
Motylinski, M, Mac Dermott, A, Iqbal, F and Shah, B

 A GPU-based Machine Learning Approach for Detection of Botnet Attacks

http://researchonline.ljmu.ac.uk/id/eprint/17538/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Motylinski, M, Mac Dermott, A, Iqbal, F and Shah, B (2022) A GPU-based
Machine Learning Approach for Detection of Botnet Attacks. Computers
and Security, 123. ISSN 0167-4048

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Computers & Security 123 (2022) 102918

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A GPU-based machine learning approach for detection of botnet

attacks

Michal Motylinski a , Áine MacDermott a , ∗, Farkhund Iqbal b , Babar Shah

b

a School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK
b College of Technological Innovation, Zayed University, United Arab Emirates

a r t i c l e i n f o

Article history:

Received 18 February 2022

Revised 11 August 2022

Accepted 10 September 2022

Available online 14 September 2022

Keywords:

Internet of Things

Machine learning

Random forest

Feature selection

Attack detection

Classification

a b s t r a c t

Rapid development and adaptation of the Internet of Things (IoT) has created new problems for secur-

ing these interconnected devices and networks. There are hundreds of thousands of IoT devices with

underlying security vulnerabilities, such as insufficient device authentication/authorisation making them

vulnerable to malware infection. IoT botnets are designed to grow and compete with one another over

unsecure devices and networks. Once infected, the device will monitor a Command-and-Control (C&C)

server indicating the target of an attack via Distributed Denial of Service (DDoS) attack. These security

issues, coupled with the continued growth of IoT, presents a much larger attack surface for attackers to

exploit in their attempts to disrupt or gain unauthorized access to networks, systems, and data. Large

datasets available online provide good benchmarks for the development of accurate solutions for botnet

detection, however model training is often a time-consuming process. Interestingly, significant advance-

ment of GPU technology allows shortening the time required to train such large and complex models. This

paper presents a methodology for the pre-processing of the IoT-Bot dataset and classification of various

attack types included. We include descriptions of pre-processing actions conducted to prepare data for

training and a comparison of results achieved with GPU accelerated versions of Random Forest, k-Nearest

Neighbour, Support Vector Machine (SVM) and Logistic Regression classifiers from the cuML library. Using

our methodology, the best-trained models achieved at least 0.99 scores for accuracy, precision, recall and

f1-score. Moreover, the application of feature selection and training models on GPU significantly reduced

the training and estimation times.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

o

s

d

w

b

t

t

t

t

c

s

1

t

q

i

b

u

d

f

n

a

d

i

(

m

h

0

. Introduction

The Internet of Things (IoT) represents the seamless merging

f the real and digital world, with new devices being created that

tore and pass around data. New frameworks, many interconnected

evices, and a plethora of applications (allowing communication

ith said devices) make it difficult to develop and maintain ro-

ust security solutions. The growing numbers of IoT devices make

hem a very attractive target for threat actors who aim to use them

o access other devices and a form a larger network. According

o Kaspersky’s Threat Report, “the IoT will become one of the main

argets of cyber-attacks in the near future ” (Kaspersky, 2022). Mali-

ious software, or malware, arguably constitutes one of the most

ignificant categories of threats to computer systems. With nearly
∗ Corresponding author.

E-mail address: a.m.macdermott@ljmu.ac.uk (Á. MacDermott) .

D

a

f

c

ttps://doi.org/10.1016/j.cose.2022.102918

167-4048/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article u
2,0 0 0 new instances of malware being created everyday detec-

ion of such threats is one of the most essential problems that re-

uire a solution (G Data, 2022). With the number of malware fam-

lies targeting these IoT devices and systems is ever increasing, IoT

otnets are designed to grow and compete with one another over

nsecure devices. An IoT Botnet is also a collection of various IoT

evices such as routers, wearables and embedded technologies in-

ected with malware. Much of a botnet’s power comes from the

umber of devices that make it up. As such, this malware allows

n attacker to control all the connected devices. There are three

istinct architectures that characterize most botnets. In the central-

zed network all bots connect to the Command-and-Control server

C&C). The main characteristic of this type is that automated com-

ands are sent from C&C to the bots via IRC or HTTP channels.

irect communication means low latency of such architecture but

lso dependency on the C&C which if discovered will provide in-

ormation about all botnets in the network. The second type of ar-

hitecture is a decentralized model which does not have a central
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2022.102918
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102918&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.m.macdermott@ljmu.ac.uk
https://doi.org/10.1016/j.cose.2022.102918
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

p

a

c

p

k

t

E

i

c

t

a

w

i

a

(

n

a

l

t

l

f

S

s

o

n

d

n

i

i

f

u

a

w

t

r

p

n

t

r

c

s

W

t

h

g

a

o

a

p

a

G

f

p

d

G

p

p

c

c

w

i

a

m

w

i

o

t

c

r

g

m

p

w

2

p

a

t

i

h

o

b

h

s

e

M

t

a

t

s

h

f

a

m

e

h

b

l

t

l

d

2

S

R

(

w

n

t

t

t

w

oint of failure. In this setup each bot is both client and server

nd use peer to peer (P2P) communication protocols as a means of

onnecting with other machines. In the hybrid approach the com-

romise between centralized and decentralized approach allows to

eep relatively low latency and keep botnets secure from detec-

ion by using P2P protocols for communication (Miller et al., 2016).

arly IoT malware families like Gafgyt and the original Mirai fam-

ly leveraged default or weak passwords to attack devices. Whereas

urrent versions of botnet have new functionalities, and propaga-

ion methods utilise Tor proxy functions to provide the IP servers’

ddress. Botnets are mainly propagated through weak Telnet pass-

ords – a common issue on IoT devices – and through exploit-

ng three vulnerabilities. The Gafgyt botnet actively targets vulner-

ble D-Link and IoT devices including remote code execution flaws

CVE-2019–16,920) in D-Link devices; a remote code execution vul-

erability in Liferay enterprise portal software (for which no CVE is

vailable); and a flaw (CVE-2019-19,781) in Citrix Application De-

ivery Controllers (Threatpost, 2021).

The best strategy against IoT botnets is to secure against their

hreat, detect their presence in a timely manner, and ultimately

imit their resources (by reducing the number of unsecure devices

rom which they could derive their power). Intrusion Detection

ystems (IDS) are used to monitor network traffic and detection

ign of intrusion. The detection may be according to the signatures

f executable malwares or according to the signatures of malicious

etwork traffic generated by malware. Signature-based approaches

etect malicious packets by looking at specific patterns and sig-

atures of the given threat. A major problem with this approach

s that it requires frequent updates of the intruder’s database and

s unable to detect unknown attacks. Anomaly-based detection

ocuses on learning trustworthy signatures (and behaviours) and

ses this knowledge to pass only legitimate traffic. If an IDS detects

n unusual pattern in analysed traffic, then the particular packets

ill be flagged. However, the main problem with this approach is

hat new legitimate traffic can also be flagged because the algo-

ithm had not learned it yet, with an increasing amount of false

ositive alerts. Any action, like sweeping or probing, creates a sig-

al in the network anomaly-based IDS which can detect such ac-

ions.

Machine learning has become a vital technology for cybersecu-

ity and threat detection (Xin et al., 2018 ; Azwar et al., 2018). Ma-

hine learning for intrusion detection can solve many challenges

uch as speed and computational time and develop accurate IDS.

hile the application of machine learning for classification or de-

ection of attacks has been covered in many academic works, we

ave not yet seen an attempt to implement acceleration technolo-

ies to boost the performance of the models and essentially create

 more viable solution for environments where frequent retraining

f the algorithm is necessary. There are various frameworks avail-

ble for an acceleration of the machine learning models. In this pa-

er we will focus on the implementation of RAPIDS libraries such

s cuDF and cuML. The aforementioned libraries allow the use of

PU for machine learning tasks which may provide increased per-

ormance due to significantly greater bandwidth and better com-

utation capabilities of GPU over CPU (Medium, 2021). Due to the

ifference in architecture between CPU (typically 4–8 cores) and

PU (hundreds of smaller cores) parallelization of tasks can be ap-

lied when working on the latter. Using the CUDA platform for

arallel programming, the general computing tasks can be drasti-

ally sped up by breaking down one big task into hundreds of little

hunks.

Our research is focused on increasing the speed of the detection

hile sustaining an acceptable level of detection. Our methodology

nvolves pre-processing, feature selection and application of GPU-

ccelerated machine learning models which results in an improve-

ent over currently used methods. These methods are explained
2

ithin our methodology section and comparison to related works

s conducted within the Results section. Our approach differs from

ther works in the field as we decided to create new features from

he existing dataset. Moreover, in contrast to other works, we de-

ided to test fast computing algorithms and their impact on accu-

acy, training, and prediction time of the models.

The novel contributions of our work are as follows:

- Application of GPU-based accelerated machine learning models,

- Generation of new features and application of permutation im-

portance method for feature selection and interpretability of

models,

- Improvement of both training and prediction times in compar-

ison to other works in the field,

- Retaining high accuracy and robustness of the models similar

to previous academic works.

The paper is organised as follows: In Section 2 we provide back-

round on attacks against IoT devices and related works utilising

achine learning. In Section 3 we detail our methodology, and

resent results and discussion of our findings Section 4 . Future

ork and concluding remarks are presented in Section 5 .

. Related work

Machine learning algorithms use historical data as an input to

redict new output values. Machine learning can monitor systems

nd respond to changes in the behaviour, protecting against threats

hrough pattern detection, real-time threat monitoring, vulnerabil-

ty mapping and penetration testing. Machine learning methods

ave seen increased use in the last decades due to the rapid devel-

pment of various technologies and the growing computing capa-

ilities of computers. The introduction of GPU for machine learning

as introduced new possibilities allowing researchers to solve is-

ues that previous hardware could not handle due to expensive op-

rations or significant time-consuming processes of model training.

achine learning models are known for great prediction capabili-

ies and are used for a variety of classification, pattern recognition

nd detection tasks.

The difference between cyber security and other fields is that

he attackers and threat actors do not behave in a predictable or

tatistically consistent way. The goal of an attacker is to remain

idden and so all their activities are evasive. As such, an attack per-

ormed by one attacker may look completely different to the same

ttack performed by a different attacker. This means that many

achine learning models cannot be widely used and that the mod-

ls and algorithms must be adapted to different conditions and be-

avioural parameters. IDS play a crucial role in defending networks

y monitoring traffic for malicious activities.

The majority of the solutions tackling traffic detection prob-

ems focus solely on the accuracy, however, training and predic-

ion time is also important. Within this section we explore the so-

utions proposed for the classification of attacks using the IoT-Bot

ataset UNSW Canberra (2022) and their parameters for detection.

.1. Current solutions

Koroniotis et al. (2019) used the machine learning classifier

upport Vector Machine (SVM) and two deep learning predictors

ecurring Neural Network (RNN) and Long Short-Term Memory

LSTM). Their experiments were conducted on a 5% sample of data

hich contained around 3 million records. The authors derived

ew features from the existing data. Using a correlation coefficient,

he researchers extracted the 10 best features that were used to

rain a model and compared against training on a full set of fea-

ures. The SVM trained on all features achieved the best results

ith accuracy of 99 and 100% recall, however all predictors had a

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

v

T

w

t

t

C

w

K

t

f

f

d

s

p

e

s

a

T

b

v

t

a

u

a

1

F

n

T

c

p

g

s

o

s

T

c

a

t

a

e

d

s

s

I

c

D

B

o

r

t

p

p

C

l

c

r

b

K

2

n

Fig. 1. IDS machine learning model development pipeline.

i

F

s

s

i

2

m

i

e

(

y

t

m

c

o

d

d

t

m

m

3

m

d

g

t

c

e

f

a

o

r

d

f

t

ery similar performance. The training time of SVM was 110 min.

he results of this research show that while SVM and neural net-

orks have extremely high accuracy they are also very slow to

rain and require a significant amount of data.

Oreški et al. (2020) used a different approach to the selec-

ion of best features called ‘Search and Testing for Understandable

onsistent Contrast’ (STUCCO). With this approach, the authors

ere able to select different features compared to the work of

oroniotis et al. (2019) . The authors implemented the SVM model

o train on the input data. The model has achieved > 0.99 scores

or accuracy, precision, recall and f1 score.

In Shafiq et al. (2020a) , the authors proposed a novel method

or feature selection called ‘CorrAUC’ and applied it to the Bot-IoT

ataset. The new technique selected a set of five features that de-

cribed the dataset well enough to be used for training. The ap-

roach trained Decision Tree, SVM, Naive Bayes and Random For-

st classifiers and compared their performance on a created test

et. With the exception of Naive Bayes, all classifiers achieved high

ccuracy, specificity, sensitivity, and precision scores in most cases.

he results indicate that Random Forest performance was slightly

etter, and the accuracy was above 99% which is similar to the pre-

ious research, however, recall scores for data theft and keylogging

heft were 0.50 and 0.89 accordingly.

In their work, Javed et al. (2020) proposed the use of an Ad-

Boost classifier for the detection of botnet attacks. The authors

sed a publicly available "takata" dataset for their research. The

pplied method for feature extraction allowed for deriving a set of

0 highly correlated features out of the initial list of 55 features.

or comparison, the authors applied a decision tree, probabilistic

eural network, and sequential minimal optimization algorithms.

he evaluation results indicate that AdaBoost has the highest ac-

uracy and robustness out of all four architectures tested. The pro-

osed approach involves feature selection using the information

ain method and then the implementation of the AdaBoost clas-

ifier.

Churcher et al. (2021) performed a comprehensive analysis

f attack classification using many common algorithms from the

cikit-learn library like KNN, SVM, Random Forest or Naïve Bayes.

he researchers conducted 2 types of experiments a binary classifi-

ation of malicious traffic and a multiclass classification of various

ttacks. Various weights were applied to the classifiers to change

he bias towards classes. Random forest was the best performing

lgorithm for binary classification tasks while KNN and ANN mod-

ls had better performance classifying various attack types. Ran-

om Forest had perfect metric scores in a binary task and 0.95

cores in a multiclass task.

Shafiq et al. (2020b) tested various machine learning models in

earch of the most effective solution for IoT botnet detection. The

oT Botnet dataset from Koroniotis et al. (2019) has been used to

onduct this research. The authors selected Naïve Bayes, BayesNet,

ecision Tree, Random Forest and Random Tree and applied the

ijective Soft Set technique to choose the best classifier. The results

f this research show that all algorithms have a high accuracy and

ecall rate of > 0.98. Taking into consideration the time required

o train the algorithms in this research Native Bayes had the best

erformance.

In Alsamiri and Alsubhi (2019) , the authors used IoT-Botnet

cap files to generate a new set of features by using the CI-

FlowMeter tool to extract flow-based features. The authors se-

ected 13 generated features for the training of various models in-

luding Random Forest, k-Nearest Neighbour and Naive Bayes. The

esults presented in the work indicate that Random Forest has the

est performance for most of the attack types (95% −100%) with

NN having slightly lower accuracy. In their work (Garre et al.,

021) proposed a novel approach for the detection of SSH bot-

et infections. The authors generated their own dataset captur-
3
ng information from various honeypots deployed across the world.

or traffic classification, four algorithms were used namely: Deci-

ion Tree, Random Forest, SVM and Native Bayes. Experimental re-

ults showed that Random Forest had better performance achiev-

ng 95.7% accuracy and 93.9% recall scores.

.2. Summary of related work

Our analysis of related works indicates that SVM is one of the

ost commonly used classifiers for its great accuracy in compar-

son to many other methods. Ensemble learning algorithms, how-

ver, tend to perform better than SVM, especially Random Forest

RF) which became a state of the art in many domains in recent

ears (Vakili et al., 2020 ; Sujatha and Mahalakshmi, 2020). The

ests conducted on various datasets conclude that RF is not only

ore accurate than SVM in most cases but also requires signifi-

antly less training time and provides faster prediction. The speed

f the algorithm training and prediction is important for their in-

ustry use because the less time and resources it is necessary to

evelop a good model the sooner it can be deployed. It is ex-

remely important as machine learning models for IoT detection

ust be regularly updated to keep up with new threats which

eans frequent model retraining.

. Proposed methodology

In this section, we provide our methodology used to develop a

odel capable of discriminating different types of attacks on IoT

evices. The model development pipeline (presented in Fig. 1) be-

ins from the data processing stage which involved acquisition of

he dataset from a public repository and sampling a smaller set

ontaining enough information to train the machine learning mod-

ls. As part of pre-processing, the data is split into appropriate sets

or model training and evaluation. Next, an oversampling ratio is

pplied to parts of the data. One of the most important aspects of

ur approach is the creation of a new set of features that are de-

ived in a feature engineering process. Then all of the features un-

ergo a selection process which results in much smaller set of best

eatures that are used to train the models. Following this stage is

he hyperparameter configuration of the model. This involves the

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Table 1

Dataset attack class distribution.

Attack category Subcategory Number of entries

DDoS HTTP 19,738

TCP 19,547,104

UDP 18,964,396

DoS HTTP 29,680

TCP 12,315,619

UDP 20,658,630

Reconnaissance OS Fingerprint 1,433,189

Service Scan 356,285

Theft Data Exfiltration 114

Keylogging 1464

r

s

a

i

a

e

e

u

3

T

t

T

m

F

i

G

r

t

a

i

c

D

(

d

t

w

W

s

d

e

E

c

i

e

(

u

t

g

c

F

t

a

p

f

t

c

s

d

s

w

o

t

i

t

C

c

d

i

a

s

c

t

l

s

r

U

s

a

u

d

p

c

M

A

e

L

o

c

t

w

i

a

i

r

o

s

l

r

i

r

m

d

v

Z

i

i

c

b

s

r

p

etraining and evaluation process which occurs until satisfying re-

ults are achieved. Our approach involves implementation of GPU

ccelerated algorithms that allow significantly faster model train-

ng and prediction.

The remainder of this section will include methodology details

nd experiment design via description of the dataset used for our

xperiments, justification of feature selection, our approach to un-

ven class distribution, choice of classifiers and selection of metrics

sed for evaluation of the models.

.1. Dataset

We have chosen the most recent iteration of IDS datasets from

he University of New South Wales Canberra (UNSW) at the Aus-

ralian Defence Force Academy – ‘ Bot-IoT’- UNSW Canberra (2022) .

he data was created in a Cyber Range Lab in a realistic environ-

ent (Koroniotis et al., 2017, 2019; Koroniotis and Moustafa, 2020).

rom PCAP files, a set of features were extracted and saved in var-

ous formats. We are using CSV files, with the overall size at 16.7

B (there are 72 million records in the dataset). 9063 of the entries

epresent normal traffic. This data is used for a binary classifica-

ion of malicious and non-malicious traffic. Each entry is described

s belonging to one of the main attack categories and further split

nto a subcategory. Table 1 presents the distribution of attacks ac-

ording to category and subcategory.

ataset sample

While the dataset authors (UNSW Canberra, 2022)

 Koroniotis et al., 2017) provided a pre-processed subset of

ata with nearly three million entries, the distribution of attack

ypes is very unbalanced. We decided to create our own subset

hich consists of a more equal representation of all attack types.

e concluded that 10 0,0 0 0 occurrences per attack would be

ufficient to train an accurate solution. A fixed-size sample of ran-

om values was taken for every class if a number of occurrences

xceeded the limit.

xperiment environment

In this experiment no physical setup is made to create a mali-

ious traffic. Instead, a “Bot-IoT’ dataset - well known benchmark -

s used to train and test the algorithms . The training of all mod-

ls was performed on AMD Ryzen 7 2700X Eight-Core Processor

4.15 GHz). It is important to note that every CPU based training

sed all processors for training which significantly improved the

raining time of the models. A single NVIDIA GeForce RTX 2080

raphics card with 8GB of VRAM was used for the training of ac-

elerated variants of machine learning algorithms.

eature selection

To reduce training and prediction times, we removed features

hat had little or no impact on the prediction capabilities of the
4
lgorithms. This is achieved by implementing the permutation im-

ortance technique. The permutation feature importance provides

eedback about which feature in a dataset had the least impor-

ance. This is done by randomly shuffling feature value which

auses a decrease in model score. The procedure breaks relation-

hip between the feature and the target which shows how depen-

ant the model is on the particular feature. The conducted tests

howed that the best features obtained with this method work

ell with all estimators used in this study. Moreover, using the

riginal set of features we have calculated new features to increase

he robustness of the model. The results of this process are shown

n the following subsections where we remark on class distribu-

ion, estimators, and evaluation metrics.

lass distribution

Uneven distribution of classes is a very common issue in ma-

hine learning. In fact, it is very difficult to find perfectly even

atasets especially with thousands or millions of records. Depend-

ng on the scale of irregularity this can be a serious problem,

nd in some cases lead to very poor results of prediction. While

ome classifiers like decision trees, logistic regression and SVM

an work with imbalanced data, they will most likely fail when

here is a high disproportion of classes. In order to tackle the prob-

em of imbalanced attributes two methods can be employed: over-

ampling and under-sampling. Application of the former technique

equires instances of the under-represented data to be copied.

nder-sampling on the other hand can be applied by deleting in-

tances of the major class.

It is generally advised to use oversampling on small datasets

nd under-sampling when there is a lot of data so removal of val-

es will not have a negative impact on the model. As the pro-

uced dataset sample was still imbalanced, we have decided to ap-

ly oversampling to the minor class to eliminate the bias. We have

hosen one of the most widely used methods called the Synthetic

inority Oversampling Technique (SMOTE).

lgorithms used

Based on previous academic research in the field and our own

xperience we have decided to use Random Forest (RF), SVM,

ogistic Regression (LR) and k-Nearest Neighbour estimators. For

ur experiments, we have chosen GPU accelerated versions of the

lassifiers from the cuML library. While Scikit-learn implementa-

ions are considered state-of-the-art and are used in most research

orks on IoT-bot detection they can only utilize CPU which train-

ng, and prediction times are a major drawback. The GPU acceler-

ted algorithms are still in development, thus many of the features

ncluded in the documentation are not yet supported. RAPIDS algo-

ithms tend to perform worse than their scikit-learn counterparts

n default settings, thus hyperparameter optimization was neces-

ary to obtain satisfactory results (cuML, 2022).

RF is an ensemble learner that implements multiple weak

earners (decision trees) using specific rules and then integrates

esults from all of them generating the final prediction. Each tree

s trained on a random subset of features which breaks the cor-

elation between them improving the prediction capability of the

odel. RF is considered as a state-of-the-art algorithm for its pre-

iction accuracy tested on many different datasets as well as the

ery short time necessary to train the model (Breiman, 2001 ;

hang et al., 2017 ; Nanni et al., 2015). k-Nearest Neighbour (KNN)

s a supervised machine learning algorithm that assumes that sim-

lar elements exist in close proximity. KNN can be used for both

lassification and regression problems. Classification is performed

y looking at the closest neighbour to the chosen K value of the

ame class. As the name suggests the most important hyperpa-

ameter in KNN is the number of neighbours (n_neighbors). Other

arameters such as distance metrics and weights of neighbours

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Table 2

Hyperparameter values for each algorithm.

Algorithm Parameter Default Tuned

Random Forrest (RF) max_depth 16 18

n_bins 8 17

k-Nearest Neighbour (KNN) N_neighbours 1 3

Support Vector Machines (SVM) C 1 60

Logistic Regression (LR) penalty l2 l1

tol (tolerance) 1e-4 1e-5

c

a

e

(

s

t

a

r

p

t

r

m

c

u

t

a

e

m

t

e

i

w

t

G

t

m

o

i

d

n

t

p

t

s

g

e

T

e

r

T

i

t

c

3

d

r

p

w

e

e

t

t

p

m

a

n

i

o

A

e

t

m

A

n

P

t

R

b

F

r

l

i

m

4

t

p

t

a

p

b

4

s

s

i

c

r

d

1

i

H

d

m

i

p

t

8

a

an also change the prediction significantly depending on the task

nd data composition. The KNN is a fast algorithm to train, how-

ver, its major drawback is significantly slower estimation time

 Altman, 1991).

The SVM is also a very popular model which is often used to

olve many classification problems. The most important parame-

er in SVM is the kernel which controls how the input variables

re projected. SVM divides n_dimensional space into two distinct

egions for output classes. The algorithm is trying to find a hy-

erplane during training that best separates the output classes. In

he case of binary problem hyperplane is a single line. SVM algo-

ithm is commonly used for its high prediction rate, however, a

ajor drawback of this method is training time which is signifi-

antly higher than RF or KNN (Abdiansah and Wardoyo, 2015).

Logistic regression (LR) is one of the most common models

sed for binary classification. LR is rarely used for intrusion de-

ection tasks, however, its performance for binary problems is usu-

lly on par with other state-of-the-art algorithms. LR hyperparam-

ters can provide some improvement to the performance of the

odel. The regularisation (penalty) and C parameter usually have

he greatest impact on the model performance (Pohar et al., 2004).

Initial training iterations were conducted using default param-

ters; however, the results were poor, thus hyperparameter tun-

ng was applied to all four models. For the RF model 2 parameters

ere tuned: max depth and number of bins. The former represents

he depth of every tree which determines the number of splits.

enerally, more splits allow the model to capture more informa-

ion, however the convergence time increases. The cuML RF imple-

ents a histogram-based method for split determination. The size

f histograms can be tuned using number of bins parameter. This

s especially useful for larger problems with highly skewed input

ata. The only hyperparameter tuned for KNN algorithm was the

umber of neighbours or K number which indicates the count of

he nearest neighbours. In the case of SVM classifier tuning of C

arameter provided the best results. The C parameter is a penalty

hat determines the influence of the misclassification on the deci-

ion function. The higher the penalty enforces a smaller error mar-

in for decision function choosing hyperplane while lower value

ncourages a larger error margin for the cost of model’s accuracy.

wo parameters were tuned for the LR namely penalty and tol-

rance. The penalty type refers to the regularisation method that

educes parameters and simplifies the model to avoid overfitting.

he tolerance value determines when to stop the training. Depend-

ng on the task and input data larger values may cause algorithm

o not converge. Table 2 presents the exact values of parameters

hosen for each algorithm.

.2. Evaluation metrics

To quantify the performance of the trained models the pre-

icted values are assessed using evaluation metrics. Various met-

ics make different assumptions about the problem; thus, it is im-

ortant to validate the outcome using multiple metrics. In this case

e have decided to apply standard set of evaluation metrics to

ach estimator: accuracy, precision, recall and F1-score. Values for
5
ach metric are calculated from the confusion matrix of predic-

ions. The accuracy is the ratio of the number of correct predic-

ions to the total number of samples. The formula for accuracy is

resented in (1) . A True Positive (TP) is an outcome where the

odel correctly predicts the positive class. Similarly, a True Neg-

tive (TN) is an outcome where the model correctly predicts the

egative class. A False Positive (FP) is an outcome where the model

ncorrectly predicts the positive class. A False Negative (FN) is an

utcome where the model incorrectly predicts the negative class.

ccuracy works best when the number of samples belonging to

ach class is equal, thus under-sampling should positively impact

he score. These metrics will be used when analysing the perfor-

ance of our improved approach and comparing to related works.

ccuracy =

T P + T N

T P + T N + F P + F N

(1)

Precision (2) is the number of ground TP results divided by

umber of predicted positive results.

 recision =

T P

T P + F P
(2)

Recall (3) is the number of correct positive results divided by

he number of all positive samples from the class.

ecall =

T P

T P + F N

(3)

F1-score (4) is a mean between precision and recall that ranges

etween 0 and 1. F1-score indicates how robust the model is.

 1 = 2 ∗ P recision ∗ Recall

P recision + Recall
(4)

Moreover, to test the speed of algorithms running on GPU the

esults are compared to the CPU counterparts from the scikit-learn

ibrary. The speed was measured in seconds and compiled results

nclude mean speeds calculated from 10 training/test iterations per

odel.

. Results and discussion

In this section, we present and discuss the results obtained in

he conducted experiments. First, we cover the outcomes of a data

rocessing pipeline developed for this project. Second, we discuss

he results of binary detection of malicious traffic. Next, accuracy

cross all of the classes is presented. Finally, we discuss the im-

act of our project in comparison to other works covering the IoT

otnet detection process.

.1. Data pre-processing

During the pre-processing stage, we have created a small sub-

et of data that provides enough information to the algorithms and

hortens the training and prediction time. Because our research

s focused on the binary classification of the traffic, we have de-

ided that data will be derived according to the number of occur-

ences per attack type. Unlike the method used by the authors of a

ataset, we have saved all occurrences of minority classes (below

0 0,0 0 0) to ensure a good representation of all attacks. As shown

n Fig. 2 , the Keylogging, Data Exfiltration, DoS HTTP and DDoS

TTP classes are underrepresented in the dataset. The significant

ifference in the number of samples may introduce bias towards

ajority classes reducing accuracy of the algorithms. To tackle this

ssue, we have decided to adjust the class distribution by oversam-

ling the minority classes.

During our research we have applied various data splits to test

heir impact on the trained models. We have observed that an

0:20 split of the data provided the best results. After the split,

n oversampling was performed on the training set. As a result,

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Fig. 2. Subset of attacks derived from the original dataset.

Table 3

Training sets utilised during research.

Attack Normal Oversampled

DDoS HTTP 15,790 80,000

DDoS TCP 80,000 80,000

DDoS UDP 80,000 80,000

DoS HTTP 23,744 80,000

DoS TCP 80,000 80,000

DoS UDP 80,000 80,000

Reconnaissance OS 80,000 80,000

Reconnaissance Service Scan 80,000 80,000

Theft Data Exfiltration 91 80,000

Theft Keylogging 1171 80,000

Normal traffic 7250 80,000

a

D

c

t

m

i

i

a

d

T

v

d

t

t

t

r

t

o

u

r

T

a

t

4

l

u

a

Table 4

Training input features.

Feature Description

Pkts Total count of packets in transaction

Bytes Total number of bytes in transaction

State Transaction state

Dur Record total duration

Spkts Source-to-destination packet count

Sbytes Source-to-destination byte count

Sum Total duration of aggregated records

Mean Average duration of aggregated records

Pkts/Bytes Packets to bytes ratio

Table 5

Binary detection of malicious traffic.

Algorithm Accuracy Precision Recall F1-score

RF 0.9995 0.99668 0.98479 0.99066

RF + SMOTE 0.99988 0.99857 0.99722 0.9979

KNN 0.99978 0.99715 0.99472 0.99593

KNN + SMOTE 0.98976 0.78658 0.99372 0.86145

SVM 0.99742 0.98688 0.91629 0.94875

SVM + SMOTE 0.99809 0.94285 0.99359 0.96681

LR 0.98874 0.82808 0.68046 0.73217

LR + SMOTE 0.95136 0.60798 0.96038 0.66429

T

h

v

o

R

c

m

a

c

w

n

t

v

n

c

d

c

p

t

d

i

dditional records were added to the minority classes DDoS HTTP,

oS HTTP, and both ‘Theft attack’ types. This method evens out the

lass balance to 80,0 0 0 records per class. Table 3 presents the dis-

ribution of samples across different classes used for training the

odel.

Initial testing showed that the majority of the features do not

mpact the prediction capability of the models. As was mentioned

n the methodology section, we have applied a feature importance

lgorithm to select a group of best features. Feature importance is

efined as a decrease in model score when a feature is shuffled.

he process of shuffling breaks the relationship between the target

alue and a feature, thus the drop in model score indicates how

ependant the model is on the particular feature.

Fig. 3 presents the eight best original features selected for the

raining of all models. The features that had little to no impact on

he model were removed from the input set and the remaining fea-

ures were used to derive the new data.

To further increase the robustness of the models we have de-

ived several features from the original values. Analysis showed

hat only the rate of packets to bytes had a meaningful impact

n the algorithms, thus it was selected as one of the input val-

es. SVM has benefited the most from the addition of a newly de-

ived feature having its recall and f1-score increased by 0.1 scores.

able 4 presents the full set of features used for the training of

ll algorithms. Each feature and a description of the associated at-

ribute is conveyed.

.2. Binary malicious traffic detection

The first stage of our experiments involved the detection of ma-

icious traffic. For this purpose, all attack entries were combined

nder the malicious traffic label, while normal traffic remained

s a second class. The results of this classification are shown in
6
able 5 . The performance metrics show that all models achieve a

igh level of accuracy. Moreover, implementation of oversampling

isibly improves the results. This is especially visible in the case

f the SVM classifier. Analysis of the evaluation metrics shows that

F and KNN performed significantly better achieving near 100% ac-

uracy and sensitivity. This means that the results of these two

odels are significantly more robust. While the SVM also had high

ccuracy, it is lacking precision and recall (which indicates false

lassification and reduces the overall robustness of the model). The

orst-performing algorithm was LR which evaluation shows a sig-

ificant number of false positive predictions even after parameter

uning.

It is also important to note that while both RF and KNN have

ery similar metric scores there are significant differences in the

umber of misclassified samples for both classes. Fig. 4 shows the

onfusion matrix of RF and KNN classifiers trained on an uneven

ata sample. The KNN performance is better, and the difference

an be observed in a number of normal traffic misclassified sam-

les. The KNN is clearly more sensitive and as a result smaller por-

ion of the traffic is being misclassified.

Interestingly, training on the oversampled set generated very

ifferent results (shown in Fig. 5). Random Forest performance has

ncreased, especially the classification capability of the benign traf-

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Fig. 3. Importance of features used for model training.

Fig. 4. Classification results for unbalanced set training.

Fig. 5. Classification results for oversampled set training.

fi

p

t

c

o

s

l

N

t

a

e

s

a

c

t

b

t

n

t

r

c

a

c which is now nearly 100% accurate. Fig. 5 shows that oversam-

ling the training data possibly introduced some bias impacting

he prediction capability of KNN. The performance of KNN has de-

reased by a significant margin when we consider that the number

f malicious traffic classified as benign has increased from 10 (as

hown in Fig. 4) to 1347 (Fig. 5).

SVM tends to classify most of the traffic as malicious. This prob-

em can be solved by adding additional features to the training set.

ote however, the purpose of this research was to test the predic-

ion capability on the smallest possible number of features, thus

llowing fast training and estimation. The LR model has the high-

st number of misclassified traffic samples rendering it not a viable
olution for an IDS. v

7
The training time of KNN is significantly shorter than any other

lgorithm, however, the prediction time is much slower. This is be-

ause KNN does not generalize data in advance. While LR requires

he least amount of time to make a prediction its accuracy and ro-

ustness is way too low to consider it a good option. SVM training

ime is significantly longer than any other algorithm which does

ot make it a viable solution for IDS which must be frequently re-

rained to include new threats. RF, while not the best in time met-

ics, is clearly the best algorithm as it grants the best prediction

apability within reasonable training and prediction times.

We have compared both the training and prediction time of the

lgorithms running on GPU and CPU. As evident, the training times

ary between different algorithms. The training of SVM is slow due

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Fig. 6. Training time comparison on GPU and CPU.

Fig. 7. The comparison of prediction time on GPU and CPU.

t

n

p

t

e

w

c

t

e

n

t

n

n

d

a

w

4

c

b

g

c

f

i

t

o

i

s

Table 6

Binary detection of individual attacks (F1-score only).

Attack type RF KNN SVM LR

DDoS HTTP 0.99939 0.99818 0.97920 0.91840

DDoS TCP 1 0.99954 0.99985 0.99593

DDoS UDP 0.99652 0.99894 0.99697 0.98567

DoS HTTP 0.99982 0.99803 0.95575 0.87587

DoS TCP 1 0.99939 1 0.99954

DoS UDP 0.99894 0.99864 0.99864 0.98582

OS Fingerprint 0.99939 0.99804 0.99474 0.85461

Service Scan 0.99729 0.99758 0.99562 0.97313

Data Exfiltration 1 0.96112 0.93174 0.63416

Keylogging 0.99901 0.99604 0.99506 0.97142

p

e

m

s

w

p

4

n

t

p

t

s

m

p

o the significant number of samples chosen and a non-linear ker-

el used. Future tests may involve smaller input sets to test the

erformance changes. The remaining algorithms converge below

wo minutes on CPU and in less than five seconds with GPU accel-

ration. Fig. 6 presents the results of a training time comparison

hich clearly show how much quicker the process of retraining

an be when utilizing GPU.

In Fig. 7 , we can see the estimation times for each algorithm

rained. As we can observe, the KNN required a significantly longer

stimation time because for every prediction it needs to scan all

earest neighbours in the completed training set. Again, a smaller

raining set would improve the prediction time however this might

egatively impact the accuracy of the model. Another aspect worth

oting is a significant improvement in estimation time when pre-

icting with SVM classifier utilizing GPU. Overall, the GPU acceler-

ted models are significantly faster in both training and prediction

hich in some cases may be a crucial factor.

.3. Attack type detection

The second task of our study was to perform binary classifi-

ation of every attack separately. Table 6 presents the results of

inary detection of the attacks. RF is clearly the most accurate al-

orithm, however, KNN and SVM achieve similar results in most

ases. LR was again the worst performing algorithm even with dif-

erent parameter settings. The most important findings show that

t was possible to achieve very high accuracy and robustness of

he Random Forest classifier for all attack types. Implementation of

versampling reduced bias towards majority classes and as a result

mproved estimation of the models on the previously underrepre-

ented attack types.
8
The application of algorithms on different benchmarks may

rovide interesting results and allow further improvements. Gen-

ration of new features can also be the answer for better perfor-

ance and reduction of bins used in GPU accelerated RF which

ignificantly increased training and prediction time. In future work

e plan to apply other models from the cuML library to test their

erformance and compare them to the CPU-based versions.

.4. Comparison with other works

In comparison to other academic works in the field, our method

ot only reduced training but it also significantly reduced predic-

ion time by utilizing GPU. Specifically, dimensionality reduction

rovided a further improvement to the speed of the training and

he evaluation process. The choice of a custom set retained more

amples of the minority classes reducing bias and in turn provided

ore data for the models. As a result, it was possible to retain high

erformance as was shown in the results section.

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

Table 7

Comparison of algorithms performance.

Metric Accuracy Recall Time (s)

Best RF - GPU 0.99988 0.99722 0.45

Best RF - CPU 0.99985 0.99666 16.24

Best SVM - GPU 0.99742 0.91629 5.74

Best SVM - CPU 0.99516 0.82839 710.06

Koroniotis et al. (2019) SVM 0.88373 0.88371 1270

Koroniotis et al. (2019) SVM all features 0.99988 1 6636.98

Koroniotis et al. (2019) RNN 0.99740 0.99749 8035

Koroniotis et al. (2019) RNN all features 0.97906 0.97908 6888.08

Koroniotis et al. (2019) LSTM 0.99741 0.97908 10,482.19

Koroniotis et al. (2019) LSTM all features 0.98057 0.98058 14,073.63

Shafiq et al. (2020b) RF 0.9999 1.00. n/a

Alsamiri and Alsubhi (2019) RF 0.98 0.98 27.0328

p

K

A

r

i

r

t

t

K

A

R

l

r

i

t

s

fi

c

i

l

b

r

s

(

t

p

r

f

t

d

p

i

i

5

b

l

r

m

t

i

t

a

r

s

t

b

t

i

f

s

p

p

s

A

o

f

i

s

r

p

p

r

G

L

t

a

m

H

d

p

i

s

fi

t

s

F

a

U

D

c

i

C

o

r

t

W

I

i

t

r

D

er.

R

A

A

We compared our improved GPU-based machine learning ap-

roach for detection of botnet attacks with related works of

oroniotis et al. (2019) , (Shafiq et al., 2020b), and Alsamiri and

lsubhi (2019) . Specifically, we analysed and compared our algo-

ithms in terms of accuracy, recall and time. The accuracy compar-

son looks at the portion of correctly classified samples, whereas

ecall is to do with the correctly identified positive classes from

he actual malicious traffic. In Table 7 the comparison of malicious

raffic detection with the results obtained by models of authors

oroniotis et al. (2019) , (Shafiq et al., 2020b), and Alsamiri and

lsubhi (2019) is presented. The former trained SVM classifier,

NN and LSTM networks use 5% of the original data and ten se-

ected features. The authors of the second work implemented algo-

ithms for selection of best features and tested the results by train-

ng various models. The best performance was achieved using RF;

hus, the results are included in the comparison. Alsamiri and Al-

ubhi (2019) generated eighty new features from the original pcap

les and selected seven for model training. The RF algorithm ac-

omplished the best results having high accuracy and recall.

The most significant improvement of our solution can be seen

n the training time which application of accelerated machine

earning algorithms decreased considerably. The accuracy and ro-

ustness of our best algorithm are comparable to other authors

esults. In terms of accuracy developed models are outperformed

lightly by Koroniotis et al. (2019) and their RNN architecture and

 Shafiq et al., 2020b) with their RF model. As can be observed, the

raining time of the GPU-based models is significantly shorter out-

erforming all other architectures by a large margin.

The tested model’s performance is on par with other works

esults with significant time improvement. Faster training allows

or more frequent retraining of the model and updates of the sys-

em. This is especially important in production where quick model

eployment allows to save resources and well optimised training

ipelines are essential. The accelerated versions of machine learn-

ng algorithms also provide faster prediction which can be crucial

n the fast identification of a threat.

. Conclusions and future work

This paper presents our research into the application of GPU-

ased accelerated machine learning models. Four types of machine

earning algorithms were compared in terms of accuracy, precision,

ecall, F1-score as well as computation time required to train the

odel and perform prediction. The experimental results show that

he proposed data pre-processing and feature selection methods

mprove the training and prediction durations while maintaining

he high performance of the estimators. The obtained results show

ccuracy and recall of the best trained model are 0.999 and 0.997,

espectively. While (Shafiq et al., 2020b) obtained higher metrics

core our models come close and have better performance or equal
9
o other comparable works. The training time of the algorithms has

een reduced at least 60 times (if comparing the RF implementa-

ion to Alsamiri and Alsubhi, 2019) or more. The drastic decrease

n training and prediction time makes the model more feasible

or deployment in the industry allowing frequent retraining ses-

ions and quick prediction service. Application of permutation im-

ortance together with oversampling proved vital for the final im-

rovement of both time and accuracy of the models. The final re-

ults show the significance of the data processing methods applied.

ppropriate selection of dataset, its discovery and implementation

f feature engineering shows that our approach is promising and in

uture can be tested on other IoT botnet benchmarks. We offered

mprovements of both training and prediction times in compari-

on to other works in the field, while retaining high accuracy and

obustness of the models.

It is important to emphasise the role of hardware for this

roject. The introduction of GPU for machine learning gives new

ossibilities allowing to solve issues that CPU cannot handle in a

easonable time. Knowing the performance of algorithms utilizing

PU the future work may involve training on larger set of data.

arger input may allow model to learn more information about

he problem and as a result perform better. The future work can

lso involve the generation of a dataset with a larger number of

inority class samples (DDoS HTTP, DDoS, TCP, DDoS UDP, DoS

TTP, DoS UDP, DoS TCP) to avoid the introduction of synthetic

ata which while helpful can never represent a real-life data. Other

ublicly available datasets could also be considered, however var-

ous datasets consist different attacks which means abundance of

ome classes that were used in this research. In many cases PCAP

les are often available, thus future research may involve extrac-

ion of features that Koroniotis et al. (2019) used in the IoT-Botnet

et.

unding

This work was supported by research incentive funds (R20090)

nd Provost Research Fellowship Grant (R20093), Zayed university,

nited Arab Emirates.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Michal Motylinski: Conceptualization, Data curation, Methodol-

gy, Resources, Formal analysis, Writing – original draft, Writing –

eview & editing. Áine MacDermott: Conceptualization, Data cura-

ion, Resources, Methodology, Project administration, Supervision,

riting – original draft, Writing – review & editing. Farkhund

qbal: Conceptualization, Project administration, Supervision, Fund-

ng acquisition, Writing – review & editing. Babar Shah: Concep-

ualization, Project administration, Funding acquisition, Writing –

eview & editing.

ata availability

We have used a public dataset and referenced it within the pap

eferences

bdiansah, A., Wardoyo, R., 2015. Time complexity analysis of support vector ma-
chines (SVM) in LibSVM. Int. J. Comput. Appl. 128 (3), 28–34 .

lsamiri, J., Alsubhi, K., 2019. Internet of Things cyber-attacks detection using
machine learning. Int. J. Adv. Comput. Sci. Appl 10 (12), 627–634. Available:

www.ijacsa.thesai.org .

http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0001
http://www.ijacsa.thesai.org

M. Motylinski, Á. MacDermott, F. Iqbal et al. Computers & Security 123 (2022) 102918

A

A

B

C

c

G

G

K

K

K

K

J

M

M

N

O

P

S

S

S

T

U

V

X

Z

M

S
(

c
a

s
c

D
M

D

t

a
t

i

i
p

i
w

D
C

y

s
U

U
A

t
i

o

F
H

i
t

S
(

D

t
o

D
U

r
a

f

ltman, N.S., 1991. BU-1065MA An Introduction to Kernel and Nearest Neighbor
Nonparametric Regression An Introduction to Kernel and Nearest Neighbor Non-

parametric Regression. Cornell University 1991 .
zwar, H., Murtaz, M., Siddique, M., Rehman, S., 2018. Intrusion detection in se-

cure network for cybersecurity systems using machine learning and data min-
ing. In: Proceedings of the IEEE 5th International Conference on Engineering

Technologies and Applied Sciences (ICETAS). IEEE, pp. 1–9. doi: 10.1109/ICETAS.
2018.8629197 .

reiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. doi: 10.1023/A:

1010933404324 .
hurcher, A., Ullah, R., Ahmad, J., Masood, F., Gogate, M., Alqahtani, F.,

Buchanan, W.J., 2021. An experimental analysis of attack classification using ma-
chine learning in iot networks. Sensors 21 (2), 446. doi: 10.3390/s21020446 .

uML (2022). Welcome to cuML’s documentation! — Cuml 21.06.00 documenta-
tion. Retrieved from https://docs.rapids.ai/api/cuml/stable/ . Accessed August 08,

2022.

arre, J.T.M., Pérez, M.G., Ruiz-Martínez, A.R., 2021. A novel machine learning-based
approach for the detection of SSH botnet infection. Future Gener. Comput. Syst.

115, 387–396. doi: 10.1016/j.future.2020.09.004 .
 Data. (2022) Cyber-attacks on Android devices on the rise. Retrieved from

https://www.gdatasoftware.com/blog/2018/11/31255- cyber- attacks- on- android-
devices- on- the- rise Accessed August 09, 2022.

aspersky. (2022) Top 7 mobile security threats in 2021. Retrieved from https://www.

kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-
smart- phones- tablets- and- mobile- internet- devices- what- the- future- has- in-

store?campaign=tcid _ admitad _ 6ab325772c71d0e99b5c5a2683dc3a2e _ 240682 _
x4&ADDITIONAL _ reseller=tcid _ adm . Accessed June 30, 2022.

oroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B., 2019. Towards the develop-
ment of realistic botnet dataset in the internet of things for network forensic

analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 100, 779–796 .

oroniotis, N., Moustafa, N., Sitnikova, E., Slay, J., 2017. Towards developing network
forensic mechanism for botnet activities in the IoT based on machine learning

techniques. In: Proceedings of the International Conference on Mobile Networks
and Management. Springer, Cham, pp. 30–44 .

oroniotis, N., Moustafa, N., 2020. “Enhancing network forensics with particle
swarm and deep learning: the particle deep framework.” 8, 209802-209834,

arXiv preprint arXiv: 20 05.0 0722 .

aved, A.R., Jalil, Z., Moqurrab, S.A., Abbas, S., Liu, X., 2020. Ensemble Adaboost clas-
sifier for accurate and fast detection of botnet attacks in connected vehicles.

Trans. Emerg. Telecommun. Technol. 2020. doi: 10.1002/ett.4088 .
edium (2021). Do we really need GPU for deep learning? - CPU vs GPU .

Retrieved from https://medium.com/@shachishah.ce/do- we- really- need- gpu-
for- deep- learning- 47042c02efe2 . Accessed June 17, 2021.

iller, S., Busby-Earle, C., 2016. The role of machine learning in botnet detection. In:

Proceedings of the 11th International Conference for Internet Technology and
Secured Transactions (ICITST), pp. 359–364. doi: 10.1109/ICITST.2016.7856730 .

anni, L., Brahnam, S., Ghidoni, S., Lumini, A., 2015. Toward a general-purpose het-
erogeneous ensemble for pattern classification. Comput. Intell. Neurosci. 2015.

doi: 10.1155/2015/909123 .
reški, D., Andro ̌cec, D., 2020. Genetic algorithm and artificial neural network for

network forensic analytics. In: Proceedings of the 43rd International Conven-
tion on Information, Communication and Electronic Technology (MIPRO). IEEE,

pp. 1200–1205. doi: 10.23919/MIPRO48935.2020.9245140 .

ohar, M., Blas, M., Turk, S., 2004. Comparison of logistic regression and linear dis-
criminant analysis: a simulation study. Metodol. Zv. 1 (1), 143 .

hafiq, M., Tian, Z., Bashir, A.K., Du, X., Guizani, M., 2020a. CorrAUC: a malicious bot-
IoT traffic detection method in IoT network using machine-learning techniques.

IEEE Int. Things J. 8 (5), 3242–3254. doi: 10.1109/jiot.2020.3002255 .
hafiq, M., Tian, Z., Sun, Y., Du, X., Guizani, M., 2020b. Selection of effective ma-

chine learning algorithm and Bot-IoT attacks traffic identification for internet

of things in smart city. Futur. Gener. Comput. Syst. 107, 433–442. doi: 10.1016/j.
future.2020.02.017 .

ujatha, P., Mahalakshmi, K., 2020. Performance evaluation of supervised machine
learning algorithms in prediction of heart disease. In: Proceedings of the IEEE
10
International Conference for Innovation in Technology (INOCON). IEEE, pp. 1–7.
doi: 10.1109/INOCON50539.2020.9298354 .

hreatpost. (2022) D- link, IoT devices under attack by Tor-based Gafgyt variant. Re-
trieved from https://threatpost.com/d- link- iot- tor- gafgyt- variant/164529/ . Ac-

cessed July 28, 2022.
NSW Canberra (2022) The Bot-IoT dataset . Retrieved from https://research.unsw.

edu.au/projects/bot-iot-dataset . Accessed June 08, 2022.
akili, M., Ghamsari, M., & Rezaei, M. (2020). Performance analysis and compari-

son of machine and deep learning algorithms for IoT data classification. arXiv

preprint arXiv: 2001.09636 .
in, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Wang, C., 2018. Machine learning and

deep learning methods for cybersecurity. IEEE Access 6, 35365–35381. doi: 10.
1109/ACCESS.2018.2836950 .

hang, C., Liu, C., Zhang, X., Almpanidis, G., 2017. An up-to-date comparison of state-
of-the-art classification algorithms. Expert Syst. Appl. 82, 128–150. doi: 10.1016/

j.eswa.2017.04.003 .

r Michał Motyli ński is a data scientist working in collaboration between the

chool of Computer Science and Mathematics at Liverpool John Moores University
LJMU) and Zayed University, UAE. Michal has an MSc Artificial Intelligence (Ma-

hine Learning) graded distinction from Liverpool John Moores University (2022),
nd a first-class BSc (Hons) in Computer Forensics. He is currently interested in re-

earch centred around the application of machine learning for digital forensics and
ybersecurity.

r Áine MacDermott is a Senior Lecturer in the School of Computer Science and
athematics at Liverpool John Moores University (LJMU) in the UK. Additionally,

r MacDermott is an Adjunct Professor in the Faculty of Business and IT, at On-
ario Tech University, Canada. This role is in recognition of Áine’s knowledge, skills

nd expertise in digital forensics and cyber security. At LJMU, Áine teaches on both
he Computer Forensics and Computer Security programmes. She obtained her PhD

n Network Security from LJMU in 2017, and a BSc (Hons) in Computer Forensics

n 2011. Áine is also member of Research Centre for Critical Infrastructure Com-
uter Technology and Protection (PROTECT) at LJMU, with research interests includ-

ng the Internet of Things, collaborative intrusion detection in interconnected net-
orks, digital forensics, and machine learning.

r Farkhund Iqbal holds the position of Associate Professor and Director Advanced
yber Forensics Research Laboratory in the College of Technological Innovation, Za-

ed University, United Arab Emirates. He is leading Cybersecurity and Digital Foren-

ics (CAD) research group in center for Smart Cities and Intelligent Systems, Zayed
niversity. He holds a Master (2005) and a Ph.D. degree (2011) from Concordia

niversity, Canada. He is using Artificial Intelligence, Machine Learning and Data
nalytics for problem-solving in health care, cybersecurity, and cybercrime inves-

igation in smart and safe city domain. He has published more than 100 papers
n high ranked journals and conferences. He is an Affiliate Professor in the School

f Information Studies, McGill University, Canada, and an Adjunct Professor in the

aculty of Business and IT, University of Ontario Institute of Technology, Canada.
e has served as a chair and TPC member of several IEEE/ACM conferences and

s the reviewer for several high-rank journals. He also chairs Cyberbercrime Inves-
igation and Digital Forensics workshop and Computing in Companion Robots and

mart Toys Symposium in the Hawaii International Conference on System Sciences
HICSS).

r. Babar Shah is an Associate Professor at the College of Technological Innova-

ion, Zayed University, UAE. Dr. Babar received MS degree (2007) from University
f Derby, UK and PhD (2014) from Gyeongsang National University, South Korea.

r. Babar professional services includes but are not limited to - Guest Editorships,
niversity Services, Workshops Chair, Technical Program Committee Member, and

eviewer for several international journals and conferences. His research work is
ssociated with interdisciplinary field of Network Sciences, Health Informatics, In-

ormation Systems, Machine and Deep Learning.

http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0003
https://doi.org/10.1109/ICETAS.2018.8629197
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/s21020446
https://docs.rapids.ai/api/cuml/stable/
https://doi.org/10.1016/j.future.2020.09.004
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-smart-phones-tablets-and-mobile-internet-devices-what-the-future-has-in-store?campaign=tcid_admitad_6ab325772c71d0e99b5c5a2683dc3a2e_240682_x4&ADDITIONAL_reseller=tcid_adm
http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0013
arxiv:/2005.00722
https://doi.org/10.1002/ett.4088
https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
https://doi.org/10.1109/ICITST.2016.7856730
https://doi.org/10.1155/2015/909123
https://doi.org/10.23919/MIPRO48935.2020.9245140
http://refhub.elsevier.com/S0167-4048(22)00310-8/sbref0022
https://doi.org/10.1109/jiot.2020.3002255
https://doi.org/10.1016/j.future.2020.02.017
https://doi.org/10.1109/INOCON50539.2020.9298354
https://threatpost.com/d-link-iot-tor-gafgyt-variant/164529/
https://research.unsw.edu.au/projects/bot-iot-dataset
arxiv:/2001.09636
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1016/j.eswa.2017.04.003

	A GPU-based machine learning approach for detection of botnet attacks
	1 Introduction
	2 Related work
	2.1 Current solutions
	2.2 Summary of related work

	3 Proposed methodology
	3.1 Dataset
	Dataset sample
	Experiment environment
	Feature selection
	Class distribution
	Algorithms used

	3.2 Evaluation metrics

	4 Results and discussion
	4.1 Data pre-processing
	4.2 Binary malicious traffic detection
	4.3 Attack type detection
	4.4 Comparison with other works

	5 Conclusions and future work
	Funding
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

