
Bethell, EJ, Khan, W and Hussain, A

 A deep transfer learning model for head pose estimation in rhesus macaques 
during cognitive tasks: towards a nonrestraint noninvasive 3Rs approach

http://researchonline.ljmu.ac.uk/id/eprint/17515/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Bethell, EJ, Khan, W and Hussain, A (2022) A deep transfer learning model 
for head pose estimation in rhesus macaques during cognitive tasks: 
towards a nonrestraint noninvasive 3Rs approach. Applied Animal 
Behaviour Science. ISSN 0168-1591 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Applied Animal Behaviour Science 255 (2022) 105708

Available online 16 July 2022
0168-1591/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A deep transfer learning model for head pose estimation in rhesus 
macaques during cognitive tasks: Towards a nonrestraint noninvasive 
3Rs approach 

Emily J. Bethell a,*,1, Wasiq Khan b,*,1, Abir Hussain b,c 

a School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK 
b School of Computer Science & Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK 
c College of Engineering, University of Sharjah, United Arab Emirates   

A R T I C L E  I N F O   

Keywords: 
3Rs 
Animal behavior 
Animal welfare 
Attention bias 
Deep gaze analysis 
Deep learning 
Head pose estimation 
Macaca mulatta 
Social threat 

A B S T R A C T   

Head orientation is a measure of attention used in behavioral psychological research with non-human primates. 
It is used across a broad range of disciplines and settings, from the field to the laboratory. Field methods are time 
consuming with risk of coding bias and visibility issues with free-ranging animals. Laboratory methods may 
require restraint and use of invasive procedures. Automated systems to measure head orientation in unrestrained 
animals, that are robust to partial occlusion of the head, would improve coding efficiency and accuracy and 
provide 3Rs animal welfare benefits. We present a free-to-use deep transfer learning model for non-invasive head 
pose estimation in unrestrained Macaca mulatta taking part in cognitive experiments. Monkeys housed in social 
groups were filmed viewing two conspecific face stimuli presented on either side of a video camera. Video frames 
were manually annotated for three head positions relative to the video camera: ‘left’, ‘center’ and ‘right’. The 
dataset (total = 8135 images from 26 monkeys) was partitioned into training and testing datasets using a leave-k- 
out strategy, so that 70% of the images were used in training and 30% were used in testing. We used the VGG16, 
VGG19, InceptionV3 and Resnet50 as base models to train the proposed head pose classifier. We achieved model 
accuracy up to 93 %. The head pose estimation model presented here will be of use across contexts ranging from 
field-based playback experiments to assessment of welfare in zoo and clinical veterinary settings and refinement 
of neuroscience research practices. Model code with instructions is provided.   

1. Introduction 

Head orientation towards stimuli (such as visual images presented on 
a screen, or the direction of a sound) is a widely used response measure 
of attention in behavioral cognitive and neuropsychological research 
with human and non-human primates (Adade and Das, 2019; Pfefferle 
et al., 2014; Wilson et al., 2020). Social diurnal primates including 
humans have specialized brain areas sensitive to visual gaze cues such as 
head orientation, supporting the biological value of this social measure 
of attention (Deaner and Platt, 2003; Hadjidimitrakis, 2020; Taubert 
et al., 2020; Wilson et al., 2000). In real-world settings where in
dividuals can move freely, head orientation is more easily and accu
rately detected than other measures such as eye-gaze. Due to the 

coordinated movement of the eyes and head such that the head typically 
aligns with the direction of eye gaze, in unrestrained contexts head 
orientation provides a reliable proxy measure for the direction of visual 
attention (Hadjidimitrakis, 2020; Itti et al., 2003). 

Where head orientation is measured in naturalistic or free ranging 
settings, head orientation towards stimuli is typically filmed for manual 
coding, allowing for accuracy checks and later reliability testing. Ex
amples include field playback experiments using auditory cues (Pfefferle 
et al., 2014), looking time paradigms using visual stimuli (Man
dalaywala et al., 2014; Winters et al., 2015), and gaze following para
digms (Ferrari et al., 2000; Ghazanfar and Santos, 2004), all of which 
recorded video material. Direction of head turn relative to stimuli 
(left/right) is used as an indicator of hemispheric specialization in 

* Corresponding authors. 
E-mail addresses: E.J.Bethell@ljmu.ac.uk (E.J. Bethell), W.Khan@ljmu.ac.uk (W. Khan).   

1 Joint first authors 

Contents lists available at ScienceDirect 

Applied Animal Behaviour Science 

journal homepage: www.elsevier.com/locate/applanim 

https://doi.org/10.1016/j.applanim.2022.105708 
Received 8 December 2021; Received in revised form 8 July 2022; Accepted 12 July 2022   

mailto:E.J.Bethell@ljmu.ac.uk
mailto:W.Khan@ljmu.ac.uk
www.sciencedirect.com/science/journal/01681591
https://www.elsevier.com/locate/applanim
https://doi.org/10.1016/j.applanim.2022.105708
https://doi.org/10.1016/j.applanim.2022.105708
https://doi.org/10.1016/j.applanim.2022.105708
http://creativecommons.org/licenses/by/4.0/


Applied Animal Behaviour Science 255 (2022) 105708

2

information processing (Rogers, 2010; Teufel et al., 2007). Manual 
coding of video is time consuming requiring initial coder training, reli
ability assessment, time to sort and annotate video, and is at risk of bias 
where experiments are not double blind. 

In the laboratory, measures of primate attention can be more highly 
controlled. Head orientation is an essential component of the gaze 
response and where eye-tracking devices are used is typically controlled 
mechanically, most often by fixing the subject’s head in place using 
surgical implantation of a headpost fixing: (Adade and Das, 2019; 
Adams et al., 2007; Wilson et al., 2020). Mechanical restraint of head 
movement raises ethical issues and poses challenges for quality of sci
ence (Prescott and Lidster, 2017), and does not allow for a full under
standing of natural (whole body) responses during testing (Berger et al., 
2020). Currently, there are no established methods to track eye gaze in 
freely moving primates that are both noninvasive and non-restraint. This 
is partly due to a lack of available resources that coordinate head 
orientation with eye movement data from non-human primates (Hopper 
et al., 2020). Software that reliably tracks head orientation from video of 
unrestrained primates is a necessary first step to new improved ap
proaches to measuring eye gaze in unrestrained animals (Hopper et al., 
2020). 

Recent progress in computer vision science, particularly in the field 
of deep learning (DL) and convolutional neural networks (CNN), in
dicates this is a fertile area for development of a new range of tools for 
noninvasive behavioral assessment (Khan et al., 2020; LeCun et al., 
2015). Computer vision is a field of computer science that deals with the 
extraction and processing of information from digital images such as 
video. DL is a type of machine learning which involves a large number of 
layers and ‘neurons’ to process big data, and CNN are node-based neural 
networks used specifically in computer vision DL applications (i.e. with 
digital images). Most applications of DL and CNN within the behavioral 
sciences to date have been conducted with humans (Belhadi et al., 2021; 
Bhouri, 2021; Huang, 2021), and a number of platforms offering DL and 
computer vision-based tools for assessment of human head pose esti
mation and gaze have emerged in recent years. 

Developments in head pose estimation indicate that DL approaches 
may provide benefits over other ML approaches. For example, Bailly and 
Milgram (2009) introduced a feature selection approach using fuzzy 
functional criteria along with boosting over generalised regression 
neural networks for the head pose estimation. Similarly, Wang and Song 
(2014) presented a multi-stage supervised manifest learning approach 
for human head pose estimation. In both cases, the proposed model 
achieved high accuracy compared to similar methods when tested over 
standard datasets and varying illuminations. However, in both studies, 
the analyses lacked evidence of statistical significance when compared 
with DL models such as CNN. Li et al. (2020) applied CNN for head pose 
estimation in people in both indoor and outdoor settings allowing image 
processing for head pose that was independent of landmark identifica
tion tools. Yin et al. (2017) proposed a deep 3D Morphable Model and 
face recognition CNNs for the classification of large pose variations in 
unconstrained environments with the ability to expand the pose ranges 
to 90◦. McCay et al. (2020) used DL for the detection of abnormal infant 
movements for early diagnosis of cerebral palsy from video sequences; 
ultimately, they retained only joint movements and excluded head pose 
from the model ‘due to self occlusion’, indicating the model was not 
robust to occlusion caused by natural face-directed behavior in 

unrestrained infants. Khan et al. (2021) applied computer vision and 
machine learning to extract micro-features including facial movements, 
head pose and gaze information from image frames, that allowed clas
sification of truthful and deceptive behaviors by human participants 
taking part in a truthful/deceptive role play. However, they used par
allel conventional machine learning (ML) algorithms to extract the 
real-time object localizations (i.e., head pose, facial and eye movements) 
which could be simplified with DL algorithms for automated feature 
extraction for such tasks. More specifically, deep transfer learning (DTL) 
utilizes pre-trained models for application across contexts, thereby 
improving processing efficiency, generalization, and saving time tradi
tional approaches need for initial training. To our knowledge, deep 
transfer learning has not yet been applied for head pose estimation in 
humans, despite evidence it could provide a number of benefits over 
existing approaches. Deep learning tools for pose estimation and 
behavior analysis in non-human animals are beginning to emerge but 
are still in their infancy (Nath et al., 2019; Valletta et al., 2017). At the 

Table 1 
Summary data for the 26 adult females whose video was used in the raining and 
testing of the DTL- HPE model. Video#: The twenty six videos of the first 
experimental trial was selected at random from a database of 108 animals; 
Threat face location: indicates whether the threat face was in the left or right 
location within the apparatus (and therefore presented to the left or right visual 
field: LVF and RVF respectively). Age: all monkeys were sexually mature adults; 
Social group: Monkeys were housed in social breeding groups of varying sizes 
containing on breeding male (n indicates no breeding male present at the time 
video was collected). Group size: the number of adults (excludes sexually 
immature individuals). Total frames: the total number of image frames extracted 
from the video for that individual.  

Video# Threat face 
location 

Age 
(yrs) 

Social 
group 

Group 
size 

Total 
Frames 

1 LVF  8 n  10  406 
2   11 so  15  427 
3   12 th  7  462 
4   12 so  9  254 
5   12 so  13  239 
6   12 so  12  316 
7   14 si  10  496 
8   15 d  10  377 
9   15 d  11  113 

10   16 n  3  388 
11   18 je  11  404 
12 RVF  8 n  9  182 
13   9 Ju  6  144 
14   10 a  6  143 
15   12 so  14  237 
16   12 so  11  658 
17   12 so  10  290 
18   13 st  9  237 
19   13 st  8  469 
20   15 d  14  352 
21   15 m  5  64 
22   15 d  13  297 
23   15 d  12  251 
24   15 d  9  308 
25   17 n  2  349 
26   18 ju  10  272 

Mean   13   9.58  313 
Total        8135  
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time of writing, for non-human primates, no tool for detection of head 
orientation is available although the first tools for body posture (Bala 
et al., 2020; Labuguen et al., 2021), social interactions (Bala et al., 2020) 
and individual identity (Guo et al., 2020; Schofield et al., 2019; Witham, 
2018) have recently been developed. Some of these models (e.g. 
Witham, 2018) provide facial landmark data, but none directly provide 
head pose estimation, specifically in real-time environment with noisy 
foreground. 

More generally, platforms such as DeepLabCut Model Zoo (Mathis 
et al., 2018; Nath et al., 2019) offer a small but growing range of models 
for coding behavior in species ranging from horses to rodents, and 
including primates (e.g. Witham, 2018). As the number of models grows 
and users become familiar with these platforms computer vision scien
tific approaches, including DL models, will become standardised tools 
for behavioral coding in a range of disciplines. Model Zoo, for example, 
enables the extraction of detailed facial landmarks for the macaque face 
that can be stacked by a computer vision or deep learning model (as we 
present in the methods described here) for behavioral analysis in real 
time conditions. 

Fig. 1. Example of an attention bias preferential looking trial. Monkeys were 
shown a pair of social stimuli (one threat face and one neutral face, from a 
single unknown individual) presented on either side of a video camera. Head 
orientation was filmed. 

Fig. 2. Head orientation parameters for manual coding of frames using morphological features. ‘Center’ was coded when the face was oriented directly towards the 
camera, assessed by looking for equivalency in the size of the left/right nostrils (‘center’, lower panel). Where one or both nostrils were obscured by the bars we used 
left/right eye sockets and brow ridges, and visibility of the left/right ears as markers for orientation, allowing a small degree of error (‘center’, top panel shows 
maximum deviation permitted from absolute center). Where the head was turned so there was no longer equivalency in nostril size (or secondary markers where 
nostrils were not visible due to bars), orientation was considered not to be central. In this case, when the head was oriented so that both nostrils remained visible 
(assuming no occlusion by bars) and the furthest eye was not obscured by the nose ridge we applied a ‘mid’right’ or ‘mid-left’ code. When the head was turned so that 
only one nostril was visible (e.g. ‘left’, lower panel) and/or the bridge of the nose began to obscure the eye furthest from the camera (‘right’, lower panel) the frame 
was coded as ‘left’ or ‘right’ accordingly. Head orientation was coded in this way up to a maximal orientation of 900 relative to the camera (left, upper panel). Images 
selected to show individual differences in facial appearance, range of still frame quality (e.g. ‘mid-left’, lower panel shows blur caused by head movement) and visual 
obstruction by bars. 
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Here we present, to our knowledge, the first open source model for 
head pose estimation in unrestrained rhesus macaques during behav
ioral psychological research. Importantly, our tool is robust to partial 
occlusion of the face, as occurs in real world unrestrained contexts (e.g. 
own and conspecific body parts, foliage in the wild and enclosure mesh 
in captivity). 

2. Methods 

2.1. Participants and video collection 

Video of 26 adult female rhesus macaques Macaca mulatta housed in 
social breeding groups at the Centre for Macaques, MRC Harwell Insti
tute, UK, was used in the current study (n = 26 animals, mean age = 13 
years, range 8 – 18 years; group sizes 2–10: Table 1). Videos were of 
monkeys taking part in an attention bias preferential-looking task using 
a nonrestraint noninvasive approach, filmed with a Panasonic HC-V520 
video camera (Fig. 1: Howarth et al., 2021). Monkeys had previously 
been trained, using positive reinforcement with food rewards, to station 
next to a target in the home enclosure to take part in cognitive testing 
(Kemp et al., 2017). Monkeys were always tested in their social group 
and were free to disengage and move away from the apparatus to join 
the rest of the group at any time during testing. 

Each monkey originally took part in eight attention bias trials (mean 
= 7.8 trials, range = 4–8). Briefly, a pair of stimuli were loaded into an 

apparatus, with one image on either side of a video camera. When the 
monkey was oriented towards the camera, occluders covering the 
stimuli were removed and the monkey’s gaze towards the two images 
was filmed. Video frame size was 640 × 480 pixels. For the current 
analysis we selected video for the first trial only, as our previous work 
shows most looking towards stimuli occurs on this trial for most mon
keys (Howarth et al., 2021). A few monkeys have an avoidant attention 
profile, and since we selected videos for the first trial only, there was 
variability in the number of images available across individuals. We did 
not adjust for this as it was a natural characteristic of the data set. The 26 
monkeys were selected at random from our existing database, full details 
of which are published in Howarth et al. (2021) where a detailed pro
tocol and animal information for the full cohort can be accessed from the 
Supplementary material (Study 1). 

2.2. Video annotation and dataset preparation 

Each video was manually annotated on a frame-by-frame basis for 
orientation of the head with respect to the video camera. Boundaries for 
classes of head pose were based on visual assessment of the symmetry of 
morphological cues – primarily the nostrils and secondarily the eyes, 
ears, brow-ridge and nose-ridge (Fig. 2). Relative nostril size was used 
primarily as it was least likely to be obscured by the bars, was relatively 
robust to head elevation (which we did not measure) and was therefore 
the easiest measure to qualify for manually coding a large number of 

Fig. 3. An example of the DTL-HPE model applied to the VGG16 CNN network architecture (Simonyan and Zisserman, 2014) as the base model. The spatial pooling 
was constructed using 5 max-pooling layers. 
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video frames of freely moving animals. We identified five classes for 
coding purposes, of which three classes were subsequently used for 
training and testing the DL model: ‘left’, ‘center’ and ‘right’. Our classes 
align with neurophysiological work showing distinct neuronal responses 
to different head orientations in macaques (Murphy and Leopold, 2019; 
Taubert et al., 2020). In those studies macaque neuronal responses to a 
digital macaque avatar in which the head orientation was experimen
tally and precisely manipulated for orientation (including elevation) 
were measured. There were distinct neuronal responses to faces oriented 
at 00 (i.e. directly oriented towards the viewer; Fig. 2, ‘center’) 
compared to when the stimulus head was oriented 300 to the left or right 
(equivalent here to our minimum threshold for ‘left’ and ‘right’; Fig. 2: 
‘right’, lower panel). As in (Murphy and Leopold, 2019) we set ± 900 as 
the upper boundary for head orientation (Fig. 2, ‘left’, upper panel). 
Because the monkeys in our study were unrestrained we allowed a small 
degree of error for ‘central’ which we assume to be < ± 100. Faces that 
were visible but did not meet the criteria for ‘central’ or ‘left’/’right’ (i.e. 
approximately orientated at an angle 100 < 300 relative to the camera), 
were classed as ‘mid-left’ and ‘mid-right’. Only frames in which the head 
and at least one eye were visible were annotated (except at the upper 
boundary for left/right ± 900 where it was possible no eye was visible). 

2.3. Deep transfer learning based head pose estimation (DTL-HPE) 

In image processing tasks, extensive analysis indicates that deep 
learning (DL) provides an excellent evaluation method when used for 
large datasets (Soumare et al., 2021). Deep learning is a type of machine 
learning algorithm constructed from multi-layer neural networks that 
has many hidden layers, with a number of artificial neurons that can 
provide mathematical operations on the input dataset (Zou et al., 2019). 
There are various DL algorithms, among them CNN, which is considered 
the state-of-the-art approach to image classification at the time of 
writing. CNN simulates natural brain processing, as well as representing 
visual information among adjacent pixels and objects (Rawat and Wang, 
2017). 

Deep learning neural network architectures show improved versa
tility in performance when benchmarked against conventional ML ap
proaches, because DL can work with unstructured datasets while ML is 
suited to structured data (Lei et al., 2020). ML models are trained on 
large, labelled datasets for which they show strong performance, but 
they show poorer performance when transferred to real-world applica
tions because in real-world applications such labelled datasets are not 
available (Lei et al., 2020). By contrast, deep transfer learning (DTL) is 
an application of DL in which the knowledge gained through DL in one 
set of learning scenarios is transferred to others (Pan and Yang, 2009). 
The source domain represents the domain in which the knowledge is 
learned, while the target domain is the one to which the knowledge is 
transferred. 

There are various DL architectures that have been developed for 

video and image processing, and the most advanced and accurate of 
these are those that utilise CNN. A number of open-access DL CNN ar
chitectures are available that have been trained on huge image datasets 
and that are suitable for use as base models in DTL. For the current study 
we selected four widely used CNN architectures as proposed base 
models, all of which have been evaluated for performance using the well 
know ImageNet Large-Scale Visual Recognition Challenge (ILSVRC: 
Berg et al., 2010) in which models compete in image recognition tasks 
from the ImageNet database of > 15million labelled high resolution 
images. The best performing and most widely utilized of these are: 
VGG-Nets VGG-16 and VGG19 (Simonyan and Zisserman, 2014), 
ResNet50 (He et al., 2016), and GoogLeNet’s Inception v3 (Szegedy 
et al., 2015). VGG-16 and VGG-19 are 16 layer and 19 layer CNN 
respectively. Both models have been well validated for transfer learning 
(Carvalho et al., 2017) and image classification (Mateen et al., 2019). 
ResNet50 is a 50 layer CNN which utilises the concept of skip connection 
allowing the feeding of the input data from previous layers to the next 
ones without modification. ResNet50 is also known as a residual 
network. The network utilises 1 × 1 convolutional layers, reducing the 
computational complexity by the elimination process. GoogLeNet is 
another CNN architecture that has two different versions namely 
Inception-v1 and Inception-v3, consisting of 42 layers (Alom et al., 
2018). 

The full DTL based model for HPE (from herein DTL-HPE) in rhesus 
macaques is available at https://osf.io/3npq8/. We trained the DTL-HPE 
model using each of the four base models over the recursive train/test 
partitions of the dataset using the code provided in Supplementary 
Material (Code S1). Specific parameters and experimental settings are 
also provided (Table S1). Fig. 3 shows the DTL-HPE model applied to the 
VGG16 CNN network architecture as the base model for transfer 
learning to occur. In this model the CNN is set to 256 × 256 RGB image 
which is forwarded to a stack of convolutional layers (in this case 16 
layers). 

Algorithm 1 shows the overall steps for the proposed DTL based HPE 
within the video data. Multiple baseline experiments were conducted by 
a number of classification trials to compare the HPE performances of 
VVG16, VVG19, ResNet50 and Inception-V3 based DL models. Initially, 
multiple train/test trials were run by partitioning the entire dataset 
randomly into training and testing proportions comprising 70% and 
30% of the total images respectively. This analysis allowed us to assess 
transfer learning accuracy with the 26 monkeys used in training and 
testing. Using images from the same individuals in training and testing is 
commonly done but is likely to result in non-independent data (i.e. 
adjacent frames are non-independent). This makes a standard approach 
like cross-validation liable to produce biased classification outcomes, 
failing to indicate the utility of the model for transfer to new individuals 
and image sets. 

Algorithm 1. Proposed methodology for head pose estimation (HPE). 
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To assess the accuracy of the HPE model for transfer of DL to pre
viously unseen individuals, a leave-k-out (LKO) strategy was subse
quently utilised for the partitioning of training and test data, which is 
one of the commonly used strategies in ML model evaluation in similar 
scenarios (Khan et al., 2021; Little et al., 2017). For this analysis, the 
training set comprised all image frames extracted from videos of 18 
monkeys who were selected at random (i.e. 70% of the total video data), 
and the testing set comprised all image frames of the remaining 8 
monkeys (i.e. 30% of the entire video data) for the testing. We con
ducted 10 recursive runs using the random LKO strategy for the four DL 
base models to investigate the reliability and generalisability of the 
proposed DTL-HPE model. Statistical outcomes were generated 
following the parametric configurations detailed in Supplementary 
Material (Table S1) to classify head pose within the unseen image 
frames. 

The final parametric configurations were set empirically based on 
several recursive trials over a random train/test partition (70%:30% 
respectively using LKO). In total there were 8135 image frames. The 
training set comprised 5114 images (961, 2622, 1531 images for 
training left, center and right classes respectively). The test-set con
tained 3021 images (343, 1571 and 1107 for testing left, center and right 
classes respectively). Because we selected videos at random, there were 
fewer training and test images with left orientation likely reflecting our 
finding of visual field effects in the primary study (Howarth et al., 2021). 
In that study monkeys showed reduced interest, or possible avoidance, 
of threat faces presented to the left visual field, and greater bias towards 
threat faces presented to the right visual field. 

3. Results 

3.1. Performance of the DTL-HPE model 

Standard statistical metrics (i.e. recall, precision, accuracy, F1 score, 
macro average) were used to evaluate the classification performance 
based on confusion matrices retrieved from the proposed DTL based 
head pose classifiers (Table 2). 

3.2. Head pose estimation in known individuals 

Table 3 shows the statistical outcomes from DTL-HPE obtained from 
the four base models, when trained and validated using 70% of the 
images and tested on 30% of the images. The DTL-HPE model achieved 
almost 100% accuracy in training, validation and testing with all four 
base models. Fig. 4 shows number of epochs to reach peak training and 
validation accuracy for each base model. While testing was performed 
on unseen images, the dependent nature of images from the same in
dividual may cause relatively higher accuracies. 

3.3. Head pose estimation in unknown individuals 

Table 4 shows the statistical metrics retrieved from DTL-HPE for the 
four base models when tested on individuals (n = 6) whose images were 
not used during training and validation (n = 18 monkeys used in 
training and validation). The outcomes indicate similar performances 
(0.88–0.90 HPE accuracy) by all models except Inception-V3 which 
produced lower overall accuracy (0.77 HPE accuracy). The best per
forming base model overall was VGG16, which had the highest overall 
accuracy of 0.90. Generally, VGG16 also showed the greatest precision, 
recall and F1-scores across the three classes of head pose, indicating it 
was the least biased of the base models by number of training images for 
each class. For example, images of head orientation to the left were 
under-represented in the dataset. For this class, VGG16 achieved 0.78 
recall, compared to 0.71, 0.74 and 0.66 from VGG19, ResNet50 and 
Inception V3 respectively. Likewise, the Macro average F1 score for 
VGG16 was also the highest (0.89) as compared to other models. 

We subsequently assessed the impact of image size on DTL-HPE 
performance when using the VGG16 base model (Table 5). Generally, 
the model had greater accuracy for larger image frames. Accuracy 
increased from 0.78 to 0.89 when image size was increased from 
64 × 64–256 × 256 respectively. There was no improvement in per
formance between images sized 256 × 256 and images sized 512 × 512. 
This may be an artefact of the original video frame size (640 ×480 
pixels) so that changing it to 512 × 512 was not useful in this case. 
However, we might expect performance to improve with higher reso
lution images. In our work, we standardized all images to 256 × 256 
pixels, to allow interpretation with respect to real time scenarios with 
low resolution images as well as consuming low computational 
resources. 

Finally, to validate the performance of our DTL-HPE model for im
ages of previously unseen individuals, we performed 10 recursive runs 
using the LKO strategy. Table 6 shows the statistical outcomes of the 
DTL-HPE model, using the VGG16 base model, for each of the 10 iter
ations. This indicates reliability and generalization of HPE model with a 
best accuracy of 93 %, with a fair precision (left 89 %, center 92 %, right 
96 %), recall (left 94 %, center 96 %, right 88 %) and F1-score (left 92 %, 
center 94 %, right 92 %) for the three classes of head pose. The grand 

Table 2 
Performance metrics. TP: Correctly classified images that belong to that class; TN: Correct rejection of images that do not belong to that class; FP: Incorrect classi
fication of images to a class they do not belong to; FN: Incorrect rejection of images from a class they belong to.  

Performance Metric Description 

Recall(C) =
TPC

TPC + FNC
. The percentage of images that were classified to class C, compared to all images that should have been classified into C. 

Precision(C) =
TPC

TPC + FPC
. The percentage of images correctly classified for class C. 

Accuracy =
TP + TN

TP + TN + FP + FN
. Overall accuracy of the model for all classes. 

F1 Score(C) =
2 ∗ Precision(c) ∗ Recall(c)

Precision(c) + Recall(c)
Harmonic-mean of precision and recall indicating success rate of the model for class C. 

Macro Average (F1 Score) =
∑3

c=1F1 Score(C)
3

. 
Average of each class’s F-1 score independent to sample size per class.  

Table 3 
Training, validation and testing performances of VVG16, VVG19, ResNet50 and 
Inception-V3 using 70% and 30% random training and testing partitions 
respectively. Results were equivalent for left, center and right HPE.  

Model Name Training Accuracy Validation Accuracy Test Accuracy 

VVG16  1  0.99  1 
VVG19  1  0.99  0.99 
ResNet50  1  0.99  0.99 
InceptionV3  1  0.98  0.98  
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average accuracy of 10 recursive experiments was 89.5 % accuracy for 
overall three classes with 85 %, 91 % and 88 % of F1-score for left, center 
and right classes respectively. The model indicated slightly better per
formance for the center class, which may indicate a bias due to sample 
size, as center was over-represented in the dataset. Furthermore, varying 
number of samples per individual subject (i.e., video frames per monkey, 
see Table 1) may influence the model performance as a confounding 
factor. 

4. Example application of the DTL-HPE model to assess 
hemispheric lateralization during a cognitive task 

To illustrate the potential application of the DTL-HPE model for 
assessing hemispheric specialization in viewing preferences for social 

stimuli, we examined how the three classes of head pose assigned by the 
model mapped onto the location of the threat face (left/right visual 
field) that was shown during each video. Because of the small samples 
size (n = 26 monkeys) and because we included some video frame im
ages from before and after the start of the attention bias trial to maxi
mize the number of image frames for training and testing the model, we 
refer the reader to (Howarth et al., 2021) for a more complete analysis of 
the full data set (n = 108 monkeys), which was manually coded for eye 
gaze (but not head pose). Our example illustrates how the DTL-HPE 
model can be used currently, and its promise for future development 
for integration with eye pupil localization to estimate eye gaze. 

Analysis was conducted in R (RCoreTeam, 2019). We constructed a 
generalised linear mixed effects model (GLMM) using R package ‘lme4’ 
version 1.1–15 (Bates et al., 2015). The response variable was number of 

Fig. 4. Convergence of Proposed DTL based HPE classifiers over random partition of training and validation samples.  

Table 4 
Average outcomes using random LKO 10 iterations with VGG16, VGG19, ResNet50 and InceptionV3 for the DTL-HPE classes (left, center, right).  

Model Name Precision Recall F1-score Accuracy Macro Avg. F1-score 

VGG16 L: 0.94 
C:0.89 
R:0.91 

L:0.78 
C:0.95 
R:0.85 

L:0.85 
C:0.91 
R:0.88  

0.90  0.89 

VGG19 L: 0.93 
C:0.84 
R:0.91 

L:0.71 
C:0.94 
R:0.80 

L:0.81 
C:0.89 
R:0.85  

0.88  0.87 

ResNet50 L: 0.98 
C:0.86 
R:0.91 

L:0.74 
C:0.96 
R:0.83 

L:0.84 
C:0.90 
R:0.87  

0.89  0.87 

InceptionV3 L: 0.50 
C:0.88 
R:0.73 

L:0.66 
C:0.79 
R:0.77 

L:0.57 
C:0.83 
R:0.75  

0.77  0.72  
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frames, the predictor variables were entered as an interaction term: HPE 
(left, center, right) and visual field to which threat face was presented 
(left/right). Animal ID was entered as a random effect with a poisson 
family error distribution and log-link function specified. Model fit was 
assessed by visual inspection of plots of residuals. Model validity was 
assessed by comparing it against the null model (an identical model 
except for the removal of the predictor and control variables, with an 
intercept of 1 specified) using the anova command in R (Burnham and 
Anderson, 2002). We tested for collinearity using the vif command in the 
package ‘car’ finding no evidence (all vifs <1.54). 

The full model including the interaction between visual field and 

HPE explained the data better than the null (χ2 = 1921, df = 5, 
P < 0.001). There was a significant 3 × 2 interaction between head pose 
and visual field (LRT=318.92, df=2, P < 0.001: Fig. 5), with significant 
2 × 2 interactions between each combination of HPE (LxC, RxC and 
LxR) and visual field (all z > 9.6, all P < <0.001). There was a main 
effect of head pose (LRT=1600, df = 2, P < 0.001), again with signifi
cant 2 × 2 interactions between each combination of head pose (LxC, 
RxC and LxR: all z > 5.74, all P < 0.001). Visual inspection of Fig. 5 
indicates that for videos containing trials with the threat face presented 
on the left, there were more frames with head pose to the right than 
either a) frames with head pose to the left or b) number of right head 
pose frames for videos containing trials with the threat face on the right. 
For videos containing trials in which the threat face was presented on 
the right, the difference between left and right head, while still signifi
cant, was greatly attenuated due to greater number of frames with left 
head pose, and fewer frames with right head pose. 

5. Discussion 

The development of non-restraint non-invasive technologies for 
assessing animal behavior is essential for improving scientific outcomes 
and animal welfare in neuroscientific and cognitive behavioral research 
in the laboratory, as well as accuracy in field settings. In the laboratory 
setting, new technologies show promise for replacing current methods 
that require restraint and invasive procedures, resulting in welfare 
benefits. Here, for the first time to our knowledge, we demonstrate the 
effective application of a deep learning based head pose estimation 
(DTL-HPE) model trained and tested in a non-restraint, noninvasive set 
up, with Macaca mulatta taking part in a cognitive task in their home 
enclosure. Monkeys were free to move away and rejoin the social group 

Fig. 5. Mean number of image frames ( ± SE) for which head pose was classed 
as left, center or right for n = 26 moneys. The x axis shows the location of the 
threat face within the apparatus (left or right visual field). Main interaction 
terms indicated for illustrative purposes only. 

Table 6 
Recursive runs of the DTL-HPE model using the VGG16 base model and original 
(imbalanced) training dataset, with testing on randomly selected leave-k-out 
subjects.  

Train/Test 
Runs 

Precision Recall F1-score Accuracy 

1 L: 0.99 
C:0.85 
R:0.93 

L:0.61 
C:0.97 
R:0.85 

L:0.75 
C:0.91 
R:0.89  

0.89 

2 L: 0.97 
C:0.88 
R:0.94 

L:0.75 
C:0.97 
R:0.87 

L:0.85 
C:0.93 
R:0.90  

0.91 

3 L: 1.00 
C:0.86 
R:0.86 

L:0.68 
C:0.94 
R:0.81 

L:0.81 
C:0.90 
R:0.84  

0.87 

4 L: 0.97 
C:0.84 
R:0.95 

L:0.75 
C:0.99 
R:0.77 

L:0.85 
C:0.91 
R:0.85  

0.88 

5 L: 0.86 
C:0.91 
R:0.87 

L:0.84 
C:0.90 
R:0.88 

L:0.85 
C:0.90 
R:0.88  

0.89 

6 L: 0.89 
C:0.92 
R:0.96 

L:0.94 
C:0.96 
R:0.88 

L:0.92 
C:0.94 
R:0.92  

0.93 

7 L: 0.90 
C:0.89 
R:0.89 

L:0.85 
C:0.93 
R:0.83 

L:0.87 
C:0.91 
R:0.86  

0.89 

8 L: 0.97 
C:0.88 
R:0.94 

L:0.75 
C:0.97 
R:0.87 

L:0.85 
C:0.93 
R:0.90  

0.91 

9 L: 0.89 
C:0.89 
R:0.91 

L:0.87 
C:0.94 
R:0.85 

L:0.88 
C:0.91 
R:0.88  

0.90 

10 L: 0.99 
C:0.90 
R:0.84 

L:0.80 
C:0.90 
R:0.87 

L:0.89 
C:0.90 
R:0.86  

0.88 

Avg. (10 runs) L: 0.94 
C:0.89 
R:0.91 

L:0.78 
C:0.95 
R:0.85 

L:0.85 
C:0.91 
R:0.88  

89.5  

Table 5 
Impact of image size on DTL based HPE using VGG16 base model.  

Image Size Precision Recall F1-score Accuracy Macro Avg. F1-score 

512 £ 512 L: 0.94 
C:0.92 
R:0.84 

L:0.77 
C:0.91 
R:0.90 

L:0.84 
C:0.91 
R:0.87  

0.89  0.88 

256 £ 256 L: 0.86 
C:0.91 
R:0.87 

L:0.84 
C:0.90 
R:0.88 

L:0.85 
C:0.90 
R:0.88  

0.89  0.88 

224 £ 224 L: 0.83 
C:0.79 
R:0.97 

L:0.74 
C:0.97 
R:0.67 

L:0.78 
C:0.87 
R:0.79  

0.84  0.82 

128 £ 128 L: 0.51 
C:0.92 
R:0.86 

L:0.88 
C:0.75 
R:0.91 

L:0.65 
C:0.82 
R:0.88  

0.82  0.80 

64 £ 64 L: 0.65 
C:0.79 
R:0.81 

L:0.65 
C:0.85 
R:0.72 

L:0.65 
C:0.82 
R:0.76  

0.78  0.74  
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at any time, increasing the likelihood of blurring due to motion and 
obstruction of the face by components of the enclosure on the resulting 
video images, factors that historically have contributed to the rational 
for restraining animals. The model achieved up to 93% accuracy when 
tested with unknown individuals who were not used in the training set, 
with balanced outcomes for the three classes of head pose (92%, 94%, 
92% accuracy for left, center and right orientation respectively). This 
finding demonstrates how DL can be applied as a non-invasive approach 
to assess head pose in unrestrained macaques taking part in cognitive 
tasks. Importantly, this approach is robust to the presumed noise created 
when animals are not restrained indicating potential 3Rs benefits. 

We gained the greatest accuracy when we trained our DTL-HPE 
model using VGG-16 as the base model, although accuracy was only 
marginally better than VGG-19 and ResNet50. VGG-16-based CNN ar
chitectures have been successfully applied to detect non-human primate 
face cues in a few initial studies. For example, VGG-16 was used as a base 
model for identity and sex recognition in free-ranging chimpanzees, Pan 
troglodytes verus, attaining accuracies > 87% when images of individuals 
not used for training were used in the test set (Schofield et al., 2019). 
Charpentier et al. (2020) used VGG-16 based CNN architecture to 
identify individual Mandrill monkeys, Mandrillus sphinx, attaining ac
curacies > 83% for unseen individuals. Although the purpose of our 
model was different (to assess head pose, not individual identity) the 
accuracies achieved in these three studies support VGG-16 as one of a 
number of suitable base models for use in behavioral assessment using 
primate head and face cues. Additionally our DTL-HPE model retained 
accuracy at 89% for relatively low resolution image sizes of 256 × 256 
pixels suggesting suitability for application where non-specialist filming 
equipment or remote filming of subjects may result in course-grain 
footage. 

Our model extends the range of newly emerging models that apply 
DL, and machine learning (ML) more generally, to assess behavior in 
animals. Firstly, this is the first model to be published that is specifically 
designed to provide output about head pose for a nonhuman animal that 
we are aware of. It extends initial work by Mathis et al. (2018) who 
developed the DeepLabCut platform that provides landmark data for 
whole-body pose in a range of animal species. Here, we demonstrate an 
application of DL specifically tailored to head pose estimation in ma
caques engaged in cognitive tasks, an application with direct utility for 
contexts ranging from field playback experiments to neuroscientific 
studies of cognitive function. For such studies, models that provide 
direct output relating to HPE, avoid the further processing required of 
landmark data to interpret output in a meaningful way. With respect to 
early work in this field with macaques, Witham (2018) applied a ML 

algorithm for individual face recognition in rhesus macaques (54 facial 
landmarks), which allowed identification of individuals with > 85% 
accuracy. This is available to access on DeepLabCut (Mathis et al., 
2018). More recently Labuguen et al. (2021) applied DL through the 
online platform DeepLabCut (Mathis et al., 2018) to detect facial land
marks in pictures of macaques gained from the internet and zoos (up to 
five facial landmarks: the eyes, ears and one landmark for the nose), 
providing a neural network for markerless whole-body pose estimation. 
In both cases, landmark coordinates are produced, and our model differs 
in the output specifically addressing head pose relative to the viewer 
(left, central, right), as would be useful, for example, in cognitive testing 
scenarios. Regarding obstruction, in Labuguen et al. (2021) it is likely 
that pictures from the internet were already pre-selected for good visi
bility of the face and, where there was obstruction of facial features the 
authors report that the approximate location of the obstructed facial 
feature was manually labelled, although no data are provided on the 
impact of obstruction on accuracy. Witham (2018), tested their face 
recognition algorithm with a subset of manually selected faces that were 
partially obscured or showed rotation of the head. These two factors led 
to a reduction in accuracy from > 90% in the larger image test set to 
76% accuracy for obscured faces, and to 60% accuracy for rotated heads. 
There are clear synergies between the approaches in terms of application 
to refine quality and quantity of information gained in output, especially 
where head pose and obstruction have significant impact on other ap
plications of DL such as individual recognition (see also Shukla et al., 
2019; Sinha et al., 2019). DL models have also been applied to identify 
primate species other than macaques, including chimpanzees (Freytag 
et al., 2016; Schofield et al., 2019) and mandrills (Charpentier et al., 
2020). These studies again focused on individual recognition and 
application for monitoring of habitat use and social systems. Hence, no 
DTL model for HPE in primates taking part in cognitive research has yet 
been developed and made available. 

The application of a DTL-HPE model is potentially far-reaching in 
cognitive and psychological research with animals including humans. 
Head orientation has been used widely and reliably to assess direction of 
visual attention in primates in a number of psychological paradigms, e.g. 
gaze following (Ferrari et al., 2000), hemispheric lateralization of 
opponent viewing during agonistic interactions in the field (Casperd and 
Dunbar, 1996), hemispheric lateralization in acoustic processing (Teufel 
et al., 2007), kin recognition in acoustic field playback experiments 
(Pfefferle et al., 2014). Head turn is a commonly used measure of 
lateralization in a number of domesticated animals (Siniscalchi et al., 
2021), and in species with laterally placed eyes who typically turn the 
head to view objects of interest (Rogers, 2010; Siniscalchi, 2021). In 
primates the literature indicates a general left hemisphere (right visual 
field) bias in approach and exploratory behavior, and a right hemisphere 
(left visual field) bias in avoidance of threatening stimuli (Vallortigara 
and Rogers, 2005) which can provide information about internal af
fective states that in turn could be used to both identify and improve 
welfare in vulnerable animals (Rogers, 2010). In our illustrative appli
cation of our model, we found an overall bias in head pose to monkeys’ 
right hand sides, suggesting a right hemisphere (left visual field) priority 
of processing conspecific threat-neutral face pairs. This finding fits with 
the general pattern reported in the literature for hemispheric speciali
zation in information processing of socially relevant stimuli including 
faces (Rogers, 2010), and specifically the role of the right hemisphere in 
avoidance of threat (Vallortigara and Rogers, 2005). The exemplar data 
presented here reflect the pattern seen in our larger dataset based on 
manual coding of eye gaze direction from 108 rhesus macaques 
revealing an avoidant attentional bias away from threatening stimuli 
presented to the left visual field, which is particularly enhanced during 
initial trials (Howarth et al., 2021). 

6. Future directions 

We identify several future directions for DTL models to assess 

Fig. 6. Estimation of head pose over the fixed intervals of overlapping video 
slots. The head pose changes over time progression while the mode class 
calculated across slots represents the resulting head pose for the current slot. 
Shown progression from right to left head pose. 
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behavioral indicators of attention such as head pose in nonhuman ani
mals. One key future development is to refine the model for micro level 
behavior analysis such as eye movements and gaze direction. Social 
diurnal primates including humans have dedicated and separate neural 
circuitries for processing visual gaze cues including head orientation 
(Deaner and Platt, 2003; Hadjidimitrakis, 2020; Taubert et al., 2020; 
Wilson et al., 2000) and eye gaze (Deaner and Platt, 2003; Langton et al., 
2000; Sparks, 2002). Each cue therefore has its own informational value, 
although their signal value is intrinsically linked (Ferrari et al., 2000; 
Hadjidimitrakis, 2020; Itti et al., 2003). Head restraint in primate 
cognitive research may be combined with other invasive methods such 
as surgically implanted scleral coils (Judge et al., 1980) to record eye 
gaze to visual stimuli e.g. (Adade and Das, 2019; Arora et al., 2019). A 
current limitation in the development of non-invasive eye-tracking de
vices is the lack of tools to integrate information on head orientation 
with information on pupil location, to triangulate direction of eye-gaze 
(Hopper et al., 2020). Existing image processing methods rely on facial 
landmark detection which requires an unobstructed view of most, or all, 
facial landmarks for reliable triangulation of coordinates (Khan et al., 
2020). Reliability is therefore particularly impacted by blurred or 
obscured areas of the face (e.g. Fornalczyk and Wojciechowski, 2017; 
María Díaz Barros et al., 2017). Here we present a response to this 
challenge with a model for HPE on which further refinements to assess 
pupil location, and subsequently eye gaze direction, can be built, both in 
human and animal studies. 

An additional development to explore is the use of slot-level analysis 
(Khan et al., 2021) to deal with boundaries between the three classes of 
head pose we utilized in the current study (Fig. 6). We limited our model 
to three classes of head pose due to the small data set available for the 
intermediate head positions (i.e. mid-left and mid-right). In nature, the 
transition from one pose to other is a progression over time; transition 
from left to right head pose occurs over a certain time interval and 
consequently includes multiple image frames within that ‘slot’. The 
number of images depends on speed of movement and frame rate. Uti
lization of slot level analysis rather than instance (i.e. single frame) 
based analysis in real time and video streamed data would allow for 
intermediate states between poses to be accounted for, as has been 
successfully applied by Khan et al. (2021). 

Time slot analysis works as follows. Instead of specifying interme
diate classes such as mid-left and mid-right, trained on individual im
ages (and irrespective of what the preceding and following images are 
labelled as), the slot based video analysis considers images in their 
sequence. Fig. 6 demonstrate the example of slots containing five image 
frames indicating the transitions from right to left head pose. A DL based 
HPE model that utilizes time slot analysis would classify each image 
frame within a slot, resulting in a mode value for HPE outcomes (i.e. the 
head pose with the maximum counts within and across consecutive 
slots). This may also overcome the misclassifications by single-image- 
frame models that can be caused by real time dynamics such as a blur
red images caused by movement, or acute occlusion. This would 
generate more reliable progressive HPE outcomes. This approach might 
be useful specifically for live and pre-recorded video data analysis in 
unrestrained animals such as those we worked with who were free to 
move around throughout testing. 

In conclusion, we hope that the DTL approach presented here will 
provide direction for the future development of remote gaze estimation 
in animals, and alternative approaches to current head restraint prac
tices in laboratory contexts. With good animal husbandry practices in 
captivity, including station training animals to engage with research 
protocols while housed with and retaining access to the social group, 
DTL approaches should allow researchers, funding bodies, ethics com
mittees and other review panels to identify situations in which head 
restraint may no longer be required. 
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