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Abstract Approximations to Susceptible-Infectious-Susceptible stochastic dynamics typically predict a
stable endemic steady-state when above threshold. This can be hard to relate to the underlying stochastic
dynamics, which has no endemic steady-state but can exhibit approximately stable behaviour. Here
we relate the approximate models to the stochastic dynamics via the definition of the quasi-stationary
distribution (QSD), which captures this approximately stable behaviour. We develop a system of ordinary
differential equations that approximate the number of infected individuals in the QSD for arbitrary
contact networks and parameter values. When the epidemic level is high, these QSD approximations
coincide with the existing approximation methods. However, as we approach the epidemic threshold,
the models deviate, with these models following the QSD and the existing methods approaching the all
susceptible state. Through consistently approximating the QSD, the proposed methods provide a more
robust link to the stochastic models.

Keywords moment-closure · graph · epidemic model · stochastic · pair approximation

1 Introduction

The Markovian network-based Susceptible-Infectious-Susceptible (SIS) model (also referred to as the
contact process [15,24]) is a stochastic model describing how pathogens spread on a host contact net-
work [5,13,20,34,36,37,41]. In these dynamics, individuals can flip back and forth between two states:
susceptible and infected. When an individual is infected, its neighbours in the network (or graph) that
are susceptible are directly at risk of becoming infected. Infected individuals eventually return to the
susceptible state and are again at risk. When all individuals are susceptible, they remain so for all future
time and the pathogen is said to have died out. The all-susceptible state is thus an absorbing state. The
model is sometimes considered to be a reasonable mathematical representation for the propagation of
sexually transmitted diseases and computer viruses [10].

Approximations to stochastic SIS models, such as mean-field models [23,37,46–48] and pair-approximation
models [12,13,17,18,20,25,44], can characterise important features of the stochastic dynamics. One ex-
ample is the epidemic threshold, below which the pathogen quickly goes extinct, and above which large
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outbreaks can occur. However, above threshold, these approximate models reach a stable endemic steady-
state solution [34] which is not observed in the stochastic dynamics. The stable endemic steady-state
which emerges means it is not always clear how to relate these results back to the underlying stochastic
process, since the only stable solution to the stochastic model is the disease-free state.

Sufficiently above threshold, the stochastic system may exhibit apparently stationary behaviour, since
the probability of extinction over any finite time period can be made very small. Indeed, this apparently
stationary behaviour is often observed, with extinction just a theoretical certainty which almost never
occurs over reasonable timescales. The quasi-stationary distribution (QSD) is commonly used to define,
quantify and understand the long-term behaviour of finite Markov chains with absorbing states. Examples
include: modelling the spread of a computer virus across a network with cure and reinfection [19,27,37,
49], chemical reactions in which materials or catalysts can be exhausted [6,7,31,35,38], and wildlife
management models [16,21,26,33,40,39,43]. Within Markovian SIS dynamics, various statistics have
been derived using the concept of the QSD [2–4,14]. This includes use by Wilkinson and Sharkey [50] to
derive a measure of the invasion probability, by Ferreira and colleagues [11] to approximate the epidemic
threshold, and by N̊asell [30] to account for the influence of epidemic and demographic forces on the time
to extinction.

The calculation of the QSD can require a large number of stochastic simulations, and therefore it
is necessary to derive approximation methods. Thus far, approximations have mainly focused on well-
mixed populations. Kriscio and Lefevre [22] used a conditional birth-and-death process to approximate
the QSD of Markovian SIS epidemic dynamics, which has since been extended by N̊asell [28,29]. Allen
and Burgin [1] used a system of ordinary differential equations that approximate the expected prevalence
in the QSD when the epidemic severity is high. Dickman and Vidigal [9] developed a pair approximation
for the QSD on circles, which the model derived in this paper yields as a special case.

In arbitrary network-structured populations, van Mieghem [46] has shown that the endemic steady-
state of the “N -intertwined” individual-based SIS model, which is akin to the network-based mean-field
approximation, leads to a “meta-stable state”, which is consistent with the quasi-stationary distribution,
when sufficiently above the epidemic threshold. This behaviour has also been observed for pair-based
SIS approximations [13,20]. These approximations to the stochastic dynamics are typically obtained by
making statistical independence assumptions.

Here our objective is to clarify the link between stochastic SIS dynamics and the approximate mod-
els by relating them via the QSD. Well above threshold, the stochastic model exhibits stationary-like
behaviour and the conditioning of the QSD has minimal impact over short timescales, yielding a mean-
ingful connection between the stochastic model and its approximations. Closer to the threshold and
below threshold, the mapping according to the QSD becomes more important because the unconditioned
approximate model with its steady state no longer approximates the stochastic process and its absorbing
state. This leads to greater numerical correspondence between the models in this regime.

The paper is structured as follows. In Section 2, we define the Markovian network-based SIS modelling
framework and the master equation that describes the expected behaviour, followed by defining the QSD
in Section 3. Section 4 develops approximation methods that capture aspects of the QSD in a numerically
feasible way and we prove the existence of endemic equilibrium solutions for the node-level pair-based
SIS approximation (often referred to as the pair-quenched-mean-field approximation). We then analyse
the performance of the proposed methods on different contact networks in Section 5.

2 Markovian SIS dynamics on a contact network

We consider a finite set V of individuals, who are labelled via an arbitrary bijection to {1, 2, . . . , |V|}. Let
N = |V| <∞. Individuals can be in one of two states: susceptible, denoted by S, or infected, denoted by
I. An individual j ∈ V, while infected, makes infectious contacts to an individual i ∈ V \ {j} according
to a Poisson process with rate Tij ≥ 0. If a susceptible individual k ∈ V receives an infectious contact, it
immediately becomes infected for an exponentially distributed time period with mean 1/γk, after which
it immediately becomes susceptible again. We define the neighbourhood of an individual j, denoted Nj ,
as the set of individuals that can either infect or be infected by j; i.e. i ∈ Nj if Tij > 0 or Tji > 0. We
assume that the transmission matrix T is strongly connected; i.e. every individual is at risk of future
infection if at least one individual is infected. The matrix T can either represent a directed or undirected
contact network.

This model is described by a continuous-time Markov chain {Σ(t) : t ≥ 0} with finite state space
{S, I}N , parametrised by an irreducible square matrix T with non-negative entries and a vector γ with
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positive entries. Let σα ∈ {S, I}N denote a state of the population. We assume throughout that state σ1
corresponds to the all susceptible state. Let Σi(t) denote the status of individual i at time t, and for a
given state σα, let σαi denote the status of individual i in that state.

From a given state σα, the process can transition to a new state in which one individual has changed
state from S to I or from I to S. If the status of individual i is changing, we denote the new state by
σi→Xα , where X ∈ {S, I} is the new status of i. The transition rates for the Markov chain are given in
Table 1, where δ is the Kronecker delta.

Table 1 Transitions for the Markovian network-based SIS model

from to at rate

σα : σαi = S σi→I
α

∑
j∈V TijδIσαj

σα : σαi = I σi→S
α γi

The time evolution of the Markov chain is captured by the master equation

dP (t)

dt
= QP (t), (1)

where Pα(t) = P (Σ(t) = σα) is the probability that the system is in state σα at time t ≥ 0, and Q is a
matrix of transition rates (obtained from Table 1). In particular, P1(t) denotes the probability that all
individuals are susceptible at time t. Although this can be solved to determine the future behaviour, in
many cases this is infeasible since the matrix Q grows rapidly with N .

3 The quasi-stationary distribution

Let us construct a vector ρ(t), such that its components ρα(t), indexed by α, represent the conditional
probability that the system is in state σα at time t given that at least one individual is infected; i.e.
ρα(t) = P (Σ(t) = σα|Σ(t) 6= σ1), where σ1 is the disease-free state. We have

ρα(t) =
Pα(t)

1− P1(t)
, (2)

for α 6= 1. For α = 1, we set ρ1(t) = 0 for all t. Here we have assumed that P1(t) 6= 1 for all t ≥ 0,
which is satisfied whenever P1(0) 6= 1, though as t→∞ the limit tends to 1, which can eventually make
it numerically unstable to calculate the conditional probability this way. Using Equation (2) and the
master equation (1), the time derivative of ρα(t) is given by

dρα
dt

=

{
0 if α = 1
(QP )α
1−P1

+ Pα(QP )1
(1−P1)2

if α = 2, 3, . . . , 2N ,
(3)

where we suppress the explicit time dependence of P and ρ in favour of compactness. The right-hand
side can be expressed in terms of ρ by using Equation 2. However, we opt to keep this in terms of P
since this form is used when developing the approximate models.

The state space for the Markov chain is finite and consists exhaustively of one absorbing state and a
communicating class of transient states. The non-absorbing states form a communicating class of tran-
sient states because the contact network is strongly connected and the vector γ of recovery rates is
positive. Thus, there exists a unique quasi-stationary distribution (QSD), independent of initial con-
ditions, which is equivalent to the limiting conditional distribution [8]. This QSD, denoted by ρ∗, is a
stationary distribution of the conditional probability and an equilibrium of Equation (3). Since ρ∗ is
unique, if we find some distribution P ∗ over all 2N system states which satisfies

(QP ∗)α
1− P ∗1

+
P ∗α(QP ∗)1
(1− P ∗1 )2

= 0 α = 2, 3, . . . , 2N ,

then ρ∗ is given by

ρ∗α =

{
0 if α = 1
P∗α

1−P∗1
, if α = 2, 3, . . . , 2N .

(4)
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Here, for convenience, we define the QSD such that it assigns probability zero to the absorbing state, as
opposed to leaving it undefined. Finding the QSD directly is in many cases infeasible since the size of
the state space grows geometrically with the population size.

To go from the system-level master equation to node-level equations, we sum Equation (3) over all
states in which individual i ∈ V is infected. Through this (see Appendix A.1), we arrive at an expression
for the rate of change of the probability that i is infected conditioned on non-extinction

d

dt
(ρ(Σi(t) = I)) =

∑
j Tij〈SiIj〉 − γi〈Ii〉

1− P1
+

〈Ii〉
(1− P1)2

∑
j

γj〈IjS〉, (5)

where 〈SiIj〉 is shorthand for P (Σi(t) = S,Σj(t) = I), 〈Ii〉 is shorthand for P (Σi(t) = I) and 〈IjS〉 is
shorthand for the probability that node j is infected and all other nodes are susceptible. As above, P1 is
the probability that all nodes are susceptible. Finding a steady-state solution such that

0 =

∑
j Tij〈SiIj〉 − γi〈Ii〉

1− P1
+

〈Ii〉
(1− P1)2

∑
j

γj〈IjS〉, (6)

the probability that node i is infected in the QSD can be calculated as

〈Ii〉QSD =
〈I∗i 〉

(1− P ∗1 )
. (7)

To find an exact solution to Equation (6) requires constructing a hierarchy describing how different
states, ranging from pairs up to full system size, change in time, which is computationally no more efficient
than solving Equation (4) directly. However, in this form we can employ moment-closure techniques
to approximate these higher order terms. Such approaches are commonly used for approximating the
standard probability distribution for epidemic models [12,13,17,18,20,25,44]. One approach is to assume
statistical independence at the level of indidividuals in Equation (5). Alternatively, we can construct exact
equations describing how the pair probability ρ(Σi(t) = S,Σj(t) = I) changes in time, which we can
approximate by assuming statistical independence at the level of pairs.

Although on the left-hand side of Equation (5) we define the conditional distribution, we retain
the standard distributions on the right-hand side. It is possible to express the right-hand side in terms
of conditional probabilities. However, through keeping the standard distributions, the approximations
obtained in the later sections were found to be more reliable (not shown). By finding approximations
that would cause the right-hand side to be zero, we can then transform these into approximations to the
conditional distribution by using Equation (7), where both 〈I∗i 〉 and P ∗1 will also need be approximated.

4 Approximating the QSD

In this section, we use moment closure methods to approximate the solution to Equation (5). The first
approach is to assume that the states of neighbouring individuals are statistically independent, resulting
in a relatively simple model that scales computationally with the number of nodes in the network. We
then remove this assumption, and instead assume statistical independence at the level of pairs. This
results in a more complex model that scales computationally with the number of pairs of nodes, but
should capture the correlations between neighbouring nodes.

4.1 Individual-based approach

Approximating Equation (6) by assuming that the states of individuals are independent gives

0 ≈
∑
j Tij〈Si〉〈Ij〉 − γi〈Ii〉

1−
∏
k〈Sk〉

+
〈Ii〉

(1−
∏
k〈Sk〉)2

∑
j

γj〈Ij〉
∏
k 6=j

〈Sk〉.

To find the approximation to the probability that node i is infected in the QSD (〈Ii〉QSD) under this
independence assumption, we need to find vectors 〈X〉∗ and 〈Y 〉∗ satisfying,

0 =

∑
j Tij〈Xi〉∗〈Yj〉∗ − γi〈Yi〉∗

1−
∏
k〈Xk〉∗

+
〈Yi〉∗

(1−
∏
k〈Xk〉∗)2

∑
j

γj〈Yj〉∗
∏
k 6=j

〈Xk〉∗, (8)
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for all i. In the exact case, we need to scale the steady-state by the density remaining in the transient
states (Equation (7)) to obtain the QSD probability. Following a similar procedure, from 〈X〉∗ and 〈Y 〉∗,
the probability that i is infected in the QSD is approximated by computing

〈Ii〉QSD
approx =

〈Yi〉∗

1−
∏
k〈Xk〉∗

. (9)

However, we are only interested in solutions of Equation (8) that are feasible; i.e. 〈Yi〉∗ ∈ [0, 1], 〈Xi〉∗ =
1− 〈Yi〉∗ for all i. To obtain such a solution, define

d〈Yi〉
dt

=
∑
j

Tij〈Xi〉〈Yj〉 − γi〈Yi〉+

〈Yi〉
∑
j

γj〈Yj〉
∏
k 6=j
〈Xk〉

1−
∏
k

〈Xk〉
, 〈Xi〉 = 1− 〈Yi〉. (10)

Equation (10) is positively invariant in [0, 1]N (see Appendix A.2). This gives a system of N coupled
equations, which can be numerically integrated until a steady state is reached. Alternatively, other fixed
point analysis approaches can be applied. Starting from initial conditions satisfying 〈Xi〉 ∈ [0, 1] and
〈Yi〉 ∈ [0, 1] at t = 0 for all i, this process will give a feasible solution to Equation (8). From Equation (9),
we can approximate the expected number infected in the QSD as

[I]QSD
approx =

∑
i

〈Ii〉QSD
approx.

We refer to this as the node-level individual-based model.

Theorem 1 For a (strongly connected) K-regular graph, with homogeneous transmission and recovery
rates, the node-level individual-based model yields a feasible approximation of the expected prevalence in
the QSD such that 〈Ii〉QSD

approx ∈ (0, 1), this being the same for all i ∈ V, and [I]QSD
approx ∈ (1, N). On any

strongly connected network, provided a solution exists such that 〈Ii〉QSD
approx ∈ (0, 1) (which is found to

hold numerically in all instances investigated), then [I]QSD
approx ∈ (1, N). Therefore, the number of infected

individuals in the QSD is lower bounded by 1, a property which is shared by the true QSD.

Proof Appendix A.3

As a further approximation to the expected number of infected individuals in the QSD, we can treat
all individuals of a given degree equally by assuming

〈Ii〉 ≈
[Iki ]

|Cki |
, Tij = Tkikj , γi = γki (i ∈ V, j ∈ Ni),

where ki is the degree of node i, [Iki ] is the expected number of infected individuals with degree ki, and
|Ck| is the number of degree k nodes. After summing over all i of a given degree, assuming statistical
independence at the level of individuals, and setting the left hand side to zero, Equation (10) becomes
a system of M equations in as many variables, where M is the number of unique node degrees in the
network (see Appendix D). We refer to the resulting model as the population-level individual-based model.
In the special case of a circle network, this population-level model yields a model developed by [9].

4.2 Pair-based approach

Assuming independence at the level of individuals may be unrealistic, since infection spreads through
contact between individuals. Here, we keep Equation (5) without approximation, and also sum Equa-
tion (3) over all states in which individual i ∈ V is susceptible and individual j ∈ Ni is infected, so that
we arrive at the equation for the rate of change of the probability that i is susceptible and j is infected
conditioned on non-extinction (following a similar derivation to Equation (5)):

d

dt
(ρ(Σi(t) = S,Σj(t) = I)) =

˙〈SiIj〉
1− P1

+
〈SiIj〉

(1− P1)2

∑
j

γj〈IjS〉 (i ∈ V, j ∈ Ni), (11)

where ˙〈SiIj〉 is the rate of change in the probability that i is susceptible and j is infected under the

standard distribution. The rate ˙〈SiIj〉 depends on triple-probabilities (see Appendix B), which can be
approximated in terms of individual-probabilities and pair-probabilities using
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〈AiBjCk〉 = 〈AiCk|Bj〉〈Bj〉 ≈
〈AiBj〉〈BjCk〉

〈Bj〉
, (12)

which assumes that the states of nodes i and k are independent when given the state of node j. Guided
by this approximation for triple-probabilities, and following [12,45], we then approximate

〈S〉 ≈
∏
i,j∈Ni:j<i〈SiSj〉∏

i〈Si〉ni−1
, 〈IjS〉 ≈

∏
x∈Nj

〈IjSx〉
∏
y 6=j

∏
x∈Ny :x<y,x6=j

〈SySx〉∏
x 6=j
〈Sx〉kx−1〈Yj〉kj−1

. (13)

Setting the left hand sides of equations (5) and (11) to zero, applying the above approximations, and
imposing

〈Si〉 = 1− 〈Ii〉,
〈SiSj〉 = 〈Si〉 − 〈SiIj〉,
〈IiIj〉 = 〈Ii〉 − 〈IiSj〉,

yields a system of N +
∑
i ki equations in as many variables (see Appendix E). We refer to this as the

node-level pair-based model.
Again, as a further approximation we can treat all individuals of a given degree equally, and all pairs

of neighbours of given degrees equally, by assuming

〈Ii〉 ≈
[Iki ]

|Cki |
, 〈SiIj〉 ≈

[SkiIkj ]

|Ckikj |
, Tij = Tkikj , γi = γki (i ∈ V, j ∈ Ni),

where |Ck,l| is the number of pairs between a degree k node and a degree l node, and [SkiIkj ] is the
expected number of pairs involves a susceptible degree ki node and an infected degree kj node. After
applying approximations (12) and (13), summing over all i of a given degree and over all pairs i and
j of given degrees, and setting the left hand sides to zero, equations (5) and (11) become a system of
M +M2 equations (see Appendix F). We refer to this as the population-level pair-based model.

5 Numerical results

Here we determine how the methods developed in this paper perform when used to approximate the
expected number of infected individuals in the QSD for various networks and parameter values.

We assume that: the transmission rate for any pair of connected individuals is equal (taking Tij = τ
whenever Tij > 0 and zero otherwise), the network is undirected, and infected individuals recover at the
same rate; i.e. γi = γ for all i ∈ V. In the case of an evenly-mixed population, represented by a complete
network, the epidemic threshold of the standard individual-based model is given by (N − 1)× τ/γ = 1.
We therefore choose to plot the expected number of infected individuals against τ × d̄/γ, where d̄ is the
average degree of the graph, to ensure that all networks are tested over a comparable range of epidemic
severity. This is a rough approximation for epidemic severity, since in reality it depends on the degree
distribution and correlations rather than just the average degree [17]. We assume γ = 1 throughout, so
that the ratio can be changed by changing τ .

The standard individual-based models (Appendix B) have been proven to possess a non-zero steady-
state solution in the region of parameter space where the epidemic severity is large [20,46]. For the
standard node-level pair-based model (Appendix B), we prove existence of a non-zero steady-state solu-
tion in Appendix C. When the transmission rate is sufficiently large, we observe that the models proposed
in this paper converge to the standard models, so these endemic steady-states approximate the expected
number of infected individuals in the QSD. To demonstrate this, the dynamics for these standard models
are compared to the QSD approximation methods (Section 4). We are particularly interested in how our
methods perform for low values of τ × d̄/γ, where the standard models will not capture the QSD.

As a baseline for comparison, we simulate the stochastic SIS model using the Gillespie algorithm.
To calculate the expected prevalence in the QSD, we average over all simulations that have not gone
extinct. 100,000 simulations are run until t = 300, since by this point all cases reached a steady-state.
We compare the expected number of infected individuals in this solution with the steady-state of the
QSD approximation methods and the standard models, solved using the Runge-Kutta method. For both
the stochastic simulations and the approximation methods, the population is initiated with every node
infected. This is to improve accuracy of the stochastic simulations, since a higher proportion will attain
the QSD.
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5.1 Impact of network structure

To test the methods, consider three networks: the complete network, the (NxN) square-lattice (with fixed
boundaries), and Zachary’s karate club [51]. The complete network represents a well-mixed population,
in which all individuals are connected to each other. The square-lattice is a commonly used network when
adding structure to population dynamics. We consider the variant with fixed boundaries, so the interior
nodes have four neighbours, edge nodes have three neighbours and corner nodes have two neighbours.
Although there is a lot of symmetry across the network, the regular structure with multiple loops can
prove challenging for moment closure approximation methods. Zachary’s karate club is an example of a
real world network, formed from interactions between members of a karate club.

Figure 1(a) compares the node-level individual-based model (Equation (10)) with stochastic sim-
ulations. Below the epidemic threshold (where the standard model switches from zero to an endemic
steady-state), the QSD method captures the behaviour reasonably accurately. As τ × d̄/γ increases, the
approximation diverges, with differing levels of performance on each of the graphs tested. This individual-
based method performs best on the complete network, on which it provides a good approximation to the
expected number of infected individuals for all parameter values. Some level of accuracy is also observed
on Zachary’s Karate club. However, on the square-lattice this method does not perform well when above
the epidemic threshold, significantly overestimating the expected number of infected individuals in the
QSD. This is because the structure of the lattice results in significant local correlations which makes the
assumption of statistical independence of individual nodes unrealistic.

Using the population-level individual-based model (see Section 4.1 and Appendix D), little accuracy is
lost (Figure 1(b)). The same pattern of performance occurs across the three networks, and by overlaying
the results, the population-level model is almost indistinguishable from the node-level model on the
resolution of the graph. This suggests that the QSD approximation is mainly determined by the degree
distribution, though there is likely to be some minor variations for graphs with the same distribution
but differing in other network properties.

Since the assumption of individual-level statistical independence can lack accuracy, we developed
a node-level pair-based model for the QSD (see Section 4.2 and Appendix E). Figure 2(a) shows the
accuracy of this approximation, which is significantly improved over the individual-based models on all
networks. On the complete network and Zachary’s karate club, this approximation is very accurate, and
on the lattice it loses some accuracy but significantly outperforms the individual-based approximation.
The loss of accuracy on the lattice is expected, since pair-approximation methods are generally considered
to perform weakly on such structures.

Although the pair-based model is computationally feasible, for large graphs it can be slow. Therefore,
we derived a population-level pair-based model (see Section 4.2 and Appendix F). Again, little accuracy
is lost for all networks (Figure 2(b)), with the result being indistinguishable from the node-level model.

For each of the methods proposed, a stationary solution is reached for all parameter values on all
networks. These solutions appear to be unique and lower bounded by 1. Therefore, the proposed meth-
ods satisfy the basic properties of the QSD. Sufficiently above the epidemic threshold, our models and
the standard (unconditioned) models coincide (Figures 1 and 2), showing that the standard models
approximate the expected number of infected individuals in the QSD in this region. However, as the
transmission rate decreases, the steady states of the standard models deviate from this, eventually tend-
ing to the disease-free steady-state. Therefore, the standard models are not a reliable measure of the
expected prevalence in the QSD since they do not capture this for all parameter values, and the endemic
steady-state in the intermediate range (between the disease-free steady-state and coinciding with the
QSD model) is hard to relate to any properties of the underlying stochastic process. The models we
propose are more robust for providing insight into the stochastic epidemic model.

5.2 Impact of network size

We now investigate how increasing the size of the population affects the accuracy of the results, testing a
100 node (10x10) lattice, 225 node (15x15) lattice and 400 node (20x20) lattice. Here the square-lattice
is chosen because this presented itself as the worst case, with other networks expected to perform better.
The lattice is expected to perform badly because the strict structure leads to very high local correlations,
which may not be captured by the moment-closure approximations.

Since the population-level models perform similarly to the node-level models at capturing the ex-
pected number of infected individuals, with significantly reduced computational cost, in this section we
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Fig. 1 The expected number of infected individuals in the QSD as calculated by the individual-based model versus
stochastic simulation on a 36 node complete network, 36 node (6x6) square-lattice and the 34 node karate club network, for
a range of parameter values. The left plot shows the node-level methods (Equation (10)) and the right shows the population-
level methods (Equation (D3)). The solid lines represent the average of 10,000 stochastic simulations conditioned against
extinction, the dashed line (plusses) represents the proposed QSD approximation method and the dash-dotted line (crosses)
represent the standard unconditioned model. The simulated QSD is accurate to within the resolution of the line.

only use these models to approximate the dynamics. Comparing the QSD method to the simulation
results (Figure 3), we see good agreement for low transmission parameters for both individual-based and
pair-based methods. However, once the individual-based methods pass the epidemic threshold, where
the standard method reaches a non-zero steady state, both the standard method and the QSD method
diverge significantly from the simulation results, overestimating the true expected number of infected in
the QSD, echoing what we observed in Figure 1. For the pair-based models, once the parameters exceed
the epidemic threshold, we still see some deviation from the simulation results for both the standard
and QSD methods. However, this is much smaller than for the individual-based methods. For higher
relative transmission rates, the model solutions provide a reasonable approximation to the expected
number of infected individuals in the QSD. For the three lattice sizes considered, in the regions below
and sufficiently above the epidemic threshold, the relative magnitude of the discrepancy between the
approximations and simulation results does not change with population size, for both individual-based
and pair-based models. However, in the intermediate region there is some sensitivity to population size.
Below the epidemic threshold, the standard models do not capture the dynamics of the QSD, regardless
of population size, whereas the QSD approximation models are accurate.
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(a) Node-level (pair-based)
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Fig. 2 The expected number of infected individuals in the QSD as calculated by the pair-based model versus stochastic
simulation on a 36 node complete network, 36 node (6x6) square-lattice and the 34 node karate club network, for a range
of parameter values. The left plot shows the node-level methods (Equation (E4)) and the right shows the population-
level methods (Equation (F3)). The solid lines represent the average of 10,000 stochastic simulations conditioned against
extinction, the dashed line (plusses) represents the proposed QSD approximation method and the dash-dotted line (crosses)
represent the standard unconditioned model. The simulated QSD is accurate to within the resolution of the line.

6 Discussion

The standard deterministic SIS model [23,46–48] exhibits an epidemic threshold below which the pathogen
will go extinct and above which the pathogen will reach an endemic steady-state solution [23,46]. More
complicated ‘deterministic’ models have been developed, such as pair-approximations models [12,13,17,
18,20,25,44], in which this threshold behaviour is also observed [17,25]. However, no steady-state solu-
tion exists in the stochastic SIS model, making it hard to relate the deterministic and stochastic models
in finite populations.

When the time to absorption (extinction of the pathogen) is long enough, the endemic equilibrium of
the network-based deterministic SIS models has been observed to approximate the expected number of
infected individuals over short enough time scales. This is quantified by the quasi-stationary distribution
(QSD) of the stochastic models [1,20,46]. Although the unconditioned models numerically approximate
the expected prevalence in the QSD when sufficiently above threshold, this is not the case as the system
approaches the threshold (and below threshold). In particular, comparison of a model with a genuine
steady state with one without such a state is not well-defined. To correct this discrepancy, we constructed
approximate models which are formally related to the stochastic dynamics via the QSD. The resulting
models capture properties of the QSD at all levels of epidemic severity.

Our first approach assumed that the states of neighbouring nodes are independent, at both node-level
and population-level. Although this assumption is not particularly realistic, on the complete network this
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Fig. 3 The expected number of infected individuals in the QSD as calculated by the population-level models versus
stochastic simulation on a 10x10 node square-lattice, 15x15 node square-lattice, and 20x20 node square-lattice for a range
of parameter values. The left plot shows the individual-based methods (Equation (D3)) and the right shows the pair-
based methods (Equation (F3)). The solid lines represent the average of 100,000 stochastic simulations conditioned against
extinction, the dashed lines (plusses) represent the proposed QSD approximation method and the dash-dotted lines (crosses)
represent the standard unconditioned model. The simulated QSD is accurate to within the resolution of the line.

provides a good approximation to the expected number of infected individuals in the QSD (Figure 1).
However, for more structured networks the accuracy decreased. Little accuracy was lost when comput-
ing the expected number of infected individuals compared to the node-level model, with a significant
reduction in computational cost. To improve accuracy, we developed node-level and population-level
methods based on assuming independence at the level of pairs, which performed well on all networks
tested (Figure 2). Again, little accuracy was lost in the population-level model. With the significant
reduction in computational cost, the population-level models are therefore superior to the node-level
models for capturing the expected prevalence in the QSD. However, one advantage of the node-level
models is the insight these can give into the dynamics of individual nodes in the population, which the
population-level models lose.

With the standard unconditioned approximation methods, it is not inherently clear what the models
are capturing, since the stochastic model does not exhibit a stable steady-state. By developing condi-
tioned approximation models that capture the quasi-stationary distribution of the stochastic model, we
have presented an approximation framework that is directly related to the underlying stochastic pro-
cess. Sufficiently above the epidemic threshold, the unconditioned standard models coincide with the
conditioned QSD models, demonstrating, as expected, that the standard models approximate the QSD
when above threshold. Through directly approximating the QSD, the conditioned models are consistent
in approximating the QSD for all parameter values. This consistency makes them a more robust method
for capturing quasi-stationary behaviour of stochastic epidemic models.

This paper has focussed on the theoretical insights this model grants, and we have shown that the
models can be reasonably accurate on a variety of networks. In particular, we show that the pair-
based model can perform well on a square-lattice, which is expected to be one of the worst cases for
moment-closure approximations. The accuracy and deterministic nature of the models makes them more
amenable to analysing how different network structures can alter the statistics of the QSD than the use
of stochastic simulation. This is valuable for characterising the likelihood and severity of the epidemic,
for example through the invasion probability [50], which can be calculated directly from the node-level
models proposed, and the expected prevalence, which we presented in the numerical results. The potential
future applications of this work include applying the methods to investigate how network structure, such
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as the degree variance, affects the properties of the QSD, as well as extending the model to other epidemic
and population dynamics models.

Appendices
Appendix A Node-level individual-based QSD model

A.1 Derivation of node-level conditional distribution equation

The rate of change in the probability that node i is infected in the QSD is given by the sum of the rates
of change in the full system state probabilities for which node i is infected. That is, we have

d

dt
(ρ(Σi(t) = I)) =

∑
α:σαi=I

dρα
dt

=

∑
α:σαi=I

(QP )α

1− P1
+

(QP )1
(1− P1)2

∑
α:σαi=I

Pα,

where the terms are defined in Section 3. The numerator of the first term on the second line corresponds
to the rate of change in the probability that node i is infected, which is given by 〈İi〉 in Equation (B3) in
Appendix B. The summation in the second term corresponds to the probability that node i is infected,
〈Ii〉. Therefore, we can write

d

dt
(ρ(Σi(t) = I)) =

〈İi〉
1− P1

+
(QP )1

(1− P1)2
〈Ii〉.

Here (QP )1 is the rate at which the system enters the absorbing state. The system can only reach the
absorbing state from a state with a single infected individual, in node j for example, which transitions to
the all susceptible state at rate γj . Therefore (QP )1 =

∑
j

γj〈IjS〉, where we use 〈IjS〉 to denote the prob-

ability that node j is infected and all other nodes are susceptible. Using this along with Equation (B3),
we obtain

d

dt
(ρ(Σi(t) = I)) =

∑
j Tij〈SiIj〉 − γi〈Ii〉

1− P1
+

〈Ii〉
(1− P1)2

∑
j

γj〈IjS〉.

A.2 Proof that the individual-based node-level QSD model is invariant on [0, 1]N .

Proof To prove that the model in Equation (10) is invariant we use the method from [23]. Along the
boundaries to the set we are interested in, we either have 〈Yi〉 = 0 and 〈Xi〉 = 1 or 〈Yi〉 = 1 and 〈Xi〉 = 0.
To show the system is invariant, we need to show that along these boundaries the trajectories do not
point away from this set.

First consider 〈Yi〉 = 0. At this boundary, we have

〈Ẏi〉 =
∑
j

Tij〈Yj〉.

If 〈Yi〉 ∈ [0, 1], this cannot be negative, and therefore at 〈Yi〉 = 0 the trajectory in the i direction cannot
leave the set [0, 1]N . Now consider 〈Yi〉 = 1. We have

〈Ẏi〉 = −γi + γi
∏
k 6=i

〈Xk〉.

The product in this equation is in [0, 1] if 〈Xk〉 ∈ [0, 1] for all k. Therefore, this equation can never
be positive, so along this boundary the trajectory cannot leave the set [0, 1]. Therefore, this model is
invariant on [0, 1]N .
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A.3 Proof of Theorem 1

Proof Consider the node-level individual-based model (Equation (10)) on a k-regular network with ho-
mogeneous transmission and recovery. If we start with a fully infected population, 〈Yi〉 will be equal for
all i at every time point. Therefore we can denote 〈Ii〉 = a for all i ∈ V. We can write the rate of change
in the node probabilities as

ȧ = −γa+ τ(k)(1− a) + a
γNa(1− a)N−1

1− (1− a)N
. (A2)

In the steady state ȧ = 0. If we rule out a = 0, since Equation (A2) is undefined for a = 0, then we
obtain

(1− a)(k)

(
τ

γ
+
N

k

a(1− a)N−2

1− (1− a)N

)
= 1.

We are therefore interested in solutions to f(a) = 0 with a ∈ [0, 1], where

f(a) = (1− a)(k)

(
τ

γ
+
N

k

a(1− a)N−2

1− (1− a)N

)
− 1.

To see if a solution exists within this interval we check the signs at the end points.
At a = 1

f(1) = −1 < 0

the function is negative.
As a goes to zero

lim
a→0

f(a) = (k)
τ

γ
− 1 + lim

a→0
N
a(1− a)N−1

1− (1− a)N
.

lim
a→0

N
a(1− a)N−1

1− (1− a)N
= lim
a→0

N
(1− a)N−1 + (N − 1)a(1− a)N−2

N(1− a)N−1
= 1.

=⇒ f(0) = (k)
τ

γ
> 0 if

τ

γ
> 0.

Therefore as long as the transmission rate τ is greater than zero there exists a solution to f(a) = 0 in
the open interval (0, 1), since f(a) is non-singular on (0, 1).

We now need to show that our approximation to the expected number of infected individuals in the
QSD is bounded below by one. This proof holds for all networks provided a solution exists satisfying
〈Yi〉 ∈ (0, 1) for all i, which we have proven for k-regular networks. Consider the node-level individual-
based model; i.e.

〈Ẏi〉 = −γi〈Yi〉+
∑
j

Tij〈Xi〉〈Yj〉+
〈Yi〉

1−
∏
k

〈Xk〉
∑
j

γj〈Yj〉
∏
k 6=j

〈Xk〉 (A3)

To approximate the QSD we calculate 〈Y ∗i 〉/(1−
∏
k

〈X∗k〉), where 〈Y ∗〉 and 〈X∗〉 are steady-state solutions

to (A3).
Let S be the sum of N independent Bernoulli random variables with success probabilities given by

the vector 〈Y ∗i 〉 for i ∈ {1, 2, . . . ., N}, which is a feasible solution of Equation (A3). It is straightforward
then that E[S] =

∑
i〈Y ∗i 〉, and we can write

∑
i

〈Y ∗i 〉 =E[S] =

x=N∑
x=1

P(S = x)x ≥
x=N∑
x=1

P(S = x) = P(S ≥ 1)

=1−
∏
j

(1− 〈Y ∗j 〉)

So when we approximate the expected number infected in the QSD as∑
i〈Y ∗i 〉

1−
∏
j(1− 〈Y ∗j 〉)

this cannot be less than 1. Therefore, provided a non-zero solution exists to Equation (A3), the approx-
imation to the expected number of infected individuals in the QSD is not less than 1.
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Appendix B Standard approximate models

Due to the prohibitive computational cost of solving the master equation (Equation (1)), approxi-
mation methods are useful. In this section, we give an overview of the heterogeneous mean-field and
pair-approximation methods, which can be interpreted as approximating the expected behaviour of the
stochastic model. For detailed derivations and analysis of these models see [20].

Under the heterogeneous mean-field model, we assume that: all individuals with the same degree can
be treated identically, the status of neighbouring individuals are independent, γi = γ for all i ∈ V, and
Tij = τ for all i, j ∈ V with Tij > 0 or Tji > 0 (the network is assumed undirected for simplicity). The
rate of change in the expected number of susceptible and infected individuals, stratified by the degree of
the individual, is then approximated by [20]

˙[Sk] ≈ −τ
∑
l∈M

|Ck,l|
[Sk]

|Ck|
[Il]

|Cl|
+ γ[Ik]

˙[Ik] ≈ τ
∑
l∈M

|Ck,l|
[Sk]

|Ck|
[Il]

|Cl|
− γ[Ik],

where [Sk] is the expected number of susceptible individuals of degree k at time t, |Ck| is the number of
degree k nodes, |Ck,l| is the number of pairs involving a degree k node and a degree l node, andM is the
set of unique degrees on the network. Above, and throughout, we use ‘dot’ notation for derivatives with
respect to time. Whilst the assumption of neighbouring individuals being independent is unrealistic, the
resulting model has low computational cost, and hence it is popular to study.

Instead of assuming statistical independence between individuals, models have been derived by writing
down exact equations for the expected number of individuals and pairs:

[Ṡk] =γ[Ik]−
∑
l∈M

τ [SkIl]

[İk] =− γ[Ik] +
∑
l∈M

τ [SkIl]

[ ˙SkIl] =γ([IkIl]− [SkIl]) + τ(
∑
m∈M

[SkSlIm]−
∑
m∈M

[ImSkIl]− [SkIl])

[ ˙SkSl] =γ([SkIl] + [IkSl])− τ(
∑
m∈M

[SkSlIm] +
∑
m∈M

[ImSkSl])

[ ˙IkIl] =τ([SkIl] + [IkSl]− 2γ[IkIl] + τ(
∑
m∈M

[ImSkIl] +
∑
m∈M

[IkSlIm]), (B1)

where [AkBl] is the expected number of pairs at time t, between degree k and l individuals in states A
and B respectively, and [AkBlCh] is the expected number of triples at time t, between degree k, l and h
individuals, in states A, B and C respectively.

Solving this system exactly involves deriving a full hierarchy of equations describing triples and quads
and so on [10], and therefore we wish to approximate this system by closing the hierarchy early. This can
be done by expressing triples as some function of pairs and individuals. To approximate the triples, we
analyse the number of edges starting from a susceptible node, following [10,20]. The total number of SA
edges (for A ∈ {S, I}) from a degree k node to a degree l node are [SkAl]. Since we have [Sk] susceptible
degree k nodes, we have approximately [SkAl]/(k[Sk]) edges leading from a given susceptible degree k
node to a given degree l node in state A. Therefore, for a chosen susceptible degree k node the probability
that two neighbours, with degree l and m, are in states A and B is given by [AlSk][SkBm]/k2[Sk]2. We
have k(k − 1) choices of the two neighbours, and [Sk] choices of the susceptible node, and therefore we
can approximate the expected number of triples [AlSkBm] as

[AlSkIm] ≈ k − 1

k

[AlSk][SkIm]

[Sk]
. (B2)

This approximation makes the homogeneity assumption that the neighbours of susceptible degree k
nodes are interchangeable and the states of pairs are independent. Using this expression, the system of
equations (B1) is closed at the level of pair terms, which allows the system to be solved with reasonably
low computational cost.
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These two models act at the population level, since they describe how the expected number of indi-
viduals with certain traits change. Following the motivation behind these models, node-level models have
been developed that describe how the probability of individual nodes being infected change with time.
Such models have been referred to as individual-based models [44,45], node-level models [32], propaga-
tion models [20] or quenched-mean field [11,25]. The advantage of such models over the population-level
models is that we do not need to make any homogeneity assumptions about the underlying popula-
tions, and therefore properties such as clustering, directed edges and degree heterogeneity are naturally
captured. The downside however is that the computational cost scales with at least the number of nodes.

Under Markovian network-based SIS, the dynamics of individual nodes are given by [44]

˙〈Si〉 = −
∑
j

Tij〈SiIj〉+ γi〈Ii〉,

˙〈Ii〉 =
∑
j

Tij〈SiIj〉 − γi〈Ii〉, (B3)

where 〈Ai〉 represents the probability P (Σi(t) = A) with A ∈ {S, I}, and 〈AiBj〉 represents the proba-
bility P (Σi(t) = A,Σj(t) = B) with A,B ∈ {S, I}.

This equation exactly describes the rate of change for individual nodes in terms of pairs. Pairs of
nodes are exactly described by

˙〈SiIj〉 =
∑
k

Tjk〈SiSjIk〉 −
∑
k

Tik〈IkSiIj〉

− (Tij + γj)〈SiIj〉+ γi〈IiIj〉,
˙〈SiSj〉 =−

∑
k

Tjk〈SiSjIk〉 −
∑
k

Tik〈IkSiSj〉,

˙〈IiIj〉 =
∑
k

Tjk〈IiSjIk〉+
∑
k

Tik〈IkSiIj〉 − (γi + γj)〈IiIj〉

+ Tij〈SiIj〉+ Tji〈IiSj〉, (B4)

where 〈AiBjCk〉 represents the probability P (Σi(t) = A,Σj(t) = B,Σk(t) = C) with A,B,C ∈ {S, I}.
To solve this requires a hierarchy of equations up to full system size. Following similar logic to the
population-level equations, this system can be approximated by making assumptions of statistical inde-
pendence. Assuming that the states of individuals are independent, 〈SiIj〉 ≈ 〈Si〉〈Ij〉, we can close the
hierarchy at the level of individuals. Alternatively, we can assume independence at the level of pairs. The
natural assumption of statistical independence to apply to pairs is that, given three nodes in a line, if the
state of the central node is known then the state of the outer two nodes are independent. For all triples
in the system above, the central node in the configuration is always the centre node of a line between the
two outer nodes. Therefore, if we consider the triple 〈AiBjCk〉, this can be approximated as a function
of lower order terms by using conditional probabilities and assuming statistical independence. By the
definition of conditional probabilities, we obtain

〈AiBjCk〉 = 〈AiCk|Bj〉〈Bj〉.

Assuming that the states of nodes i and k are independent given the state of node j, this becomes

〈AiBjCk〉 ≈ 〈Ai|Bj〉〈Ck|Bj〉〈Bj〉 =
〈AiBj〉〈BjCk〉

〈Bj〉
, (B5)

which closes the hierarchy at the level of pairs. Other methods to approximate triples in terms of pairs
and individuals have been proposed [17,42,44], however we do not consider them in this paper.

The population-level methods described above can be derived rigorously from the node-level meth-
ods [44]. In the exact case, we have

[Ak] =
∑
j:kj=k

〈Aj〉

and

[AkBl] =
∑
i:ki=k

∑
j:kj=l

〈AiBj〉
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where A,B ∈ {S, I} and ki is the degree of node i. Using this, the rate of change for the population-level
terms can be derived. From this, we can also approximate the node-level quantities as

〈Ai〉 ≈
[Aki ]

|Cki |
, (B6)

and

〈AiBj〉 ≈
[AkiBkj ]

|Cki,kj |
.

The models described here exhibit an epidemic threshold, above which the pathogen persists and below
which the pathogen dies out (illustrated in Figure B1 for the node-level pair-based model). For the
population-level models and individual-based node-level model, above these thresholds a unique, globally
stable steady-state exists [17,18,20,23,46]. For the node-level pair-based model, the disease-free solution
has been shown to become unstable as the transmission rate increases [25], at which point we have
shown that an endemic steady-state solution exists (Appendix C). Numerically, this endemic equilibrium
appears to be unique and globally attracting, similar to the endemic solutions in the other models.
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Fig. B1 Comparing the standard pair-based model (equations (B3) and (B4) with the closure from Equation (B5)) with
closures with the output of stochastic simulations on Zachary’s karate club network. We plot the expected number of
infected individuals against time for each of the methods. As the figures move from left to right the transmission rate
increases. In the right-most figure, steady-like behaviour is observed in the stochastic model, since the expected time to
extinction is very long.

When comparing these models to the underlying stochastic process (e.g. Figure B1), below the epi-
demic threshold the models accurately capture the expected number of infected individuals in the stochas-
tic process. However, as the transmission rate increases (or recovery rate decreases), we pass the epidemic
threshold, and observe an endemic equilibrium that does not correspond to the stochastic process. Even-
tually, when the parameters are sufficiently above the epidemic threshold, the endemic steady-state
solutions of these models can approximate the behaviour of the stochastic model for a long time, since
the time to extinction of the pathogen is very long. Here, the stochastic process behaves similarly to the
quasi-stationary distribution of the model; i.e. the expected long-term behaviour if extinction has not
occurred.

Appendix C Proof of existence of an endemic steady-state for the standard pair-based
model

Proof In [23], a theorem is proven regarding the existence of stable endemic solutions for ordinary
differential equation epidemic models. Here we demonstrate that the standard pair-based SIS model
(equations (B3) and (B4) with the closure from Equation (B5) [25]) satisfies the requirements for this
proof, and therefore has a stable endemic steady-state.

Consider an ODE of the form
dy

dt
= Ay +N(y). (C1)

If the following statements hold, then there exists a threshold above which an endemic steady-state
exists.
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1. A compact convex set C on the domain of N is positively invariant, with y = 0 ∈ C.
2. lim

y→0
||N(y)||/||y|| = 0

3. There exists r > 0 and a real eigenvector w or AT such that (w · y) ≥ r||y|| ∀y ∈ C
4. (w ·N(y)) ≤ 0 ∀y ∈ C
5. y = 0 is the largest positively invariant set contained in H = {y ∈ C|(w ·N(y)) = 0}

The first step is to write the pair-based model in the form (C1). The pair-based model is given by

〈İi〉 =

N∑
j

Tij〈SiIj〉 − γ〈Ii〉

〈 ˙SiIj〉 =

N∑
k 6=i

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−
N∑
k 6=j

Tik
〈IkSi〉〈SiIj〉
〈Si〉

− 〈SiIj〉 − γ〈SiIj〉+ γ〈IiIj〉,

where 〈Si〉 = 1− 〈Ii〉, 〈IiIj〉 = 〈Ij〉 − 〈SiIj〉 and 〈SiSj〉 = 〈Si〉 − 〈SiIj〉.
This can be rewritten as

〈İi〉 =

N∑
j

Tij〈SiIj〉 − γ〈Ii〉

〈 ˙SiIj〉 =− (Tij + 2γ)〈SiIj〉+ γ〈Ij〉+

N∑
k 6=i

Tjk〈SjIk〉

−
N∑
k 6=i

Tjk
〈IiSj〉〈SjIk〉
〈Sj〉

−
N∑
k 6=j

Tik
〈IkSi〉〈SiIj〉
〈Si〉

.

Defining yi = 〈Ii〉 for 1 ≤ i ≤ N and yi = 〈S1Ii−N 〉 for N + 1 ≤ i ≤ 2N , yi = 〈S2Ii−2N 〉 for
2N +1 ≤ i ≤ 3N , and so on, we can write the pair-based model in the form of Equation (C1). Compiling
the linear terms into the matrix A, we see that A is only negative on the diagonal. The remaining
non-linear terms define the function N(y), which only assigns negative values to each input. Now it is
required to check if the properties hold.

Property (1.) holds because the system is invariant on the set C = {0 ≤ 〈Ii〉 ≤ 1; 0 ≤ 〈SiIj〉 ≤ 1}.
Property (2.) holds because as y → 0 the denominator of all terms, 1 − 〈Ii〉, goes to one, and the
numerator is of the form yiyj , which goes to zero faster than yi and yj . Property (3.) holds because
A is irreducible since all the equations are coupled. Since A is only negative on the diagonal, by the
Perron-Frobenius theorem, AT must have an eigenvector w such that wi > 0 for all i. Property (4.) holds
because the function N(y) is negative, so (w · N(y)) ≤ 0, since wi > 0 for all i. We now need to test
property (5.).
Property (5.) If y ∈ H then (w ·N(y)) = 0. This implies that

wi
∑
k 6=i

Tjk〈IiSj〉〈SjIk〉
1− 〈Ij〉

= 0

and

wi
∑
k 6=j

Tik〈IkSi〉〈SiIj〉
1− 〈Ii〉

= 0,

for all pairs (i, j). If we assume that y ∈ H and y 6= 0, then yh 6= 0 for some h. If we assume that
yh = 〈SiIj〉 6= 0, then we must have 〈SiIk〉 = 0, for all k ∈ Ni. Also, we require 〈SjIk〉 = 0 for some k or
〈IiSj〉 = 0. We now need to investigate whether such a state can be invariant.

Define S = {i : yi = 0} and S′ = {i : yi 6= 0}, both of which are non-empty since y 6= 0 and 〈SiIj〉 = 0
for some pair (i.j) by the above argument. Since A is irreducible, there must exist a pair k ∈ S and
h ∈ S′ such that dyk/dt depends on yh.

First assume that yh = 〈SiIj〉 and yk = 〈Ii〉. We have

dyk
dt

=
∑
j 6=i

Tij〈SiIj〉
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If this state is invariant, then dy/dt = 0, which implies that dyk/dt = 0 for all k. This can only be
the case if 〈SkIj〉 = 0 for all j. However, we have assumed that 〈SiIj〉 6= 0, so this is not the case and
dyk/dt 6= 0.

Now assume yk = 〈SjIi〉, which gives

dyk
dt

= γ〈Ii〉+

N∑
m 6=j

Tim〈SiIm〉 −
N∑
m6=j

Tim
〈IjSi〉〈SiIm〉
〈Si〉

.

Since 〈IjSi〉/〈Si〉 ≤ 1, the sum of the last two terms cannot be negative. Therefore, if dyk/dt = 0 we
have 〈Ii〉 = 0. However, as has been shown by assuming 〈Ii〉 = 0, this case is not possible. Therefore,
dyk/dt 6= 0. Therefore, if 〈SiIj〉 6= 0 for some pair (i, j) and y ∈ H, then this state cannot be invariant.

Now assume that yh = 〈Ii〉 ∈ S′ for some i, and consider yk = 〈SjIi〉 ∈ S. Since 〈SxIy〉 = 0 for all
(x, y), we have

dyk
dt

= γ〈Ii〉.

Since 〈Ii〉 ∈ S′, dyk/dt 6= 0. Therefore, there are no invariant sets in H such that y 6= 0, and y = 0 is the
largest positively invariant set in H.

This shows that properties 1-5 are satisfied for this model. Therefore, there exists a stable endemic
steady-state above the epidemic threshold of the standard pair-based SIS model.

Appendix D Population-level individual-based QSD model

The node-level equations give detailed insight into the dynamics of individual nodes in the QSD, however
the number of equations scales with N . To build approximations with a reduced number of equations,
population-level models can be constructed for undirected networks. The rate of change in the expected
number of infected individuals with a given degree, under the conditional distribution, is found by taking
the sum over the probability that each node with this degree is infected

∑
i:ki=k

∑
α:σαi=I

dρα
dt

=
∑
i:ki=k

∑j Tij〈SiIj〉 − γi〈Ii〉
1− P1

+
〈Ii〉

(1− P1)2

∑
j

γj〈IjS〉


The numerator in the first term on the right-hand side is the rate of change that an individual is infected.
Taking the sum over all nodes with the same degree, this gives the rate of change in the expected number
of infected individuals with that degree, which is given by Equation (B1). Taking the sum of 〈Ii〉 over
all nodes with the same degree gives the expected number of infected nodes with that degree. Therefore,
assuming

〈Ii〉 ≈
[Iki ]

|Cki |
, Tij = T̄kikj , γi = γki (i ∈ V, j ∈ Ni),

where [Ak] is the expected number of individuals with degree k in state A and T̄kl is the rate of trans-
mission from a degree l to a degree k node, we obtain

∑
i:ki=k

∑
α:σαi=I

dρα
dt

=

∑
l∈M T̄kl[SkIl]− γ[Ik]

1− P1
+

[Ik]

(1− P1)2

∑
j

γ〈IjS〉, (D1)

where [AkBl] is the expected number of pairs between individuals of degree k and degree l, in states A
and B respectively, and ki is the degree of node i. Above, and throughout, all expected numbers are with
respect to the standard probability measure P . Assuming that the states of individuals are independent,
(D1) becomes

∑
i:ki=k

∑
α:σαi=I

dρα
dt
≈
∑
l∈M T̄kl|Ck,l| [Sk]|Ck|

[Il]
|Cl| − γ[Ik]

1−
∏
j〈Sj〉

+
[Ik]

(1−
∏
j〈Sj〉)2

∑
j

γ〈Ij〉
∏
k 6=j

〈Sk〉

where |Ck| is the number of degree k nodes in the network and |Ck,l| is the number of pairs between
degree k and degree l nodes. This equation is not closed, since the final term and the denominators
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depend on node-level quantities. However, from (B6) the node-level quantities can be approximated by
assuming 〈Sj〉 = [Sk]/|Ck|, where k is the degree of node j. Therefore

∏
i

〈Si〉 ≈
∏
l∈M

(
[Sl]

|Cl|

)|Cl|
,

and

γ〈Ij〉
∏
i 6=j

〈Si〉 ≈
[Ik]

|Ck|

(
[Sk]

|Ck|

)|Ck|−1 ∏
l∈M:l 6=k

(
[Sl]

|Cl|

)|Cl|
, (D2)

where k is the degree of node j. Multiplying Equation (D2) by the number of degree k nodes, |Ck|, we
obtain the probability of a single degree k node being infected, which we denote P̃ (Ik = 1). Therefore,
we obtain

∑
i:ki=k

∑
α:σαi=I

dρα
dt
≈
∑
l∈M T̄kl|Ck,l| [Sk]|Ck|

[Il]
|Cl| − γ[Ik]

(1−
∏
l(

[Sl]
|Cl| )

|Cl|)
+

[Ik]

(1−
∏
l(

[Sl]
|Cl| )

|Cl|)2

∑
l∈M

γP̃ (Il = 1).

To find a steady state, we need to find vectors 〈X〉∗ and 〈Y 〉∗ satisfying

0 =

∑
l∈M T̄kl|Ck,l| [Xk]

∗

|Ck|
[Yl]
∗

|Cl| − γ[Yk]∗

(1−
∏
l(

[Xl]∗

|Cl| )|Cl|)
+

[Yk]∗

(1−
∏
l(

[Xl]∗

|Cl| )|Cl|)2

∑
l∈M

γP̃ (Yl = 1)∗

from which we can approximate the expected number of infected degree k individuals in the QSD by

computing [Yk]∗/(1 −
∏
l(

[Xl]
∗

|Cl| )|Cl|). We require [Yk]∗ ∈ [0, |Ck|], [Xk]∗ = |Ck| − [Yk]∗ for all i. Such a

solution can be found by defining

˙[Yk] =
∑
l∈M

T̄kl|Ck,l|
[Xk]

|Ck|
[Yl]

|Cl|
− γ[Yk] +

[Yk]
∑
l∈M

γP̃ (Yl = 1)

(1−
∏
l(

[Xl]
|Cl| )

|Cl|)

[Xk] =|Ck| − [Yk]

P̃ (Yk = 1) =|Ck|
[Yk]

|Ck|

(
[Xk]

|Ck|

)|Ck|−1 ∏
l∈M:l 6=k

(
[Xl]

|Cl|

)|Cl|
, (D3)

and specifying that [Yk(0)] ∈ [0, |Ck|] for all k and calculating the steady-state. Any solution will be a
valid solution, since Equation (D3) is bounded such that [Yk]∗ ∈ [0, |Ck|] for all k (this can be shown
using a method similar to Appendix A.2).

Appendix E Node-level pair-based QSD model

If we do not assume independence at the level of individuals, we need to find equations describing pair
probabilities in the conditional distribution. We have

d

dt
(ρ(Σi(t) = I)) =

∑
α:σαi=I

dρα
dt

=

∑
j Tij〈SiIj〉 − γi〈Ii〉

1− P1
+

〈Ii〉
(1− P1)2

∑
j

γj〈IjS〉,

d

dt
(ρ(Σi(t) = S,Σj = I)) =

∑
α:σαi=S,
σαj=I

dρα
dt

=

∑
k∈Nj\i Tjk〈SiSjIk〉

1− P1
−
∑
k∈Ni\j Tik〈IkSiIj〉

1− P1

− (Tij + γj)〈SiIj〉
1− P1

+
γi〈IiIj〉
1− P1

+
〈SiIj〉

(1− P1)2

∑
j

γj〈IjS〉,

where 〈Ai〉 is shorthand for the marginal probability P (Σi(t) = A) with A ∈ {S, I}, 〈AiBj〉 is shorthand
for P (Σi(t) = A,Σj(t) = B) with A,B ∈ {S, I}, 〈AiBjCk〉 is shorthand for P (Σi(t) = A,Σj(t) =
B,Σk(t) = C) with A,B,C ∈ {S, I}, and 〈IjS〉 is shorthand for P (Σj = I,Σk = S for all k 6= j). We
can simplify this system by assuming statistical independence at the level of pairs.
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As described in Appendix B, we approximate the triples in terms of pairs and individuals by assuming

〈AiBjCk〉 ≈
〈AiBj〉〈BjCk〉

〈Bj〉
.

Under this assumption, Equation (E1) becomes

d

dt
(ρ(Σi(t) = I)) =

∑
j Tij〈SiIj〉 − γi〈Ii〉

1− P1
+

〈Ii〉
(1− P1)2

∑
j

γj〈IjS〉,

d

dt
(ρ(Σi(t) = S,Σj = I)) =

∑
k∈Nj\i Tjk

〈SiSj〉〈SjIk〉
〈Sj〉

1− P1
−
∑
k∈Ni\j Tik

〈IkSi〉〈SiIj〉
〈Si〉

1− P1

− (Tij + γj)〈SiIj〉
1− P1

+
γi〈IiIj〉
1− P1

+
〈SiIj〉

(1− P1)2

∑
j

γj〈IjS〉,

Note that 〈Si〉 = 1− 〈Ii〉, 〈IiIj〉 = 〈Ij〉 − 〈SiIj〉 and 〈SiSj〉 = 〈Si〉 − 〈SiIj〉. Both 〈IjS〉 and the ground
state probability, P1, are full system size, and therefore, following [12,45], a natural pair approximation
for these are

〈IjS〉 ≈ 〈ĨjS〉 =

∏
x∈Nj

〈IjSx〉
∏
y 6=j

∏
x∈Ny :x<y,x6=j

〈SySx〉∏
x6=j
〈Sx〉kx−1〈Yj〉kj−1

and

P1 ≈ 〈σ1〉 =
∏
y

∏
x∈Ny :x<y

〈SySx〉
〈Sy〉ny−1

.

In the QSD, both the pair level and individual level conditional probabilities are in a steady-state, so both
equations in Equation (E1) are equal to zero. Therefore, to find the approximation to the QSD under the
pair level independence assumption, we need to find vectors 〈X∗〉, 〈Y ∗〉, and matrices 〈XX∗〉,〈XY ∗〉,
and 〈Y Y ∗〉 satisfying,

0 =

∑
j Tij〈XiYj〉∗ − γi〈Yi〉∗

1− 〈σ1〉
+

〈Yi〉∗

(1− 〈σ1〉)2
∑
j

γj〈ỸjX〉∗,

0 =

∑
k∈Nj\i Tjk

〈XiXj〉∗〈XjYk〉∗
〈Xj〉∗

1− 〈σ1〉
−
∑
k∈Ni\j Tik

〈YkXi〉∗〈XiYj〉∗
〈Xi〉∗

1− 〈σ1〉

− (Tij + γj)〈XiYj〉∗

1− 〈σ1〉
+
γi〈YiYj〉∗

1− 〈σ1〉
+
〈XiYj〉∗

(1− 〈σ1〉)2
∑
j

γj〈ỸjX〉∗,

which, once solved, can be used to find the probability that i is infected in the QSD by computing
〈Yi〉∗/(1−〈σ1〉∗). However, we require solutions 〈Yi〉∗ and 〈XiYj〉∗ ∈ [0, 1] which satisfy 〈Xi〉∗ = 1−〈Yi〉∗
for all i and 〈XiXj〉 = 〈Xi〉− 〈XiYj〉, and 〈YiYj〉 = 〈Yj〉− 〈XiYj〉 for all i, j in order to be valid solutions
to our original problem.

By calculating the steady-state of the system,

〈Ẏi〉 =
∑
j

Tij〈XiYj〉 − γi〈Yi〉+

〈Yi〉
∑
j

γj〈ỸjX〉

1− 〈σ1〉
,

〈 ˙XiYj〉 =
∑

k∈Nj\i

Tjk
〈XiXj〉〈XjYk〉

〈Xj〉
−

∑
k∈Ni\j

Tik
〈YkXi〉〈XiYj〉

〈Xi〉

−(Tij + γj)〈XiYj〉+ γi〈YiYj〉+

〈XiYj〉
∑
j

γj〈ỸjX〉

1− 〈σ1〉
,

〈Xi〉 = 1− 〈Yi〉,
〈XiXj〉 = 〈Xi〉 − 〈XiYj〉,
〈YiYj〉 = 〈Yi〉 − 〈YiXj〉,
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where

〈ỸjX〉 =

∏
x∈Nj

〈YjXx〉
∏
y 6=j

∏
x∈Ny :x<y,x6=j

〈XyXx〉∏
x 6=j
〈Xx〉kx−1〈Yj〉kj−1

and

〈σ1〉 =
∏
y

∏
x∈Ny :x<y

〈XyXx〉
〈Xy〉ny−1

.

we can approximate the probability that i is infected in the QSD by computing limt→∞〈Yi(t)〉∗/(1 −
〈σ0(t)〉∗).

Appendix F Population-level pair-based QSD model

To obtain a population-level pair-based model, we sum over nodes with the same degree (and pairs of
nodes with same pair of degrees); i.e.∑

i:ki=k

∑
α:σαi=I

dρα
dt

=
τ
∑
l∈M[SkIl]− γ[Ik]

1− P1
+

[Ik]

(1− P1)2

∑
j

γ〈IjS〉

∑
i,j:ki=k,
kj=l

∑
α:σαi=S,
σαj=I

dρα
dt

=
τ
∑
m∈M[SkSlIm]− τ

∑
m∈M[ImSkIl]− τ [SkIl] + γ[IkIl]− γ[SkIl]

1− P1

+
[SkIl]

(1− P1)2

∑
j

γ〈IjS〉,

where [AkBlCh] is the expected number of triples between degree k, degree l and degree h individuals
in states A, B and C respectively.

As described in Appendix B, we can express the triple terms as

[AlSkIm] ≈ k − 1

k

[AlSk][SkIm]

[Sk]
, (F2)

We can set equations (F1) to zero and use the approximation (F2) to find equations describing the QSD.
A solution to the resulting system can be found by finding an steady-state of

[Ẏk] =− γ[Yk] + τ
∑
l∈M

[XkYl] +

[Yk]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉

[ ˙XkYl] =τ(
∑
m∈M

l − 1

l

[XkXl][XlYm]

[Xl]
−
∑
m∈M

k − 1

k

[YmXk][XkYl]

[Xk]

− [XkYl]) + γ([YkYl]− [XkYl]) +

[XkYl]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉

[ ˙YkYl] =τ(
∑
m∈M

k − 1

k

[YmXk][XkYl]

[Xk]
+
∑
m∈M

l − 1

l

[YkXl][XlYm]

[Xl]
)

+ τ([XkYl] + [YkXl]− 2γ[YkYl] +

[YkYl]
∑
l∈M

γP̃ (Yl = 1)

1− 〈σ1〉
[Xk] =|Ck| − [Yk]

[XkXl] =|Ck,l| − [YkYl]− [XkYl]− [XlYk], (F3)

where P̃ (Yl = 1) = |Cl|〈YiX〉 for some i with ki = l. Here

〈YiX〉 =

∏
x,y 6=i

Gxy〈XxXy〉
∏
x
Gix〈YiXx〉∏

x 6=i
〈Xx〉kx−1〈Yi〉ki−1

,
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which requires node-level terms. We can approximate this by population-level quantities using

〈Si〉 ≈
[Ski ]

|Cki |
, (F4)

and

〈SiSj〉 ≈
[SkiSkj ]

|Cki,kj |
, (F5)

based on the discussion in Appendix B. This gives

〈YjX〉 ≈

∏
k 6=kj

∏
l≤k:l 6=kj

(
[XkXl]
|Ck,l|

)|Ck,l| ( [YkjXk]

|Ckj,k|

) |Ckj,k|
|Ckj |

(
[XkjXk]

|Ckj,k|

)|Ckj,k|− |Ckj,k||Ckj |

∏
k 6=kj

(
[Xk]
|Ck|

)|Ck|(k−1) ( [Ykj ]

|Ckj |

)(kj−1) ( [Xkj ]

|Ckj |

)(|Ckj |−1)(kj−1) . (F6)

To approximate the ground state recall that in the previous section we have shown that a natural
approximation to the ground state probability under the assumption of pair level independence is

〈σ1〉 ≈
∏
i

∏
j<i

Gij〈XiXj〉
〈Xi〉ni−1

.

Using equations (F4) and (F5) we can approximate this in terms of population level quantities, which
yields

〈σ1〉 ≈
∏
k

∏
l≤k


(

[XkXl]
|Ck,l|

)|Ck,l|
(

[Xk]
|Ck|

)|Ck|(k−1)
 (F7)

By substituting equations (F7) and (F6) into Equation (F3) we obtain a closed system of equations.
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