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A B S T R A C T   

Decoding of electroencephalogram brain representations is a powerful data driven technique to assess the stream 
of cognitive information processing. It could promote a more thorough understanding of cognitive control 
networks. For many years, the continuous performance task has been utilized to investigate impaired proactive 
and reactive cognitive functions. So far, mainly task performance and univariate electroencephalogram were 
involved in such investigations. In this study, we benefit from multi-variate pattern analysis of continuous 
performance task variations to provide a more complete spatio-temporal outline of information processing flow 
involved in sustained and transient attention and response preparation. Besides effects that are well in line with 
previous EEG research but could be described in more spatial and temporal detail by the used methods, our 
results could suggest the presence of a higher order feedback control system when expectations are violated. Such 
a feedback control is related to modulations of behavior both intra- and inter-individually.   

1. Introduction 

The Electroencephalogram (EEG) has been extensively used to study 
the neurocognitive basis underlying the behavioral results in neuro- 
cognitive tasks. These studies usually focus on the univariate analyses, 
(Luck, 2014) for example based on event-related potentials (ERP). 
However, such univariate analysis of the EEG signal relies on some hy-
pothesis about specific ERP components and their associations with 
specific cognitive functions. This means that the traditional ERP analysis 
would be limited to some pre-defined hypothesis. On the other hand, 
multi variate pattern analysis (MVPA) of the whole-brain EEG signal 
allows us to decode different experimental conditions based on the 
observed patterns of brain responses with minimum a-priori assump-
tions about a specific electrode or timing (Lotte et al., 2018; Fahrenfort 
et al., 2018; Cichy and Pantazis, 2017; Alizadeh et al., 2017). In addi-
tion, MVPA of the EEG signal provide a tool to look at the temporal 
dynamics of the neural activation pattern (Fahrenfort et al., 2018). 
Moreover, by MVPA it is possible to correlate different physiological or 
behavioral measures with the neural activation patterns (Fahrenfort 
et al., 2017; Fahrenfort et al., 2018). 

The Continuous Performance Task (CPT, (Halperin, 1991; Rosvold 
et al., 1956)) has been widely used to investigate neural cognitive dys-
functions in many mental diseases such as learning disorders (Dhar 

et al., 2010), attention-deficit hyperactivity disorder (ADHD, (Slobodin, 
2020; Nichols and Waschbusch, 2004)) and schizophrenia (Cohen and 
Servan-Schreiber, 1992; Elvevåg et al., 2000; Servan-Schreiber et al., 
1996). Usually, task scores such as accuracy rate, response time, omis-
sion and commission errors are considered as indicators of overall task 
performance. However, in order to effectively make use of CPT in 
clinics, it is necessary to have a clear understanding of what cognitive 
functions are involved and respectively influence the task performance 
(Borgaro et al., 2003; Riccio et al., 2002). MVPA enables us to decode 
and characterize the time course of cognitive functions involved in the 
CPT at each stage of information processing. 

Classically, in the CPT, subjects need to detect one specific rare letter 
among others letters in a sequence and report it by pressing a button. For 
example, random combinations of letters A / B and X / Y were presented 
and the subjects need to press a response button whenever an X letter 
appears on the screen. This classical version, usually called X-CPT 
(Rosvold et al., 1956), demands sustained attention and preparation of 
motor related functions only based on the target stimulus (Smid et al., 
2006). Several different versions of CPT exist, each engaging particular 
cognitive functions and requiring specific task interpretation (Eimer, 
1996, 1997). In a popular version of CPT, named AX-CPT (Cohen et al., 
1999), subjects should only report the target letter, if it is preceded by a 
pre-defined cue in the sequence of letters. Back to the example, the 
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subjects need to press a response button whenever an X letter appears 
after an A letter. This cue-target combination is rare in the experiment. 
The AX-CPT requires the participants to maintain goal-relevant infor-
mation from the previous stimulus in working memory to be able to 
decide whether to respond or not (Barch et al., 2001; Servan-Schreiber 
et al., 1996). A large number of modified versions of the X-CPT and AX- 
CPT have been used, with different frequencies of target stimuli and cue- 
target combinations. 

It has been proposed, that there are two distinct cognitive control 
networks for reactive and for proactive cognitive control (Braver et al., 
2009). In the case of reactive cognitive control, the cognitive functions 
are activated only when they are demanded, whereas with proactive 
cognitive control, cognitive functions relevant to the task are activated 
in advance of an explicit need of them (Braver, 2012). There are various 
theories about how reactive and proactive cognitive control is per-
formed during a CPT (Mäki-Marttunen et al., 2019). Smid et al. (2006) 
suggested that not just single dimensions of cognitive functions, but a 
two-dimensional operation of attention and response preparation drive 
reactive vs. proactive cognitive control. These main cognitive di-
mensions are also hypothesized to be related to working memory 
(Richmond et al., 2015; Smid et al., 2006; Barch et al., 2001) and include 
the ability to temporary keep information about a specific stimulus/ 
sequence of stimuli to decide about the correct response. While the X- 
CPT asks for sustained attention to a single predefined stimulus (for 
example the letter X), the AX-CPT needs attention to switch based on the 
cue information (the A cue tells if X is a target letter). Such switches of 
attention, specifically when focused on a specific stimulus feature (e.g. 
color or shape (Eimer, 1997)), is known to increase working memory 
load (Barch et al., 2001; Servan-Schreiber et al., 1996). As a conse-
quence, task performance was found to be decreased in the AX-CPT 
compared to the X-CPT (Smid et al., 2006; Wascher et al., 2020; Bor-
garo et al., 2003; Coons et al., 1981). The second dimension of cognitive 
functions is related to motor functions (Fallgatter, 2001; Ornitz et al., 
2001) and includes the ability to prepare for a response. The classical X- 
CPT request for sustained response preparation as every stimulus can be 
a potential target. However, in the AX-CPT, the cue gives information 
about whether the next stimulus is a potential target or not. Therefore, 
the AX-CPT allows for transient response preparation. It has been shown 
that response times decrease when response preparation is based on cue 
information, which is the case in AX-CPT compared to X-CPT (Smid 
et al., 2006; Wascher et al., 2020; Dias et al., 2003). CPT versions with 
different probabilities of cue/target combinations (Richmond et al., 
2015; Wascher et al., 2020) include statistical learning which might also 
affect whether allocation of attention and motor preparation is engaged 
in a rather proactive or reactive way. 

The cognitive functions involved in different versions of the CPT 
have been investigated in previous univariate EEG studies. It could be 
shown that selection negativity (SN) features significantly larger am-
plitudes in the X-CPT than in the AX-CPT (Smid et al., 2006; Eimer, 
1997; Smid et al., 1999). SN results from subtracting ERPs of stimuli 
with target-irrelevant from the stimuli with target-relevant feature. SN is 
most pronounced at recording sites over visual areas and usually starts 
140 ms after stimuli onset. It has been suggested that an increased SN 
latency and decreases in SN amplitude are associated with impaired 
target detection at early stage of visual processing (Eimer, 1996, 1997; 
Smid et al., 1999). In addition, Contingent Negative Variation (CNV) 
was only reported for the target relevant cue in AX-CPT and not 
following an target irrelevant cue (Smid et al., 2006). The CNV can be 
observed at around 500 ms after stimulus onset over the central areas 
and is hypothesized to reflect cognitive or motor preparation (Ulrich 
et al., 1998; Brunia, 1993). The Lateralized Readiness Potential (LRP) 
onset latency (Hackley et al., 1990; Smid et al., 2000; Leuthold et al., 
1996) also indicates response preparation. The LRP is evoked faster in 
the AX-CPT compared to the X-CPT (Smid et al., 2006). SN reflects visual 
selective processing of attended stimuli and both CNV and LRP show 
proactive response preparation. However, as mentioned earlier, these 

findings are limited on the hypothesis about some ERP components and 
their associations with specific cognitive functions. 

In the present study, we aimed for an integrated map of sensory and 
cognitive processes involved in sustained/transient attention and 
response preparation in the CPT task. We used a linear classifier (Cris-
tianini and Shawe-Taylor, 2000) and executed spatial and temporal 
decoding of the EEG signal in the CPT conditions. We performed vari-
ations of X-CPT and AX-CPT experiments (Richmond et al., 2015; 
Wascher et al., 2020) with fixed global and varying local probability of 
both cue and probe appearances. This means, each pair of relevant cue- 
target (i.e. A-X letters combination) and irrelevant cue – nontarget (i.e. 
B–Y letters combination) appeared 40% of the trails in the tasks, while 
the other two pairs of relevant cue – nontarget (i.e. A–Y letters combi-
nation) and irrelevant cue – target (i.e. B-X letters combination) each 
appeared in only 10% of trials. In our design, both A and B -cue have 
comparable novelty and validity for probe prediction. In addition, both 
target and non-target probes are expected with the same probability, 
and as a result one response is not more likely than the other one. 
Correspondingly, our CPTs differentiated between sustained and tran-
sient target detection (i.e. X-CPT vs. AX-CPT), as well as between im-
plicit (i.e. from statistical learning of cue-probe association) and 
implicit-explicit (i.e. both implicit by cue-target combination fre-
quencies and explicitly by task instructions) response preparation (again 
i.e. X-CPT vs. AX-CPT). Specifically, we tried to classify target relevant 
vs. target irrelevant cues in case of implicit (A vs. B -cue in X-CPT) and 
implicit-explicit (A vs. B -cue in AX-CPT) association with target. By 
that, we aim to decode proactive cognitive control starting after cue 
onset derived from implicit vs. explicit information. In addition, we tried 
to find out how target-probes vs. nontarget-probes are decodable in task 
conditions requiring sustained (AX vs. BY -probe in X-CPT) compared to 
transient attention (AX vs. BY -probe in AX-CPT). In particular, the 
target detection and proactive response programing could show 
different timing in these conditions. Moreover, we aimed to detect the 
effect of implicit vs. implicit-explicit target relevant cue on target-probes 
(AX-probe in X-CPT vs. AX -probe in AX-CPT) and nontarget-probes (AY- 
probe in X-CPT vs. AY-probe in AX-CPT). We expect to be able to decode 
sustained vs. transient attention and track the flow of information over 
time as well as being able to locate the cognitive functions involved in 
sensor space. In addition, we hypothesize that implicit vs. implicit- 
explicit response preparation generates decodable brain activity, and 
specifically expect to see that over the prefrontal areas (Fallgatter, 
2001). Moreover, we assume that the state of the brain while dealing 
with relevant cue – nontarget (i.e. A-Y letters combination) and irrele-
vant cue – target (i.e. B-X letters combination) can provide advantageous 
information about neural interaction involved in response inhibition in 
healthy brains, and such information can provide a reference to be 
compared to in the clinical conditions. 

2. Methods 

2.1. Participants 

The investigation is part of the ‘Dortmund Vital Study’ Project. The 
Dortmund Vital Study Project is a two days lasting evaluation that in-
cludes collection of multi-dimensional data to study interaction between 
human biological processes and environmental factors over the partic-
ipants' life span. We analyzed data from 460 healthy subjects (176 male) 
with an average age of 43.96 ± 13.73 years (age range: 20–70 years) 
with no history of neurological, cardiovascular, oncological or psychi-
atric diseases. 17 subjects (2 males; average age: 49.71 ± 12.39; age 
range: 25–67) were removed from the analysis due to EEG preprocessing 
criteria (see EEG recording section). 29 further subjects (13 males; 
average age: 45.14 ± 12.90; age range:20–67) were removed due to 
poor task performance (more than 50% commission or omission errors 
in one of the tasks) except for the analysis that are focused on the task 
performance relationship with the neural activation patterns (i.e. Fig. 7). 
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Participants provided informed written consent prior to the study and 
were reimbursed with 160 € for the two days procedure. The ethics 
committee of the Leibniz Research Centre for Working Environment and 
Human Factors (Dortmund, Germany) approved the study. 

2.2. Procedure 

Subjects were seated in a sound attenuated room on a comfortable 
armchair. Stimuli were presented on a 32 in., 1920 × 1080 pixels VSG 
monitor (Display++ LCD, M0250 & M0251) with 100 Hz refreshing rate 
Force sensitive handles recorded manual responses. The sequence of 
presentation and stimuli were generated with FreePascal software 
(https://www.freepascal.org/). 

The letters A or B were used as the cues, and X or Y as the probes. The 
letters were presented in gray color on a black background with height 
of 1◦ visual angle. The sequence of each task trial (Fig. 1) consisted of: 1) 
the cue (i.e. letter A or B) for 150 ms, 2) the inter stimuli interval (ISI) 
with a fixation cross at the center of the screen for 1850 ms, 3) the probe 
(i.e. letter X or Y) for 150 ms, and 4) the inter stimuli interval with a 
fixation cross at the center of the screen with a time window for 
responding of 1850 ms. 

Our experiment consisted of two main tasks: X-CPT and AX-CPT. For 
all the subjects, AX-CPT was performed before X-CPT. In the X-CPT, 
subjects were instructed to respond to the X-probe as a target regardless 
of the cue. In the AX-CPT, subjects were asked to respond to the X-probe 
only if it was preceded by an A-cue. 

Each task consisted of 240 trials. In both tasks, all the letters had an 
equal probability to appear globally but had different local probabilities. 
This means that the cue-probe pairs of AX and BY had a probability of 
40% while each cue-probe pair of AY and BX were less probable with 
only 10% appearance. The probes are labeled ‘AX-probe’, meaning an X 
probe following an A-cue, and ‘BX-probe’, meaning an X probe preceded 
by a B-cue. Likewise, ‘AY-probe’ means an Y probe following an A-cue, 
and BY-probe means a Y probe preceded by a B-cue. The participants 
were asked to respond with the thumb of the right hand to the targets. 
The subjects were also instructed to respond as quickly and accurately as 
possible. The behavioral responses were collected with a force key and 
were divided into correct responses, misses (omission errors), correct 
no-go trials without a response, or false responses in trials not requiring 
a response (commission errors). 

2.3. EEG recording 

The EEG data were recorded by means of a BrainVision Brainamp DC 
amplifier and BrainVision Recorder software (BrainProducts GmbH). 
The data were acquired with 1000 Hz sampling rate and were filtered 

online using a 200 Hz low-pass filter. We collected the signal by a 64- 
channel elastic cap arranged based on the 10–20 system, with FCz 
electrode as the on-line reference electrode. The preprocessing pipeline 
was based on EEGLAB (Delorme and Makeig, 2004) and MATLAB 
(MathWorks Inc. MATLAB, 2019a). The pipeline consisted of re- 
referencing the signal to the global average of all electrodes and high- 
pass filtering to 0.1 Hz. Next, bad channels were removed by using 
EEGLAB. ICA was used in order to detect artifacts. For that, EEG data 
were down-sampling to 250 Hz, filtered with a bandpass filter from 1 Hz 
to 40 Hz, segmented (− 200 to 900 ms around stimulus onset, baseline: 
− 200 ms to 0 ms), and bad epochs with poor data quality were rejected 
using EEGLAB. Then, ICA was applied on the remaining segments and 
resulting ICs weights were written back to the original (i.e. 1000 Hz 
sampling rate) data. Next, we classified ICs using ICLabel (Pion-Tona-
chini et al., 2019) and the rejected channels were interpolated. We 
created epochs of data locked to the cue (As and Bs) and the probe 
stimuli (Xs and Ys) ranging from − 200 ms to 700 ms relative to the 
respective stimulus, with a baseline period ranging from − 200 to 0 ms. 
In a second analysis (see supplementary results) the epochs ranged from 
− 200 to 3000 ms relative to the onset of the cue and covered both, cue 
and probe stimuli. Again, the period from − 200 to 0 ms served as a 
baseline. Then we detected and rejected epochs with poor data quality 
using EEGLAB. On average, 148 ± 58 epochs (out of 960) were rejected 
in the first and 106 ± 38 epochs (out of 480) were rejected in the second 
analysis. ICs with a likelihood of less than 30% to represent brain ac-
tivity and ICS with a likelihood of more than 30% to reflect ocular ar-
tifacts were removed from the signal (remaining 18 ± 6 ICs per subject). 
Subjects with less than 7 remaining ICs were excluded from further 
analyses (N = 17). 

2.4. Classification 

We trained linear binary support vector machine classifiers imple-
mented in MATLAB Statistics and Machine Learning Toolbox (Math-
Works Inc. MATLAB, 2019a) for both the spatial and temporal EEG 
signal. The regularization parameter (i.e. lambda) was automatically set 
to 1/number of observations, and both initial linear coefficients and 
initial intercept estimates were equal to zero. In general, we classified 
the data in two ways. We classified the data in the spatial domain to get a 
temporal representation of decoding accuracy and also in the temporal 
domain to get a topographical representation of decoding accuracy. For 
the classification in the spatial domain, we averaged every 5 timepoints 
without overlap and did the classification for each of these averaged 
time-points using the data of all electrodes. For the classification in the 
temporal domain, we did the classification based on 100 ms wide time 
window with 40% overlap, separately for each electrode. For the latter, 

Fig. 1. Stimuli and trials design. Each trial consisted of 150 ms cue, 1850 ms ISI, 150 ms probe, and 1850 ms response collection, successively.  
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the dimensionality of the data was also reduced to 80% variance (Jol-
liffe, 2002) using Principal Component Analysis (PCA). For both spatial 
and temporal classifications, we trained 6 different linear classifiers 
based on the trials of the following conditions: 1) A vs. B -cue in X-CPT to 
find the difference between cues with higher probability vs. cues with 
lower probability of target appearance after them. 2) A vs. B -cue in AX- 
CPT to figure out information coding difference between target relevant 
and target irrelevant cues prior to the probe. 3) AX vs. BY -probe in X- 
CPT and 4) AX vs. BY -probe in AX-CPT to detect the difference between 
target and nontarget probes. 5) AX-probe in X-CPT vs. AX -probe in AX- 
CPT to find the effect of implicit vs. explicit target relevant cue on the 
following target probe. 6) AY-probe in X-CPT vs. AY-probe in AX-CPT to 
find the effect of implicit vs. explicit target relevant cue on the following 
nontarget probe. For the second analysis with longer epochs covering 
cue and probe (presented in the supplementary material), classifications 
of 1 and 2 are a part of number 3 to 6 classifications. Finally, we pre-
dicted AY and BX -probe based on the classification of AX vs. BY -probe 
for both X-CPT ad AX-CPT. The results are the probability of AY-probe to 
be classified as AX-probe vs. the probability of the AY-probe to be 
classified as BY-probe at each time point and for each subject. The same 
prediction analysis was done for the BX-probe based on AX and BY 
-probe classifier. We normalized the prediction value by accuracy of AX 
vs. BY -probe classification. By this way, if the AX and BY -probe clas-
sifier was poor in accuracy, it would not have a significant effect on the 
final prediction results. The normalization was done by multiplying the 
prediction value with AX vs. BY -probe accuracy in each time point and 
for each subject. Moreover, as an additional analysis, we grouped the 
classification results into 3 groups based on the subjects' task perfor-
mance (i.e. one fifth best, on fifth worst performance and rest of the 
subjects based on the average commission errors of each subject). 

We applied linear classification implementation of MATLAB Statis-
tics and Machine Learning Toolbox (MathWorks Inc. MATLAB, 2019a) 
with 85% of trials for training and 15% for the test. If there were not 
equal sample sizes in classification conditions, we used uniform random 
up-sampling of the smaller sample size with replacement to make the 
number of trials in the training data equal. The order of the training 
trials of all conditions were randomized (Bengio, 2012). The number of 
trials in the test data for both conditions was always 15% of the larger 
sample size and never up-sampled for any condition. 

2.5. Statistical analysis 

We applied t-tests using MATLAB (MathWorks Inc. MATLAB, 2019a) 
with the significance level set to 0.05 to compare response times and 
classification accuracy between conditions. We corrected the p values 
for multiple comparison of time points and electrodes by means of the 
false discovery rate method (Benjamini and Hochberg, 1995) imple-
mented in MATLAB (MathWorks Inc. MATLAB, 2019a). For classifica-
tion, statistical test was done to find the electrodes or time points with 
significantly higher accuracy than the chance level (i.e. 50%). In all our 
classifications, we do a classification of two groups with equal number of 
samples for testing, therefore we consider 50% accuracy as the chance 
level. The electrodes locations maps are presented only for 100 ms, 200 
ms and 380 ms which were the most informative time points to track 
changes in the pattern of accuracies. However, for the task performance 
analysis (i.e. Fig. 7) three additional timepoints of 140 ms, 260 ms and 
280 ms are also considered. In order to provide an independent statis-
tical comparison of conditions based on task performance (i.e. Fig. 7), 
we selected target clusters of electrodes, before dividing the data based 
on the performance conditions (i.e. Fig. 6d for AY-Probe). We targeted 
for a cluster with highest values of electrodes located over central areas 
at 100 ms (P1, CP3, CP1, Pz, CPz, P3, CP2, P2, FT10, CP4, POz), as well 
as, a cluster of electrodes with negative value sited over the prefrontal 
areas at 380 ms (F3, Fz, F4, FC5, FC1, AF3, AF4, F5, F1, F2, FC3). 

3. Results 

3.1. Behavioral results 

Behavioral results show less (t(442) = 7.00, p < 0.001) omission 
errors (only for AX-probe trials) in X-CPT (error: 2.78 ± 5.36%) 
compared to AX-CPT (error: 4.80 ± 6.80%). Similarly, the rate of 
commission errors (for AY-probe trials) was lower (t(442) = 7.51, p <
0.001) in the X-CPT (error: 9.67 ± 15.26%) compared to the AX-CPT 
(error: 14.82 ± 17.97%). However, response times (for AX-probe tri-
als) were faster (t(442) = 16.91, p < 0.001) for the AX-CPT (361.19 ±
74.34 ms) compared to the X-CPT (406.82 ± 83.02 ms). 

In addition, in the X-CPT, we found significantly faster (t(442) =
13.11, p < 0.001) responses time after A-cue (406.82 ± 82.02) than B- 
cue (427.33 ± 85.06). Moreover, the commission error rates after A-cue 
(error: 9.67 ± 15.26%) was higher (t(442) = 4.20, p < 0.001) compared 
to B-cue (error: 8.29 ± 12.55%). However, the omission error rates after 
B-cue (error 3.17 ± 6.91%) was not significantly higher (t(442) = 1.53, 
p = 0.13) than after an A-cue (error 2.78 ± 5.31%). 

3.2. Classification: A vs. B − cue in the X-CPT and AX-CPT 

We applied linear classification to classify different trial conditions. 
For X-CPT, we performed both spatial and temporal classifications of A 
vs B -cue for each subject, and averaged classification results across all 
subjects. Such classifications will show how the implicit relevance of cue 
and target probe association is coded in the brain. Spatial classification 
showed above 50% classification accuracy mainly between 105 ms to 
465 ms, with a peak at 165 ms after stimuli onset (Fig. 2a). Fig. 2b shows 
the temporal classification which highlights an early above-chance ac-
curacy over sensory areas (100 ms after stimulus onset). 

For AX-CPT, again we applied both spatial and temporal classifica-
tions for each subject and averaged classification results across all sub-
jects. In this way, we tried to find where and when, the activation 
pattern of cues with explicit association with target vs. nontarget probes 
are decodable. Spatial classification showed longer above chance clas-
sification accuracy than X-CPT (Fig. 2c). This effect started around 100 
ms after stimulus onset and lasted to the end of the analyzed time points 
(i.e. 700 ms after stimulus onset), with peak at 395 ms. Fig. 2d shows the 
temporal classification of accuracy that, in addition to the early above- 
chance accuracy over posterior sensory areas, is significantly above 
chance over posterior visual areas at 200 ms and frontal areas at 380 ms 
after stimulus onset. 

Fig. 2e shows the difference by simple subtracting each subject data 
in subplot a from the data in subplot c. The difference of A vs. B -cue 
classification in AX-CPT minus X-CPT is significant from 235 ms after 
stimulus onset until the end of the analyzed time points with peak at 380 
ms. This difference last even after 700 ms (see Supplementary Fig. 1) 
after stimulus onset. 

3.3. Classification: AX vs. BY -probe in the X-CPT and AX-CPT 

Fig. 3a shows the spatial classification of AX vs. BY -probe in the X- 
CPT. This classification detects the difference between most probable 
target and nontarget probes, where cue is not explicitly, but yet 
implicitly relevant. Spatial classification showed above 50% classifica-
tion accuracy starting at 95 ms, with the peak at 425 ms after stimulus 
onset. Fig. 3b shows the spatiotemporal pattern of classification. The 
spatiotemporal pattern shows above chance classification over posterior 
sensory areas at 100 ms that switches to mostly left partial recording 
sites at 380 ms after the stimulus onset. 

For the AX-CPT, classification decoded activation pattern of target 
vs. nontarget probes, in the case that cue is explicitly relevant. Spatial 
classification showed earlier above-chance classification accuracy 
compared to the X-CPT that started around 80 ms after stimulus onset, 
with peak at 540 ms (Fig. 3c). Fig. 3d shows the temporal classification 
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of accuracy that is similar to the X-CPT at 100 ms, but shows higher 
accuracy at 200 ms and 380 ms over parietal areas. 

The difference between AX vs. BY -probe classification in AX-CPT 
minus X-CPT (Fig. 3e) is significant from 100 ms until the end of the 
analyzed time points, with a peak at 230 ms. 

Similar analyses of spatial classification when cue and probe are 
segmented together are presented in the supplementary materials 
(Supplementary Fig. 1). 

3.4. Classification: AX-probe of the X-CPT vs. AX-probe of the AX-CPT 

We classified the AX-probe pattern from the X-CPT vs. the AX-probe 
pattern from the AX-CPT. With this classification, we aimed to detect the 
effect of implicit vs. explicit target relevant cue on the following target 
probe. More specifically, we want to see how proactive effect of an 
explicit cue would enhance target detection and response programing. 
Spatial classification showed above 50% classification accuracy starting 

around 95 ms after stimulus onset, with a peak at 395 ms (Fig. 4a). 
Temporal classification shows the highest accuracy at 200 ms, with a 
peak over centro-parietal areas (Fig. 4b). 

Spatial classification when cue and probe are segmented together is 
presented in supplementary materials (Supplementary Fig. 2). 

3.5. Classification: AY-probe of the X-CPT vs. AY-probe of the AX-CPT 

To see the effect of implicit vs. explicit target relevant cue on the 
following nontarget probe, we classified AY-probe in X-CPT vs. AY- 
probe in AX-CPT. This shows, the proactive effect of explicitly rele-
vant cue on both stimuli detection and reactive inhibition of response 
programing. Fig. 5a shows above 50% spatial classification accuracy 
starting around 140 ms after stimulus onset, with a peak at 395 ms. 
Temporal classification shows above-chance accuracy at 380 ms after 
stimulus onset, with a peak in accuracy over central areas (Fig. 5b). 

Spatial classification of the longer segments containing both cue and 

Fig. 2. A vs. B -cues classification for 
both X-CPT and AX-CPTs. a) Spatial 
classification of A vs. B -cues in X-CPT. 
b) Topological map of temporal classi-
fication for A vs. B -cues in X-CPT at 100 
ms, 200 ms and 380 ms. c) Spatial 
classification of A vs. B -cues in AX-CPT. 
d) Topological map of temporal classi-
fication for A vs. B -cues in AX-CPT. In 
the spatial classifications, significant 
timepoints above chance (i.e. 50%) and 
in the topological map significant elec-
trodes are highlighted with red color. 
(For interpretation of the references to 
color in this figure legend, the reader is 
referred to the web version of this 
article.)   
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probe is visualized in Supplementary Fig. 3. 

3.6. Prediction: AY and BX -probe predictions based on AX vs. BY -probe 
classification in X-CPT 

In the X-CPT, we tried to predict how the AX vs. BY -probe classifi-
cation model will assign AY or BX -probe to the learned conditions. AX 
and BY -probe are samples of clear, non-confusing target and nontarget, 
respectively, with the highest probability to appear in the experiment. 
This means, by having a classification model about more probable and 
non-confusing cases of AX and BY -probes, can we get information about 
how similar AY and BX conflicting probes are to the more probable 
cases? More specifically, is AY-probe perceived more similar to a non- 
confusing target (AX-probe) or to a non-confusing nontarget case (BY- 
probe)? The same question applies to the BX-probe. Spatial prediction 
showed there is a higher probability that an AY-probe is interpreted as a 

BY-probe (Fig. 6a). For the AY-probe, the significant time window 
started at 85 ms, with a peak of similarity to the BY-probe condition at 
410 ms after stimulus onset. The BX-probe condition was more similar to 
the AX-probes and this similarity started at 70 ms and peaked at 400 ms 
after stimulus presentation. Temporal classification showed comparable 
results with spatial classification and showed an early similarity over 
posterior visual areas and a later corresponding effect over left frontal 
areas (Fig. 6b). 

3.7. Prediction: AY and BX -probe predictions based on AX vs. BY -probe 
classification in AX-CPT 

A similar prediction analysis was done for the AX-CPT. Spatial pre-
diction showed somehow mixed similarity of the AY-probe condition to 
both the AX and BY -probes (Fig. 6c). AY-probe was similar AX-probe 
mainly at 145 ms to 255 ms, and later at 330 ms to 345 ms after 

Fig. 3. AX vs. BY -probes classification 
for both X-CPT and AX-CPTs. a) Spatial 
classification of AX vs. BY -probes in X- 
CPT. b) Topological map of temporal 
classification for AX vs. BY -probes in X- 
CPT. c) Spatial classification of AX vs. 
BY -probes in AX-CPT. d) Topological 
map of temporal classification for AX 
vs. BY -probes in AX-CPT. In the spatial 
classifications, significant timepoints 
above chance and in the topological 
map significant electrodes are high-
lighted with red color. (For interpreta-
tion of the references to color in this 
figure legend, the reader is referred to 
the web version of this article.)   
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stimuli onset, with a peak of similarity at 335 ms. However, at 105 ms to 
125 ms after stimulus onset, the AY-probe condition was most similar to 
the BY-probes, with a peak at 115 ms. As expected, temporal classifi-
cation showed a similarity to the BY-probe condition mostly over visual 
areas at around 100 ms after stimulus onset (Fig. 6d). The BX-probes 
were more similar to the AX-probes mainly between 85 and 130 ms, 
with a peak at 110 ms. However, at later stages, the BX-probes showed 
more similarity to the nontarget BY-probes, with a start at 115 ms and a 
peak at 500 ms after stimulus onset. 

To control whether the subjects' task performance is linked to dif-
ferences in patterns of the prediction analyses, we split the subjects into 
3 groups based on their commission error rate. The one fifth of the 
subjects with least and one fifth of the subjects with most commission 
errors were analyzed separately. Fig. 7a and b show the prediction for 
the spatiotemporal pattern of the AY-probe, based on correct trials 
(comparable to Fig. 6d) for 20% of subjects with the least (a) and 20% of 
subjects with the most commission errors (b), respectively. At 260 ms 
and 280 ms after stimulus onset, despite the difference in the visual 
pattern, the similarity to nontarget BY-probe was not significantly 
different between these two conditions, for the independently pre- 
selected cluster over the prefrontal area (based on negative cluster in 
Fig. 6d, see Methods). Moreover, for 20% of the subjects with the worst 
task performance (i.e. highest commission error), we further predicted 
the spatiotemporal pattern of AY-probe for incorrect trials (Fig. 7c). We 
compared the correct (a) and incorrect (c) AY-trials for the subject with 
the lowest and highest commission errors. Based on the independent 
pre-selection cluster of electrodes over central areas (highest value 

cluster in Fig. 6d, see Methods), similarity of AY-probe to AX-probe was 
larger (t(174) = 2.72, p < 0.004) for incorrect trials of the subjects with 
highest commission error (Fig. 7c) compared to correct trials of the 
subjects with lowest commission error (Fig. 7a) at 140 ms. In addition, at 
260 ms, for pre-selected cluster of electrodes over prefrontal area (based 
on negative value cluster in Fig. 6d), similarity of AY-probe to BY-probe 
was larger (t(174) = 1.91, p < 0.03) for correct trials of the subjects with 
lowest commission error (Fig. 7a) compared to incorrect trials of the 
subjects with highest commission errors (Fig. 7c). To further test the 
robustness of our results to percentile selection, we repeated the per-
formance effect analysis for division of the subjects into two groups. We 
median split the subjects based on their performances, and our analysis 
lead to comparable results with the 20% extreme divisions. 

4. Discussion 

In the present study, the participants performed in versions of the X- 
CPT and AX-CPT neurocognitive tasks with fixed global but varying 
local probabilities of cue and probe appearances. We collected behav-
ioral and EEG data from a large sample size of healthy subjects (N = 460) 
to learn about reactive and proactive cognitive control mechanisms 
involved in these tasks (Lesh et al., 2013; Polizzotto et al., 2018; Mäki- 
Marttunen et al., 2019; Gonthier et al., 2016). Our versions of the X- 
CPTs and AX-CPT tasks were designed to require various cognitive 
processes related to attention and response preparation (Lewis et al., 
2017; Smid et al., 2006). In the task versions deployed, the X-CPT is a 
sustained attention and implicit transient response preparation task and 

Fig. 4. AX -probes classification in X-CPT vs. AX-CPTs. a) Spatial classification. b) Topological map of the temporal classification at 100 ms, 200 ms, and 380 ms. In 
the spatial classifications, significant timepoints above chance and in the topological map significant electrodes are highlighted with red color. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. AY -probes classification in X-CPT vs. AX-CPTs. a) Spatial classification. b) Topological map of temporal classification at 100 ms, 200 ms, and 380 ms. In the 
spatial classifications, significant timepoint above chance and in the topological map significant electrodes are highlighted with red color. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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the AX-CPT is a transient attention and both implicit and explicit 
response preparation task (Smid et al., 2006). Previous research on CPT 
variations concentrates on how sustained and transient attention and 
response preparation are reflected in behavioral performance as well as 
in various ERP components (Karamacoska et al., 2019; Wascher et al., 
2020; Lau-Zhu et al., 2019; Smid et al., 2006). Our aim was to utilize 

artificial intelligence techniques to expand our current knowledge about 
the cognitive processes involved. However, in order to interpret the 
results properly, it is important that the electrophysiological data are 
comparable to previous studies deploying a similar design. Fig. 8 depicts 
the ERP wave-forms for the electrodes FCz and Pz for X and Y -probes in 
both X-CPT and AX-CPT. Regarding the ERPs, recent findings could be 

Fig. 6. Prediction of AY and BX -probes based on classification of AX-probe vs. BY-probe. a) Spatial perdition of AY and BX -probe in X-CPT. b) Spatiotemporal 
prediction of AY and BX -probe in X-CPT. c) Spatial perdition of AY and BX -probe in AX-CPT. d) Spatiotemporal pattern of AY and BX -probe predictions in AX-CPT. 
In the spatial prediction, significant timepoints above zero and in the topological map significant electrodes are highlighted with red color. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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replicated (cf. Wascher et al., 2020). 
Our results show that A and B -cues could be classified (Fig. 2) early 

in both the X-CPT and AX-CPT versions. These classification results 
could at least partially be an evidence for implicit statistical information 
learning carried by the cues. In this way, in the X-CPT we could see 
significant decodability of the neural activation patterns of A vs. B -cue 
(Fig. 2a–b) over the occipital areas. Such finding is also in line with our 
behavior results which shows faster responses time after A than B -cue, 
higher commission errors after A vs B -cue, and higher omission errors 
after B vs. A- cues in X-CPT. Moreover, our behavioral results show that 
despite less commission and omission errors, the response time was 
slower in the X-CPT compared to the AX-CPT (Smid et al., 2006; 
Wascher et al., 2020; Dias et al., 2003). Our classification results show 
that when the cue also explicitly defines the target stimulus (AX-CPT), 
the detectability of brain states starts immediately after the visual pro-
cessing of the cues (Fig. 2) and even lasts during the inter-stimulus in-
tervals (Supplementary Fig. 1). This detectability is not evident when 
the cue is not explicitly relevant for defining the target stimulus (X-CPT). 
Such a clear activation pattern classification in the AX-CPT which is 
mainly observed over frontal areas after cue presentation and before 
probe onset (Fig. 2) could be associated with very early proactive 
response programming (Richmond et al., 2015; Redick, 2014). In line, 
previous ERP findings report CNV reflecting cognitive or motor prepa-
ration (Ulrich et al., 1998; Brunia, 1993) after the target-related A-cue, 
but not the B-cue in AX-CPT (Smid et al., 2006). 

In addition, in both the X-CPT and AX-CPT, the most probable target 
(AX-probe) and nontarget (BY-probe) probes were decodable over pos-
terior areas early after stimulus presentation (Fig. 3). However, this 

decodability was larger in the AX-CPT and continued until response 
generation (200 ms) over central and partial sites. Around the time of 
response generation (380 ms), again for both the X-CPT and AX-CPT, the 
two probes were decodable over the left frontal and parietal cortex, 
respectively, albeit with larger values in AX-CPT. At 380 ms, the X-CPT 
showed significant detectability over the lateral frontal cortex, as well. 
In general, target vs. nontarget detectability seems to be mainly different 
in the X-CPT compared to the AX-CPT from 150 ms to 350 ms after 
stimulus onset (Fig. 3e), which could reflect a difference in response 
preparation between these two tasks. However, the detection of AX vs. 
BY -probes differed significantly between the two tasks already around 
100 ms after stimulus onset. We hypothesize that such an early differ-
ence in activation patterns in response to the probe-stimuli could be 
associated with different levels preparation provided by the cue (Bat-
tistoni et al., 2017) in sustained vs. transient attention conditions. In 
addition, previous studies (Smid et al., 2006; Wascher et al., 2020; Dias 
et al., 2003) suggested that transient response preparation led to faster 
task performance. However, in our design, both the X-CPT and AX-CPT 
request for transient response preparation. Therefore, the faster 
response times in the AX-CPT compared to the X-CPT could originate 
from an explicit transient response preparation in the AX-CPT. To 
directly compare the effect of implicit and explicit transient response 
preparation on task performance, another classical X-CPT study with 
similar local and global target probability is needed. Moreover, we could 
see the classification difference for target and nontarget activation 
patterns between the X-CPT and AX-CPT even at a time after the average 
response time (Fig. 3e). This might be due to individual difference in 
response time or might reflect difference in preparation for the next cue 

Fig. 7. Split of the subjects AY-probe 
prediction based on their overall com-
mission error rate in AX-CPT and indi-
vidual trials performances. The 
temporal pattern of AY-probe predic-
tion based on the correct trials (com-
parable to Fig. 6d) for 20% of the 
subjects with least (a) and 20% of the 
subjects with most (b) commission er-
rors. c) The temporal pattern of AY- 
probe prediction based on incorrect 
trials for 20% of the subjects with the 
most commission errors. The temporal 
patterns are presented at 100 ms, 140 
ms, 200 ms, 260ms, 280 ms and 380 ms. 
All the predictions are based on AX vs 
BY -probe classifier trained on the cor-
rect trials. Significant electrodes with 
values higher than zero highlighted 
with red color. (For interpretation of the 
references to color in this figure legend, 
the reader is referred to the web version 
of this article.)   
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detection when the cue is task relevant vs. when it is not task relevant. 
Although the AX-probe was a probable target in both X-CPT and AX- 

CPTs, it still produced different activation patterns for the two tasks 
which were detectable mainly around time periods that are related to 
higher-level attentional processing and response preparation (200 ms) 
and over centro-parietal cortex (Fig. 4). Also, the AY-probes nontarget in 
both tasks created different EEG patterns at 200 ms, but mainly around a 
time window that might be to higher extend related to response gen-
eration (380 ms after stimulus onset) over central recording sites 
(Fig. 5). Such a higher detectability of response patter could be due to 
response preparation and action planning in AY-probes in AX-CPT. 
Principally, the X-CPT requests for a sustained attention and probably 
needs less working memory load for task control than the AX-CPT 
(Braver, 2012). In addition, such a sustained attention is associated 
with less commission and omission errors in X-CPT compared to AX-CPT 
(Smid et al., 2006; Wascher et al., 2020; Borgaro et al., 2003; Coons 
et al., 1981). Findings from ERP studies indicate that this higher target 
detection performance originates from better visual selective processing 
which is reflected in larger SN amplitude in the X-CPT compared to the 
AX-CPT (Smid et al., 2006; Eimer, 1997; Smid et al., 1999). Our clas-
sification results confirm that, even at very early stages of processing 
(starting from 95 ms after stimuli onset), the AX-probe generates 
different activation patterns in the X-CPT compared to the AX-CPT. 
From temporal classification view this detectability around 100 ms is 
mainly over the occipital areas (Fig. 4). Similarly, the AY-probe 

provoked a detectable pattern in the X-CPT compared to the AX-CPT, 
starting already at 140 ms after stimulus onset (Fig. 5). In these cases, 
the cue before the two probes are probable, and carry statistical infor-
mation that is directly linked to target expectation. However, the dif-
ference comes from different level of proactive readiness for potential 
target due to the explicit instructions in the two X-CPT vs. AX-CPT. 

Furthermore, it was possible to predict the EEG response pattern for 
rare probes (i.e. AY-probes and BX-probes) based on what has been 
learned from probable AX and BY -probes (Fig. 6). As anticipated for the 
X-CPT, AY-probes generated a pattern similar to BY-probes, and BX- 
probes generated a pattern similar to AX-probes, as the cues were 
explicitly task-irrelevant. This similarity was observable initially over 
occipital cortex and later over the left frontal cortex. However, in the 
AX-CPT, AY-probes showed a different similarity pattern than in the X- 
CPT. Although AY-probes generated a similar pattern to BY- probes at 
100 ms over posterior areas, they showed a strong similarity in EEG 
patterns to AX-probes over central and parietal recording sites. 
Concurrently, at 380 ms AY-probe generated a similar pattern to BY- 
probe over the frontal cortex. In the X-CPT, as the cue was not explic-
itly but only implicitly relevant, the AY-Probe was detected as a BY- 
probe, and the BX-probe was detected as an AX-probe. In fact, the im-
plicit information coming from the local statistics of the cue did not seem 
to affect or make difference between the probable vs. non-probable 
probes. However, in the AX-CPT, where the cue was both implicitly 
and explicitly relevant, the AY-probe was detected as a BY- probe over 

Fig. 8. Average ERPs for two selected electrodes across all subjects in X-CPT and AX-CPT. a) ERPs of FCz electrode for X-probes (i.e. AX-probe and BX-probe), b) 
ERPs of FCz electrode for Y-probes (i.e. BY-probe and AY-probe), c) ERPs of Pz electrode for X-probes, and d) ERPs of Pz electrode for Y-probes. The shades show 
standard error of means. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the occipital areas at 100 ms following stimulus presentation. A task 
relevant A-cue did not seem to make a delay in this detection compared 
to the detection of BX-probes. But later, due to response expectation 
based on the explicit cue, the AY-probes were more similar to the AX- 
probes, specifically before response generation. Our temporal classifi-
cation showed similar confusion mainly focused over parietal areas 
(Fig. 6d). In addition, the AY-probes featured a pattern similarity to the 
BY-probes over the frontal cortex. This might be related to the inhibition 
of response generation in this nontarget condition. Such a finding might 
indicate the presence of a higher order feedback control system involved 
in the processes associated with violation of expectations. 

To better investigate if the AY-probes pattern similarity to BY-probes 
over the frontal cortex might be related to response inhibition in the AX- 
CPT, we further grouped our analysis based on the subjects' task per-
formance. We compared three conditions including correct trials of 
subjects with least commission errors (Fig. 7a), correct trials of subjects 
with most commission errors (Fig. 7b), and incorrect trials of subjects 
with most commission errors (Fig. 7c). In this way, the similarity of the 
AY-probe to the BY-probe was higher for the pre-selected cluster of 
electrodes over the pre-frontal area in the correct trials of subjects with 
overall least commission errors vs. incorrect trials of the subjects with 
most commission errors at 260 ms (Fig. 7a vs. c). Based on comparison of 
overall patterns in these three groups (Fig. 7a–c), we hypothesize, that 
higher similarity to BY-probe is linked to a more pronounced inhibitory 
feedback control that suppresses response preparation in case of 
confusing cue in the subjects with lower vs. higher commission errors. 
Besides, for the pre-selected cluster over the parietal areas, early (i.e. 
140 ms after stimuli onset) similarity of AY-probe to AX-probe was 
higher for incorrect trials of subjects with most commission errors than 
the correct trials of subjects with least commission errors. This result 
intimate that not only a top down control, but also an initially higher 
tendency of response preparation is an influential factor on the task 
performance. 

Our current study has some limitation as well. First, considering the 
early decoding accuracy, there is a possibility that other underlying 
processes, such as lower-level differences in perception also play role in 
the decoding of activation patterns. In future directions, a design 
including more than one non-target cue has the potential to better 
compare the effect of attention difference vs. perceptual processing. In 
this way, we expect that the difference between decoding of target- 
relevant vs. non-target cues and decoding of two non-target cues 
mostly be related to attention differences compared to perceptual pro-
cessing. Second, in our design, AX-CPT was performed before X-CPT. 
Therefore, AX-CPT might have some aftereffect on X-CPT. For example, 
the implicit statistical information of cue-probe associations which are 
learned during AX-CPT, might be present from beginning of X-CPT. 
However, we do not expect such an aftereffect have a large impact on 
our results. Third, we used SVM for our classifications. SVM is a robust 
classification method when the data has several dimensions and mini-
mum knowledge is available about the nature of the data. However, 
SVM is computationally demanding, it is not easy to interpret the model, 
and selection of the kernel function is not often easy to be optimized 
(Auria and Moro, 2008; Bhavsar and Panchal, 2012). 

To conclude, with the new perspective based on machine learning 
methods, we tried to characterize the CPT related cognitive control 
functions at each stage of information processing. Our MVPA revealed 
both spatial and temporal properties of sustained vs. transient attention 
and response preparation. In addition, our findings could suggest the 
presence of a higher order feedback inhibitory control that regulates 
initial proactive response preparation. Such an inhibitory mechanism 
seems to affect both overall task performance as well as performance of 
each trial. Moreover, the balance between the initial proactive response 
preparation and later reactive inhibitory mechanisms seems to play a 
key role in the task outcome. Therefore, our more complete map of 
cognitive functions involved in the CPT has the potential to provide EEG 
based markers in future clinical applications (Braver et al., 2005; Barch 

et al., 2001; MacDonald and Carter, 2003; Slobodin, 2020). 

Acknowledgments 

We would like to thank people who organized and collected data for 
the Dortmund Vital Study. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijpsycho.2021.06.012. 

References 

Alizadeh, Sarah, Jamalabadi, Hamidreza, Schönauer, Monika, Leibold, Christian, 
Gais, Steffen, 2017. Decoding cognitive concepts from neuroimaging data using 
multivariate pattern analysis. NeuroImage 159, 449–458. https://doi.org/10.1016/ 
j.neuroimage.2017.07.058. 

Auria, Laura., Moro, Rouslan A., 2008. Support Vector Machines (SVM) as a Technique 
for Solvency Analysis. 

Barch, D.M., Carter, C.S., Braver, T.S., Sabb, F.W., MacDonald, A., Noll, D.C., Cohen, J. 
D., 2001. Selective deficits in prefrontal cortex function in medication-naive patients 
with schizophrenia. Arch. Gen. Psychiatry 58 (3), 280–288. https://doi.org/ 
10.1001/archpsyc.58.3.280. 

Battistoni, Elisa, Stein, Timo, Peelen, Marius V., 2017. Preparatory attention in visual 
cortex. Ann. N. Y. Acad. Sci. 1396 (1), 92–107. https://doi.org/10.1111/ 
nyas.13320. 

Bengio, Yoshua, 2012. Practical recommendations for gradient-based training of deep 
architectures. Available online at. https://arxiv.org/abs/1206.5533. 

Benjamini, Yoav, Hochberg, Yosef, 1995. Controlling the False Discovery Rate: A 
Practical and Powerful Approach to Multiple Testing, pp. 289–300. 

Bhavsar, Himani, Panchal, Mahesh H., 2012. A Review on Support Vector Machine for 
Data Classification. 

Borgaro, Susan, Pogge, David L., DeLuca, Victoria A., Bilginer, Lale, Stokes, John, 
Harvey, Philip D., 2003. Convergence of different versions of the continuous 
performance test: clinical and scientific implications. J. Clin. Exp. Neuropsychol. 25 
(2), 283–292. https://doi.org/10.1076/jcen.25.2.283.13646. 

Braver, Todd S., 2012. The variable nature of cognitive control: a dual mechanisms 
framework. Trends Cogn. Sci. 16 (2), 106–113. https://doi.org/10.1016/j. 
tics.2011.12.010. 

Braver, Todd S., Satpute, Ajay B., Rush, Beth K., Racine, Caroline A., Barch, Deanna M., 
2005. Context processing and context maintenance in healthy aging and early stage 
dementia of the Alzheimer’s type. Psychol. Aging 20 (1), 33–46. https://doi.org/ 
10.1037/0882-7974.20.1.33. 

Braver, Todd S., Paxton, Jessica L., Locke, Hannah S., Barch, Deanna M., 2009. Flexible 
neural mechanisms of cognitive control within human prefrontal cortex. In: 
Proceedings of the National Academy of Sciences of the United States of America, 
pp. 7351–7356. https://doi.org/10.1073/pnas.0808187106. 

Brunia, C.H., 1993. Waiting in readiness: gating in attention and motor preparation. 
Psychophysiology 30 (4), 327–339. https://doi.org/10.1111/j.1469-8986.1993. 
tb02054.x. 

Cichy, Radoslaw Martin, Pantazis, Dimitrios, 2017. Multivariate pattern analysis of MEG 
and EEG: a comparison of representational structure in time and space. NeuroImage 
158, 441–454. https://doi.org/10.1016/j.neuroimage.2017.07.023. 

Cohen, J.D., Servan-Schreiber, D., 1992. Context, cortex, and dopamine: a connectionist 
approach to behavior and biology in schizophrenia. Psychol. Rev. 99 (1), 45–77. 
https://doi.org/10.1037/0033-295x.99.1.45. 

Cohen, J.D., Barch, D.M., Carter, C., Servan-Schreiber, D., 1999. Context-processing 
deficits in schizophrenia: converging evidence from three theoretically motivated 
cognitive tasks. J. Abnorm. Psychol. 108 (1), 120–133. https://doi.org/10.1037// 
0021-843x.108.1.120. 

Coons, H.W., Peloquin, L.J., Klorman, R., Bauer, L.O., Ryan, R.M., Perlmutter, R.A., 
Salzman, L.F., 1981. Effect of methylphenidate on young adult’s vigilance and event- 
related potentials. Electroencephalogr. Clin. Neurophysiol. 51 (4), 373–387. https:// 
doi.org/10.1016/0013-4694(81)90101-2. 

Cristianini, Nello, Shawe-Taylor, John, 2000. An Introduction to Support Vector 
Machines. And Other Kernel-based Learning Methods/Nello Cristianini and John 
Shawe-Taylor. Cambridge University Press, New York.  

Delorme, Arnaud, Makeig, Scott, 2004. EEGLAB: an open source toolbox for analysis of 
single-trial EEG dynamics including independent component analysis. J. Neurosci. 
Methods 134 (1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009. 

Dhar, Monica, Been, Pieter H., Minderaa, Ruud B., Althaus, Monika, 2010. Information 
processing differences and similarities in adults with dyslexia and adults with 
Attention Deficit Hyperactivity Disorder during a Continuous Performance Test: a 
study of cortical potentials. Neuropsychologia 48 (10), 3045–3056. https://doi.org/ 
10.1016/j.neuropsychologia.2010.06.014. 

Dias, Elisa C., Foxe, John J., Javitt, Daniel C., 2003. Changing plans: a high density 
electrical mapping study of cortical control. Cereb. Cortex (New York, N.Y. : 1991) 
13 (7), 701–715. https://doi.org/10.1093/cercor/13.7.701. 

Eimer, M., 1996. ERP modulations indicate the selective processing of visual stimuli as a 
result of transient and sustained spatial attention. Psychophysiology 33 (1), 13–21. 
https://doi.org/10.1111/j.1469-8986.1996.tb02104.x. 

F. Sharifian et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.ijpsycho.2021.06.012
https://doi.org/10.1016/j.ijpsycho.2021.06.012
https://doi.org/10.1016/j.neuroimage.2017.07.058
https://doi.org/10.1016/j.neuroimage.2017.07.058
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0010
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0010
https://doi.org/10.1001/archpsyc.58.3.280
https://doi.org/10.1001/archpsyc.58.3.280
https://doi.org/10.1111/nyas.13320
https://doi.org/10.1111/nyas.13320
https://arxiv.org/abs/1206.5533
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0030
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0030
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0035
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0035
https://doi.org/10.1076/jcen.25.2.283.13646
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1037/0882-7974.20.1.33
https://doi.org/10.1037/0882-7974.20.1.33
https://doi.org/10.1073/pnas.0808187106
https://doi.org/10.1111/j.1469-8986.1993.tb02054.x
https://doi.org/10.1111/j.1469-8986.1993.tb02054.x
https://doi.org/10.1016/j.neuroimage.2017.07.023
https://doi.org/10.1037/0033-295x.99.1.45
https://doi.org/10.1037//0021-843x.108.1.120
https://doi.org/10.1037//0021-843x.108.1.120
https://doi.org/10.1016/0013-4694(81)90101-2
https://doi.org/10.1016/0013-4694(81)90101-2
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0080
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0080
http://refhub.elsevier.com/S0167-8760(21)00202-6/rf0080
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.neuropsychologia.2010.06.014
https://doi.org/10.1016/j.neuropsychologia.2010.06.014
https://doi.org/10.1093/cercor/13.7.701
https://doi.org/10.1111/j.1469-8986.1996.tb02104.x


International Journal of Psychophysiology 167 (2021) 57–68

68

Eimer, M., 1997. An event-related potential (ERP) study of transient and sustained visual 
attention to color and form. Biol. Psychol. 44 (3), 143–160. https://doi.org/ 
10.1016/s0301-0511(96)05217-9. 

Elvevåg, B., Weinberger, D.R., Suter, J.C., Goldberg, T.E., 2000. Continuous performance 
test and schizophrenia: a test of stimulus-response compatibility, working memory, 
response readiness, or none of the above? Am. J. Psychiatry 157 (5), 772–780. 
https://doi.org/10.1176/appi.ajp.157.5.772. 

Fahrenfort, Johannes J., van Leeuwen, Jonathan, Olivers, Christian N.L., 
Hogendoorn, Hinze, 2017. Perceptual integration without conscious access. Proc. 
Natl. Acad. Sci. U. S. A. 114 (14), 3744–3749. https://doi.org/10.1073/ 
pnas.1617268114. 

Fahrenfort, Johannes J., van Driel, Joram, van Gaal, Simon, Olivers, Christian N.L., 2018. 
From ERPs to MVPA using the Amsterdam decoding and modeling toolbox (ADAM). 
Front. Neurosci. 12, 368. https://doi.org/10.3389/fnins.2018.00368. 

Fallgatter, A.J., 2001. Electrophysiology of the prefrontal cortex in healthy controls and 
schizophrenic patients: a review. J. Neural Transm. (Vienna, Austria : 1996) 108 (6), 
679–694. https://doi.org/10.1007/s007020170045. 

Gonthier, Corentin, Macnamara, Brooke N., Chow, Michael, Conway, Andrew R.A., 
Braver, Todd S., 2016. Inducing proactive control shifts in the AX-CPT. Front. 
Psychol. 7, 1822. https://doi.org/10.3389/fpsyg.2016.01822. 
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