experiment. The lat-
ter would require more specific knowledge of the particular 
imaging system and associated noise. For example, systems 
with long exposure times, such as x-ray radiographs, pro-
duce images with significant motion blur. Some correlation-
based methods (e.g. Fouras et al. 2007) explicitly account 
for this form of noise, but we do not attempt to make simi-
lar corrections in this preliminary paper. It remains to be 
investigated whether the direct deconvolution will still out-
perform the correlation-based approaches in such systems.

4  Example 2: X‑rays of granular materials

4.1  X‑ray imaging

Next, we move from the idealised one-dimensional setup of 
Sect. 3 to illustrate how deep velocimetry can be applied to 
a specific projection-based imaging system, namely dynamic 
x-ray radiography. Such a system involves an x-ray source 
that emits approximately parallel rays of a particular initial 
intensity towards the flowing material. As these rays travel 
through the material they are attenuated and reduce in inten-
sity. Their final intensity is measured by a detector on the 
opposite side of the sample, which records projected images, 
or x-ray radiographs, at specific times.

Unlike the previous example, for such an x-ray system the 
projected images are not a direct measure of the integrated 
density field D. Instead, the recorded intensity I at projected 
in-plane position x typically follows a Beer-Lambert attenu-
ation law

(28)I(x) = I0 exp

(
−∫

zmax

zmin

�(x, y, z) dz

)
,
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Fig. 8  Plots of the error (26) as a function of the degree � of added 
noise for the three different reconstruction methods shown in Fig. 7. 
Values are calculated from mean of 100 different computations for 
each point. All other parameters are same as previous figures
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where zmin is the out-of-plane location of the x-ray source, 
zmax is the out-of-plane location of the detector, I0 is the 
constant initial intensity at the source, and � is the spatially 
dependent linear attenuation coefficient. This coefficient 
depends on the specific material being imaged, as well as 
other factors such as the x-ray power. For simple binary 
systems consisting of solid material and interstitial air, the 
attenuation coefficient of air is several orders of magnitude 
lower than the solid, and hence can be neglected. If we also 
assume that all solid regions are made of the same material 
then we can define a mass coefficient �m = �∕� that is con-
stant in space. The intensity can then be written

which simplifies to

where D is the integrated density field, defined in an analo-
gous manner to (1). Hence, the measured x-ray intensity I is 
directly related to the integrated density D via the relation

Now, recall that the theory of deep velocimetry from Sect. 2 
is based around the convolution Eq. (10) for the initial and 
moved depths, D1 and D2 , respectively. Dynamic x-ray 
imaging does not provide the same depths directly, instead 
recording the initial and moved intensities, I1 ∶= I(D1) and 
I2 ∶= I(D2) . A key question therefore arises: can we formu-
late a similar convolution equation involving these projected 
intensities?

In general, there is no reason why the relationship 
D2 = D1 ∗ f  should imply an equivalent relationship 
between I1 , I2 and f (where f is the probability density 
function of displacements). However, if we replace the 
function I(D) from (31) by a simple linear function 
I(D) = mD + c for constants m and c, then it immediately 
follows from the distributivity property of the convolution 
operator that

Hence, for linear functions I(D), the problem reduces to 
solving an identical deconvolution problem to recover the 
PDF f. Of course, the exact intensity relationship (31) is a 
nonlinear function, meaning the same logic cannot strictly 
be applied. However, for many systems the fluctuations in 
the integrated depth across different spatial positions are 
typically small compared to the mean value. Thus, providing 
the attenuation coefficient �m is also sufficiently small, Eq. 
(31) is actually well-approximated by its first-order Taylor 
expansion about the mean integrated depth. It is therefore 

(29)I(x) = I0 exp

(
−∫

zmax

zmin

�m�(x, y, z) dz

)
,

(30)I(x) = I0 exp
(
−�mD(x)

)
,

(31)I(D) ∶= I0 exp(−�mD).

(32)I2 = I1 ∗ f .

approximately linear, and the convolution equation (32) 
remains valid.

An alternative method of obtaining an appropriate con-
volution equation when there are significant depth fluctua-
tions, or large attenuation coefficients, is to take logarithms 
of the projected images. In this case we work instead with 
functions L(D), where

is now a linear function of D. Hence, we can use the convo-
lution equation

to recover the PDF f, where L1 = L(D1) and L2 = L(D2) . We 
will show in the next subsection how Eqs. (32) and (34), as 
well as the original convolution equation (10), can be solved 
in this manner for a system representing x-rays of flowing 
granular materials.

4.2  Simulation of granular materials

Figure 9 shows the setup of the simulations, which are con-
ducted in a similar manner to the supplementary informa-
tion of Baker et al. (2018). A computational box of size 
1024 × 1024 × 1024 px is first filled with 10,000 spherical 
particles of diameter 20 px±10%. The position and size 
of these particles is randomly drawn from a uniform dis-
tribution across the whole domain. Note that this genera-
tion method does potentially allow particles to overlap in an 
unphysical manner, but this is not expected to significantly 
influence the final results since, in reality, particles still over-
lap in the projected images.

These initial particle positions are then used to gener-
ate an initial three-dimensional density field �1 , where, as 
before, �1 is taken to be one at spatial positions inside a given 
particle and zero otherwise (overlapping grain regions are 
counted as many times as there are overlapping grains). The 
integrated initial depth D1 is then calculated from Eq. (1) 
using the simple geometry of the spherical grains, and the 
initial intensity I1 computed from Eq. (30) with attenuation 
coefficient �m = 0.005 px−1 and initial intensity I0 = 1 . These 
projections are shown on Fig. 9b, c, and d shows the log of 
the intensity ( L1).

Next, the particles are moved according to a prescribed 
velocity field u(z) in the x direction, where u is now taken to 
be linear in the out-of-plane direction:

with ū = 10 px again representing the mean displacement 
magnitude. Periodic boundary conditions are prescribed in 
the x direction, ensuring that particles that leave the domain 
re-enter at the other boundary. After movement, the new 

(33)L(D) ∶= log(I(D)) = log I0 − �mD,

(34)L2 = L1 ∗ f ,

(35)u(z) = 2ūz,
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projected depths, intensities and log of intensities ( D2 , I2 and 
L2 , respectively) are computed. This process is repeated over 
multiple timesteps, resulting in a series of projections of the 
flowing grains. A movie of these projections is available as 
supplementary material.

4.3  One‑dimensional deconvolution

The next step is, for each pair of projections, to solve a simi-
lar deconvolution problem as the previous one-dimensional 
test case to recover the probability mass function p(v) cor-
responding to the displacement field u(z). The situation is 
slightly different here, because the images are now two-
dimensional. However, the imposed velocity field, and 
hence velocity PMF, is still one-dimensional. This means 
that a one-dimensional deconvolution problem can again be 
solved and therefore, for simplicity, we proceed by treating 
each row of pixels individually. For each y position this then 
gives a pair of one-dimensional signals (varying in the x 
direction). These are deconvolved in exactly the same way 
as Sect. 3.3 to give a PMF for each cell, and the final PMF 
is taken as the average of all such y values. As before, this 
process is repeated for numerous pairs of images, but is now 
computed using intensity pairs I1 , I2 and their logarithms L1 , 
L2 , as well as the original D1 , D2 for completeness.

Figure 10 shows example PMFs from this deconvolution 
process. It can be seen the average deconvolution is in good 
agreement with the exact imposed distribution, confirming 
that deep velocimetry is still capable of recovering the veloc-
ity distribution for this more realistic imaging configura-
tion. This is true for all the deconvolution methods (D, I 
and L). In fact, the reconstructed PMFs from the integrated 
depths D are identical to those reconstructed from the log of 
the intensity, L. This is because Eq. (33) indicates that L is 
simply a linear transformation of D, which does not change 
the results when computing the deconvolution with a linear 

Fig. 9  Schematic plot of the simulation setup for the granular flow 
x-ray example showing a the simulation box filled with spherical 
particles, the imposed velocity profile u(z) from (35) and projection 

direction (red arrows). Panels b, c and d show the projected inte-
grated depth D, intensity I and log of intensity L, respectively
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Fig. 10  Plots of the exact underlying PMF for the x-ray system (black 
circles), example reconstructed PMF from deconvolving the inte-
grated densities D (red crosses), from deconvolving the intensity I 
(blue crosses) and from deconvolving the log of the intensity L (green 
plusses). All results represent average of 100 deconvolutions
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solver. Using image intensities I, on the other hand, does 
give different final deconvolutions.

The exact extent of the differences between deconvolu-
tions using D and those using I is not immediately obvi-
ous from the single realisations on Fig. 10. For this reason, 
Fig. 11 explores the deconvolution process in a quantita-
tive manner by computing different numbers of deconvolu-
tion averages Naves for each field and plotting the error (26) 
between the reconstructions and analytical distribution. It 
is now clear that using the depths D directly (or equiva-
lently the L’s) does produce more accurate results, although 
the errors are still satisfactorily low when deconvolving the 
intensities directly and hence the assumptions made in the 
method derivation are valid. Provisional simulations indicate 
that the errors are larger when using a higher attenuation 
coefficient �m , since the relationship (31) can no longer be 
approximated with a linear law. This remains to be explored 
in full in future research. As for the one-dimensional test 
case, Fig. 11 shows that the errors consistently decrease with 
increasing degree of averaging, although the relationship 
between E and Naves no longer follows a simple scaling law. 
The errors for this x-ray example are also slightly larger 
than the first example, which could be due to differences 
in the sample geometry, solid packing fraction, or imposed 
velocity profile and should be investigated in more detail in 
the future. Nevertheless, deep velocimetry produces very 
promising results for this x-ray imaging system.

4.4  Two‑dimensional deconvolution outlook

The row-by-row deconvolution approach employed to 
recover the one-dimensional velocity distribution from two-
dimensional images was chosen here for its simplicity and 
consistency with the test case of Sect. 3. Alternative methods 
could be used when handling two-dimensional images that 

may, depending on the specific setup, give improved accu-
racy and/or computational speed. For example, when the 
motion remains in a single direction, it is possible to refor-
mulate the collection of row-by-row Eqs. (22) into a single 
matrix equation that takes into account all of the spatial posi-
tions simultaneously, which can then be solved in one step. 
In such an equation, the right-hand-side vector b would grow 
from length (Nx − Nv + 1) + 1 to Ny(Nx − Nv + 1) + 1 , where 
Ny is the number of distinct image rows. Similarly, A would 
necessarily grow from a ((Nx − Nv + 1) + 1) × Nv matrix to 
(Ny(Nx − Nv + 1) + 1) × Nv . The case-by-case imaging and 
computational specifications will likely determine whether 
this reformulation is favourable over treating each row inde-
pendently for one-dimensional motion.

In most real flowing systems, the motion will actually 
be in both planar directions x and y (and possibly in the 
out-of-plane direction z, but this is not distinguishable from 
a single projection direction). In this case, the probability 
density function of the velocity will also have components in 
the two planar directions, and a more complicated approach 
will be required to recover this two-dimensional array. The 
equivalent two-dimensional convolution equation can again 
be reformulated as a single linear system similar to (22), but 
the corresponding dimensions become prohibitively large. 
Similarly, computing the 2D deconvolution by means of con-
strained nonlinear optimisation is costly due to the typically 
large number of unknowns in the two-dimensional PDF.

Correlation-based methods are able to overcome these 
difficulties by treating the two velocity components in isola-
tion. By first computing two-dimensional correlation func-
tions and then averaging these over each spatial dimension 
in turn, the problem reduces to solving a pair of one-dimen-
sional deconvolutions for each velocity component. The net 
result is an efficient means of computing the two marginal 
probability distributions, as opposed to the full joint dis-
tribution. A similar dimensionality-reduction approach was 
tested with the direct deconvolution approach used in this 
paper. However, it was not found to produce satisfactory 
results. Analogously to the pre-averaging (in time) described 
in Sect. 3.4, we attribute this to the fact that spatial averaging 
homogenises the texture of the images, reducing the accu-
racy of the deconvolution. Work is ongoing to develop an 
efficient and accurate method of computing the deconvolu-
tion for two-dimensional flows so that deep velocimetry can 
be applied to more realistic flows.

5  Experimental validation

Having illustrated the potential of the method using artifi-
cially generated images, we now proceed to test its capabili-
ties using real experimental data. The experiments involve 
x-ray radiography of the controlled motion of granular 
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Fig. 11  Plots of the error (26) as a function of number of deconvolu-
tion averages for deconvolutions of D or equivalently L (red), and I 
with �m = 0.005px−1 (blue). Error bars are calculated from comput-
ing 7 different results for each point and taking the standard deviation
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materials, and therefore complement the simulated results 
of Sect. 4.

The experimental setup is shown on Fig. 12a. It consists 
of an acrylic cylinder of inner diameter 79mm, which is 
filled with glass beads of approximate diameter 3mm. The 
cylinder is placed on a turntable, allowing it to be rotated 
about its central (y) axis at a constant rate of 0.56 revolutions 
per minute. An x-ray source (Spellman XRV generator with 
Varian NDI-225-21 stationary anode tube) is positioned at a 
horizontal distance of 1.5 m from the centre of the cylinder, 
and a detector panel (PaxScan 2520DX) is placed at 0.4 m 
from the cylinder’s centre, in-line with the path of the beam 
(z-direction). The x-ray source is set to emit radiation at a 
maximum energy of 180 keV and intensity of 5 mA, and 
the detector records 1920 px × 1536 px radiographic images 
at a rate of 10 frames per second (fps). For our system, the 
x-ray source emits a continuous stream of radiation which is 
continuously measured by the detector panel, meaning that 
the image exposure time is also 10 fps. A movie of these 
projections is available as supplementary material.

This experimental setup corresponds to solid body rota-
tion of the granular ensemble, with the motion of the grains 
in the horizontal in-plane (x) and out-of-plane (z) directions. 
The x-ray beam can be considered to be approximately pla-
nar, due to the large ratio between the source-sample and 
sample-detector distances. The z motion is therefore impos-
sible to determine and we instead focus on the motion in 
the x direction. This depends on both the x and z positions, 
relative to the centre of the cylinder. At each x position, the 

velocity profile ux(ẑ) through the depth of the sample is given 
by the linear function

where the maximum magnitude umax(x) depends on both 
the rotation rate and position x, and ẑ ∈ [0, 1] represents the 
rescaled distance from the front to back walls of the cylinder. 
For the subsequent analysis, we focus on a two-dimensional 
interrogation window of width 100 px in the x direction and 
height 400 px in the y direction, centred on the sample mid-
point. Variations in the velocity profile (36) with x are very 
small in this region, and hence the window can be assumed 
to have a single representative velocity PDF, analogous to 
those used in Sect. 4 corresponding to the linear profiles 
(35). Since the in-plane motion is one-dimensional (in the 
x-direction), the velocity PDF is also one-dimensional and 
can be reconstructed in a similar method to Sect. 4.3.

Next, we note that the assumptions in deriving the sim-
plified Beer-Lambert law (30) do not strictly apply for this 
experimental setup. It was assumed that all the material is 
either grains or interstitial air, and also that the grains have a 
unique mass attenuation coefficient �m . In practise, the path 
of the x-ray beam is also restricted by the acrylic cylinder, 
which has an attenuation coefficient that is lower than the 
grains but is still non-negligible. Furthermore, the source 
used is polychromatic and emits x-rays at a range of dif-
ferent energies. Because a material’s attenuation coefficient 
depends on this x-ray energy, different energy beams will be 

(36)ux(ẑ) = −umax(x) + 2umax(x)ẑ,

Fig. 12  Schematic plot of the experimental x-ray setup for the con-
trolled rotation of granular material showing a) the cylindrical con-
tainer filled with 3mm diameter glass beads and projection direction 

(red arrows), b) the measured x-ray intensity Ie of the empty con-
tainer, c) the measured x-ray intensity If  of the full container and d) 
the normalised value L = log(If ∕Ie) used for the deconvolution
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absorbed at different rates—a phenomenon known as beam 
hardening. As a result of these two factors, for our system 
there is a complex nonlinear relationship between the meas-
ured intensity on the detector panel and the depth of mov-
ing granular material that the beam has passed through, and 
we cannot directly apply the methods of Sect. 4. To resolve 
this complication, x-ray radiographs Ie of the rotating cylin-
der are also recorded when it is empty of granular material 
(Fig. 12b). These are then synchronised with the correspond-
ing radiographs of the full container If  (Fig. 12c). At each 
timestep, a new intensity image L ∶= log(If∕Ie) is computed 
(Fig. 12d), which explicitly corrects for the rotating cylinder. 
For the range of interest, L is now found to be well-approxi-
mated by a linear function of the depth of granular material 
D, and thus can be used for subsequent analysis.

The same row-by-row one-dimensional deconvolution 
process is then applied to these normalised images, and 
Fig. 13 shows an example probability mass function recon-
structed as the average of 50 individual deconvolutions. It 
can be seen that deep velocimetry is reasonably successful 
at predicting the full velocity distribution from experimental 
images, in particular capturing the mean and range of veloci-
ties with nonzero probabilities. There are, however, some 
key differences between the theoretical distributions (black 
circles on Fig. 13) and the reconstructions (red crosses). 
Whereas the theoretical distribution gives near-equal weight-
ings to all nonzero-probability displacements, the recon-
structed values have a clear maximum at the mean. There is 
also a degree of smoothing in the reconstructed values that 
is not present in the theoretical profile.

Figure 14 quantifies these discrepancies further, plotting 
the deconvolution error (26) as a function of the number 
of averages, Naves . As found previously, there is an initial 
decrease in the error with more runs, but this saturates at 
around 16% – approximately twice the value measured for 
the theoretical results in Sect. 4. It is not particularly sur-
prising that the experimental results give higher errors than 
the simulated radiographs. Indeed, experiments are inher-
ently noisy, with the quality of the resulting images being 

degraded by the non-uniform intensity of the x-ray source, 
the scattering and diffraction of x-rays, and the finite radio-
graph resolution. These factors were not taken into consid-
eration for the simulated x-ray images. Furthermore, the pro-
cess of beam-hardening was not modelled in the simulated 
images, whereas this does occur in the experiments. The 
normalisation process applied to the experimental radio-
graphs was designed to recover an approximately linear rela-
tionship between intensity and depth, but remaining varia-
tions could also be a contributing factor to the reconstruction 
errors. Nevertheless, deep velocimetry on these experimen-
tal images is still able to capture the key motions, and we 
thus believe that it offers great promise as an experimental 
technique. In the future it may also be possible to precisely 
quantify the effect of experimental noise and beam-harden-
ing on the reconstruction process, and thus explicitly correct 
the resulting distributions, but this correction is beyond the 
scope of this introductory paper.

6  Other applications

The choice of imaging system in Sects. 4 and 5 could be of 
immediate interest to granular materials researchers with 
existing x-ray radiography capabilities. While the use of 
x-ray CT to study the internal structure of such opaque sys-
tems is now widespread, this is typically restricted to quasi-
static deformations. X-ray CT therefore offers limited insight 
into the dynamics of continuously flowing granular media. 
However, the same hardware could easily be repurposed for 
deep velocimetry by recording successive x-ray radiographs 
from a fixed direction, as opposed to continuously rotating 
the sample. In this way, deep velocimetry using x-rays offers 
researchers a means of measuring velocity distributions in 
a range of dense granular flows, which have applications 
spanning the natural (e.g. snow avalanches, debris flows, 
landslides) and man-made (e.g. mineral processing, phar-
maceuticals, food processing) environments.
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Fig. 13  Plots of the exact underlying PMF for the x-ray rotation 
experiments (black circles), and the corresponding deconvolutions 
(red crosses) computed by averaging 50 computations
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Furthermore, dynamic x-ray radiography is a general pro-
jected imaging method that is not limited to dense granular 
flows. We therefore anticipate that a similar approach could 
also be adopted by researchers working with other deform-
able media, as long as the media has a sufficiently hetero-
geneous density profile to provide the required radiograph 
texture. Such materials might include foams, gels, suspen-
sions and different forms of soils and rocks. Of particular 
interest is the application of deep velocimetry to successive 
x-ray radiographs of viscous fluids such as water - fluids 
that are typically investigated using regular PIV with optical 
imaging. In this case, tracer particles with different x-ray 
attenuation coefficients to the bulk fluid can be inserted into 
the flow, which then provide the appropriate radiograph con-
trast for image analysis. It has previously been demonstrated 
that regular PIV can be applied to such radiographs (e.g. Lee 
and Kim 2003) to measure the single most likely velocity 
(through the path of the x-ray beam) in each patch. Alter-
natively, some complex non-Newtonian fluids like blood 
already have discernible density fluctuations that make their 
radiographs amenable to PIV (e.g. Kim and Lee 2006), and 
in other cases CO2 microbubbles can also provide appropri-
ate tracer texture (Park et al. 2015). In all of these scenarios, 
deep velocimetry, as opposed to PIV, could be applied to the 
same radiographs, which would provide valuable additional 
out-of-plane velocity distribution information.

Going beyond x-ray radiography, deep velocimetry 
could also be applied to other projection-based imaging 
systems. While the ideal system for the theory of Sect. 2 is 
one that measures the integrated density field D directly, the 
method could also work for other indirect, proxy measures 
of integrated density. This is especially true if the measured 
intensity I is a linear function of D, or if it can be closely 
approximated by a linear function. Even in highly nonlinear 
cases, deep velocimetry could be applied as long as there is 
a well-understood, one-to-one relationship between I and 
D, since this allows the measured I to be converted back to 
work with D directly.

Other projection-based imaging systems potentially 
amenable to deep velocimetry include shadowgraphy, 
and the closely related Schlieren imaging (Luthman et al. 
2019; Ozawa et al. 2020). These both exploit the fact that 
fluid regions of different densities have different refractive 
indexes, and produce projected images representative of a 
finite depth of flowing material. The projected images typi-
cally have much sharper contrast than is visible with the 
human eye, and can therefore be used to measure flow pat-
terns over this integrated depth. Deep velocimetry could 
again be applied directly to the same images to provide 
additional and complementary measurements. Finally, it 
may also be possible to work with regular optical images of 
seeded flows of transparent fluids that look through a finite 
flow depth, as opposed to on a single plane of a laser. In 

this case a final image is built up by summing all opaque 
tracer particles that obstruct and cast a shadow on the screen. 
Such projected images could certainly be amenable to this 
new approach. Deep velocimetry could therefore provide 
new insight into a range of finite-depth systems, for example 
droplet dynamics (Gultekin et al. 2020), that have only pre-
viously been examined on a single imaging plane.

7  Conclusions

This paper has presented a new image analysis technique for 
measuring velocities using projection-based imaging sys-
tems. Building on the established particle image velocimetry 
(PIV) method, where image correlation is used to recover 
a single velocity value in each interrogation window, we 
exploit the extra out-of-plane information provided by pro-
jection imaging to reconstruct the full velocity distribution 
through the imaging direction. Crucially, the new method, 
which we call deep velocimetry, does not require computa-
tion of any correlation functions. Instead it involves decon-
volving a pair of sequential images directly to recover the 
velocity distributions.

In Sect. 2 the theory behind deep velocimetry has been 
described mathematically, indicating the important assump-
tions that are required for the method to work on images of 
integrated density fields. This theory is tested for a sim-
ple one-dimensional test case in Sect. 3, where we demon-
strate that deconvolving such integrated density fields is a 
highly accurate method of recovering the full distribution 
of velocities through the projection direction. Key control 
parameters are found to be the solids volume fraction, as 
well as depth of integrated material, with errors decreas-
ing as both are increased. We also compare the method to 
previous correlation-based approaches, showing that, for the 
one-dimensional test case, it is both more accurate and less 
computationally intensive. The new method is also fairly 
robust to the addition of image noise, again performing 
equally as well as previous methods up until the point where 
all approaches break down.

Section 4 then demonstrates how deep velocimetry can 
be applied to a more realistic projection-based imaging 
system, specifically x-ray radiography. In this case the 
x-ray detector measures the incident x-ray intensity, not 
the integrated material density directly. We show that 
deconvolving these intensity fields, which are a nonlin-
ear function of the integrated density D, again provides 
accurate reconstructions of the full velocity distributions, 
although some additional errors are introduced due to this 
nonlinearity. These additional errors can be avoided by 
taking logarithms L of the intensity fields before carry-
ing out the appropriate deconvolution. Since L is a linear 
function of D, the deconvolution process yields identical 
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results as deconvolving D directly. In all cases, a full study 
of the important parameters controlling the errors would 
be a worthwhile future exercise to establish the limitations 
and best practise for deep velocimetry applied to x-ray 
imaging.

The simulated test cases investigated in this paper all 
restrict the in-plane motion to one direction, whereas most 
real flows of interest will move in two in-plane directions. 
An important extension of the method is therefore to gen-
eralise the reconstructive procedure to account for gen-
eral planar motion. This remains an ongoing exercise due 
to the additional computational complexity that previous 
correlation-based methods do not face in 2D, as described 
in Sect. 4.4. Nevertheless, the promising results for deep 
velocimetry of one-dimensional motion strongly suggest 
that the extension is achievable and worth pursuing.

The method is tested experimentally in Sect. 5 using the 
controlled rotation of granular materials. Deep velocime-
try is able to reconstruct the key features of this motion, 
with the measured errors approximately twice those found 
for the equivalent artificial results. The corresponding dis-
tributions display some additional smoothing, which could 
be due to the inherent noise of the experimental measure-
ments as well as beam-hardening effects. It may be pos-
sible to quantify and explicitly correct for such factors to 
further improve the method in the future.

Deep velocimetry could also be applied to other projec-
tion-based imaging systems, which is discussed in Sect. 6. 
In all applications, the added value of full velocity distri-
butions, as opposed to the single modal quantities from 
classical PIV, is important, especially in systems with 
strong gradients in the out-of-plane direction. Further-
more, whilst a single projection direction does not give 
any information about where each velocity occurs in the 
out-of-plane direction, it may be possible to combine deep 
velocimetry with additional flow assumptions, for exam-
ple by considering axisymmetric systems (e.g. Pimenta 
et al. 2020), or with simultaneous imaging directions (as in 
x-ray rheography (Baker et al. 2018)) to reconstruct fully 
three-dimensional fields.
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