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Sepsis is a heterogeneous syndrome characterized by a variety of clinical features.
Analysis of large clinical datasets may serve to define groups of sepsis with different
risks of adverse outcomes. Clinical experience supports the concept that prognosis,
treatment, severity, and time course of sepsis vary depending on the source of infection.
We analyzed a large publicly available database to test this hypothesis. In addition, we
developed prognostic models for the three main types of sepsis: pulmonary, urinary,
and abdominal sepsis. We used logistic regression using routinely available clinical data
for mortality prediction in each of these groups. The data was extracted from the eICU
collaborative research database, a multi-center intensive care unit with over 200,000
admissions. Sepsis cohorts were defined using admission diagnosis codes. We used
univariate and multivariate analyses to establish factors relevant for outcome prediction
in all three cohorts of sepsis (pulmonary, urinary and abdominal). For logistic regression,
input variables were automatically selected using a sequential forward search algorithm
over 10 dataset instances. Receiver operator characteristics were generated for each
model and compared with established prognostication tools (APACHE IV and SOFA).
A total of 3,958 sepsis admissions were included in the analysis. Sepsis in-hospital
mortality differed depending on the cause of infection: abdominal 18.93%, pulmonary
19.27%, and renal 12.81%. Higher average heart rate was associated with increased
mortality risk. Increased average Mean Arterial Pressure (MAP) showed a reduced
mortality risk across all sepsis groups. Results from the LR models found significant
factors that were relevant for specific sepsis groups. Our models outperformed APACHE
IV and SOFA scores with AUC between 0.63 and 0.74. Predictive power decreased over
time, with the best results achieved for data extracted for the first 24 h of admission.
Mortality varied significantly between the three sepsis groups. We also demonstrate
that factors of importance show considerable heterogeneity depending on the source
of infection. The factors influencing in-hospital mortality vary depending on the source
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of sepsis which may explain why most sepsis trials have failed to identify an effective
treatment. The source of infection should be considered when considering mortality
risk. Planning of sepsis treatment trials may benefit from risk stratification based on the
source of infection.

Keywords: sepsis, intensive care medicine, mortality risk, prognostic factors, origin of infection, logistic
regression

INTRODUCTION

Sepsis is defined as life-threatening organ dysfunction caused by
a dysregulated host response to infection (1). It is not a uniform
disease, but a complex syndrome of physiologic and biochemical
abnormalities. Clinical experience supports the concept that
prognosis, treatment, severity and time course vary depending on
the source of infection (2, 3). Consequently, attempts have been
made to characterize different types of sepsis based on clinical
data, routine blood results and biomarkers (4). Mortality of sepsis
ranges from 15% in patients with sepsis without shock to 56% in
patients with sepsis with shock (5). However, mortality prediction
for sepsis remains satisfactory at best (4).

Although numerous trials have been designed to explore
treatment options for sepsis, so far, none of these has resulted
in new therapies (6). A major shortcoming of many of these
multi-center randomized clinical trials is the patient cohort
investigated. Patients with sepsis manifest striking heterogeneity,
not only with respect to the site or microbiology of the inciting
infection but also with respect to the comorbid conditions present
in the patient at the time of onset (7). Comorbidities, site of
infection and pathogen factors impact the mortality attributed
to sepsis. However, in most clinical trials differentiation between
groups of sepsis is lacking and may have contributed to the
negative outcome of these studies. Recently, attempts have been
made to discriminate sub-phenotypes of sepsis based on panels
of immunological markers. Although promising, these clinical
phenotypes for sepsis (4) are complex, rely on measurement of
biomarker profiles, and are thus not easy to implement into
routine clinical applications.

Electronic health records are now commonly used to record
all routine clinical data. This allows the construction of large
databases, which not only structure and aggregate clinical data
but also record outcome measures such as mortality, length
of stay, and duration of ventilation. Alongside with routinely
applied scoring systems such as the Acute Physiology and
Chronic Health Evaluation (APACHE), the Sequential Organ
Failure Assessment (SOFA), or the Simplified Acute Physiology
Score (SAPS), novel outcome prediction models are being
developed based on these large patient populations.

In this research, we investigate in-hospital mortality and
predictors thereof in different cohorts of sepsis based on the
origin of infection using data from the eICU Collaborative
Research Database, a freely available multi-center database for
critical care research (8). We hypothesize that mortality and
factors influencing mortality risk differ between pulmonary,
urinary, and abdominal sepsis as the three most relevant clinical
presentations. We aim to identify unifying and distinct features

in these groups. Comparisons will be made with established
outcome prediction scores such as APACHE IV and SOFA
to determine if more sophisticated models show superior
performance in predicting hospital mortality in these different
groups of septic patients.

MATERIALS AND METHODS

Data Source
In this study, we used the eICU Collaborative Research Database
(eICU) (8). The eICU is a multi-center intensive care unit
(ICU) database with highly granular data for over 200,000 ICU
admissions collected via eICU programs across the United States
(US) (8). The eICU (V2.0) database comprises 200,859 ICU
encounters for 139,369 unique patients admitted to hospitals
between 2014 and 2015 to one of the 335 intensive care units
across 208 hospitals in the US. All tables are deidentified to
meet the safe harbor provisions of the US Health Insurance
Portability and Accountability Act (HIPAA). This includes
the removal of all protected health information and the
assignment of random unique identifiers. The database includes
demographic/hospital level records, vital signs and laboratory
measurements, medications, APACHE components, care plan
documentation, severity illness measures, diagnosis information,
and treatment details.

Data Extraction
We extracted data from the medical ICUs (MICU), surgical ICUs
(SICU), and medical-surgical ICUs (Med-Surg ICU). Specialist
critical care units such as cardiothoracic and cardio-surgical
ICUs were excluded because of their specific patient cohorts with
distinct presentations of sepsis. Patients after elective surgery
and those with an underlying hematology diagnosis were also
excluded, as their clinical presentation and course are distinct
from patients with sepsis as the primary diagnosis. We then
used the admission diagnosis codes, which are coded using the
APACHE IV diagnosis system, to extract the admissions related
to sepsis, and excluded patients < 18 years of age and with an
ICU stay < 72 h. Lastly, all records with more than 35% missing
data were excluded. These inclusion and exclusion criteria are
represented in Figure 1.

We collected all electronic health record data from the
acute phase of the ICU admission, defined as the first 72 h
after admission. From this dataset, we excluded the first 6 h
(resuscitation phase), where the priority is to stabilize the patient.
Previous studies have used data from different time windows for
outcome prediction, e.g., the first 24 h of the ICU admission (9).
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FIGURE 1 | Flowchart of sepsis cohorts analyzed showing the inclusion and exclusion criteria. ICU, intensive care unit; CCU-CTICU, critical care unit-cardiothoracic
intensive care unit, CSICU, cardio-surgical intensive care unit; LOS, length of stay; UTI, urinary tract infection.

All dynamic features were organized into 1-h non-overlapping
time series bins when extracting the data from the eICU database.
This was to accommodate for different sampling frequencies
of available data and the balance between missing data points
and bin size. All time-varying variables were converted into
tabular representations by extracting their means and standard
deviations. The mean value of these time-varying variables,
which represents the average of each time series, was named
“Average” (Avg), e.g., the mean of the heart rate signal was coded
as “Avg Heart Rate.” Similarly, the standard deviation, which
is representing the variation in the time series, was coded as
“Variations” (Var), e.g., Heart Rate Var.

Outcome
The primary outcome was In-Hospital Mortality, which was
coded as a binary variable to indicate whether the patient was
dead (“1”) or alive (“0”).

Study Aim
The aims of this study were (1). to define in-hospital mortality
depending on the origin of infection and (2). To investigate
predictors of in-hospital mortality for each of the most common
types of sepsis: abdominal, urinary and chest sepsis.

Definition of Sepsis Types
A cohort of patients with sepsis was extracted based upon the
ICU admission diagnosis, which is coded using the APACHE
IV diagnosis system (10) routinely recorded in the eICU
database. From here, the following septic groups were identified:
pulmonary, abdominal, and renal/urinary tract infection (UTI).
Other smaller cohorts of septic patient groups were excluded
either because of a lack of clarity regarding their clinical source
(e.g., those encoded as “unknown” or “others”) or because of their
considerably smaller number of cases (e.g., gynaecologic sepsis
with less than 20 admissions). The prevalence in these groups was
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also reviewed against the encoded ICD codes for these patients to
ensure that the relevant cohorts were well defined.

Univariate Analysis
We used non-parametric statistical tests for continuous and
categorical variables for univariate analysis of the three main
groups of sepsis. The univariate analysis aims to compare
variable distributions for significant differences amongst the
sepsis groups. The Kruskal-Wallis test was applied to assess the
differences among the sepsis groups for all continuous variables.
Similarly, Pearson’s Chi-Square was used to assess differences
for all categorical variables. P-values < 0.05 were considered
statistically significant.

Multiple Logistic Regression
Multiple logistic regression (LR) was used throughout the
experiments. LR models the outcome probability or risk to be “1”
(positive class) as P (Y = 1) = 1/

(
1+ exp

[
−
∑K

k = 0 βkXk

])
,

where {β0, ..., βK} are the model coefficients which are estimated
by maximum likelihood (11). The LR coefficients are the
logarithm odds ratios (OR) between the factors and the outcome.
If a factor increased by one unit, its coefficient measures how
much the outcome odd would increase or decrease, depending
on whether the coefficient is positive or negative.

Variable Selection and Cross-Validation
For LR, input variables were automatically selected using a
sequential forward search algorithm over 10 dataset instances
(10-fold cross-validation). For each iteration, an inner cycle of
fivefold cross-validation was used to select relevant variables.
Collectively this is referred to as nested cross-validation
(Supplementary Figure 1). The selection algorithm starts with
a baseline model (i.e., all coefficients but the intercept set to zero,
βk6=0 = 0), and in each step, the variable which most improves
the performance on the validation set is added (12).

Model Performance
Model performance was measured using the area under the
receiver operator characteristic (AUC) curve. AUC means and
confidence intervals (CI) were calculated for each sepsis type.

Model Explainability
To provide model explainability, we developed a forest plot for
each sepsis type and a Sankey network diagram. The forest
plots display the ORs and CIs associated with each clinical
feature relevant to the developed LR models. The Sankey network
diagram was used in a novel way to visualize the interactions
between the significant clinical features and sepsis groups. For
this, we selected the significant variables (P < 0.05) from the
LR models (nodes on the left-hand side of the diagram) and
generated links between them and the sepsis groups (nodes on the
right-hand side of the diagram). Additionally, the absolute value
of the OR interactions between clinical features and sepsis groups
was represented by the height of the nodes, to provide further
information regarding the relevance of each clinical feature.

Comparisons of the Novel Models
Against Established Critical Care
Deterioration Scores
We compared the performance of two commonly used clinical
scoring systems, the APACHE IV and SOFA score, which are
typically used to predict in-hospital mortality for patients in
critical care. We used the SOFA and APACHE IV scores as
independent variables in a univariate LR model to produce the
mortality risk estimate for the outcome. The purpose was to allow
for a fair comparison between the developed models and the
scores using the same methodology to evaluate how well each of
them can predict the outcome.

The APACHE IV and SOFA scores are readily available in the
eICU database. The APACHE IV scores were calculated based
upon data collected on admission to the ICU, these values were
available and listed in the eICU table “apachePatientResults.”
Individual components of the SOFA score were calculated (13)
for the first 3 days and then averaged. qSOFA scores were
calculated by assigning points for (1). altered mental state (< 15
in the Glasgow Coma Scale), (2). Fast respiratory rate (> 22
breaths per minute) 3. Low blood pressure (systolic blood
pressure < 100 mmHg).

RESULTS

Sepsis Groups
A total of 3,958 ICU admissions were analyzed. A total of 2,393
patients were admitted with pulmonary sepsis, 1,044 with urinary
sepsis and 544 with abdominal sepsis (Figure 1). Unadjusted
statistical comparisons between the three sepsis groups are
displayed in Table 1. Patients with urinary sepsis were older than
patients with pulmonary and abdominal sepsis.

With the exception of hypertension, there were no significant
differences in cardiovascular comorbidities between the groups.
We found group differences that were statistically significant (p-
value < 0.05) for comorbidities such as mild and severe liver
disease, dementia and respiratory diseases (COPD, asthma). We
also observed significant group differences in vital signs (average
heart rate, average mean arterial pressure (MAP), average
saturation, average respiratory rate and average temperature) and
blood counts (average lymphocyte count, average white blood cell
count, average platelet count, and hematocrit). Blood gas results
differed between groups with regards to average pH, average
pO2 and average pCO2. Liver and kidney function was also
significantly different between groups. Compared to patients with
pulmonary or abdominal sepsis, a smaller proportion of patients
with urinary sepsis required inotropes during their stay.

While there was a significant difference between SOFA and
qSOFA scores between the groups, Charlson comorbidity index
and APACHE IV score were comparable between abdominal,
urinary and pulmonary sepsis.

Evaluation of Model Performances
Figure 2 displays the results of the comparison between the
developed multivariate models and the APACHE IV and SOFA
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scores. These AUC results show that, for pulmonary and
abdominal sepsis, the novel models outperformed APACHE IV
and SOFA scores (AUC 0.74 and 0.71, respectively), but were not
superior in urinary sepsis (AUC 0.63).

Comparisons using different time windows for data extraction
was performed to assess (a) how this decision impacts model
performances, and (b) how our analysis compares to previous

studies. Figure 3 compiles the results obtained for the first
24, 48, and 72 h, with or without the inclusion of the first
6 h. The best results were obtained when using the first 24 h,
where the cohort sizes were generally twice the size of those
at 72 h (see the bottom of Figure 3), as a great proportion of
patients either died or were discharged between 24 and 72 h
after ICU admission.

TABLE 1 | Demographics, comorbidities, vital signs, and routine prognostic scores used for modeling.

Abdominal (N = 544) Pulmonary (N = 2,392) Renal/UTI (N = 1,022) P-value

Outcome

In-hospital mortality 103 (18.9%) 461 (19.3%) 131 (12.8%) <0.001

Demographics

Age 67.0 (56.0, 76.0) 67.0 (56.0, 77.0) 71.0 (60.0, 81.0) <0.001

Gender (Male) 276 (50.7%) 1,281 (53.6%) 437 (42.8%) <0.001

Comorbidities

Myocardial infarction 45 (8.3%) 184 (7.7%) 85 (8.3%) 0.7862

CHF 85 (15.6%) 461 (19.3%) 204 (20.0%) 0.0932

PVD 27 (5.0%) 116 (4.8%) 53 (5.2%) 0.9172

Dementia 14 (2.6%) 166 (6.9%) 104 (10.2%) <0.001

COPD 81 (14.9%) 600 (25.1%) 136 (13.3%) <0.001

CTD 16 (2.9%) 70 (2.9%) 35 (3.4%) 0.7302

Peptic ulcer disease 14 (2.6%) 75 (3.1%) 35 (3.4%) 0.6552

Mild liver disease 31 (5.7%) 55 (2.3%) 26 (2.5%) <0.001

Uncomplicated DM 146 (26.8%) 713 (29.8%) 407 (39.8%) <0.001

Renal disease 94 (17.3%) 334 (14.0%) 165 (16.1%) 0.0712

Hemiplegia 45 (8.3%) 246 (10.3%) 146 (14.3%) <0.001

Severe liver disease 32 (5.9%) 49 (2.0%) 18 (1.8%) <0.001

Hypertension 269 (49.4%) 1,143 (47.8%) 564 (55.2%) <0.001

Hypothyroidism 16 (2.9%) 100 (4.2%) 43 (4.2%) 0.3882

Atrial fibrillation 70 (12.9%) 307 (12.8%) 144 (14.1%) 0.5962

Asthma 38 (7.0%) 219 (9.2%) 70 (6.8%) 0.0412

Seizures 32 (5.9%) 166 (6.9%) 83 (8.1%) 0.2312

Respiratory failure 10 (1.8%) 126 (5.3%) 46 (4.5%) 0.0032

CABG 25 (4.6%) 139 (5.8%) 46 (4.5%) 0.2142

Cancer 116 (21.3%) 422 (17.6%) 169 (16.5%) 0.0572

Admission diagnosis

Pulmonary 181 (33.3%) 2,109 (88.2%) 350 (34.2%) <0.001

Cardiovascular 423 (77.8%) 1,788 (74.7%) 787 (77.0%) 0.1852

Infectious diseases 165 (30.3%) 569 (23.8%) 361 (35.3%) <0.001

Renal 205 (37.7%) 730 (30.5%) 662 (64.8%) <0.001

Gastrointestinal 323 (59.4%) 211 (8.8%) 91 (8.9%) <0.001

Oncology 20 (3.7%) 114 (4.8%) 24 (2.3%) 0.0042

Neurologic 85 (15.6%) 443 (18.5%) 270 (26.4%) <0.001

Endocrine 63 (11.6%) 330 (13.8%) 169 (16.5%) 0.0192

Vitals

Avg heart rate 94.0 (81.9, 105.0) 90.2 (79.8, 100.8) 89.0 (78.1, 98.7) <0.001

Heart rate var 9.5 (6.9, 12.6) 10.0 (7.3, 13.5) 9.7 (7.1, 13.4) 0.0201

Avg SaO2 96.6 (95.3, 98.2) 96.6 (95.1, 98.0) 97.1 (95.9, 98.5) <0.001

SaO2 var 1.9 (1.4, 2.5) 2.1 (1.6, 2.7) 1.8 (1.3, 2.5) <0.001

Avg GCS total 13.8 (10.5, 14.9) 11.3 (9.0, 14.3) 13.6 (10.0, 14.8) <0.001

GCS total var 0.7 (0.2, 1.7) 0.9 (0.4, 1.9) 0.6 (0.3, 1.5) <0.001

Avg respiratory rate 20.5 (18.0, 23.9) 21.4 (18.6, 24.8) 20.1 (17.6, 23.3) <0.001

Respiratory rate var 3.8 (2.9, 5.0) 4.0 (2.9, 5.2) 3.7 (2.9, 4.9) 0.0171

(Continued)
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TABLE 1 | (Continued)

Abdominal (N = 544) Pulmonary (N = 2,392) Renal/UTI (N = 1,022) P-value

Vitals

Avg temperature ◦C 36.8 (36.6, 37.2) 36.9 (36.6, 37.2) 36.8 (36.6, 37.2) 0.0431

Temperature ◦C var 0.4 (0.3, 0.6) 0.4 (0.3, 0.6) 0.4 (0.3, 0.6) 0.0411

Avg MAP 76.8 (72.4, 84.3) 80.1 (74.4, 87.6) 78.6 (73.2, 86.4) <0.001

MAP var 9.1 (7.3, 11.6) 9.6 (7.5, 12.1) 9.9 (7.9, 12.5) <0.001

Avg WBC 13.5 (9.3, 19.1) 12.2 (8.6, 16.9) 12.6 (8.7, 18.0) <0.001

WBC var 2.5 (1.3, 4.5) 2.0 (1.1, 3.6) 2.3 (1.1, 4.2) <0.001

Avg albumin 2.3 (1.9, 2.6) 2.3 (2.0, 2.7) 2.3 (2.0, 2.7) 0.0161

Albumin var 0.2 (0.1, 0.3) 0.1 (0.1, 0.3) 0.1 (0.1, 0.2) 0.0041

Avg platelets 163.8 (100.7, 239.8) 180.0 (124.0, 249.0) 164.6 (106.0, 230.8) <0.001

Platelets var 21.2 (12.0, 37.1) 18.6 (9.2, 31.8) 17.7 (9.2, 29.8) 0.0071

Avg PaO2 92.4 (75.9, 115.4) 91.0 (75.8, 113.1) 97.0 (79.4, 120.0) 0.0181

PaO2 var 20.6 (11.2, 43.4) 20.6 (11.1, 37.8) 19.3 (9.2, 34.3) 0.3321

Avg PaCO2 36.3 (31.6, 42.0) 39.3 (34.0, 46.3) 35.8 (30.2, 41.2) <0.001

PaCO2 var 4.1 (2.6, 6.4) 4.0 (2.2, 7.1) 3.5 (2.1, 5.8) 0.0821

Avg FiO2 43.0 (35.0, 60.0) 50.0 (40.0, 70.0) 40.0 (33.3, 53.6) <0.001

FiO2 Var 7.5 (0.0, 17.9) 9.5 (3.5, 18.3) 7.1 (0.7, 15.2) 0.1121

Avg total bilirubin 0.9 (0.5, 2.3) 0.6 (0.4, 1.0) 0.6 (0.4, 1.2) <0.001

Total bilirubin var 0.2 (0.1, 0.5) 0.1 (0.1, 0.3) 0.1 (0.1, 0.3) <0.001

Avg creatinine 1.4 (0.9, 2.6) 1.0 (0.7, 1.8) 1.4 (0.9, 2.3) <0.001

Creatinine var 0.2 (0.1, 0.4) 0.1 (0.1, 0.3) 0.2 (0.1, 0.4) <0.001

Avg BUN 29.6 (17.7, 49.8) 25.5 (16.0, 41.0) 31.0 (18.3, 48.9) <0.001

BUN var 4.8 (2.4, 8.8) 4.0 (2.1, 7.3) 4.2 (2.1, 8.6) <0.001

Avg PH 7.4 (7.3, 7.4) 7.4 (7.3, 7.4) 7.4 (7.3, 7.4) <0.001

pH Var 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0 (0.0, 0.1) 0.0681

Avg sodium 139.0 (136.0, 142.7) 139.8 (136.7, 143.0) 140.0 (136.9, 144.0) <0.001

Sodium var 1.8 (1.2, 3.1) 1.9 (1.2, 2.8) 2.1 (1.3, 3.1) 0.0171

Avg glucose 130.8 (110.0, 161.5) 141.0 (114.6, 170.6) 139.2 (115.8, 170.5) <0.001

Glucose var 24.7 (15.3, 37.7) 26.8 (17.1, 41.4) 29.8 (19.5, 45.8) <0.001

Avg hematocrit 28.9 (25.6, 32.8) 29.9 (26.5, 34.0) 29.5 (26.5, 33.3) <0.001

Hematocrit var 2.1 (1.2, 3.1) 1.6 (0.9, 2.6) 1.5 (0.9, 2.5) <0.001

Avg urine 161.1 (68.8, 364.1) 226.2 (96.3, 475.0) 224.2 (91.4, 551.0) <0.001

Urine var 70.6 (33.3, 158.9) 108.9 (54.5, 208.9) 106.1 (50.3, 226.3) <0.001

Respiration

Intubated 289 (53.1%) 1,914 (80.0%) 486 (47.6%) <0.001

Drugs

Norepinephrine 241 (44.3%) 861 (36.0%) 436 (42.7%) <0.001

Vasopressin 80 (14.7%) 225 (9.4%) 111 (10.9%) 0.0012

Phenylephrine 56 (10.3%) 147 (6.1%) 60 (5.9%) 0.0012

Dopamine 18 (3.3%) 60 (2.5%) 44 (4.3%) 0.0202

Epinephrine 15 (2.8%) 36 (1.5%) 15 (1.5%) 0.1022

Dobutamine 16 (2.9%) 43 (1.8%) 24 (2.3%) 0.1972

Scores

Charlson CI 2.0 (0.0, 3.0) 2.0 (0.0, 3.0) 2.0 (1.0, 3.0) 0.4031

SOFA 4.0 (1.0, 7.0) 4.0 (2.0, 7.0) 3.0 (1.0, 6.0) <0.001

APACHE IV 73.0 (61.0, 88.0) 73.0 (58.0, 89.0) 73.0 (62.0, 87.0) 0.8951

SIRS 2.0 (1.0, 2.0) 2.0 (1.0, 2.0) 1.0 (1.0, 2.0) <0.001

qSOFA 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) <0.001

Unit stay type <0.001

Admit 453 (83.3%) 1,991 (83.2%) 863 (84.4%)

Other/Stepdown/Transfer 67 (12.3%) 277 (11.6%) 138 (13.5%)

Readmit 24 (4.4%) 124 (5.2%) 21 (2.1%)

(Continued)
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TABLE 1 | (Continued)

Abdominal (N = 544) Pulmonary (N = 2,392) Renal/UTI (N = 1,022) P-value

Unit type <0.001

Med-surg ICU 386 (71.0%) 1,830 (76.5%) 785 (76.8%)

MICU 104 (19.1%) 440 (18.4%) 197 (19.3%)

SICU 54 (9.9%) 122 (5.1%) 40 (3.9%)

Admission duration

Hospital LOS 287.3 (190.7, 470.7) 264.4 (172.7, 400.2) 222.7 (159.6, 343.7) <0.001

ICU LOS 125.9 (92.1, 209.0) 140.7 (97.7, 228.8) 112.1 (87.5, 159.3) <0.001

The first column displays the data characteristics (variables). Columns second to fourth show summary statistics of all the variables for each sepsis group. Sepsis group
cohort sizes are reported under the group name. Numeric variables are reported with the median and IQR (in parentheses), while categorical variables are reported
with the frequency and proportion (in parenthesis). The resulting statistical tests are reported in the fifth column in the form of p-values. Any p-value smaller than 0.001
was indicated as “ < 0.001.” CHF, congestive heart failure; PVD, Peripheral vascular disease; COPD, Chronic obstructive pulmonary disease; CTD, Connective tissue
diseases; DM, diabetes mellitus; CABG, Coronary artery bypass graft surgery; SaO2, oxygen saturation; GCS, Glasgow coma scale; MAP, Mean Arterial Pressure; WBC,
white blood cells count; PaO2, partial pressure of oxygen; FiO2, Fraction of Inspired Oxygen; BUN, blood urea nitrogen; SOFA, Sequential Organ Failure Assessment;
qSOFA, quick SOFA; APACHE, Acute Physiology And Chronic Health Evaluation; SIRS, Systemic Inflammatory Response Syndrome; ICU, Intensive Care Unit; Med-Surg
ICU, medical-surgical ICU; MICU, medical ICU, SICU, surgical ICU; LOS, length of stay; Avg, average (mean); Var, variation (standard deviation).

FIGURE 2 | Model performance comparisons. (Top) Area under the ROC curve (AUC) for each sepsis group. Average AUC (filled circles) and confidence intervals
(vertical bars) estimated after the 10 repetitions of the outer cross-validation. Deterioration scores (APACHE IV and SOFA) models are represented in red, LR models
in blue. (Bottom) Detailed comparison, also including sensitivity and specificity. APACHE IV, Acute Physiology And Chronic Health Evaluation IV; SOFA, Sequential
Organ Failure Assessment; LR, multiple logistic regression.
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FIGURE 3 | Model performance measures on several time windows. (Top) Model performance comparisons as measured using the AUC for each sepsis group at
several time intervals. The figure shows AUC means and confidence intervals estimated after the 10 repetitions of the outer cross-validation with logistic regression.
(Bottom) Effects of different time windows on cohort size and mortality rates.

Explanatory Analysis
Figure 4 displays the ORs for risk factors in the three sepsis
groups as estimated across the 10 dataset instances. Higher age
and higher average heart rate were associated with increased
mortality risk. Increased values in average MAP were associated
with a reduced mortality risk across all sepsis groups. Our
LR models identified significant factors that were relevant only
for certain sepsis groups. For instance, atrial fibrillation and
cancer were associated with an increased mortality risk only
in pulmonary sepsis, but not in urinary or abdominal sepsis.
Contrastingly, in abdominal sepsis hypertension represented a
relevant risk factor of mortality. Interestingly, abdominal sepsis
was the only group for which uncomplicated diabetes represented
a significant protective factor regarding mortality risk.

A number of factors were relevant to more than one sepsis
group. For instance, the most influential factor for increased
mortality risk was “intubation” for urinary and pulmonary
sepsis groups, however, in abdominal sepsis “readmitted to
ICU” represented the most important factor. A rise in risk
was associated with higher “average FiO2” and “average total
bilirubin” values in both abdominal and pulmonary sepsis, but

not in urinary sepsis. Distinctively, in pulmonary and renal
sepsis lower average temperature was indicative of reduced
mortality risk. The average albumin was associated with the
greatest risk reduction in pulmonary sepsis, whereas in renal
and abdominal sepsis “average temperature” and “unit stay type
(other/stepdown/transfer)” represented important variables.

Moreover, results illustrated that the average value for certain
parameters was relevant while for other variables, the average
variation played a greater role in mortality risk prediction.
For instance, mortality risk reduces in renal sepsis when
there is an increase in “average SaO2.” This is dissimilar to
pulmonary sepsis, for which higher “SaO2 variation” increased
the risk of mortality.

Figure 5 presents a Sankey network diagram displaying the
relationship between several clinical features and the sepsis
groups. It shows that “intubation,” “average total bilirubin,”
“average FiO2,” “average urine output,” “average heart rate” and
“average MAP” had the greatest overlap between sepsis groups.
In abdominal sepsis, readmission had the greatest influence on
the risk of in-hospital mortality compared to any other variables
included in the model.
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FIGURE 4 | Odds ratio (OR) estimates for LR. The figure displays the pooled ORs average (filled circles) and confidence intervals (vertical bars) for all significant
features (p < 0.05) selected by the feature selection algorithms for the sepsis groups: pulmonary, abdominal, and renal/UTI. An OR of 1 represents a baseline risk,
with values < 1 indicating a reduction in risk for the outcome, and > 1 indicating an increased risk in relation to the outcome.

DISCUSSION

In this study, we conduct a LR analysis of several types of
sepsis based on the origin of infection. Our results showed that
using LR as a relatively simple approach to ML was sufficient
to obtain good to very good models for renal, abdominal and
pulmonary sepsis that consistently outperformed the established
risk scores for predicting in-hospital mortality. Biomedical and

social scientists are usually familiar with the results provided by
LR models, hence their great popularity. The major drawbacks of
LR are the linearity and normality assumptions of the data which
could yield biased models.

Traditionally, outcome prediction in sepsis is based on clinical
scores, such as SOFA, APACHE, or SAPS. Such mortality
prediction scores for critically ill patients are used worldwide and
have been extensively validated (14). These models, however, may
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FIGURE 5 | A Sankey diagram representing the relationship between several clinical features (nodes on the left-hand side) and the sepsis groups (nodes on the
right-hand side), with the link widths representing the absolute ORs proportional to the risk of in-hospital mortality for each of the sepsis groups.

not be ideal for routine clinical use as they lack granularity and are
designed for use at ICU admission, thus neglecting the change of
physiological parameters over time. So far, only a limited number
of studies describe prognostication for in-hospital mortality in
patients with sepsis comparing different sources of infection
as an independent factor (15). In this study, we address this
knowledge gap by (a) comparing different risk factors for each
sepsis type and (b) highlighting specific factors associated with
in-hospital mortality in the distinct sepsis groups, depending on
the origin of the underlying infection. This approach may help to
address the heterogeneity of the patient population with sepsis,
to define discrete patient populations to guide the development
of effective therapies and identify cohorts that benefit from
certain interventions.

A fundamental difference between our models and existing
ones for outcome prediction is that we include data from a
longer observation period. For frequently measured variables

such as vital signs, up to 72-h’ worth of data points were
used, with measurements recorded every hour. We extracted
the mean and the standard deviation of all data points available
to factor in change over time, with the former indicating
the average values for each patient, and the latter indicating
the range of variation in those values, e.g., a high heart rate
variation may be indicative of some form of hemodynamic
instability. However, the mean and the standard deviation
represent a crude representation of change over time, and
further research is required to investigate and define the best
mathematical approach to reflect the variation of variables,
particularly those with frequent measurement, e.g., heart rate
or blood pressure.

We performed outcome prediction at various time points
during the early phase of sepsis. Our results demonstrate that the
performance of ML models drops over the first 72 h after ICU
admission in all the types of sepsis studied. Model performance is
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best maintained in pulmonary sepsis, while loss of performance is
greatest in urinary sepsis. A possible explanation is that the causes
of death from sepsis vary over time. While early deaths occur
in about a third of septic patients and are mainly attributable
to multiple organ failure caused by the primary infection, late
deaths are influenced by end-of-life decisions and often relate to
recurrent or late infections (16).

Early deaths in sepsis are typically associated with a
hyperinflammatory “cytokine storm” response with fever,
refractory shock, acidosis, and hypercatabolism (17). If regulation
of the immune response from hyperinflammation to normal
activity fails after the acute phase, patients enter a marked
immunosuppressive state. Later deaths after the acute phase
occur due to an inability to clear primary infections and the
development of secondary infections (17). Taken into account the
biphasic or even polyphasic course of sepsis, mortality prediction
in the acute phase will differ from models predicting later
mortality. Hence models that only include admission data are
likely to disproportionately focus on early death occurring in
the first 24 h of admission. Whilst optimizing data collection
periods may improve outcome prediction, the ideal model
should reflect dynamic changes and risk profile throughout the
Intensive Care admission.

Our results indicate that prediction after the acute phase
of sepsis is more complex and not well described in existing
prognostication models. In addition, outcome prognostication
is often performed early during the ICU stay, and many scores
such as APACHE IV, are only validated for use on admission
to Critical Care. Generation of a logistic regression model
to predict mortality represents the first step in producing a
score for wider clinical use; comparison to existing models is
required to justify progression to external validation, refinement
and eventually development of a new score with different
weighting of individual risk factors. The degree of organ
failure associated with the type of sepsis and the early
progression of disease varies between sepsis groups and may
be influenced differently in each group by early deaths and
vice versa, early recovery and discharge alive. This assumption
is supported by the higher dropout of cases in the urinary
sepsis group compared to other sepsis caused by abdominal and
chest infections.

Sepsis is not a uniform disease, but a syndrome characterized
by the striking variation of biological features (18). Systematic
analysis of these features, using data mining, and advanced
statistical methods or machine learning, may allow the
identification of types of sepsis with different risk profiles
and responses to treatment. In an attempt to classify different
types of sepsis, several approaches have been chosen (19).
More sophisticated definitions of distinct molecular endotypes
are based on leukocyte genome-wide expression profiles from
samples collected on ICU admission (20–22). However, the
implementation of these complex prognostic and predictive
strategies at the bedside of patients is limited (23) due to the
need for expensive laboratory analysis, which is not routinely
available and is often too time-consuming to allow clinical
decision making. Different statistical methods, including latent

class analysis (24, 25), group-based trajectory modeling (26) and
various machine learning algorithms (27) have been applied to
large clinical data sets.

Clinicians instantaneously recognize that bacterial sepsis in
young otherwise healthy patients carries a better prognosis
than fungal sepsis in an elderly hematology patient. Similarly,
urinary sepsis is commonly perceived as less fatal than chest
or intraabdominal sepsis. A systematic review which addressed
the impact of the source of infection on mortality (28),
identified several studies in which lower in-hospital mortality
was observed for urinary sepsis compared to respiratory
sepsis. This observation was independent of the stage of
sepsis with lower mortality observed in sepsis, severe sepsis
and septic shock. Our results confirm the observation that
in-hospital mortality is lower in critically ill patients with
urinary sepsis compared to abdominal and respiratory sepsis.
Factors influencing mortality differed between sepsis groups
in our research, e g., ICU readmission was a significant risk
factor in abdominal sepsis, but played no role in pulmonary
or urinary sepsis, indicating that the numerous ICU stays
required for complex abdominal sepsis are associated with a
worsening prognosis. In contrast, for pulmonary and urinary
sepsis, the need for invasive ventilation was a significant risk
factor for mortality. The origin of infection is often known
to treating physicians early in the clinical course and as such,
outcome prediction based on the type of causative infection
using clinical data only, may be easier to implement than
models relying on complex combinations of clinical data
and biomarkers, which are often not readily available at the
bedside. Modern monitoring devices allow the integration of
such prognostic algorithms into their software package and
facilitate easy clinical implementation for all patients requiring
regular monitoring.

The strength of this study is that we used the eICU
database, a public database containing a large number of datasets
for critically ill patients to generate our models. Moreover,
we included time series for vital signs and laboratory tests
for up to 72 h after admission to ICU in patients with
different origins of sepsis and demonstrated that the models
outperformed existing prediction tools. However, our study
also has limitations. External validation and comparison with
other machine learning approaches are required to explore the
transferability and generalizability of our models in different
critical care settings. Furthermore, the combination of molecular
diagnostics such as transcriptomics and genomics with the
routinely available clinical data used in our model may further
improve the performance.

CONCLUSION

We present a logistic regression model for different types of sepsis
which are defined by their origin of infection using routinely
available clinical data from a large publicly available dataset.
We demonstrate that factors of importance show considerable
heterogeneity depending on the source of infection.
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