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Abstract 

 

This study directly addresses the problem of active control of beam structures under the 

action of moving masses. In this regard, experimental implementations of the particular 

active control solutions are still rarely seen in the literature. The main objective is to 

experimentally implement and validate active control solutions for two small-scale test 

stands with the aim to reduce the structural deflection.  

The first supporting structure is modelled as an Euler–Bernoulli simply supported beam, 

acted upon by moving masses of different weights and velocities. The experimental 

implementation of the proposed optimal controller poses a particular set of challenges as 

compared with numerical solutions. Specifically, it can include errors due to 

discretization and the states cannot be directly measured. The resulting limitations of 

classical optimal observer techniques are stated and consequently the states are estimated 

by a method utilizing the mode shapes. It is shown both numerically and experimentally 

that using electromagnetic actuation, a reduced order controller designed using a time-

varying algorithm, provides a reduction of the maximum deflection of up to 38% as 

compared with the uncontrolled structure. Herein an augmented system model is utilised, 

which includes the moving mass in the system equation. The controller performance and 

robustness were tested against a representative set of possible moving load parameters. 

In consequence of the variations in moving mass weight and speed, the controller gain 

requires a supplementary adaptation. A simple algorithm that schedules the gain as a 

function of the weight and speed of the moving mass can achieve both a good 

performance and an adjustment of the control effort to the specific design requirements. 

In the second part of this study cubic and linear displacement feedback control approaches 

are studied experimentally for a simply supported beam as well as for the two-span 

continuous beam. The two-span beam structure is modelled by approximating the support 

by spring damper elements of high stiffness and damping coefficient. Piezoelectric macro 

fibre composites serve as actuators. The control methods are, compared to the previous 

approach, more straightforward to implement and can handle a stream of moving masses. 

However, optimality and stability cannot be guaranteed and have to be validated 

experimentally. The linear displacement feedback shows better performance for low 

weights of the moving masses whereas the cubic displacement feedback achieves higher 

deflection reduction for higher weights.  
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In the last part, constrained model predictive control is studied numerically for both of 

the structures. This is currently the only control approach which can take into account 

saturation limits explicitly by quadratic programming. In this way, better performance is 

achieved for both test structures as compared to the displacement feedback control 

approaches.  
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 Introduction  

 

Active control of structures subjected to moving and therefore transient loads plays a crucial 

role in a large variety of engineering applications such as, vehicle/pedestrian –bridge 

interaction, overhead cranes, linear robots, maglev guideways and railway catenary-

pantographs [1–7]. Lighter and more slender structures, arising from more efficient use of 

resources, optimised geometries and aesthetic considerations, are more susceptible to 

excessive vibration levels.  

In particular the problem of moving loads in relation to bridge-structure interaction has been 

studied extensively both analytically and experimentally [8,9]. For structural engineers, it is 

not only the modelling that is of  particular interest, but also the improving of the dynamic 

response of the supporting structure to specific moving loads, which in the case of a bridge 

could be the effects of different traffic loads. An example of pedestrian induced vibration 

affecting the serviceability of a structure was the initial operation of the millennium bridge 

in London in June 2000 [10]. Longitudinal vibrations were caused by a near resonance of 

one or more modes, induced by the frequencies of the human load. Passive vibration control 

had to be installed afterwards to ensure the serviceability. A number of studies can be found 

in the research literature that put forward passive methods designed to address this specific 

problem. The passive approach is attractive as it offers a low cost solution [11–14], but it is 

less efficient when the structure is subjected to loads with random variations in parameters 

such as moving speed and weight.  

Active vibration control methods offer greater efficiency by reducing broadband frequencies 

and by allowing a higher and flexible actuation [15] which in the context of a moving mass 

structure means that the control could adapt actively to different weights and speeds. In 

addition, active vibration control is becoming increasingly important in the design of 

handling devices and flexible robots, as lightweight structures reduce inertia and increase 

the mobility of the moving parts [16,17]. Traditional technologies like structural 

optimization and passive damping can only be applied up to certain limits. Here the 

application of new actuator technologies such as macro fibre composite (MFC) piezoelectric 

actuators is of particular interest, as they can offer high flexibility, small geometries and 

strong actuation forces [18–24].  
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1.1 Aims and objectives  

 

In recent years, much research has been done in the field of theoretical and numerical 

investigation of active control of moving load structures [2,25–27]. In contrast, there are 

only a few studies dealing with the experimental implementation and validation of the active 

control of structures under this particular type of excitation [16,17].  

The aim of this study is the experimental implementation of active vibration control 

approaches for a simply supported beam and a two-span continuous beam, acted upon by a 

stream of moving masses. Optimal control approaches include the system model and the 

moving load in the control synthesis and can theoretically guarantee optimality and stability. 

Therefore, these will be studied in the first part of this study. The extension consists in the 

numerical study of the model predictive control approach as it is able to take into account 

the saturation limits of the actuator. In addition, linear and nonlinear feedback control 

approaches are implemented as they provide an intuitive method for implementation. The 

first studies will be carried out with an electrodynamic actuator as this is widely used in 

research institutions and industry. Later, the novel piezoelectric MFC actuators will be 

attached to the beam,  modelled and used to control the test-structures.  

Parts of this study are published in [28], where reduced order active control by an 

electrodynamic shaker is applied to reduce the deflection of a simply supported beam 

subjected to moving loads.  

The next section reviews the scientific literature, including theoretical and experimental 

work in the field of active vibration control of moving load structures. 

 

1.2 Literature Review 

 

The literature review covers different areas relevant to the active structural control of simply 

supported and two-span continuous beams. First the most relevant studies for the closed 

solution of the general moving mass problem are presented. Then the particularities of 

modelling multi-span continuous structures are reviewed in the literature. Followed by the 

numerical and experimental studies covering the active control of moving load beam 

structures in modal coordinates. The literature covering displacement feedback control is 
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reviewed afterwards. Finally, the potential of applying the novel MFC actuator technology 

is examined as well as the literature relevant in terms of applying the model predictive 

control approach in active structural control.  

 

The General Moving Mass Problem  

With an increasing mass ratio, defined as the ratio between moving mass and the supporting 

structure, and increasing moving speeds, the inertia effects of the load have to be considered 

in the modelling of the moving load structure [25,26,29]. An accurate and computationally 

efficient model of the system is important to design a stable controller as well as to simulate 

the moving load structure. Therefore, a compromise must be found between sufficient 

accuracy of the results and computationally efficient algorithms. Modal coordinate 

transformations can offer these properties. It may take over hundreds degrees of freedom in 

a finite element (FE) model to represent the system dynamics accurately whereas in modal 

coordinates this may be modelled by ten modes to represent the frequency range of interest 

[30]. This is of special importance to realise fast real-time capable model-based control 

algorithms for the later active control of slender structures. 

Fryba [8] studied different load cases for beam structures, from the perspective of train-

bridge vibrations. He presents the derivation of the moving force problem in different 

scenarios as well as the closed-form solutions of vibrations on modal coordinates of an 

Euler-Bernoulli beam crossed by a continuous moving load. The theoretical results were 

validated with experiments, e.g. for the continuous load by a train moving on a 56.56 m long 

bridge [31]. Ouyang [2] presents the derivation of a point wise mass moving on a simply 

supported beam with additional applications, e.g. wood saws and machine tools. Further 

theoretical studies for the general moving load problem are plentiful and may be found in 

[27,32–34] for example.  

 

Modelling of Multi-Span Structures  

The mode shapes of multi-span structures are difficult to derive numerically [35]. Boundary 

conditions of a previous span must be applied to the next span, and the mode expressions 

vary with each span. A possible control algorithm would have to switch to different mode 

shapes for each span. The exact mode shapes for a continuous two-span beam can be found 
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in [36] where it is used in the vibration analysis of continuous maglev guideway of a 

magnetic levitation system. Yang [35] presented exact modes shapes in the vibration analysis 

of two-span and four-span continuous beam structures. For a more complex four-span plate 

structure with two rails, Yang [5,34,35] modelled the supporting structure using mode shapes 

determined by the FE-method. This model was then used to calculate the structural response 

by mode superposition in MATLAB. The FE-model can be updated by the experimentally 

measured natural frequencies. Stancioiu et. al [37] derived the mode shapes for a four-span 

flexible beam structure acted upon by one or two steel balls. The numerically obtained results 

showed a good match with experimentally measured displacement data for low speeds of the 

moving mass, when the permanent contact of the load can be assured.  

Several studies approximated the mode shapes of multi-span structures by adding springs 

with adequate stiffness at the support locations [38–41]. For vibration control this method is 

preferred as the mode shapes of a single-span beam can be utilised for the whole structure. 

A drawback could be that a relatively high number of modes must be used to approximate 

the mode shapes of multi-span beam structures with sufficient accuracy.  

 

General Active Structural Control  

Preumont [42] presents a detailed introduction into the field of active vibration control of 

structures. It comprises modelling of the structural system and the design of control systems 

in state space as well as frequency based single-input-single-output control systems. 

Important studies regarding the general active control of flexible system go back to of Balas 

[43] and Goh et. al. [44]. In [43] the controller was designed in state space with an additional 

Luenberger observer. He examined the control and observation spillover, where higher 

unmodelled modes get excited by the controller. Goh et. al [44] introduces the positive 

position feedback (PPF), which can handle the spill over effect and increases the damping 

of the system. Several researchers extended this concept further [45–47]. Extensions of the 

concept are the positive velocity feedback controller [48] acceleration feedback control [49]. 

Korkmaz [3] presents in his review an overview of feasible applications of active control 

structures in engineering and its computing challenges , which are greatest when there is no 

closed form of solution for control commands. This is the case for nonlinear structures  
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Active Control of Moving Mass Beam Structures in Modal Coordinates 

Several studies have investigated the active control of a structure subjected to a moving 

mass, numerically modelling the structure in modal coordinates. Sung [50] presented the 

dynamic modelling and the time-invariant optimal control of a simply supported beam under 

a moving mass. He used two piezoelectric actuators, and their locations were determined by 

an optimal quadratic cost functional.  

Deng et al. [51,52] used a linear-quadratic Gaussian (LQG) modal controller for a time-

varying structure including identification and control update in real-time. The numerical 

model, which alters due to structural changes, is updated in the observer. The method was 

validated numerically. The time-varying nature of the system was taken into account in [26] 

where Nikkhoo et. al proposed a method based on solving the Riccati equation at every time-

step. In [26,29] it is shown that for a high travelling speed, and for certain locations and 

numbers of actuators, time-varying control shows a significant improvement compared to 

the time-invariant control. Rofooei and Nikkhoo [53] studied numerically the application of 

a classical closed-loop control of a number of piezo patches bonded on a thin rectangular 

plate under the excitation of a moving mass. It was shown that higher frequency vibrational 

modes must be included to obtain the correct system response for large values of moving 

mass weight and velocity for this type of structure. The desired deflection responses were 

achieved with moderately low levels of input voltage to the actuators. Nikkhoo [25] derived 

the equations of motion for a single and a multi-span beam in which a number of 

piezoelectric patches are bonded to it modelled by the Hamiltonian principle. The classical 

linear optimal control approach based on displacement-velocity and velocity-acceleration 

feedback is applied to the beams under the influence of a moving load and a moving mass. 

Stancioiu et al. [29] cast the problem into a terminal-time optimal control framework [54] 

and further presented a numerical study for synthesis of time-varying control solutions. This 

study also introduced an augmented system, which took into account the effect of the moving 

mass in the control synthesis problem. A drawback of the study was that it assumed full 

knowledge of the state-variables, which have to be estimated for experimental studies. A 

combination of sliding mode control and positive position feedback for a beam subjected to 

a moving mass was presented in [55]. The sliding mode controller, used when the mass 

moves along the beam, is robust to parameter uncertainties and the positive position 

feedback control is efficient in suppressing the free vibration of the supporting structure after 

the mass leaves the beam. To increase the damping in the system, the positive position 

feedback control introduced by Goh & Caughy [56] and further studied in [45,57] can be 
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applied. However, for the moving load problem this approach does not reduce the deflection 

response but could be applied when the mass is leaving the structure. Liu et. al. [58] devised 

a finite-time optimal regulator for an uncertain beam-mass system. The distributed material 

parameters were discretised for representative points and the regulator calculated with the 

probability density equation method.  

Despite a large number of studies dedicated to numerical solutions, only a few studies 

approached the problem of experimental implementation and validation of vibration control 

of moving masses. One of the main difficulties in the experimental implementation of the 

controller is that the states are not directly accessible when the dynamic equations are set up 

in modal space. Therefore, an observer or state-estimator needs to be considered. This in 

turn leads to high computational time which counteracts the real-time ability of the 

controller.  

Shelley et al. [59] implemented and studied, on a 80 m long highway bridge, the feasibility 

of an independent modal space control which used electromagnetic proof mass actuator for 

control. This type of actuator does not need an external mount. The adaptive modal filter 

used here simplifies the response of a complicated structure to the response of an individual 

single-mode system [30,59]. The method proved its robustness against changes in 

temperature, sensor failure and changes of dynamic characteristics due to simultaneous 

destruction tests.  

Frischgesell et. al. [16] studied a time-varying discrete observer for a moving mass system 

equipped with a force actuator. The aim was to minimise the maximum traverse deflection. 

The time-varying system and observer matrix were calculated offline at specific times due 

to the high computation time required. Reckkmann and Popp [17] extended this work with 

an adaptation method and a discrete time optimal controller designed to achieve a lower 

deflection of the flexible structure. Bleicher et. all [60] implemented a multimodal and 

multivariable active vibration control on a 13 m long stressed ribbon footbridge. A Kalman 

filter estimated the modal states, and the velocity feedback control was designed in the modal 

state space representation. The aim was to control the first three vertical modes of the bridge 

which coincide with pedestrian induced vibration. Pisarski [61] studied numerically and 

experimentally the semi-active control of a structure subjected to a moving load. In this 

study, an open-loop optimal bang-bang controller was used. The study considered the 

moving speed and weight of the mass and it was shown that the controlled system 

outperforms the passive case by up to 21% in terms of the maximum structural deflection. 

This work was extended in [62] where a closed-loop adaptive control was proposed. The 
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control gains were calculated offline for a constant speed and mass of the load with the 

ability to adapt online to the actual mass parameters. 

The first part of this study presents an experimental approach to the problem of active control 

of a structure under moving loads. The solution is based on an optimal time-varying control 

algorithm and relies on a state-feedback controller. A new method to estimate the states of 

the system (modal coordinates and modal velocities) is proposed based on the inverse of the 

matrix of modal shape vectors and measured displacements. This simpler algorithm allows 

fast sampling times and proves to be robust against structural changes. This method of state 

estimation was first presented by the authors in [63], where a suboptimal controller was 

implemented to reduce the deflection of the beam at given locations. Although the time-

varying nature of the system is taken into account in the control approach, an objective 

function based on deflection responses requires an adaptation of the control effort to the 

mass and velocities of the load acting on the supporting structure. The feasibility of a simple 

gain scheduling procedure is investigated and shows a good performance for a control effort 

adjusted to the dynamic parameters of the problem. 

 

Displacement Feedback Control for Structures Subjected to Moving Loads 

As the previous literature illustrated, many studies of active vibration control are formulated 

in modal space. This approach can guarantee stability and can handle multi-input-multi-

output (MIMO) systems. In addition, the time-varying nature of the system can be 

compensated by the controller. On the other hand, this approach requires the estimation of 

the modal coordinates which are not directly measurable. A discrete time observer requires 

fast sampling time to estimate the states of the continuous system accurately. Multi-span 

beams, where the supports are approximated by stiff springs require a high number of modes 

to represent the dynamic response accurately. These factors complicate the application of 

optimal control approaches for multi-span continuous structures. Displacement feedback 

methods may be more straightforward to implement, although stability cannot be guaranteed 

and has to be simulated or verified experimentally.  

In [64] Sloss et al. solve a min max problem for a displacement feedback control of beams 

under moving loads. The control objective was to find a constant gain where the maximum 

deflection of the beam does not exceed a given value. Stancioiu et. al [41] applied a negative 

displacement feedback and cubic displacement to a four-span beam structure acted upon 

multiple moving loads. As actuators, electrodynamic shakers were chosen. Each span was 
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viewed as a single-input-single-output (SISO) system, and compensators were added to 

increase the system’s stability margins. It was shown numerically and experimentally that, 

by both methods, the vibration response of the structure under moving masses can be reduced 

effectively. The nonlinear cubic displacement feedback provides a better control action for 

heavier masses.  

The second control approach in this study uses MFC actuators with negative displacement 

feedback similar to the method used in [41] for a single and a two-span beam structure. 

Numerical results are validated with experimental data.  

 

Piezoelectric Macro Fibre Composite Actuators in Active Structural Control 

Piezo ceramics offer attractive properties in active vibration control as they are light weight, 

low-cost and easy to implement. In these devices, an electric potential is converted into 

mechanical strain. Most often 31-mode actuators , where the numbers symbolize the 

directions of polarization and elongation in Cartesian coordinates (more details are presented 

in section 2.4.1), are used in bending applications e.g. in [25,42,65].  

In contrast Macro Fibre Composites (MFC) actuators can use the 33-piezoelectric mode, 

where the strain constant is  50% to 100% larger compared to those of the 31-mode [66]. 

With the concept of interdigitated electrodes first presented by Hagood and Bent [67,68], the 

33-mode actuator can be utilised for larger scale actuation and sensing. The concept of 

Macro Fibre Composites, developed by researchers at the NASA Langley Research Center 

[69], is based on interdigitated electrodes with piezoelectric fibres of rectangular cross 

section. With them it is possible to overcome drawbacks of limited interactions between 

fibres and electrodes. First applications of MFCs in actuation and sensing were presented by 

Sodano and Inman [20]. Modal testing of an inflated torus, structural health monitoring of 

bolted joints, self-sensing vibration control of a beam were presented and the effectiveness 

shown. Song et al. [22] presents a review of applications of the vibration control using piezo 

ceramics in civil structures, stating also the limits of piezoelectric actuation which are the 

relatively small displacement and limited actuation force. Due to the higher actuation forces 

MFC actuators can be considered as a step towards the realisation of real life applications 

for this type of smart structure. 

Despite a rich literature which utilises piezoelectric actuators for the general active vibration 

control problem [19,65,70–72] only a few numerical and experimental studies can be found 
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which utilise them for the vibration control of moving load structures [25,53,73]. Zhao and 

Wu [73] modelled a robotic arm with an moving end as a rotating beam with a moving mass. 

The equations were derived with Lagrange’s equation, and linear classical optimal control 

was applied. Numerical examples were used to evaluate the control performance.  

Zeki et al. [74] studied proportional displacement feedback control a of clamped fixed beam 

acted upon moving loads applied by an robotic air nozzle. The feedback system was derived 

by FE method in ANSYS. 31-mode Lead Zirconium Titanate (PZT) transducer were used. 

Numerical results were validated by experiments, where the residual vibration could be 

reduced. The numerical model consisted of nearly 500 elements. A similar model in modal 

coordinates could be modelled by only 6 modes with high accuracy, which illustrates the 

numerical efficiency of the modelling in modal coordinates. Eldali and Baz [75,76] 

successfully applied feedforward control to a cylindrical shell under a transient pressure 

pulse propelling a moving mass. The experimental study utilises piezoelectric stack actuators 

to damp radial and circumferential vibrations measured by using a high-frequency strain 

gage system.  

 

Model Predictive Control of Structures Subjected to Moving Loads  

When applying piezoelectric actuation, saturation limits have to be considered. Model 

predictive control is described as presently the only control method able to handle process 

constraints explicitly on an algorithmic level [77,78]. This is of special concern when 

applying piezoelectric actuators as exceeding the operational voltage leads rapidly to 

depolarization and failure. In practice these bounds can be implemented by limiting the 

maximum control voltage but this introduces nonlinearities to an otherwise linear controller 

which can affect stability and performance [77]. With the dual-mode paradigm, stability can 

be ensured and operational bounds are enforced through active set methods [77]. 

The model predictive control approach originated from applications in process and chemical 

industry [79,80]. It has the advantage that current and future set-points, disturbances and 

constraints can be included into the optimal control approach.  

Recent developments in hardware technologies allow the application of MPC in systems 

which require fast sampling times such as active structural control [81–85]. MPC without 

constraint handling does not require online optimization, thus implementation at a high 

sampling rate is less problematic. Richelot et al. [83] studied experimentally the general 

predictive control (GPC) approach for clamped beam equipped with piezoelectric actuators. 
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The GPC approach is robust against model uncertainties. Stability is considered by 

collocation of the sensor-actuator pair. The first vibrational mode was damped actively. 

Hassan et al. [84] experimentally applied the MPC approach to a MIMO system with 

multiple piezo actuators controlling a one-link actuator and demonstrated that the control is 

well suited for this case. Wills et al. [85] implemented an MPC to fixed free beam 

considering the saturation limits by quadratic programming. It was shown that the online 

optimization could be calculated on inexpensive hardware in less than 150 𝜇𝑠. Stability 

guarantees were not considered. In contrast Takacs and Rohal’-Ilkiv [77] studied different 

optimal and suboptimal MPC-algorithms which guarantee feasibility and stability on a fixed-

free beam test structure. The sub-optimal stable MPC is recommended for vibration 

attenuation purposes. The authors further implemented an adaptive infinite horizon dual 

mode constrained MPC [86] using an extended Kalman filter for the estimation of system 

states and model parameters. Oveisi et. al [87] applied an MPC scheme based on 

orthonormal Laguerre Functions to a lightly damped structure, which reduces the 

computational cost. Feasibility and stability can be guaranteed, and system uncertainties are 

incorporated by system identification.  

Table 1.1 summarises the previously presented studies regarding the active control of the 

moving load problem. The theoretical and experimental studies are listed with their control 

approach, the utilized actuator and the corresponding structure.  

 

Table 1.1. Literature theorethical and experimentsal active control of the moving mass 

Theoretical Studies Control Approach  Actuator Structure 

Deng et al. [51,52] LQG Not defined 
Time-varying 

pendulum 

Nikkhoo et al. [26,39] Optimal Control 
Piezoelectric 

Patches  

Single and multi-

span beams  

Rofooei et al. [53] Optimal Control 
Piezoelectric 

Patches 
Rectangular plate 

Stancioiu et al. [29] 

Optimal Control, 

Boundary value 

control 

General force Simply supported 
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Pi et al. [55] 
PPF, Sliding mode 

con-trol 

General 

boundary 

control torques 

Multi-span 

Liu et al.[58] 

Optimal Control with 

handling of uncertain-

ties 

Force actuator Simply supported 

Sloss [64] 
Displacement 

Feedback  
General force 

Simply supported 

beam 

Zhao and Wu [73] Optimal Control 
Rotating Beam 

(Robot) 

Piezoelectric 

Actuators 

Experimental studies    

Shelley et al. [30,59] 
Independent modal 

control 

Electromagnetic 

proof mass 

actuator  

Simply supported 

beam (highway 

bridge) 

Frischgesell et al. [16] 
Pole Placement with 

Luenberger Observer 
Force Actuator 

Simply supported 

beam 

Reckmann and Popp [17] 

Discrete Optimal 

Control with 

Observer, Adaptive 

Control 

Force Actuator 
Simply supported 

beam 

Bleicher et. al[60] Optimal Control 

pneumatic 

muscle 

actuators 

flexible stress 

ribbon footbridge 

Pisarski [61,62] Semi-active control  

magneto-

rheological 

rotary dampers 

equipped 

Simply supported 

beam  

Stancioiu et al. [41] 

Negative 

Displacement 

Feedback 

Electro dynamic 

actuator 

Four span beam 

structrue 

Zeki et al. [74] 
Displacement 

Feedback  

Piezoelectric 

Patches 
Fixed-free beam  

Eldali and Baz [75,76] Feedforward  
Piezoelectric 

Stack  
Cylindrical Shell 
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1.3 Knowledge gaps  

 

In this section the main knowledge gaps are summarized. Despite the study of Reckmann 

[17] no studies were found which experimentally implemented the optimal control approach 

for the active control of simply supported beams subjected to moving masses. To the best 

knowledge of the author no experimental study was found implementing an optimal active 

structural control by an electrodynamic shaker. Furthermore, no experimental study has been 

found on the application of 33-mode MFC actuators in the active control of a simply 

supported beam or a two-span continuous beam acted upon by a single or multiple moving 

masses.  

Despite the large body of literature using MPC in the general application of active vibration 

control, to the best knowledge of the author no study was found which applies the MPC 

approach to the moving load problem.  

 

1.4 Methodology and Outline of the Thesis 

 

Figure 1.1 outlines the methodology applied in this project to achieve the aims and objectives 

presented previously. The boxes/tasks presented herein will be presented in the different 

chapters.  
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Figure 1.1. Methodology applied in the project. 

 

In chapter 2 the theoretical model for the moving mass problem in modal space will be 

derived. The multi-span beam dynamics can be approximated by modelling the supports as 

spring-damper elements with high stiffness and damping coefficients. The approximated 

mode shapes will be validated numerically by comparing with the exact mode shapes. 

Experimental deflection data from the test structures will validate the accuracy of the 

numerical models. Two numerical models for the electrodynamic shaker will be studied, a 

detailed model in the frequency domain and a first order model approximation. The effect 

of dynamic amplification will be considered numerically for the test structures. The 

theoretical model of the MFC actuator controlling the beam structures will be derived and 

validated against experimental deflection data.  

In chapter 3 the theoretical background for the finite-time optimal control algorithm is 

presented. In that the Riccati differential equation is solved backward with the terminal 

condition. A slightly  different approach is the described using a step-by-step solution of the 

Riccati equation which mimics the linear quadratic regulator problem.  
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The particular problem inherent to the optimal control approach in structural control is the 

estimation of the modal states. Different methods will be studied in chapter 3.2. First the 

classical state observer approach and secondly the state estimation by a novel method 

utilizing the mode shapes. This method is straightforward to implement and offers promising 

real-time abilities.  

In chapter 5 a detailed experimental validation of the finite-time control of a simply 

supported beam acted upon different moving masses and controlled by an electrodynamic 

shaker is presented. This includes experimental results for the estimation of the states using 

the analytical mode shapes. Due to the discretisation errors that occur in the full state 

estimator the estimation by mode shapes is preferred and a reduced state controller will be 

utilised. It is shown how the mass and speed dependent gains influence the control 

performance. A real-time gain adaptation to compensate for moving mass speed is 

implemented. With the augmented system, where the travelling mass can be included in the 

system equation, superior control performance can be achieved.  

Chapter 6 presents results obtained for the negative displacement feedback control  utilised 

on a simply supported and two-span continuous beam acted upon moving masses and 

regulated by MFC actuators. Herein the cubic displacement rule proves more efficient for 

heavier masses whereas the linear approach offers higher deflection reduction for small 

masses.  

Special caution to control input saturation limits must be applied when utilizing piezoelectric 

actuators. The MPC control approach can handle these constraints in the optimal control 

approach by quadratic programming. It is presented and theoretically utilised on the test-

structures in chapter 7.  

Finally chapter 8 presents the conclusions of the work and directions of future work are 

recommended.  
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 The Moving Mass-Structure Interaction Models 

 

In this chapter, the theoretical model for the moving mass-structure interaction will be 

derived to fully understand its complex dynamics, resulting from the inertia effect of the 

moving mass. This is achieved by modelling the supporting structure as a simply supported 

beam and by using the method of Modal Superposition (MS). If the number of modes is high 

enough this model can be used to approximate the dynamics of multi-span structures as well, 

where the intermediate supports are modelled as spring elements with adequate high stiffness 

and damping. Both the simply supported beam and the two-span continuous beam are 

validated against experimental data.  

For actuation, two different solutions are chosen in this study, first an electrodynamic shaker 

and secondly piezoelectric MFC actuators. For the beam-shaker model two numerical 

models are presented in section 2.2, a detailed representation in the frequency domain and a 

simplified first order model. Numerical simulations show the frequency response function 

(FRF) of the beam actuator structure. The first-order model is validated against experimental 

deflection data.  

In section 2.3 the numerical moving mass model is validated against an example from the 

literature. The difference to the more straightforward moving force model is demonstrated. 

It is shown for which speeds and mass ratios it is crucial to use the exact moving mass model 

presented.  

The theoretical model of the 33-mode piezoelectric actuators followed by an experimental 

validation is presented in section 2.4. To the best knowledge of the author this is the first 

experimental study which utilises 33-mode macro fibre composites (MFC) to actuate a 

simply supported and a two-span continuous beam acted upon moving masses. 
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2.1 The Transverse Vibration of Single and Multi-Span Beams Subjected to 

Moving Masses 

 

If the mass and especially the travelling speed of the moving load are high in relation to the 

structure, its inertia has to be considered and the moving force problem becomes a moving 

mass problem [2,26]. The supporting structure is modelled as an Euler-Bernoulli simply 

supported beam of mass per unit length 𝜌𝐴 and flexural rigidity 𝐸𝑏𝐼 [2,29,88,89]. It is 

subjected to the action of a mass 𝑚 moving at constant speed 𝑣 as illustrated in Figure 2.1. 

The speed 𝑣 and the preload N = mg of the mass m are assumed to be constant over the 

travelling time t at this stage. Further the friction between the moving mass and the beam is 

neglected and it is assumed that the beam vibrates only in the y-direction. It is also assumed 

that the mass does not lose contact with the beam structure. 

 

 

Figure 2.1. Model of a simply supported beam subjected to a moving mass m travelling with 

constant speed v. 

 

With the Euler-Bernoulli beam approach, the equation of transverse motion w(x,t) for this 

simple model is: 

𝜌𝐴
𝜕2𝑤

𝜕𝑡2    
+ 𝑐𝜌𝐴

𝜕𝑤

𝜕𝑡    
+ 𝐸𝑏𝐼

𝜕4𝑤

𝜕𝑥4
= −(𝑁 +𝑚

d2𝑤𝑙
d𝑡2

)𝛿(𝑥 − 𝑣𝑡) (2.1) 

where 𝑤𝑙   is defined as the vertical displacement of the moving mass m. The term, 𝑐𝜌𝐴 

describes the damping of the beam. The following relation holds for the Dirac delta function 

𝛿(𝑥 − 𝑥0) [2,8]: 
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∫ 𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥 = 𝑓(𝑥0)
𝐿

0

 (2.2) 

𝛿(𝑥 − 𝑣𝑡) concentrates the force at the moving coordinate 𝑣𝑡. On the right-hand side of 

equation (2.1) the mass is located at a moving coordinate, which is the instantaneous spatial 

location 𝑣𝑡. With the assumption, that the mass does not separate from the beam during the 

horizontal travel the velocity and its derivatives are:  

𝑤𝑙(𝑡) = 𝑤(𝑥, 𝑡),
d𝑤𝑙
d𝑡

=
𝜕𝑤

𝜕𝑡
+ 𝑣

𝜕𝑤

𝜕𝑥
,   

d2𝑤𝑙
d𝑡2

=
𝜕2𝑤

𝜕𝑡2
+ 2𝑣

𝜕𝑤

𝜕𝑡

𝜕𝑤

𝜕𝑥
+ 𝑣2

𝜕2𝑤

𝜕𝑥2
 

(2.3) 

The equation of motion becomes: 

𝜌𝐴
𝜕2𝑤

𝜕𝑡    
+ 𝑐𝜌𝐴

𝜕𝑤

𝜕𝑡    
+ 𝐸𝑏𝐼

𝜕4𝑤

𝜕𝑥4
+𝑚( 

𝜕2𝑤

𝜕𝑡2
+ 2𝑣

𝜕𝑤

𝜕𝑡

𝜕𝑤

𝜕𝑥
+ 𝑣2

𝜕2𝑤

𝜕𝑥2
 ) 𝛿(𝑥 − 𝑣𝑡)

= −𝑁𝛿(𝑥 − 𝑣𝑡) 

(2.4) 

The solution of equation (2.4) can be found using the method of separation of variables also 

called modal superposition as:  

𝑤(𝑥, 𝑡) = ∑𝜓𝑛(𝑥)𝑞𝑛(𝑡)

∞ 

𝑛=1

 (2.5) 

where 𝑞𝑛(𝑡) is the modal coordinate for the n-th mode 𝜓𝑛(𝑥) of the undamped simply 

supported beam, which is (see Appendix 1): 

𝜓𝑛(𝑥) = sin (
𝑛𝜋𝑥

𝐿
) ;  (𝑛 = 1,2,3, … )    

(2.6) 

Other boundary conditions could be used easily as well, for example a fixed-free beam, 

relevant for aerodynamic loads. However the orthogonality condition for equation (2.6) is: 

∫ 𝜓𝑖(𝑥)𝜓𝑗(𝑥)𝑑𝑥 = 𝛿𝑖𝑗
𝐿

2

𝐿

0

 
(2.7) 

and  
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∫ 𝜓𝑖′′′′(𝑥)𝜓𝑗(𝑥)𝑑𝑥 = 𝛿𝑖𝑗
𝐿

2

𝐿

0

𝛽𝑖
4, (𝑖, 𝑗 = 1,2,3… ), (2.8) 

 

Where 𝛿𝑖𝑗 is the Kronecker delta index (𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗), 𝛽𝑖 is a constant 

depending on the boundary condition of the beam, (see Appendix 1 and [89]). The dashes in 

𝜓′′′′ define the total derivative with respect to 𝑥 and the dot in �̇� defines the total time 

derivative in the following. Substituting equation (2.5) in equation (2.4) multiplying the 

resultant with 𝜓𝑖(𝑥) and integrating it over the beams length L results in:  

 

𝜌𝐴∫ 𝜓𝑖𝜓𝑗  𝑑𝑥
𝐿

0

�̈�𝑗 + 𝜌𝐴𝑐 ∫ 𝜓𝑖𝜓𝑗

𝐿

0

𝑞�̇� + 𝐸𝑏𝐼 ∫ 𝜓𝑖𝜓𝑗

𝐿

0

′′′′𝑞𝑗

+𝑚∑𝜓𝑛

∞

𝑛=1

(𝑣𝑡)𝜓𝑖(𝑣𝑡)𝑞�̈� + 2𝑣𝑚∑𝜓𝑛′

∞

𝑛=1

(𝑣𝑡)𝜓𝑖(𝑣𝑡)�̇�𝑛

+𝑚𝑣2∑𝜓𝑛

∞

𝑛=1

′′(𝑣𝑡)𝜓𝑖(𝑣𝑡)𝑞𝑛 = −𝑁𝜓𝑖(𝑣𝑡) ;  ( 𝑖, 𝑗 = 1,2,3, … ) 

(2.9) 

 

 

On the right hand side the property of equation (2.2) of the dirac delta function is used. 

Including the boundary conditions (2.7) and (2.8) leads to: 

 

𝜌𝐴𝐿

2
𝛿𝑖𝑗�̈�𝑗 +

𝜌𝐴𝑐𝐿

2
𝛿𝑖𝑗�̇�𝑗 +

𝐸𝑏𝐼𝛽𝑖
4𝐿

2
𝛿𝑖𝑗𝑞𝑗 +𝑚∑𝜓𝑛

∞

𝑛=1

(𝑣𝑡)𝜓𝑖(𝑣𝑡)�̈�𝑛

+ 2𝑣𝑚∑𝜓𝑛

∞

𝑛=1

(𝑣𝑡)𝜓𝑖(𝑣𝑡)�̇�𝑛 +𝑚𝑣
2∑𝜓𝑛

∞

𝑛=1

(𝑣𝑡)𝜓𝑖(𝑣𝑡)𝑞𝑛

= −𝑁𝜓𝑖(𝑣𝑡) ;  (𝑖, 𝑗 = 1,2,3, … );  

(2.10) 

 

 

Writing equation (2.9) in the state space representation for a mass moving at constant speed 

in the time t within the interval [0, 𝑡𝑓] with 𝑡𝑓 = 𝐿/𝑣 results in  
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(𝐌 + ∆𝐌(t))�̈�  + (𝐃 + ∆𝐃(t))�̇� + (𝐊 + ∆𝐊(t))𝐪 = −N𝛙(𝑣𝑡) 
(2.11) 

with  

𝐌 =  𝜌𝐴∫ 𝛙(𝑥) ∙ 𝛙(𝑥)  𝑑𝑥
𝐿

0

; 

𝐃 = 𝜌𝐴𝐂∫ 𝛙(𝑥) ∙  𝛙(𝑥) 𝑑𝑥;
𝐿

0

  

𝐊 = EI∫ 𝛙(𝑥)  ∙ 𝛙′′′′(𝑥)𝑑𝑥
𝐿

0

 

(2.12) 

 

and  

∆𝐌(𝑡) = 𝑚𝛙(𝑣𝑡)𝛙𝐓(𝑣𝑡); 

∆𝐃(𝑡) = 2𝑣𝑚𝛙(𝑣𝑡)𝛙′𝐓(𝑣𝑡) 

∆𝐊(𝑡) = 𝑚𝑣2𝛙(𝑣𝑡)𝛙′′
𝐓(𝑣𝑡) 

(2.13) 

 

 

where 𝛙(vt) is the modal shape vector. 𝐂 = 𝐝𝐢𝐚𝐠(2𝜁1𝜔1,  2𝜁2𝜔2, … , 2𝜁𝑖𝜔𝑖) describes the 

modal damping. The diagonal matrix diag(𝑎11, 𝑎22, … , 𝑎𝑖𝑗) is defined as 𝑎𝑖𝑗 = 0 if 𝑖 ≠ 𝑗. 

Mechanical engineering structures have damping ratios 𝜁 in the range of 𝜁 ≅ 0.01 − 0.02 

[42]. Later 𝜁 will be approximated by fitting the numerical model and the experimental 

deflection data. The time 𝑡𝑓 represents the time the mass leaves the beam. From this instant 

of time, the beam vibrates freely and the system governing the motion is linear-time 

invariant. The system equations for t > 𝑡𝑓 changes from (2.11) to: 

Mq̈+Dq̇+Kq= ψ(xa)𝑓 (2.14) 

 

where the initial conditions are the values of the states at the instant of time 𝑡𝑓. Figure 2.2 

illustrates a two-span beam where a stream of masses of different weights is moving with 
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different speeds. The intermediate support can be represented by spring and damper 

elements. The span length is l.  

 

 

Figure 2.2. A stream of masses moving on a two-span beam, intermediate mid-span support 

modelled as a spring-damper element.  

 

Considering the stream of n moving masses on the beam with multiple supports equation 

(2.11) changes to  

 

(𝐌 + ∆𝐌𝐬(t))�̈�  + (𝐃 + ∆𝐃𝐬(t) + 𝐃𝐚)�̇� + (𝐊 + ∆𝐊𝐬(t) + 𝐊𝐚)𝐪

= −∑𝑚𝑖𝑔

𝒏

𝒊=𝟏

𝛙(𝑥𝑖) 

(2.15) 

 

 

with  

∆𝐌𝐬(𝑡) =∑𝑚𝑖𝛙(𝑣𝑖𝑡)𝛙
𝐓(𝑣𝑖𝑡)

𝑛

𝑖=1

; 

∆𝐃𝐬(𝑡) =∑2𝑣𝑖𝑚𝑖𝛙(𝑣𝑖𝑡)𝛙
′𝐓(𝑣𝑖𝑡)

𝑛

𝑖=1

 

∆𝐊𝐬(𝑡) =∑𝑚𝑖𝑣𝑖
2𝛙(𝑣𝑖𝑡)𝛙

′′𝐓(𝑣𝑖𝑡)

𝑛

𝑖=1

 

(2.16) 
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The 𝑁𝑎 supports of a multi span beam are modelled as spring damper elements at the location 

𝑥𝑗.  

𝐊𝐚 =∑𝑘𝑗𝛙(𝑥𝑗)𝛙
T(𝑥𝑗)

𝑁𝑎 

𝑗=1

 

𝐃𝐚 =∑𝑐𝑗𝛙(𝑥𝑗)𝛙
T(𝑥𝑗)

𝑁𝑎 

𝑗=1

 

(2.17) 

 

 

The spring coefficient 𝑘𝑗 and the damping coefficient 𝑐𝑗 have to be chosen to be sufficiently 

high to represent the stiff supports of the multi span beam. For example Nikkhoo [90] defined 

the spring coefficient as 𝑘𝑗 = 10
5 𝐸𝐼

𝑙
 without including additional damping 𝑐𝑗.  

For long span beams the deceleration 𝑎𝑖 of the mass must be considered as well. This 

decaying speed is defined as 𝑣𝑑𝑖 = 𝑣𝑖 − 𝑎𝑖𝑡 and can be replaced with 𝑣𝑖 in equation (2.16). 

Also, the mass location changes from 𝑥𝑖 = 𝑣𝑖𝑡 for constant speed to the quadratic function 

𝑥𝑖 = 𝑣𝑖𝑡 +
1

2
𝑎𝑖𝑡

2.  

 

 

2.1.1 Approximation of Mode Shapes of Continuous Two-Span Beams  

 

The equation of motion for the simply supported beam can be solved with the mode shape 

function described by equation (2.6). To solve the dynamic equation (2.15) for beams with 

multiple supports, the modes shape vector 𝛙(𝑥𝑖) for the beam with multiple supports is 

needed. The analytical derivation of this mode shapes is difficult. The mode expression 

varies with each span and the initial conditions for the next span depend on the previous span 

[35]. The analytical solution of the last span becomes more difficult with an increasing 

number of spans.  

The modes of a continuous beam with multiple spans can be approximated by the modes of 

the beam without the supports. Yang [35] used, for his specific example, fourteen mode 

shapes of a simply supported beam to represent the first eight modes of a two-span 
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continuous beam. The accuracy of this approximated method is higher with a larger number 

of modes [91]. The error of the i-th natural frequency 𝜔𝑖 will be small if i+1 modes are used, 

see also Figure 2.4 where eight modes are used and the first seven modes are represented 

sufficiently accurately. 

Considering a simply supported beam (Figure 2.2) with n springs representing the supports, 

and without the moving masses, the equation of motion can be written as [35,91]: 

�̈�(𝑡) + 𝐝𝐢𝐚𝐠(�̅�1
2  … �̅�𝑚

2 )𝐪(𝒕) = −∑𝑘𝑖𝛙 ̅̅ ̅(𝑥𝑖)

𝑛

𝑖=1

𝛙 ̅̅ ̅(𝑥𝑖)
𝑻𝐪(𝑡) 

(2.18) 

where �̅�𝑚 is the m-th natural frequency of the simply-supported beam without the springs 

and �̅�(𝑥𝑖) is its vector of m mode shapes normalised with respect to the beam’s mass per 

unit length �̅�𝑗 = √
2

𝜌𝐴𝐿
sin (

𝑗𝜋𝑥

𝐿
); (𝑗 = 1,2,3, … ,𝑚). q(t) is the vector of general coordinates. 

Introducing the relationship:  

𝑞𝑗(𝑡) = 𝑝𝑗𝑒
𝑖𝜔𝑗𝑡;  (𝑗 = 1,2,3, … ,𝑚) 

(2.19) 

Where 𝑝𝑗 is a coefficient and 𝜔𝑗 is the j-th natural frequency of the simply supported beam 

with springs, one gets: 

[𝐝𝐢𝐚𝐠(�̅�1
2, �̅�2

2, … , �̅�𝑚
2 ) +∑𝑘𝑖𝛙 ̅̅ ̅(𝑥𝑖)

𝑛

𝑖=1

𝛙 ̅̅ ̅(𝑥𝑖)
𝑻 − 𝐝𝐢𝐚𝐠(𝜔1

2, 𝜔2
2, … , 𝜔𝑚

2  )] 𝐩 = 𝟎 (2.20) 

 

Where 𝐩 is the m × 1 vector containing m elements of 𝑝𝑗. After solving the eigenvalue 

problem of eq. (2.20),where 𝐝𝐢𝐚𝐠(𝜔1
2, 𝜔2

2, … , 𝜔𝑚
2  ) and p are the unknown, one can obtain 

the modes of the n-span continuous supported beam as: 

𝜓𝑗(𝑥) = ∑𝜓 ̅𝑘(𝑥𝑖)

𝑚

𝑘=1

𝑝𝑘
(𝑗)

 (2.21) 

 

where 𝑝𝑘
(𝑗)

is the element of the eigenvector 𝐩(𝑗) corresponding to the eigenvalue 𝜔𝑗
2. This 

approximation method can be applied to a beam with any boundary condition with several 

supports. 𝜓 ̅𝑘 would become the k-th mode shape corresponding to the end supports.  
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The analytical mode shapes and frequencies of the two-span continuous supported beam can 

be found by treating each span as an individual beam and applying appropriate boundary 

conditions [88]. The natural frequencies are:  

𝜔𝑖 = √
𝐸𝐼

𝜌𝐴
  (
𝜆𝑖
𝑙
)
2

   
(2.22) 

 

Where 𝜆𝑖 is determined by applying suitable boundary conditions to the i-th mode shape of 

the continuous beam. The analytical modal shapes of the first span 𝜓𝑙𝑖 and of the second 

span 𝜓𝑟𝑖 can be expressed respectively as [88]: 

𝜓𝑙𝑖(𝑥) = sin (
𝜆𝑖
𝑙
𝑥) − (

sin(𝜆𝑖)

sinh(𝜆𝑖)
sinh (

𝜆𝑖
𝑙
𝑥) , 𝑥 ∈ [0, 𝑙], 𝑖 = 1,2,3… 

(2.23) 

 

𝜓𝑟𝑖(𝑥) = 𝐴2 sin (
𝜆𝑖
𝑙
𝑥′) + 𝐵2 [cos (

𝜆𝑖
𝑙
𝑥′) − cosh (

𝜆𝑖
𝑙
𝑥′)] + 𝐶2 sinh (

𝜆𝑖
𝑙
𝑥′), 

𝑥′ = (𝑥 −
𝐿

2
) , ∈ [0, 𝑙] 

(2.24) 

 

with  

𝐴2𝑖 =
𝑠𝑖𝑛ℎ(𝜆𝑖) cos(𝜆𝑖) − 2 sin(𝜆𝑖) cosh(𝜆𝑖) + sin(𝜆𝑖) cos(𝜆𝑖)

sinh(𝜆𝑖) − sin(𝜆𝑖)
 

 

𝐵2𝑖 = sin(𝜆𝑖) 

𝐶2𝑖 = cos(𝜆𝑖) −
sin(𝜆𝑖)

sinh(𝜆𝑖)
cosh(𝜆𝑖) − 𝐴2𝑖 

The non-dimensional parameters 𝜆𝑖 can be calculated by applying the boundary conditions 

of the continuous beam to eq. (2.23) and eq. (2.24). Table 2.1 displays these parameters for 

the first eight modes for a continuous beam with two equal spans. 

 

Table 2.1. Non-dimensional parameters 𝜆𝑖 for two equal span continuous beams. 

Mode 1 2 3 4 5 6 7 8 

𝜆 3.1416 3.9266 6.2832 7.0686 9.4248 10.2102 12.5664 13.3518 
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The analytical method is of higher complexity than the approximated method, which leads 

to higher computational cost. Also, the approximated method is much easier applicable to 

continuous beams with more than two spans.   

To verify the accuracy of the approximated method a simply supported beam with one 

equidistant support shown in Figure 2.3 is considered. The span length is defined as 𝑙 =0.6 

m.  

 

 

Figure 2.3. Simply supported beam with equal span length l and one centered spring support. 

 

The parameters of the numerical model are defined, as flexural rigidity 𝐸𝐼 = 12.11 Nm−2 and 

𝜌𝐴 = 0.5411 kgm−1. These are the parameters of the experimentally verified structure used 

later in section 2.1.3. Eight modes are used for the approximated method. Figure 2.4 

illustrates the comparision of the first eight normalised mode between the approximated 

method and the analytical exact method. It is noticed that modes 1, 2, 3, 5 and 7 can be 

approximated with very high accuracy. Modes 4 and 6 have a slight difference between the 

analytical and the approximated method. Mode 8 cannot be approximated in a proper way.  

Table 2.2 displays a comparison of the natural frequencies obtained by the analytical method 

and the approximate method. If one takes out the obviously faulty result for mode 8 in the 

approximated method the other highest errors are found for mode 4 and 6. These are 1.06% 

and 2.43 % respectively and may be considered to be acceptably low. In the numerical 

calculation, the error of the last mode should be taken care of. The influence on the structural 

responses is lower for higher modes. A compromise must be found between using enough 

modes to achieve sufficient accuracy while maintaining an acceptable computational cost.  

In the following section, experimental results will be used to validate the mathematical 

model.  
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Figure 2.4. Comparison of the first eight modes of the two-span continuous beam 

approximated (blue continuous) and calculated analytical (red dashed). 

 

Table 2.2. Comparision of the natural frequencies of the analytical method and the 

approximated method. 

Mode 1 2 3 4 5 6 7 8 

Analytical f 20.387 31.849 81.550 103.212 183.488 215.343 326.2 368.249 

Approx. f 20.387 31.951 81.550 104.304 183.487 220.577 326.198 100660 

Error in % 0.00 0.322 0.00 1.06 0.00 2.43 0.00 273240 
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2.1.2 Experimental Validation of the Simply Supported Beam under Moving Loads 

 

Figure 2.5 shows the first experimental set-up. Different steel balls with known masses 𝑚 are 

accelerated by a ramp and move over the simply supported beam structure at nearly constant 

speed. The geometrical characteristics of the aluminium beam are: span length L = 0.6 m 

and cross section A = 0.06 m × 0.002 m. By adding polymer guiding rails, the flexural 

rigidity and the damping coefficient are increased. A shematic illustration of the entire 

experimental set-up is shown in Figure 2.6. Three laser displacement sensors (LDS) measure 

the deflection at xs1= 0.15 m, xs2 = 0.25 m and xs3 = 0.35 m. At 𝑥s1 an LDS Micro-Epsilon 

optoNCDT 1600-4 is installed. LDS optoNCDT 1710-10 sensors are located at 𝑥𝑠2 and 𝑥𝑠3. 

The last number of the part numbers denotes the measurement range in mm. The placement 

of sensors at the mode nodes is avoided. The data acquisition and control are accomplished 

in National Instruments software LabView on a CompactRio (or cRIO) embedded controller, 

which is controlled by the Host-PC. For the validation there is no actuator added to the 

structure. For later experiments it will be connected to the structure at the location 𝑥𝑎. Two 

induction sensors located in the ramp detect when the masses pass and thus the exact velocity 

of each ball can be determined.  

 

 

Figure 2.5. Experimental set-up, aluminium polymer beam subjected to a moving mass. 
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Figure 2.6. Shematic drawing of the whole experimental set-up of the simply supported 

beam actuated by an electrodynamic shaker 

 

Figure 2.7 shows the deflection response 𝑤(𝑥s𝑖, 𝑡), numerically estimated (blue line) at three 

sensor locations (i = 1, 2, 3) when 6 balls are launched along the beam, against the 

experimentally measured deflections (red line). The balls are collected in a container after 

they leave the structure Between the time of 11 s and 14 s, two balls are moving 

simultaneously on the structure. For this case a higher deceleration is noticed, which might 

be because of the higher deflection of the beam and the resulting increased downhill force. 

The parameters of the numerical beam model are defined as mass per unit length 𝜌𝐴 = 0.535 

kgm−1 and flexural rigidity 𝐸𝐼 = 11.68 Nm−2. Due to the polymer guiding rail the 

numerical model height is changed to 3.3 mm and a constant modal damping ratio 𝜁 = 0.03 

is assumed throughout. The size of the damping rate determines how quickly the system 

returns to its equilibrium position after a disturbance. This value was choosen by adjusting 

the decaying behavior for the free vibration after mass is leaving the beam of the analythical 

model towards the one of this measured data. With these adjustments the deflections of the 

experimental data are in good agreement with the numerical model. Three modes are used 

in the numerical model. Numerical investigations in [26,32] have shown that the dynamic 

can be approximated using only the first three modes. No fundamental change in the 

deflection data is noticed as well in the example shown in Figure 2.7, when using a higher 
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number of modes. This has to be investigated from case to case. The structure equiped with 

the modal shaker and the two-span continuous beam structure might need a higher number 

of modes to be utilised in the numerical model for accurate results.  

 

Figure 2.7. Time history of the deflections at sensor locations 𝑥𝑠1 – 𝑥𝑠3 of the numerical 

model (blue continuous) and the experimentally obtained data (red dashed). 

 

 

2.1.3 Experimental Validation of the Two-Span Continuous Moving Load Structure 

 

Figure 2.8 portrays the experimental set-up for the two-span continuous beam. Figure 2.9 

shows an additional schematic drawing of its the experimental set-up. For simplicity, the 

ramp, the Real-time controller and the Host-PC are not illustrated. Actuators and sensor are 

connected to the compactRio similar as shown in Figure 2.6. The span length is l=0.6 m, 

giving a total length of 𝐿=1.2 m. The sensor locations are xs1= 0.25 m, xs2 = 0.75 m and xs3 = 

0.85 m. The cross section is defined as A = 0.1 m × 0.002 m. 𝑥1 − 𝑥4 discribe the start and 

ending locations of the active area of the piezoelectic actuators repectivly, which are utilized 

for control later.  
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Figure 2.8. Experimental set-up of the two-span beam with two piezoelectric actuators. 

 

 

Figure 2.9. Schematic drawing of the experimental set-up of the two-span continuous beam  

 

Figure 2.11 shows the time history of the deflection 𝑤(𝑥𝑠𝑖, 𝑡) numerically estimated (red 

dashed line) at the three sensor locations (i=1,2,3) when a mass m = 0.261 kg is travelling 

along the two-span beam against the experimentally measured deflection data (blue line). 

The parameters of the numerical model are defined as flexural rigidity 𝐸𝐼 = 12.11 Nm−2 

and 𝜌𝐴 = 0.5411 kgm−1. The height in the numerical model is changed to 2.83 mm. Also 

the added piezoelectric actuators alter the mass and stiffness of the area where they are 

located, their influence is considered small due to their small height of approximately 0.3 

mm. The numerical model of these actuators which adds their mass and stiffness follows in 

section 2.4. The deceleration of the mass is -0.0218 ms−2. For the numerical model 12 modes 

are used. At least 8 modes are needed to represent the deflection response sufficiently 

LDS 1600 
LDS 1710 

MFC-actuator 2 MFC-actuator 1 

2 Induction Sensors  
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accurately. With less modes used the deflection response becomes noticeably different, see 

Figure 2.10. 

 

Figure 2.10. Time history of the deflection data 𝑤(𝑥𝑠2) 𝑚 = 0.261 kg moving along the 

two-span beam, comparision of the experimental results (blue continious), numerical 12 

modes ( red dashed), numerical 8 modes (balck dash dotted) and numerical 6 modes (blue 

dotted). 

 

Figure 2.12 illustrates the deflection at the three sensor locations of the numerical model (red 

continuous) and of the experimentally obtained data when four masses 𝑚  between 0.261 kg 

and 0.509 kg travel on the two-span beam. It is noticed that the deflections w(xs2) and 

w(xs3) measured experimentally at the second span have a higher deflection compared to 

the numerical data, especially between 91 s and 92 s when three masses travel on the beam 

at the same time.  

This effect might be due to the construction of the supports, see Figure 2.8 and Figure 2.13. 

The supports consist of a long lever which might move the beam slightly downwards under 

higher loads. Also, the view of mass m = 0.509 kg travelling on the second span from 98 s-

99.5 s shows a misalignment at all three sensor locations, which indicates that the whole 
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structure moved downwards by approximately 0.1 mm. Although smaller, this effect is also 

noticed for mass m = 0.261 kg in Figure 2.11 between 12.5 s and 14.2 s.  

 

 

Figure 2.11. Time history of the deflections at the sensor locations 𝑥𝑠1 - 𝑥𝑠3 of the numerical 

data (red dashed) and the experimental data (blue continuous) when a mass m=0.261 kg is 

travelling on the two-span beam. 
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Figure 2.12. Time history of the deflections at sensor location 𝑥𝑠1- 𝑥𝑠3 numerically (red 

dashed) and experimentally measured (blue continuous). 

 

 

Figure 2.13. Two masses move on the two-span continuous beam, deflection error due to 

supports (red arrows). 

 

In conclusion it can be said that especially for the one-span beam a good match between the 

experimentally data and the numerical model data is obtained. For the two-span beam a slight 

difference between numerically determined and experimentally measured deflection data is 

noticed at the second span. This might be due to the specific construction of the supports. In 

the following section, numerical models of an electrodynamic actuator are presented.  
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2.2 The Simply Supported Beam Controlled by an Electrodynamic Shaker  

 

The dynamic equation of the structure controlled by k actuators at positions 𝑥𝑎1, 𝑥𝑎2,… , 𝑥𝑎𝑘  

is modified to  

(𝐌 + ∆𝐌(t))�̈�  + (𝐃 + ∆𝐃(t))�̇� + (𝐊 + ∆𝐊(t))𝐪 = −∑𝛙(𝑥a𝑖)𝐮𝑖

𝒌

𝒊=𝟏

− 𝑁𝛙(𝑣𝑡) 
(2.25) 

 

The structure is actuated by an electrodynamic shaker. Although this shaker is mainly used 

for excitation of test objects with specified input signals in vibration testing applications like 

spectral and modal analysis, its wide availability in research institutions predestines them to 

be used as  actuators in experimental active vibration control. Electromagnetic shakers are 

characterised by a high operational frequency bandwidth. However, they are not suitable for 

heavy duty applications. Although high test-input accelerations are possible at high 

frequencies, displacement and velocity excitations are limited to low and medium values 

[92]. Also the force performance is classified as low to intermediate [93]. In real applications 

hydraulic actuators with higher force actuation might be used.   

In section 2.1.1the precise model in the frequency domain for the specific beam shaker mass 

system is presented. It is followed by a numerical study in section 2.2.2. A simplified model, 

capable to be included in the state space representation is presented in section 2.2.3, followed 

by an experimental validation in section 2.2.4. 

 

2.2.1 Numerical Model of a Simply Supported Beam Controlled by an Electro-

dynamic Shaker  

 

Walters [94] studied the dynamics of an electrodynamic actuator, which reveals complex 

dynamics especially when it interacts with a flexible structure [95]. The electrical impedance 

of the shaker coil can be modelled as a resistor R in series with the inductor L1, coupled to 

the shaker through back electromagnetic forces (EMF): 
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𝑈(𝑠)

𝐼(𝑠)
= (𝑅 + 𝑠 𝐿1) + 𝐾𝑣 𝐾𝑓

𝐻0

1 +
𝐻0
𝐻𝑎

   (2.26) 

 

where Kv is the back EMF voltage constant and Kf  is the electromagnetic force constant, see 

Figure 2.14. 𝑠 represents the Laplace variable.  

 

 

Figure 2.14. Shematic drawing of the elements of an electrodynamic shaker and the 

interaction with a simply supported beam. 

 

The last term of eq. (2.26) consists of the mobility of the modified structure Hmod composed 

of the beam mobility H0 and the electrodynamic shaker mobility Ha [93,96] 

𝐻𝑚𝑜𝑑 = (1 + (
𝐻0
𝐻𝑎
))

−1

𝐻0 
(2.27) 

 

The electrodynamic shaker mobility is defined as 

𝐻𝑎 =
𝐴𝑎
𝑠
=

𝑠

𝑠2𝑚𝑠 + 𝑠 𝑐𝑠 + 𝑘𝑠
 

(2.28) 

 

where 𝑚𝑠, 𝑐𝑠 and 𝑘𝑠 are the moving mass, the damping coefficient and the suspension 

stiffness of the shaker respectively. 𝐴𝑎is the shakers accelerance, thus equation (2.26) could 

easily be represented by accelerances or reacceptances as well [94]. The beam mobility 𝐻0 

is defined with the terms of equation (2.12) as, 



35 

 

𝐻0(𝑠) = 𝛙(𝑥𝑠) 𝑠(𝐌𝑠
2 + 𝐂𝑠 + 𝐊)−𝟏 𝛙(𝑥𝑎)′ 

(2.29) 

 

where 𝑥𝑠 is the sensing location and 𝑥𝑎 is the actuation location on the beam.  

One approximation method of the moving load problem is to retain only the vertical 

component of the acceleration in equation (2.3), as suggested in [26,97]. To get an idea how 

the system behaves with an added mass m at a fixed location 𝑥𝑚 the mass is defined as 

 ∆𝐌(𝑥𝑚) = 𝑚𝛙(𝑥𝑚)𝛙
𝐓(𝑥𝑚).  This mass is not moving in time. The transfer function can 

be written as  

𝐻0(𝑠) = 𝛙(𝑥𝑠) 𝑠[(𝐌 + ∆𝐌)𝑠
2 + (𝐂)𝑠 + (𝐊)]−𝟏 𝛙(𝑥𝑎)′ 

(2.30) 

 

The description of the moving load problem in the frequency domain might be challenging 

as the terms ∆𝐌(𝑡), ∆𝐃(𝑡) and ∆𝐊(𝑡) depend on time and the Laplace transformation must 

be performed on them as well. The overall FRF of the coil force over the input voltage is  

𝐻𝑠(𝑠) =
𝐹𝑐(𝑠)

𝑈(𝑠)
= 𝐾𝑓 (

𝑈(𝑠)

𝐼(𝑠)
)

−1

 
(2.31) 

 

If one assumes the same accelerations will occur at the connection points of the actuator and 

the beam 𝑎𝑎 = 𝑎0, with the subscripts a and 0 describing the actuator and the structure 

respectively, the accelerations can be written in the frequency domain as 

𝑎𝑎(𝑠) = 𝐴𝑎(𝑠)(𝐹𝑐(𝑠) − 𝐹(𝑠)) 

𝑎0(𝑠) = 𝐴0(𝑠)𝐹(𝑠) 

(2.32) 

 

where 𝐴0 is defined as the beams accelerance in the driving point. From (2.32) the input 

force transferred to the beam F is related to the coil force 𝐹𝑐  as [94,98,99] 

𝐹(𝑠)

𝐹𝑐(𝑠)
=

𝐴𝑎(𝑠)

𝐴𝑎(𝑠) + 𝐴𝑜(𝑠)
 

(2.33) 

 

This results in the FRF of the force transmitted to the beam  
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𝐻(𝑠) =
𝐹(𝑠)

𝑈(𝑠)
= 𝐾𝑓 (

𝑈(𝑠)

𝐼(𝑠)
)

−1
𝐴𝑎(𝑠)

𝐴𝑎(𝑠) + 𝐴𝑜(𝑠)
 

(2.34) 

 

In the following section the FRFs of the electrodynamic shaker connected to a specific beam 

will be shown numerically.  

 

 

2.2.2 Numerical Study of the Beam-Shaker-Moving-Mass Test Structure 

 

In the previous section, the detailed transfer functions of the electrodynamic shaker system 

were presented. In addition, the actuator interacts with the flexible structure as shown in 

equation (2.31). In this section the FRF of the input force over the input voltage will be 

shown numerically for the utilised electrodynamic shaker and test structure.  

In this study an electrodynamic shaker (Data Physics V4) is attached to the structure at 𝑥𝑎 =

0.5  m. The sensor location may be 𝑥𝑠 = 0.5 m. The mechanical and electrical parameter of 

this device are listed in Table 2.3. These parameters might change for a later application with 

a different amplifier setting.  

 

Table 2.3. Parameter estimates for electrodynamic shaker (Data Physics V4) taken from 

[94]. 

Parameter Value 

Suspension stiffness, 𝑘𝑠 9700 Nm−1 

Damping coefficient, 𝑐𝑠 0.55 Nsm1 

Moving mass shaker, 𝑚𝑠 0.02 kg 

Resistance, R 0.82 Ω 

Inductance, 𝐿1 5.0 × 10−5 H 

Electromagnetic force constant, 𝐾𝑓 4.2 NA−1 

Back EMF voltage constant, 𝐾𝑣 4.2 Vsm−1 
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The properties of the investigated Aluminium one-span beam were described in section 0. 

Figure 2.15 illustrates the Bode plot of the numerically calculated transfer function (2.38) of 

the input force with respect to the actuator voltage. Four modes are considered and no mass 

is added. Up to a frequency of 11 Hz the magnitude of 𝐻(𝑠) has a constant value of 2.5 N/V. 

At the frequencies 21 Hz, 84 Hz, 189 Hz and 340 Hz antiresonances, also called force drops, 

occur. A resonance is noticed at 27 Hz with a magnitude of 10 N/V.  

 

 

Figure 2.15. Magnitude of the FRF 𝐻(𝑠) of the input force/ input voltage (top) and phase 

angle (bottom). 

 

Figure 2.16 shows the magnitude of the transfer function of the actuator-beam system with 

a mass of 0.5 kg added at the middle of the beam 𝑥𝑚= 0.3m . An additional antiresonance 

can be noticed at 13 Hz. Also the resonance at 27 Hz increased from 10 N/V to 32.5 N/V.   
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Figure 2.16. Magnitude of the FRF 𝐻(𝑠) with an added mass at 𝑥𝑚 = 0.3 m. 

 

Some antiresonances in Figure 2.15 and Figure 2.16 might be caused by the increased 

impedance (Figure 2.17) occurring at the systems resonances. The back-EMF term increases 

at the resonances in eq. (2.26). Note that in equation (2.31) the inverse of the FRF (2.26) is 

taken to calculate the FRF for the coil force.  

 

Figure 2.17. Bode diagram of the impedance of the electrodynamic shaker-beam system. 
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The resonance at 27 Hz in Figure 2.15 and Figure 2.16 is mainly caused by FRF (2.33) of 

the force transferred to the beam per coil force displayed in Figure 2.18. Especially, this 

resonance should be taken care of, to avoid instabilities in the control of the structure.  

It might be advantageous to use a separate feedback control for the electrodynamic shaker 

to generate a precise input force above a frequency of 10 Hz.  

 

Figure 2.18. FRF of the force transmitted to the beam per coil force. 

 

 

2.2.3 Simplified Model of the Simply Supported Beam Structure Controlled by an 

Electrodynamic Shaker 

 

A straightforward dynamical model of the electrodynamic actuator is a first order state space 

system from the input voltage u to the output force f [40]: 

�̇� = −𝛼𝑧 + 𝛽𝑢  

𝑓 = 𝛾𝑧 

(2.35) 

 

Figure 2.19 illustrates the bode plot of the system (2.35) with 𝛼 = 10000, 𝛽=10000 and 

𝛾 = 4.6. The cutoff frequency is at 1591.5 Hz.  
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Figure 2.19. Bode diagram of the first-order shaker model. 

 

The advantage of this approach is the possibility of integrating the shaker model in the 

moving-load structure model. In state-space representation, considering n modes the system 

matrices are:  

 

𝐀𝐦(𝑡) = 

[

0n×n In×n 𝟎𝑛𝑥1
−(𝐌 + ∆𝐌(𝑡))−1(K+∆K(𝑡)+𝐊𝐚)    − (𝐌 + ∆𝐌(𝑡))−1(D+∆D(𝑡) + 𝐃𝐚)       γ(𝐌 + ∆𝐌(𝑡))−1ψ(xa)] 

01×n 01×n −𝛼
]; 

             Bm = [

0𝑛×1
0𝑛×1
𝛽
];             Bf(𝑡) = [

0𝑛×1
-(M + ∆M (𝑡))−1ψ(vt)

0

];                                  (2.36) 

 

The state vector becomes xT(t)=[q(t) q̇(t) z(t)]. Equation (2.35) can be viewed as an 

approximation of actual input force/input voltage model if the beam structure is much less 

mobile than the electrodynamic shaker. To illustrate this observation, Figure 2.20 shows the 

magnitude of the FRF obtained by equation (2.34) for the simply supported beam with the 

geometrical characteristics: height ℎ = 64 mm,  flexural rigidity of 𝐸𝐼 = 1.022 ×

105 Nm−1 and 𝜌𝐴= 11.016 kgm−1. The length stays unchanged with l=0.6m. The magnitude 

is similar to the magnitude illustrated in Figure 2.19. 
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Figure 2.20. FRF input force over input voltage for rigid simply supported beam controlled 

by an electrodynamic shaker.  

 

If the simplified model of equations (2.35) and (2.36) with a constant transfer value 𝛾 is 

used, this is appropriate for low frequencies of up to 10 Hz. In cases where the beam is 

significantly less mobile, then the shaker equation (2.33) and the magnitude in Figure 2.18 

become one and the first order model is applicable for a wider frequency range.  

 

 

2.2.4 Experimental Validation of the Beam-Shaker Structure 

 

Figure 2.21 shows the numerically estimated (blue line) deflection response 𝑤(𝑥s𝑖, 𝑡), at 

three sensor locations (i = 1, 2, 3) against the experimentally measured deflections (red line). 

In this experiment seven balls are launched along the beam by rolling from the acceleration 

ramp . For the last run two balls are moving at the same time on the structure. The parameters 

of the numerical beam model are defined as mass per unit length 𝜌𝐴 = 0.535 kgm−1 and 

flexural rigidity 𝐸𝐼 = 11.68 Nm−2. Due to the polymer guiding rail the height is changed to 

3.3 mm and a constant modal damping ratio 𝜁 = 0.03 is assumed througout. No control 

action is involved. The influence of the electrodynamic actuator is modelled as a spring-
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damper system with a damping coefficient of ca = 80 Nsm-1 and a stiffness of ka = 12000 

Nm-1. 𝑘𝑎 was selected in that way, that the difference of the analytical and the experimental  

deflection data during the time the mass is on the beam is minimal. With the selected 𝑑𝑎 the 

decay rate of the free vibration when the mass is leaving matches between the analytical and 

the experimental data.  

The beam-shaker system was validated using an active shaker with and without the action 

of the moving mass. Therefore, the shaker’s stiffness changes to 𝑘a = 3500 Nm
−1 and 𝛾 =

4.6 in equation (2.35). Numerical investigations have shown that the dynamics of the beam 

can be accurately approximated using only the first three modes.  

 

 

Figure 2.21. Experimental validation between the displacements of masses travelling at 

different speeds obtained by the numerical model (blue continuous) and the experimental 

measurements (red dashed). 

 

Figure 2.22 shows a comparison between the experimental data and the numerical model 

simulation for time deflection response at sensors locations when four masses are launched 

at different speeds along the beam and the shaker’s input is fed with a prescribed voltage. In 

this case the voltage supplied was a combination of sinusoidal functions of frequencies 

between 2 Hz and 4 Hz.  
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Figure 2.22. Validation of the beam mass system with an active electromagnetic shaker, 

numerical model (blue continuous), and the experimental measurements (red dashed). 

 

 

 

2.3 Further Numerical Validation of the Moving Mass Model 

 

In section 2.1 the exact moving mass model was derived to model the beams dynamics 

correctly at high mass/structure ratio and at high travelling speeds. A more straightforward 

model is the moving force model 

𝜌𝐴
𝜕2𝑤

𝜕𝑡2    
+ 𝑐𝜌𝐴

𝜕𝑤

𝜕𝑡    
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= −𝑁𝛿(𝑥 − 𝑣𝑡) (2.37) 

Here the inertia is neglected. The time-varying terms of equation (2.13) do not appear.  

In a first step, the derived model will be validated against the numerical example presented 

in [26]. Further the necessity of using the exact moving mass model will be shown for a one-

span and a two-span beam. In [26] a 60 m long uniform simply supported Euler Bernoulli 
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beam is considered. The flexural rigidity EI is equal to 5 × 105 Nm2, and the mass per unit 

length 𝜌𝐴 is 1 kg/m. Figure 2.23 shows the exact same deflection over time at the mid-span 

as Nikkhoo et. al calculated in [26] for their moving load model and the exact moving mass 

model. The moving force model results in an amplitude up to three times higher in a 

180 °phase shift compared to the moving mass model after the load has left the beam. The 

time-varying terms of equation (2.13) depend on the moving loads weight and velocity. Also 

Nikkhoo et al. [26] state that any increase in weight and speed will increase the inertial effect. 

The lowest resonant speed, also called critical speed, is defined as [2] 

𝑣𝑐𝑟 =
𝐿𝜔1
𝜋

 
(2.38) 

with 𝜔1 the first fundamental frequency. Nikkhoo et al. define for their case another critical 

velocity 𝑣𝑐𝑟
′ = 0.4 𝑣𝑐𝑟. Under this value the centripetal and Coriolis accelerations are 

negligible.  

 

Figure 2.23. The time history of the midspan deflection under the effect of a moving mass 

and a moving load, 3 modes are used, N=100N, v=11.1m/s (compare with figure 3b in [26]). 

 

In the next step, the difference between the moving force model and the exact moving mass 

model for the studied structure will be shown numerically. The numerical model with its 

properties depicted in section 0 is used. The inactive shaker has a stiffness of 𝑘𝑎 =

12000 N/𝑚. The first critical velocity is 𝑣𝑐𝑟1 = 24.03 m/s. Figure 2.24 illustrates the 

deflection of the beam mass shaker system at sensor location 𝑥𝑠2 = 0.25 m. The actuator is 

located at 𝑥𝑎 = 0.5 m. The shaker’s input is fed with a prescribed voltage of combined 

sinusoidal functions. The mass m = 0.509 kg moves with a speed of v = 0.9 m/s. Although 

this speed is only 0.04 𝑣𝑐𝑟, the travelling time has to be high enough to control the structure 
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appropriately in the later study. Consequently, only a very small difference between the 

moving mass and the moving force model of around 0.04 mm at the highest deflection is 

noticed.  

 

 

Figure 2.24. Numerical validation of the deflection of the beam mass system with an active 

electromagnetic shaker at sensor location 𝑥𝑠2, moving mass system (blue continuous) and 

numeric moving force system (red dashed). 

 

In [26,35] the Dynamic Amplification Factor (DAF) is defined as the ratio of the maximum 

dynamic deflection to the maximum static deflection at the midspan. Figure 2.25 shows the 

DAF over the speed ratios 𝑣/𝑣𝑐𝑟1 for two different masses 𝑚1 = 0.261 kg (left) and 𝑚2 = 

0.5 kg (right). It can be noticed that only for a small speed ratio of up to 0.1 𝑣/𝑣𝑐𝑟1 the 

maximum deflection of the moving mass model and of the moving force model are similar. 

For higher velocities the correct moving mass model has to be used. The dynamic 

amplification factor increases to a certain value when the moving mass and the mass’s 

velocity increase. For mass 𝑚1 the DAF is nearly 2 at 0.5 𝑣/𝑣𝑐𝑟 for the moving mass model 

compared to a DAF = 1.6 at 0.7 𝑣/𝑣𝑐𝑟 for the moving force model. For mass 𝑚2 the DAF 

reaches a value of 2.2 at 0.75 𝑣/𝑣𝑐𝑟1 for the moving mass model, where the moving force 

model is similar to the one of 𝑚1.  
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Figure 2.25. Dynamic amplicfication factor over the speed ratio for the moving force model 

(blue) and for the moving mass model (red dashed), for mass m = 0.26 kg, mass ratio m/M = 

0.81 (left) and m= 0.5 kg, m/M= 1.56 (right). 

 

Next, for the later experimentally investigated two-span structure the same comparison 

between moving force and moving mass model is undertaken. The structure has a total length 

of L = 1.2m, 𝐸𝐼 and 𝜌𝐴 stay unchanged. Following [36,100], the calculation of the mode 

shapes for a continuous two-span beam and with it of the critical velocity is more 

complicated compared to the simply supported beam. The first and second resonant 

frequency are at 𝜔1 =128 rad/s and 𝜔2=200.22 rad/s respectively. Following [35] the 

calculation of the first critical velocity is similar to equation (2.38). The second mode exists 

in two cycles over the beam’s length. The critical velocity is calculated as  

𝑣𝑐𝑟2 =
𝐿𝜔2
2𝜋

 
(2.39) 

 

𝑣𝑐𝑟1 = 48.95 m/s and 𝑣𝑐𝑟2 = 38.24 m/s. It can be noticed in Figure 2.26 that for very low 

travelling speeds of 0.04 𝑣𝑐𝑟 the moving force and the moving mass model give similar 

results. For higher travelling speeds of 3 m/s, which is around 0.08 𝑣𝑐𝑟2 the inertia cannot 

be ignored for control of the dynamic response. Although the maximum deflection might be 

similar in Figure 2.26, the moving mass model’s deflection comes with a phase lag, caused 

by the inertial effect of the mass acting on the beam. A comprehensive structural control 

approach has to include the inertial effect for the two-span beam structures when the mass 

is moving with a certain speed, in this case 3 m/s.  
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Figure 2.26. Time history of the deflection w at sensor location 𝑥𝑠2 = 0.75 m of a two-span 

beam excited upon a moving mass (blue continuous) or moving load (red dashed) travelling 

with 𝑣 = 1.5 m/s (top) and 𝑣 = 3 m/s (bottom). 

 

Yang  shows in his moving force example [35] (figure 3.8) that this DAF can be 3.25 at the 

second span compared to 1.5 at a simply supported beam. This implies that for continuous 

multi-span beams the exact moving mass model has to be used even more. Figure 2.27 

illustrates a higher DAF of 4.5 at 0.45 𝑣/𝑣𝑐𝑟1 at the second span midspan when a mass of 

0.261 kg is travelling compared to 3.6 at the first midspan. A second peak of a DAF of 5 is 

noticed at 1.75 v/𝑣cr1 at the second midspan. Again, the moving force model is applicable 

for small speed ratios v/𝑣cr1 below 0.05. 
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Figure 2.27. Comparison of the DAF at the midspan of the first span (left) and at the midspan 

of the second span (right) with mass m = 0.261 kg travelling utilising the moving force model 

(blue continuous) and of the moving mass model (red dashed).  

 

In conclusion can be said, that for the studied simply supported beam the exact moving mass 

model has to be utilised for speed ratios higher then 0.1 𝑣/𝑣𝑐𝑟. The dynamic amplification 

increases with the increase of moving weight and with the higher travelling speeds. At the 

two-span beam a lag is noticed between the moving force and the moving mass model. This 

is the reason why, in order to control multi-span beams, the moving mass model has to be 

used even at lower speeds. The moving force model is applicable only for small speed ratios 

below 0.05. The use of a two-span continuous beam increases the dynamic amplification and 

by that the difference in results between the straightforward moving force model and the 

exact moving mass model.  

 

 

2.4 Modelling of the Piezoelectric Actuator-Beam Structure 

 

Piezoelectric actuators offer very attractive properties to active vibration control 

applications. They can transduce high forces or moments from a small geometry. 

Furthermore, they do not need a supporting structure and new actuators as the macro fibre 

composites (MFC) can be attached to complex geometries. A main drawback is that they 

operate at high voltages of about 1500 V, which makes the amplifiers costly for wider 
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applications [69]. In the following section, the dynamic model for the studied MFC actuators 

bonded to the simply supported beam structure is derived. In addition, the numerical model 

for the two-span beam actuated by two MFC actuators is presented. The numerical models 

will be validated against experimental results.  

 

 

2.4.1 The Mathematical Model of the Piezoelectric Beam System 

 

Piezoelectric actuators are used for bending actuation most often by the 31-mode with 

uniform electrodes [25,42]. In this study Macro fibre composites (MFC) are utilised. They 

use interdigitated electrodes (IDEs) with rectangular piezoelectric fibres. The 33-mode 

piezoelectric strain constant 𝑑33 is 50% to 100% larger than the 𝑑31 piezoelectric constant 

[66]. This offers much higher actuation capabilities compared to the 𝑑31 mode actuators. 

The two subscript numbers symbolize the polarization direction and the elongation direction 

respectively in Cartesian coordinates. Considering the area of the piezoelectric patch that 

extends on the beam from 𝑥1 to 𝑥2 (Figure 2.28), with its height much smaller than the beam 

height, ℎ𝑝 ≪ ℎ, following [42][66] the stress inside this area in the x-direction is defined as  

𝜎33 = 𝐸𝑏𝜖33 + 𝐸𝑝𝜖33 − 𝑒33𝐸   
(2.40) 

 

Where 𝐸𝑏 and 𝐸𝑝is the Young’s Modulus of the beams and the piezoelectric material 

respectively, 𝜖33 is the strain in the x- direction, 𝑒33 = 𝑑33𝐸𝑝 is the piezoelectric stress 

constant. In Figure 2.28 𝑏𝑝 is defined as the width of the piezoelectric patch. The electric 

field is defined by 𝐸 =
𝑉

𝐿𝑒
, where V is the applied voltage and 𝐿𝑒 is the distance between the 

electrodes. Figure 2.29 shows a schematic illustration of the piezoelectric actuator, which 

uses the 𝑑33-effect. The polarization and the applied electric field coincide with the strain 

axis (the x-direction). 
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Figure 2.28. One piezoelectric actuator located on a beam structure.  

 

 

Figure 2.29. An MFC laminate using the 33-mode of piezoelectricity. 

 

Following the Euler-Bernoulli assumption the axial deformation and the curvature are 

related by 

𝜖33 = −𝑧 
𝜕2𝑤

𝜕𝑥2
 

(2.41) 

 

where z is the distance to the neutral axis. Inserting this into equation (2.40) and integrating 

over the cross section one gets the sum of moments 
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𝑀 = ∫ 𝜎33
𝐴

𝑧𝑑𝐴 = 𝐸𝑏𝐼
𝜕2𝑤

𝜕𝑥2
+ 𝐸𝑝𝐼𝑝

𝜕2𝑤

𝜕𝑥2
+∫ 𝑑33𝐸𝑝

 𝑉

𝐿𝑒
 

𝐴

ℎ

2
 𝑑𝐴

=  𝐸𝑏𝐼
𝜕2𝑤

𝜕𝑥2
+ 𝐸𝑝𝐼𝑝

𝜕2𝑤

𝜕𝑥2
+ 𝑑33𝐸𝑝

 𝑉

𝐿𝑒
 
ℎ

2
  ℎ𝑝 𝑏𝑝 

(2.42) 

 

 

In (2.42) the constant moment 𝑀𝑝 applied at the edges 𝑥1 and 𝑥2 of a piezoelectric film with 

constant width is defined as  

𝑀𝑝 = 𝑑33𝐸𝑝
 𝑉

𝐿𝑒
 
ℎ

2
  ℎ𝑝 𝑏𝑝 = 𝐶0𝑉 

(2.43) 

 

The equation of motion of a beam equipped with a piezo actuator can be written as 

𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
+ 𝜌𝑝𝐴𝑝  

𝜕2𝑤

𝜕𝑡2
+ 𝐸𝑝𝐼𝑝

𝜕4𝑤

𝜕𝑥4

= −𝑀𝑝(𝛿′(𝑥 − 𝑥1) − 𝛿′(𝑥 − 𝑥2)) 

(2.44) 

 

where 𝜌𝑏 , 𝐴𝑏 , 𝐸𝑏 , 𝐼𝑏 are dedicated to the beam and 𝜌𝑝,𝐴𝑝, 𝐸𝑝 𝑎𝑛𝑑 𝐼𝑝 are dedicated to the 

piezo actuator. 𝑥1 and 𝑥2 are the start and end location of the actuator. Again, using the 

method of separation of variables of equation (2.5) multiplying by 𝜓(𝑥) and integrating over 

the beams length the solution of the ordinary differential equation can be found. The first 

derivative of the Dirac delta function has the property [31]: 

∫ 𝜓(𝑥)
𝐿

0

𝛿′(𝑥 − 𝑥1)𝑑𝑥 =  −𝜓
′(𝑥1) ;     𝑥 ∈ (0, 𝐿) 

(2.45) 

 

As shown in the previous section 2.1 the solution can be written in matrix form as 

(𝐌 +𝐌𝐩 )�̈� + (𝐊 + 𝐊𝒑)𝐪 = −𝑀𝑝 𝑐𝑝 (−𝛙′(𝑥1) + 𝛙′(𝑥2)) 
(2.46) 

 

with  
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𝐌𝑝 = 𝜌𝑝𝐴𝑝∫ 𝛙(𝑥) ∙ 𝛙(𝑥)
𝑥2

𝑥1

dx (2.47) 

 

𝐊𝑝 = 𝐸𝑝 𝐼𝑝  ∫ 𝛙(𝑥) ∙  𝛙′′′′(𝑥)dx
𝑥2

𝑥1

 (2.48) 

 

 

𝑐𝑝 is an additional correction factor, which will be applied later to match the experimental 

deflection data with the deflection data obtained by the numerical model. It compensates 

possible model uncertainties. For example a perfect bonding is assumed between the actuator 

and the beam, but the utilized epoxy glue always has some flexibility and structural damping. 

That why not all of the bending moment might be transferred onto the beam. Also the utilized 

beam will be equiped with a guiding rail, which stiffens the structure. The deflection 

resulting from the actuator moment is reduced, compared to the deflection of a simular 

structure without the guiding rail. If n piezoelectric actuators are located on the beam 

equation (2.46) can be written as 

(𝐌 +𝐌𝑝𝑚 )�̈� + (𝐊 + 𝐊𝑝𝑚)𝐪 =∑𝑀𝑝𝑖(−𝛙′(𝑥2𝑖−1) + 𝛙′(𝑥2𝑖))

𝒏

𝑖=1

 (2.49) 

 

with 

𝐌𝑝𝑚 =∑𝜌𝑝𝑖𝐴𝑝𝑖∫ 𝛙(𝑥) ∙ 𝛙(𝑥)
𝑥2𝑖

𝑥2𝑖−1

dx

𝑛

𝑖=1

 (2.50) 

 

𝐊𝑝𝑚 =∑𝐸𝑝𝑖𝐼𝑝𝑖∫ 𝛙(𝑥) ∙ 𝛙(𝑥)′′′′
𝑥2𝑖

𝑥2𝑖−1

dx

𝑛

𝑖=1

 (2.51) 

 

 

Easily additional matrix terms for multiple masses of eqation (2.16) and multiple support of 

equation (2.17) can be added.  
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2.4.2 Experimental Validation of the Piezo Beam Systems 

 

The numerical model of the beam equipped with a piezoelectric actuator (2.46), will be 

validated with the displacement data acquired from an experimental test structure. Figure 

2.30 shows the experimental set-up. Different steel balls can be accelerated by a ramp and 

move over the simply supported beam. The beam has a length of l = 0.6 m and a cross section 

area A = 0.1 m x 0.002 m. The 𝑑33 piezoelectric actuator called Macro Fiber Composite 

(MFC) 8557-P1 of the company smart-material is utilised at the middle of the beam, the 

starting location is  𝑥1 = 0.2575 m and end location is 𝑥2 = 0.3425 𝑚, similar to the first 

span in Figure 2.9. The active area is 85 x 57 mm2. Sensor location 𝑥𝑠1 -𝑥𝑠3 are identical to 

the set-up in section 0. These might change for control purposes, to have a collocated control 

system. A High Voltage Amplifier HVA 1500 amplifies the input voltage by a factor of 200 

from -2.5 V – 5V to -250 V – 1500V. 

 

 

Figure 2.30. Experimental set-up of the aluminium beam actuated by piezoelectric actuator. 

 

Figure 2.31 shows the deflection response 𝑤(𝑥𝑠𝑖, 𝑡) at the sensor locations 𝑥𝑠3 = 0.35 m 

when mass m= 0.509 kg and 0.377 kg move over the beam. The parameters of the numerical 

beam model are defined as mass per length 𝜌𝐴 = 0.812 kgm−1 and flexural rigidity 

𝐸𝐼=13.211 Nm−2. The height is changed to 2.83 mm to take into account the added stiffness 

of the polymer guiding rail. With these adjustments, a good approximation between the 

numerically calculated deflection and the experimentally obtained data is accomplished. It 

is noticed that this structure is more flexible compared to the previously studied structure, 

Aluminium beam  

 

MFC P1 Actuator  

 

Induction sensors 

 

3 Micro epsilon displacement sensors 

 

Acceleration Ramp 
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which comprises additional stiffness added by the electrodynamic actuator (compare with 

Figure 2.21). 

 

Figure 2.31. Time history of the deflection of the numerical model (red dashed) and the 

experimental measurements (blue) at sensor locations and 𝑥𝑠3 (bottom). 

 

The piezoelectric actuator has the piezoelectric constant 𝑑33 = 460 pm/V, a Young modulus 

of 𝐸𝑝= 30.336 GPa [101] a height of ℎ𝑝 = 0.3 mm and an electrode distance of 𝐿𝑒 = 407.18 

𝜇𝑚 [66]. This results in a specific piezoelectric constant 𝐶0 = 8.292 × 10−4 Nm/V in 

equation (2.43). 

Figure 2.32 illustrates a comparison between the numerical simulation (red dashed) and the 

experimental obtained deflection (blue continuous). The correction factor 𝑐𝑝 = 0.32 is 

applied in equation (2.46). This correction factor compensates the experimentally applied 

smaller piezoelectric moment on one side. Loses may be due to the bonding of the actuator 

onto the structure and model uncertainties. On the other side, the beam becomes more rigid 

by adding the polymer guiding rail, which is considered in the numerical beam model only 

to a certain extend by changing the height h. 𝑐𝑝 was determined by minimizing the error 

between the experimental and the analytical deflection data. 

Four masses are launched and the piezo element is supplied with prescribed voltage, which 

is a sum of sinusoidal functions. Good matches between the experimentally measured data 

and the numerical model deflections are accomplished.  
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Figure 2.32. Time history of the deflection at sensor locations 𝑤(𝑥𝑠2) and 𝑤(𝑥𝑠3) of the 

numerical model (bluedashed) and the experimental data (redcontinuous). 

 

 

Validation of the Two-Span Continuous Beam structure actuated by the Piezoelectric 

Actuators 

In the following the two-span continuous beam structure equipped with two piezoelectric 

actuators, and three laser displacement sensors, see Figure 2.8,will be validated against the 

numerical model. The sensor locations are described in section 2.1.3. The MFC 8557 P1 

actuators are located in the middle of each span, with its start and end locations 𝑥1 = 0.2575m 

,𝑥2 = 0.3425 𝑚, 𝑥3 = 0.8575 𝑚 and 𝑥4 = 0.9425 𝑚 respectively, see Figure 2.9. Ten 

modes are used in the simulation.  

Before the polymer rail is added to the structure, the numerical model is validated with 

experimental results of the two-span continuous structure actuated by two MFC actuators. 



56 

 

The height in the numerical model equals the height of the structure. The correction factor 

𝑐𝑝 = 0.68, was determined by minimizing the error between the experimental and the 

analytical deflection data. It is a higher value compared to the previously case. Without the 

guiding rail the structure is less rigid. Figure 2.33 displays the deflection response at sensor 

locations 𝑥𝑠1 and 𝑥𝑠2 when actuator 1 is fed with a sinusoidal input voltage 𝑈1, see Figure 

2.34. MFC 2 is supplied with a constant input voltage 𝑈2=500V.  

 

Figure 2.33. Time history of the deflection of the two-span beam structure at sensor locations 

𝑥𝑠1 and 𝑥𝑠2, measurements (blue continuous), numerical model (red dashed). 

 

 

Figure 2.34. Input voltage 𝑈1 for piezoelectric actuator MFC 1. 
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It can be noticed that there are good matches between the numerical and the experimental 

data at sensor location 𝑥𝑠1 and 𝑥𝑠2, especially when the voltage increases. When the voltage 

decreases a delay in the sensor deflection 𝑥𝑠1 and 𝑥𝑠2can be observed. 

In the next step the polymer guiding rail is attached to the two-span beam. In the numerical 

model the height is changed to ℎ=2.83 mm. Also the correction factor changes to 𝑐𝑝=0.39,  

which was again determined by minimizing the error between the experimental and the 

analytical deflection data. In Figure 2.35 the piezoelectric actuators 1 and 2 are fed with 

sinusoidal voltages, shown in Figure 2.36 . 𝑈1 reaches the maximum actuation voltage for 

the piezoelectric actuators. The deflection at 𝑥𝑠1 provides a very good match between the 

numerical and experimental data. At the second span at 𝑥𝑠2 and 𝑥𝑠3 a small mismatch can 

be noticed. Again this might be due to the specific design of the supports.  

 

 

Figure 2.35. Time history of the deflections of the two-span continuous beam at sensor 

locations 𝑥𝑠1 − 𝑥𝑠3, measurements (blue continuous) and numerical model (red dashed). 
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Figure 2.36. Time history of the input voltages 𝑈1(top) and 𝑈2(bottom). 

 

 

2.5 Concluding Remarks  

 

In this section, the numerical model of the simply supported beam actuated by moving 

masses was derived. If at least eight modes are used in the numerical model, a two-span 

continuous beam can be approximated with sufficiently high accuracy. The numerical single 

and the two-span beam models were validated against the displacement measurements of the 

respective experimental set-up. Different actuator models were studied. The dynamics of the 

electrodynamic shaker, as well as the interactions with the beam, proved to be complex. A 

simplified first order model can be applied to a certain extend. It offers the advantage of 

representing the shaker-beam model in the state-space representation. The MFC-actuator is 

modelled by applying moment at its edges to the beam. The shaker-beam model and the 

MFC-beam models were validated against experimental data. In the next chapter optimal 

control approaches will be studied relevant to the moving load problem.
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 Optimal Control Approaches Dedicated to the Moving Mass Problem 

 

To control the moving load structure, in this chapter classical optimal control approaches 

suitable for time-varying structures are studied. This includes the finite-time optimal control 

in section 3.1. Here the algebraic Riccati equation is solved backwards for a given leaving 

time 𝑡𝑓. The step-by-step optimal control, presented in section 3.2, solves the Riccati 

equation at every time-step 𝑡 with the varied system equations.  

 

 

3.1 The Finite Time Optimal Control  

 

When only one actuator is used, the time-varying plant with the states and control matrices 

presented in equation (2.36) can be written in state-space form as: 

�̇�(𝑡) = 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝑢(𝑡) (3.1) 

 

For the multiple-input multiple-output case (MIMO) the input u(t) becomes a vector  

𝐮(𝑡)1×𝑎 , with a inputs. The aim of the controller is to minimize the deflection response at 

different locations along the beam. In order to achieve this, the performance objective can 

be formulated like a quadratic objective in deflection at sensor locations  

 

𝐽 =
1

2
∫ 𝐰T(𝑥𝑠𝑖, 𝑡)𝐐 𝐰(𝑥𝑠𝑖, 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

=
1

2
∫ 𝐱T(𝑡)𝐂T𝐐 𝐂 𝐱(𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 (3.2) 

 

 

subject to equation (3.2) and the control’s saturation limits |𝑢(𝑡)| ≤ 𝑢0. In equation (3.3) 

matrix C is the output matrix of the system described by (3.2) and consists of modal shape 

vectors ψ(𝑥𝑠𝑖). 

This type of objective function was studied in [17] and it was shown that it leads to a two-

boundary value problem which makes the control design problem mathematically 

challenging. Also, the synthesised control function is discontinuous. Such a control solution, 

even if it correctly describes the required control action, may be difficult to implement, as 
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the electromagnetic type of actuation chosen here cannot accurately describe a control 

function with discontinuities. For this reason, a quadratic objective function that also 

includes the control has been chosen. The quadratic performance index is defined as: 

 

𝐽 =
1

2
𝐱T(𝑡𝑓)𝐅 𝐱(𝑡𝑓) +

1

2
∫ [𝐱T(𝑡)𝐐 𝐱(𝑡) + 𝐮T(𝑡) 𝐑 𝐮(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0

 (3.3) 

 

 

The emphasis on the deflection will be addressed by choosing a state weighting matrix Q 

with higher values corresponding to the first states corresponding to the displacements and 

a significantly lower value for the terms corresponding to the velocities. The control 

limitation is assured by the selection of the control weighting parameter R. The control u(t) 

is unconstrained. tf  is specified and the final state x(tf) is constrained by the weighting matrix 

F(tf ). For a system with p states and r actuators, the matrices F(tf ) and Q(t) are p×p 

symmetric, positive semidefinite matrices and matrix R(t) is r×r symmetric, positive definite 

matrix. The solution can be found using the Pontryagin minimum principle [54]. The 

Hamiltonian is defined as  

 

ℋ(𝐱(𝑡), 𝐮(𝑡), 𝛌(𝑡))

=
1

2
𝐱′(𝑡)𝐐𝐱(𝑡) +

1

2
𝐮′(𝑡)𝐑𝐮(𝑡) + 𝛌′(𝑡)(𝐀𝐦(𝑡)𝐱(𝑡)

+ 𝐁𝐦(𝑡)𝐮(𝑡)) 

(3.4) 

 

where 𝛌(𝑡) is defined as the costate vector. The necessary optimality condition can be 

expressed as  

ℋ(𝐱∗(𝑡), 𝐮(𝑡), 𝛌∗(𝑡)) ≥  ℋ(𝐱∗(𝑡), 𝐮∗(𝑡), 𝛌∗(𝑡)) 
(3.5) 

 

where the optimal values for the control 𝐮∗(𝑡) and for the states 𝐱∗(𝑡) are assumed. For the 

particular case when the Hamiltonian is pointwise differentiable, the optimal control 𝐮∗(𝑡) 

can be obtained by using 
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𝜕ℋ

𝜕𝐮
= 0 → 𝐑(𝑡)𝐮∗(𝑡) + 𝐁T(𝑡)𝛌∗(𝑡) = 0 

(3.6) 

with the relation 𝛌∗(𝑡) = 𝐏(𝑡)𝐱∗(𝑡) to  

𝐮∗(𝑡) = −𝐑−1(𝑡)𝐁T(𝑡)𝐏(𝑡)𝐱∗(𝑡)  = −𝐤(𝑡)𝐱∗(𝑡) (3.7) 

 

 

k(t)=-R-1(t)BT(t)P(t) is called the Kalman gain and P(t), is a p×p symmetric, positive definite 

matrix (for all t ∈[t0, tf]), and is the solution of the matrix differential Ricatti equation  

 

�̇�(𝑡) = 𝐏(𝑡)𝐀(𝑡) − 𝐀T(𝑡)𝐏(𝑡) − 𝐐(𝑡) + 𝐏(𝑡)𝐁(𝑡)𝐑−1(𝑡)𝐁𝐓(𝑡)𝐏(𝑡) (3.8) 

 

The optimal state is the solution of  

 

 �̇�∗(𝑡) = [𝐀(𝑡)  − 𝐁(𝑡)𝐑−1(𝑡)𝐁𝐓(𝑡)𝐏(𝑡)]𝐱∗(𝑡) = 𝐆(𝑡)𝐱(𝑡)  (3.9) 

 

The matrix differential equation (3.8) can be solved backwards with tstart=tf and the initial 

condition P(t = tf) = F(tf). The optimal time-varying gain k(t) is calculated forward using 

the values of P(t). As long as the control system is treated in finite time there is no condition 

on stability or controllability for the closed-loop system G(t) [54]. Although p optimal states 

in 𝑥∗(𝑡) are calculated, in theory the structure has an infinite number of states which can 

cause instability, called spill-over. Therefore, the parametric study has to prove the 

performance of the control system for a reasonable number of masses and speeds of the 

moving mass. 

 

 

3.2 Step by Step Calculation of the Riccati Equation 

 

A drawback of the previously presented method is that the algebraic Riccati equation (3.8) 

has to be solved backwards offline. An online adaptation to previously unknown changes of 

the load seems not possible or how it will be shown later only to a certain extent. An 

alternative algorithm solves the algebraic Riccati equation numerically at particular time 
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steps 𝑡𝑖. It imitates the infinite horizon linear quadratic problem solution for linear time-

invariant systems.  

 

𝐀𝐦
𝐓 (𝑡𝑖)𝐏(𝑡𝑖) + 𝐏(𝑡𝑖)𝐀𝐦(𝑡𝑖) − 𝐏(𝑡𝑖)𝐁𝐦(𝑡𝑖)R

−1𝐁𝐦 
𝐓(𝑡𝑖)𝐏(𝑡𝑖) + 𝐐 = 0 (3.10) 

 

The time-dependent gain vector calculates as 

 

𝐤(𝑡𝑖) = R
−1𝐁𝐦(𝑡𝑖)

T𝐏(𝑡𝑖) (3.11) 

Because of the separation into time-steps the solution does not satisfy the optimality criteria 

[29]. This method was applied in [63], where reduction of the maximum deflection of 12% 

was achieved by the time-varying control for the simply supported beam structure presented 

in previous section. The modal shaker with its complex dynamics limited higher gains for a 

feedback control solution at this point and an open-loop control was applied to achieve a 

reduction of up to 43% for the time-variant control, where the input voltage history was 

calculated beforehand. The time-varying gains of the two proposed methods in equation 

(3.7) and equation (3.11) are identical for the studied test structure of the simply supported 

beam.
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 The State Estimation  

 

The previously presented optimal control state feedback approaches assume the availability 

of all of the states x(t). In the case of the vibrations of continuous beam structures there are 

in theory an infinite number of modal coordinates which are physically not measurable. In 

addition, sensor measurements y(t) might be noisy. With the help of the classical state 

estimator presented in section 4.1, the states x(t) can be estimated from the noisy 

measurements y. The noise can be extracted from the measurement y for the use in a 

displacement feedback law.  

If the moving load is treated as a disturbance, as it might be the case in vehicle-bridge 

interaction, states could be estimated by a method presented in section 4.2, where the states 

are estimated with the help of the mode shapes.  

 

 

4.1  Optimal Full-State Estimation 

 

Given the system with state disturbance 𝐰𝑑 and sensor disturbance 𝐰𝑛  

�̇� = 𝐀𝐱 + 𝐁𝐮 +𝐰𝑑 

𝒚 = 𝐂𝐱 + 𝐃𝐮 +𝐰𝑛 

(4.1) 

 

The classical state estimator assumes a zero-mean Gaussian distribution for the both 

disturbances with known covariances. 

𝔼(𝐰𝒅(𝑡)𝐰𝒅(𝜏)
𝑻) = 𝐐𝛿(𝑡 − 𝜏) 

𝔼(𝐰𝒏(𝑡)𝐰𝒏(𝜏)
𝑻) = 𝐑𝛿(𝑡 − 𝜏) 

(4.2) 

 

Where 𝔼 is the expected value and 𝛿(𝑡) is the Dirac delta function. The positive semi definite 

matrices 𝐑 and 𝐐 contain the covariances of the disturbance and noise term. The 

measurement errors are assumed uncorrelated:  
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𝔼(𝐰𝒅(𝑡)𝐰𝒏(𝜏)
𝑻) = 𝟎 𝛿(𝑡 − 𝜏) (4.3) 

 

Full-state estimation is mathematically possible if the pair (A,C) is observable. The moving 

load disturbance does not behave in that way during travelling time. Because of that, using 

the classical state estimation approach, information about the load must be known and could 

be included in 𝐁𝐮. In [102], the observer of a system is defined as  

�̇̂�(𝑡) = 𝐀�̂�(𝑡) + 𝐁𝐮 + 𝐋(y − 𝐂 x̂) (4.4) 

where �̂� is the estimate of the actual state. The observer gain L is to be determined in the 

design procedure. This can be done by pole placement or by optimal full-state estimation 

[103]. In the latter L is determined by  

𝐋 = 𝐏𝐂𝐓𝐑 
(4.5) 

Where P is the solution to the algebraic Riccati equation: 

𝐏𝐀T + 𝐀𝐏 − 𝐏𝐂𝐓𝐐−𝟏𝐂𝐏 + 𝐐 = 𝟎  
(4.6) 

A duality of the state observer to the linear quadratic regulator is present [104]. In the full 

state observer design the estimated states are used in the state feedback control. The feedback 

law 𝐮 = −𝐊�̂� is substituted in equation (4.4) to obtain the compensator  

�̇̂�(𝑡) = (𝐀 − 𝐁𝐊 − 𝐋𝐂)�̂�(𝑡) + 𝐋y 

𝐮 = −𝐊�̂�(𝑡) 

(4.7) 

 

The full-state feedback and the observer can be designed independently [102]. 
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4.2 State Estimation by Mode Shapes 

 

The particular type of problem studied where the loads act like distrubances, which for times 

comparable with the time the load is on the structure cannot be considered random Gaussian 

processes, makes the use of an estimator difficult. The solution presented here assumes that 

the number of sensors equals the number of modes used for the numerical model. The state 

vector is estimated from the experimentally measured deflection vector w(t)
n x 1

=  

[w1(xs1,t)… wn(xsn,t)]
T and the velocity vector ẇ(t)n x 1=  [ w1̇ (xs1,t)… wṅ (xsn,t )]

T at 

locations 𝑥𝑠𝑛 ∶ 

 

𝐪(𝑡) = 𝚿(𝑥s𝑛) 
−𝟏𝐰(𝑡) 

�̇�(𝑡) = 𝚿(𝑥s𝑛) 
−𝟏�̇�(𝑡) 

(4.8) 

 

In this equation 𝚿(𝑥𝑠𝑛) is the 𝑛 × 𝑛 non-singular matrix that contains the mode shapes 

calculated at sensor locations 𝑥𝑠𝑛: 

 

𝚿(𝑥s𝑛)𝑛 × 𝑛 = [

𝜓1(𝑥s1) 𝜓2(𝑥s1) … 𝜓𝑛(𝑥s1)
𝜓1(𝑥s2) 𝜓2(𝑥s2) … 𝜓𝑛(𝑥s2)

⋮ ⋮ ⋱ ⋮
𝜓1(𝑥s𝑛) 𝜓2(𝑥s𝑛) … 𝜓𝑛(𝑥s𝑛)

] (4.9) 

 

When n sensors are used and n modes are estimated, the state-space vector can be determined 

as a unique solution of equations.
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 Case Study 1: Active Vibration Control of a Simply Supported Beam 

Acted upon by Moving Masses 

 

The previously presented finite time optimal control approach was applied to control the 

simply supported beam, published in [28]. The estimation of the modes was accomplished 

by the mode shapes. These results and additional studies regarding estimation and an 

augmented optimal control, will be presented in the following section. 

 

 

5.1 Experimental and Numerical Validation of the State Estimation Methods 

 

From equation (4.8) and equation (4.9) it follows that, since three sensors are installed, three 

modal coordinates, 𝑞𝑖, ( 𝑖 = 1,2,3) can be calculated directly and by using the derivative 

three modal velocities �̇�𝑖, ( 𝑖 = 1,2,3). (Figure 5.1). A mass m = 0.261 kg is moving on the 

structure.  

 

 

Figure 5.1. Comparison modal coordinates numerical model (black dashed) and the 

measured signal (blue continuous). 
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The first mode is dominant and shows the best agreement with the modal displacement 

estimated using experimental data. For the modal velocity, the first mode also shows the best 

match. A 10th order digital low-pass filter with a cut-off frequency 𝑓3𝑑𝐵 = 10 Hz, reduces 

the noise but it causes a slight delay. 

 

The classical state observer presented in section 4.1 equation (4.4) will be validated 

experimentally for the open-loop system of the simply supported beam. For the offline 

calculation of the observer gain L in equation (4.5) with the help of equation (4.6), due to 

the duality to the optimal control the Linear-Quadratic-Regulator algorithm in MATLAB 

can be used: L’=dlqr(A’,C’,Q,R). The error and performance index are defined as 

Q=diag(1000,100,10,0.1,0.01,0.01,0) and R= 106. Basically, when the error covariance R is 

weighted higher than Q, then the measurement 𝑤(𝑥𝑠2) is trusted less, which results in a 

lower gain L. Examining equation (4.4), this means that the system equation is trusted more 

than the sensor data. In the observer’s system equation, the time-varying parts ∆M, ∆D, and 

∆K are neglected to guarantee small sampling times: 

𝐀 = [
0n×n In×n

−𝐌−1K    −𝐌−1D       
] (5.1) 

 

as also the input matrix B has to be time-invariant, it is transformed to  

𝐁f = [
𝟎𝑛×𝑛 𝟎𝑛×𝑛 

𝟎𝑛×𝑛 𝐌−1𝐈𝑛×𝑛 
] ,    𝐮f(𝑡) = [

𝟎𝑛×𝑛
−𝛙(𝑣𝑡)𝑚𝑔

]  (5.2) 

 

With 𝐮f(𝑡) now being the time varying input. For the implementation, the time-invariant 

system matrices are calculated and discretised offline in MATLAB and stored on the 

compactRIO controller. Figure 5.2 shows the modal coordinates extracted by this observer 

for mass m = 0.509 kg travelling with v = 0.55 m/s. The sampling time is 10 ms. It can be 

noticed that the model displacements have a very good alignment with the numerical model, 

whereas at the modal velocities only 𝑞1̇ can be calculated properly. Also an impulse is 

noticed when the mass leaves the structure.  
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Figure 5.2. Comparison of the modal coordinates numerical model (red continuous) and the 

measured signal (blue dashed). 

 

A numerical example for the full-state observer is presented next. The simply supported 

beam equipped with the electrodynamic shaker is considered. See section 2.2.3 for the model 

parameter. For simplicity the feedback gain K is calculated for the time-invariant structure, 

see equation (5.7). The weighting matrices are defined as R= 9 × 10−8 and 

Q = diag(1000, 100, 10, 0.1, 0.01, 0.01, 0). The beam mass system of equation (2.36) is 

discretised at every time step k.  

 

𝐱(𝑘 + 1) = 𝐀𝑚(𝑘)𝐱(𝑘) + 𝐁𝑚(𝑘)𝐮(𝑘) + 𝐁𝑓(𝑘)𝐮𝑓 +𝒘 

𝒚(𝑘) = 𝐂(𝑘)(𝐱(𝑘) + 𝒗 

(5.3) 

 

 

where w is the system noise vector and v is the measurement noise vector, which is expected 

to be Gaussian. Also the observer is represented in discrete time as a time-invariant system 

to simulate the implementation on the controller as 
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�̂�(𝑘 + 1) = (𝐀 − 𝐁𝐊 − 𝐋𝐂)�̂�(𝑘) + 𝐋y + 𝐁𝑓𝐮𝑓(𝑘) (5.4) 

 

where 𝐁𝑓 
 and 𝐮𝑓 are similar to the matrices of equation (5.2) with an additional zero added 

for the inclusion of the shaker dynamic in A.  

𝐁𝐟 = [
𝟎𝑛×𝑛 𝟎𝑛×𝑛 0

𝟎𝑛×𝑛 𝐌−1𝐈𝑛×𝑛 0
0 0 0

],    𝐮𝐟(𝑘) = [
𝟎𝑛×𝑛

−𝛙(𝑣𝑡𝑠𝑘)𝑚𝑔 
0

]  (5.5) 

 

As shown before in section 2.3 the dynamic amplification of the load might be small at small 

velocities and mass ratios. Hence a time-invariant observer might be sufficient. To update 

the time-variant system matrices A(k) at every time step, k would counteract the real-time 

ability but could be done offline in advance for certain times. Figure 5.3 summarizes the 

block chart of the time-varying system and the time-invariant observer control.  

 

 

Figure 5.3. Block chart of the time-varying (tv) system with the full-state time-invariant (ti) 

observer control. 

 

Additional measurement noise 𝒗 is added. From previous sensor data 𝑤(𝑥𝑠1) − 𝑤(𝑥𝑠3) error 

covariances 𝐑𝐧= [0.0365, 0.135, 0.0729]  × 10−10 𝑚2   were determined. The added 

noise is defined by the normal distribution 𝑣𝑖 = Ν(0,√Rn𝑖 ), where Rn𝑖 is the i-th element 
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of 𝐑𝐧. No system noise v is assumed so far. Figure 5.4 illustrates the mode shapes of the 

discrete time observer and compares it with the discrete time system states as well as with 

the states of the continuous system solved by the ODE solver in MATLAB. Note that also 

the state z can be observed.  

This type of time invariant state observer is suitable for this low mass and low speed. It 

should be noted that a sampling time of 0.2 ms is simulated, which might not be possible to 

accomplish on the actual compactRio controller. However, in this way a very good match of 

the observer states (blue dot-dashed) towards the continuous time modelled states (green 

continuous) can be accomplished. 

 

 

Figure 5.4. Mode shapes of the time-invariant controlled system simulated with the ode 

solver as a continuous system (green continuous), system states (red dashed), observer states 

(blue dash-dotted) mass m = 0.501 kg, speed v = 0.5 m/s. 

 

Figure 5.5 displays the time histories of the deflection response w(𝑥s2) of the discrete 

observer, of the discrete time system and of the continuous uncontrolled structure. The 

observer filters the added measurement noise and able to reduce the deflection response by 

27%. 
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Figure 5.5. Deflection responses 𝑤(𝑥𝑠2) of the controlled discrete system with added 

measurement noise (blue), the uncontrolled continuous structure (red) (right) and of the 

discrete observer (left). 

 

For larger, actual implementable sampling time 𝑇𝑠 = 5 ms it can be noticed in Figure 5.6 

that the system mode shapes differ drastically from the continuous time system. However, 

the observer (blue dot-dashed) can observe the modal displacements, the first modal velocity 

and the z state of the discrete system (red-dashed) with high accuracy. 

 

 

Figure 5.6. Comparision of the mode shapes of the continuously controlled system (green) 

with the discrete system modes (red dashed) and discrete time observer (blue dash-dotted) 

for the sampling time 𝑇𝑠 = 5 ms. 
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The reason for this large discrepancy between the continuous system (green continuous) and 

the discrete system (red dashed) lies inside the discrete time optimal control algorithm. For 

the previous example with 𝑇𝑠 = 5 ms it results in a gain vector of K= [-356.7 -6250 2760.8 

22.83 2.9 0.13 0.203]. Keeping in mind that the first two modes have the highest influence 

the displacement response one can notice that u=-Kx leads to a negative input voltage which 

worsens the deflection response drastically, see Figure 5.7 right. For the case of 𝑇𝑠 = 0.2 ms 

the gain vector is K=[3.09× 1012 2.181× 1012 3.45× 1011 -8.861× 107 -4.01× 107 9.54×

1011 16.46] clearly the first three elements have large positive values, resulting in positive 

input voltage for the actuator as seen in Figure 5.7 left.  

 

 

Figure 5.7. Input voltages u calculated by the discrete time observer for 𝑇𝑠 = 0.2 ms (left) 

and 𝑇𝑠=5 ms. 

 

A continuous plant controlled by a discrete controller is called a sampled data system [105]. 

It is stated in [105–107] that the discrete regulator may lose controllability if the sampling 

periodicity interacts with the natural frequencies of the open-loop system A, which has 

complex conjugate eigenvalues.  

 

𝑇max =
𝜋

𝜔𝑚𝑎𝑥
=

𝜋

Im[𝜆]max
 (5.6) 

 

For the studied simply supported beam the first three Eigen frequencies are 𝝎 = [24 72 

159]× 2𝜋 𝑠−1, where the i-th element of 𝝎 is the i-th eigen frequency, which results in the 
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corresponding maximum sampling times vector 𝐓max = [0.02 0.007 0.0032] s. Though when 

using 3 modes the sampling time should be lower than 3.2 ms so that the optimal control can 

be designed. It also has to be mentioned that if only the first mode is utilised to calculate the 

optimal discrete time regulator with 𝑇𝑠= 10 ms this still results in a negative control voltage 

history. It might difficult to control the system even close to the maximum sampling times 

𝐓max  [108]. 

Another influence on the feasibility of the solution is the location of the actuator, which is 

with 𝑥𝑎 = 0.5 m not optimal. The first mode has its highest deflection in the middle of the 

beam at x = 0.3 m. If 𝑥𝑎 is chosen to be 𝑥𝑎 = 0.25 m, only the first two modes are used and 

𝑇s = 10 𝑚𝑠, K = [215.07 -1665.74 -0.53 0.93 0.015], which results in an input voltage 

illustrated in Figure 5.8 right. 

 

 

Figure 5.8. Comparision of the deflection history  at 𝑤(𝑥𝑠2) for the time-invariant 

continuous control (green continuous), for the dicrete observer (red dashed), for the discrete 

system (blue dash-dotted) and the continuous uncontrolled strucutre (black dashed) (left), 

input voltage of the discrete time-invariant observer (right). 

 

It can be noticed that the errors between the continuous modes and the discrete modes are 

still high in these configurations, see Figure 5.9. Further it can be seen that the state velocities 

of the discrete time-variant system and the time-invariant observer differ. 
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Figure 5.9. Modal coordinates of the continuous system (green continuous) and the discrete 

system (red dashed) and the observer (blue dot-dashed) for 𝑇𝑠=10 ms and 𝑥𝑎 = 0.25 m. 

 

Although the discrete time optimal regulator might not be a suitable method to control the 

sampled data system other techniques could be applied like pole placement or other hardware 

could be used with faster possible sampling times.  

Up to this point the error due to discretisation is too high and a reliable control of the structure 

with 𝑥𝑎 = 0.5 𝑚 cannot be accomplished by this full state observer technique and high 

sampling times of at least 𝑇𝑠 = 5𝑚𝑠. The error due to discretization is too high.  

 

Because of the easier way to implement the estimation based on mode shapes and the 

possibility to implement the finite time optimal control, this technique will be utilised in the 

further study. It can be utilised for the feedback control and the states can be estimates 

without the knowledge of the load’s mass and velocity. Also, the mode shapes obtained for 

the open loop system with the time-invariant observer look promising, the implementation 

of an integrated full-state feedback and observer for the time-varying system proved to be 

challenging.  
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5.2 Experimental Results for the Optimal Control Implementation  

 

The following results of the finite-time optimal control for the simply supported beam were 

published in [28]. The optimal gains of the finite time-varying and time-invariant control are 

calculated numerically in MATLAB and stored on a CompactRIO embedded controller. 

With input from the laser displacement sensors (optoNCDT 1700 and optoNCDT 1610), the 

states are estimated in real time every 15 ms and the output voltage is calculated and sent to 

the power amplifier (Data Physics PA30E) for the actuation of the electrodynamic shaker 

(Data Physics V4).  

For the time-invariant control, the constant gain is calculated, neglecting the time-varying 

parts in system equation (2.36). 

 

𝐀 = [

0n×n In×n 𝟎𝑛𝑥𝑖
−𝐌−1K    −𝐌−1D       γ𝐌−1ψ(xa ) 
𝟎1×𝑛 𝟎1 ×𝑛 −𝛼 

];           𝐁 = [

𝟎𝑛×1
𝟎𝑛×1
𝛽
]; (5.7) 

 

 

The actuator is located at xa= 0.5 m. The error and performance index are defined as 

Q=diag(1000, 100, 10, 0.1, 0.01, 0.01, 0) and R = 0.00009 for the time-invariant control as 

well as for the time-varying control. The terminal cost matrix is defined as F = Q. 

The displacement response of the supporting structure is mainly induced by the first mode. 

This knowledge was utilised by defining the error performance matrix Q, setting higher 

weight toward the first modes.   

The weight of the moving masses used in the experiments ranges from 0.261 kg to 0.509 kg. 

The masses are accelerated by a ramp and move over the simply supported beam structure 

at approximately constant speed. The value of the speeds used is between 0.3 ms−1 and 0.55 

ms−1.The actuator is located at x𝑎 = 0.5 m, which is not the optimal position in terms of 

maximum deflection reduction making it even more necessary to employ the time-varying 

control solution[29]. The performance of the control methods is assessed by using the 

maximum absolute value of the displacement at the sensor location xsi.  

Of the three available sensor locations xs2 = 0.25 m is chosen for further evaluation of the 

control methods. It displays the maximum deflection of the beam, as seen in Figure 2.7, as 

well as the deflection at the moving coordinate vt (Figure 5.10). 
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Figure 5.10. Numerical deflection of the moving coordinate vt of the mass m = 0.5 kg 

travelling with velocity v = 0.3 ms−1, no control (NC), time-invariant control (Ti) and time-

varying system control (Tv). 

 

Following Figure 5.1 it is clear that a full state feedback controller cannot be used given the 

lack of accuracy of the state estimation. Also, the controllability matrix of the system (15) is 

not full rank which indicates that not all of the states might be controllable as well. The best 

matches of the modal coordinates towards the numerical model are achieved for the 

estimated states [𝑞1 𝑞2 �̇�1], see Figure 5.1. For the convergence of the calculation of the 

finite time optimal control u(t) three modes are needed.  

It has to be mentioned that already two modes can represent very accurately the deflection 

response of a one span beam where no electrodynamic shaker is added to the structure. The 

difference in the maximum response along the moving coordinate is 1.14% , see Figure 5.11.  

 

Figure 5.11. Time history of the deflection respone of the simply supported beam, m = 0.261 

kg, v = 0.55 ms-1. 
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If an electrodynamic shaker is added to the structure, more modes might be needed to 

represent the deflection response accurately. The actuator is modelled with a stiffness k = 

3600 Nm. With a very stiff actuator the beam behaves like a two-span beam, see section 

2.1.1 For this kind of structure at least three modes are needed to represent the deflection 

response accurately. Figure 5.12 represents the deflection response along the moving 

coordinate for a mass m = 0.261 kg moving at a speed v = 0.55 ms-1.  

 

 

Figure 5.12. Deflection response mass m = 0.261 kg along the moving coordinate of the 

beam modelled with six modes (red continuous), two modes (blue dash-dotted) and three 

modes (black dashed). 

 

The influence on the deflection reduction, using a reduced order controller, is considered for 

the mass m = 0.261 kg moving at a speed v = 0.55ms-1. Three runs were taken per method. 

The value for the maximum displacement was averaged over the three runs. Figure 5.13 

displays the experimental relative maximum deflection at sensor xs2 for the time-invariant 

control method (left) in comparison with the time-varying control method (right) using 

different combinations of controlled states. It can be observed that a time-invariant controller 

only using one state 𝑞1 provides a reduction of the maximum deflection of about 15%. The 

deflection reduction decreases even more when using more states leading to even a slight 

increase when using all states, which might be due to inaccuracies of the mode estimation. 

In contrast, the time-varying control method is applicable for the states [𝑞1 𝑞2 �̇�1] as well, 

with a reduction of about 15%. Using only the first state results in the best deflection 

reduction at xs2 of about 20%. Although using further states results in a complete solution of 
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the problem, due to the lack of accuracy of the estimated states, the beam deflection is not 

improved. A different value of Q with an even higher weight towards the first modal 

displacement and modal velocity might lead to a higher reduction of the deflection if more 

of the states are used. 

 

 

Figure 5.13. Relative experimental maximum deflection measured at 𝑥𝑠2 normalised to the 

uncontrolled structure (nc) of the time-invariant control (Ti) (a) and the time-varying control 

(Tv) (b) from using one state to using all states. 

 

Figure 5.14 illustrates the theoretical deflection at 𝑥𝑠2 using different states with the two 

control approaches. In theory using states 𝑞1 𝑞2 𝑞1̇ with the time-varying control improves 

the deflection response at 𝑥𝑠2 slightly better, compared to using only 𝑞1. Although using 

only 𝑞1 with the tv control leads to the better results, see Figure 5.13 in the following 

investigation states 𝑞1 𝑞2 𝑞1̇ are used. In the beginning it was the aim to include the modal 

velocity 𝑞1̇. Velocity feedback increases the damping in the system. In theory the use of the 

second mode 𝑞2 improves the deflection response as well slightly, Figure 5.14. The 

discrepancy between the theoretical and the experimental results in this regard might have 

its origin in the inaccuracy of the estimation technique, see Figure 5.1. If all three modes are 

used, the need for the tv control becomes very clear. The ti control worsens the deflection at 

𝑥𝑠2, see Figure 5.15. The deflection response only improves around the actuator location 𝑥𝑎.  
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Figure 5.14. Theoretical relative maximum deflection measured at 𝑥𝑠2 normalised to the 

uncontrolled structure (nc) of the time-invariant control (Ti) (a) and the time-varying control 

(Tv) (b) from using one state to using all states. 

 

Although it might be better to use only state 𝑞1 for the maximum reduction of the deflection, 

it was also shown that more modes can be included in the control approach, which might be 

beneficial for higher speed or at multi span beams.  

 

Figure 5.15. Deflection response mass m = 0.261 kg along the moving coordinate of the 

beam modelled with all three modes no control (black dotted), time-invariant (red dashed) 

and time-variant (blue dash-dotted). 
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Figure. 5.16 shows the time histories of the varying gains k1, k2 and k4 corresponding to the 

states [𝑞1 𝑞2 �̇�1]. The tests were run for the masses m = 0.261 kg, m = 0.371 kg and m = 

0.509 kg travelling at the speed v = 0.3 ms-1. Towards the time of t = 0.8 s the travelling 

mass reaches the moving coordinate 𝑣𝑡 = 0.24 m where the beam has the highest deflection 

(see Figure 5.10).  

 

 

Figure. 5.16. Development of the time-varying gains k1(t) (a), k2(t) (b) and k4(t) (c) for the 

three different masses m = 0.261 kg (blue dotted), m = 0.371 kg (red dashed) to m = 0.509 

kg (black continuous) at velocity v = 0.3 ms-1. 

 

Consequently, the gains k1 and k2 increase up to this time. With that, a higher actuation is 

achieved when the mass excites the beam most. Subsequently the gains decrease. When the 

mass passes by 𝑥𝑎 = 0.5 m the gains k1 and k2 reach their minimum. The least amount of 

force is required to counteract the influence of the moving mass. In this way, an effective 

and stable control is achieved. In the following investigations the states [𝑞1 𝑞2 �̇�1] are used 

for control. This represents a fair compromise between completeness of the solution and 

reduction of the structural deflection.  

To assess the stability of the time-varying system (A(t)-B(t)k(t)), where the proposed 

reduced order controller is applied, its eigenvalues are calculated at certain time steps. Figure 

5.17 illustrates the course of the first four resulting complex conjugate pole pairs. During the 

time the mass m = 0.509 kg travels with v = 0.55 ms−1 over the beam the Eigenfrequencies 

of the modes change, the poles circle in the negative left half plane around the time-invariant 

poles (black crossed).  
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Figure 5.17. Time history of the poles of the time-varying controlled system, first and third 

mode (blue continuous), second and fourth mode (red dashed), poles of the time-invariant 

system (black crossed), m = 0.5 kg, v = 0.55 m/s. 

 

Figure 5.18 shows the poles of the simulated system with the reduced order controller and a 

travelling mass m = 0.509 kg. For the increased travelling speed of 5.6 m/s one pole pair 

moves into the real half plane causing instability. At this margin the full state controller stays 

stable with all poles in the negative plane. Especially the first dominant pole pair moves less 

towards the imaginary axis. Higher velocities and weights also cause with the full-state 

control instability. Likewise increasing the mass over m = 6.5 kg with a low speed of 0.55 

m/s lets some poles move into the real half plane. In this way the theoretical stability margins 

of the system can be simulated. The additional actuator pole located at -10000 on the real 

axes is not shown in the figures.  
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Figure 5.18. Comparison of the first four poles of the time-varying system with the reduced 

order controller (left) and with the full state controller (right) unstable poles (black asterisks), 

m = 0.5 kg, v = 5.6 m/s. 

 

In order to assess the reduction of the maximum deflection at sensor location xs2 depending 

on the used control method three masses were tested at two speeds v = 0.3 ms-1 and v = 0.55 

ms-1. Five runs for each mass were averaged for the calculation of maximum deflections. 

The relative maximum deflections in Table 5.1 show a small reduction for the time-invariant 

control of around 3% for all the masses. The time-varying control shows a better 

performance for all the tests with a deflection reduction from 12% for m = 0.261 kg to 17% 

for m = 0.509 kg, with a higher reduction for higher masses.  

Figure 5.19 illustrates the results obtained for mass m = 0.509 kg with a travelling speed of 

v = 0.3 ms-1. It also shows a good agreement between the numerically calculated results and 

the experimentally measured deflection w(xs2). There is a small mismatch after the mass 

leaves the beam due to the not modelled back electro-magnetic force (Back EMF) of the 

electromagnetic shaker [94].  
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Table 5.1. Relative maximum deflection at 𝑥𝑠2 for different masses travelling at v =0.3 

ms−1in percent. 

mass m in kg no control time-invariant  time-varying 

0.261 100 96.9 88 

0.371 100 97.7 85.7 

0.509 100 96.6 83.2 

 

 

 

Figure 5.19. Mass m = 0.509 kg moving with v = 0.3 ms-1, comparison of the displacement 

w(xs2) for the numerically calculated data (blue continuous) and the experimentally measured 

data (red dashed), for the case without control (a), with the time-invariant control (b),with 

the time-varying control (c) and the values of the relative maximum deflection in 

percent (d). 

 

Figure 5.20 illustrates the time history of the experimental control inputs 𝑢(𝑡) belonging to 

this example. It is noticed that the time-variant control has a high actuation especially in the 

first half of the travelling time whereas the time-invariant control is much less active in the 

first half. The voltage at the electrodynamic shaker is lower than the time history of the 

voltage at the compactRio. This might be due to back-EMF. After the mass has left even 

negative forces can be noticed which pull the beam down, see also Figure 5.19. 
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Figure 5.20. Time history of the experimentally measured control input at the compactRio 

(left) and at the electrodynamic shaker (right), time-invariant (blue continuous) and time 

varying (red dashed). 

 

Table 5.2 shows the relative maximum deflections for three masses moving with a higher 

speed v = 0.55 ms-1. The invariant control reduces the maximum deflection only by 1% for 

mass m = 0.261 kg and by 8% for mass m = 0.509 kg. In contrast, the time-varying control 

achieves a reduction of approximately 18% for mass m = 0.509 kg. Again, it can be observed 

that the control is more effective for higher masses, as a higher deflection results in higher 

actuation. The results are similar for the two investigated velocities.  

 

Table 5.2. Relative maximum deflection measured at 𝑥𝑠2 for different masses travelling at v 

= 0.55 ms-1 in percent. 

mass in kg no control time-invariant time-varying 

0.261 100 99.2 87.2 

0.371 100 97.1 83 

0.509 100 92 82.1 

 

Figure 5.21 shows one example of the beam deflection at sensor location xs2 when mass m 

= 0.261 kg moves with velocity v = 0.55 ms-1. The measured deflections show a good match 

with the numerical model for all the tests with the only discrepancy observed after the mass 

leaves the structure due to back EMF of the electro-dynamic shaker. The time-varying 
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controller reaches a reduction of 13%. A stable control with reduction of the beam deflection 

is achieved for different masses travelling at different speeds.  

 

 

Figure 5.21. Mass m = 0.261 kg moving with v = 0.55 ms-1, comparison of the displacement 

w(xs2) for the numerically calculated data (blue continuous) and the experimentally measured 

data (red dashed), for the case without control (a), with the time-invariant control (b),with 

the time-varying control (c) and the values of the relative maximum deflection measured at 

𝑥𝑠2 in percent (d). 

 

The reduction of the velocity might be difficult to achieve with this type of actuator. Figure 

5.22 shows that the time-varying control does not lead to an increase of the positive velocity 

at sensor location 𝑥(𝑠3), whereas for the time-invariant control a slight increase can be 

noticed. The negative velocity increases from -2 ms−1 for the uncontrolled case to -2.6 ms−1 

for the time-invariant control and to -2.4 ms−1 for the time-variant control. Additional 

oscillations can be noticed at all three cases compared to the numerical results. These 

differences could be due to the delay of the low-pass filter and the digital control system and 

the complex not modelled shaker dynamics.  
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Figure 5.22. Mass m = 0.261 kg moving with v = 0.55 ms-1, comparison of the velocity(vs3) 

for the numerically calculated data (blue continuous) and the experimentally measured data 

(red dashed), for the case without control (a), with the time-invariant control (b),with the 

time-varying control (c). 

 

 

5.3 Experimental Results for Variable Control Gain 

 

Following the experimental tests, it becomes clear that the performance of the controller 

depends on the weight of the moving mass. This means that a control gain that was designed 

to achieve a good reduction for a heavy mass may provide a too high control effort for a 

smaller mass whereas a controller gain designed for a small mass may not be enough to 

provide a good reduction of the deflection for a heavier mass. Therefore, in terms of absolute 

deflection, the control effort required to achieve a prescribed absolute maximum deflection 

needs to change for the case when a small mass travels along the beam as compared to the 

case when a heavier mass acts upon the beam. 

In this respect a gain scheduling of the control gain either as k(m) a function of mass or as 

k(m,v) a function depending on the mass m and speed v is tested. The masses used are m1  = 

0.261 kg, m2 = 0.322 kg, m3 = 0.371 kg and m4 = 0.509 kg.  
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Figure 5.23 shows the effect of using the specific scheduled time-varying gains k(m1), k(m2), 

k(m3) and k(m4), calculated taking into account every mass, compared with the time-varying 

gain k(m1) determined for mass m1 and subsequently used for all masses. In this way the 

control switches to the specific control gain, therefore a heavier mass will have a higher 

control gain that will confine the deflection of the beam within a prescribed limit (in this 

case about 1 mm).  

Figure 5.23 shows a gradual reduction of the deflection as the gain increases with the weight 

of the mass. With this approach, where the gains are scheduled taking into account the value 

of the mass, the relative maximum deflection is 10% lower compared to the unscheduled 

control using the gain of the first mass k(m1) all over, see Figure 5.24. The performance of 

this method can be improved if the gains are determined taking into account the moving 

mass into the system equation as an augmented system, introduced in [29]. The gains can be 

scheduled based on deflection values in the first phase. On a real bridge-like structure, image 

processing or a scale can identify the actual load case of m and select the optimal gain for 

control.  

 

 

Figure 5.23. Effect of using time-varying gain k(m1) (left) and scheduled for each mass 

specifically (right) k(m1) – k(m4). 
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Figure 5.24. Relative maximum deflection for mass m2 (a) and mass m4 (b) using gain k(m1) 

(blue) in comparison to using the specific gains k(m2) or k(m1) (red). 

 

Another important factor of the proposed control strategy is the ability to adapt to different 

velocities of the mass. The time-varying gain vector k(t,m) is calculated beforehand for a 

predetermined velocity at equal time steps and stored on the controller. By measuring the 

actual velocity in real time using two induction sensors before the mass enters the structure, 

the leaving time tf can be determined exactly. With the given tf the control action is stretched 

or compressed towards the given travelling time of the mass. The gain is then interpolated 

between the precalculated gain values for the actual position of the mass. Figure 5.25 

illustrates the principle of the 1D interpolation in LabView, for the actual time 𝑡𝑜𝑏, the 

leaving time 𝑡𝑓, number of elements 𝑥𝑓 is the actual element x is calculated by  𝑥 = 𝑡𝑜𝑏  
𝑥𝑓

𝑡𝑓
. 

With that x the interpolated 𝑘𝑖 results. This procedure is accomplished in a loop for all 

elements of 𝐤.  

In Figure 5.26 it can be seen how the control needs to adapt to different speeds ranging from 

v = 0.22 ms−1to v = 0.95 ms−1. The gain k1(m4) calculated in real time coincides well with 

the numerically calculated gain.  

In the previous section the finite time optimal control approach was validated 

experimentally. The  gain scheduling control approach was studied which adopts the gain to 

the mass weight and speed. In the next section the moving mass will be included into the 

system equation to form an augmented system.  
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Figure 5.25. Principle of 1D interpolation in LabView. 

 

 

 

Figure 5.26. Deflection w(xs2), no control action (NC) and with different speeds v (a); time-

varying gain 𝑘1(𝑚4) (b) calculated in real-time (blue dashed) and numerically (red 

continuous). 
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5.4 Experimental Validation of the Optimal Control by an Augmented System  

 

Up to this stage a particularity of the moving load problem was neglected. The modal force 

𝑚𝑔𝛙(𝑣𝑡) was not considered in the control synthesis. The disturbance matrix 𝐁𝐟 in (2.36) 

was not considered in the calculation of the optimal gain. Only the system matrix 𝐀(𝑡) and 

the input matrix 𝐁(𝑡) are part of the calculation of the Pythagorean in equation (3.8) and the 

optimal gain in equation (3.9). By including the disturbance matric 𝐁f into the system matrix 

A(t) the augmented system matrix is formed as presented in [29]: 

 

𝐀(𝑡) = 

 

[
 
 
 
 

0n×n In×n 0𝑛𝑥1 0𝑛𝑥1

−(𝐌 + ∆𝐌(𝑡))
−1

(K+𝐊𝐚+∆K(𝑡)) −(𝐌 + ∆𝐌(𝑡))
−1

(D+𝐃𝐚+∆D(𝑡)) γ(𝐌 + ∆𝐌(𝑡))
−1
ψ(xa) -(𝐌 + ∆𝐌(𝑡))−1ψ(vt)

01×n 01×n −𝛼 0
01×n 01×n 0 0 ]

 
 
 
 

 

                    Bm = [

0𝑛×1
0𝑛×1
𝛽
0

];                                                                                (5.8) 

 

 

This form introduces a new state 𝑞1. The state variable changes herein to [𝒒(𝑡) �̇�(𝑡) 𝑧 𝑞1] 

with the initial conditions [𝒒(0) �̇�(0) 𝑧(0) 𝑔 × 𝑚]. In this way the disturbance of the load 

becomes part of the system. Depending on the mass an additional gain is calculated by the 

finite time optimal control approach.  

In the following, this approach is validated experimentally. Five runs were taken per method. 

The average maximum deflections at 𝑥𝑠2 at 𝑣 = 0.3 ms−1 are listed in Table 5.3 for the 

previously presented time-varying method and the augmented time-varying control in 

comparison to the uncontrolled structure. The relative maximum deflection at 𝑥𝑠2 ranges 

from 66.3% for 𝑚4 = 0,509 kg to 67.12% for 𝑚1 = 0.261 kg when using the augmented 

time-varying control. Table 5.4 lists the relative maximum deflection at 𝑥𝑠2 for the control 

methods now for speed v = 0.55 ms−1. The maximum deflection is around 62% for all three 

masses for the augmented time-varying control. The maximum deflection is up to 20% lower 

compared to the original time-varying control. 
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Table 5.3. Relative maximum deflection at 𝑥𝑠2 for different masses travelling at v = 0.3 

ms−1 in percent for the uncontrolled system.  

mass m in kg no control time-varying tv augmented 

0.261 100 88 67.12 

0.371 100 85.7 67.85 

0.509 100 83.2 66.29 

 

 

Table 5.4. Relative maximum deflection at 𝑥𝑠2 for different masses travelling at v =0.55 

ms−1in percent. 

mass m in kg no control time-varying tv augmented 

0.261 100 87.2 62.83 

0.371 100 83 61.82 

0.509 100 82.1 62.43 

 

 

Figure 5.27 illustrates the time history of the deflection 𝑤(𝑥𝑠2) numerically (red dashed) and 

experimentally obtained (blue continuous) for the augmented control (Aug) system 

compared with the time-varying control (Tv) and the case of an uncontrolled structure. Mass 

𝑚1 is moving on the structure with a low speed of v = 0.3 m/s. The maximum deflection of 

the augmented system is 33% percent lower compared to the uncontrolled structure.  
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Figure 5.27. Mass 𝑚1 = 0.261 kg moving with v = 0.3 ms-1, comparison of the displacement 

w(xs2) for the numerically calculated data (blue continuous) and the experimentally measured 

data (red dashed), for the case without control (a), with the time-variant control (b),with the 

time-varying augmented control (c) and the values of the relative maximum deflection 

measured at 𝑥𝑠2 in percent (d). 

 

Figure 5.28 compares the deflection response 𝑤(𝑥𝑠2) in the augmented system with time-

varying control and the uncontrolled structural response for the case of mass 𝑚4= 0.509 kg 

moving with a speed 𝑣 = 0.55 m/s. The maximum deflection is reduced by 38%. The gain 

can be switched in the same manner as presented in section 5.3. The switching of the gains 

is done manually in the LabView front panel. Due to the augmented system a higher impact 

of the mass specific gains on deflection reduction can be noticed in Figure 5.29. The 

adaptation toward the speed can be done similarly in real-time as presented before.  

The augmented control approach proved very efficient with a reduction of the maximum 

deflection of about 38%. The disturbance force gets included into the feedback as a state 

variable. This state variable is not prone to sensor noise, though the additional gain does not 

destabilize the system.  
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Figure 5.28. Mass 𝑚4 = 0.509 kg moving with v = 0.55 ms-1, comparison of the displacement 

w(xs2) for the numerically calculated data (blue-continuous) and the experimentally measured 

data (red dashed), for the case without control (a), with the time-variant control (b),with the 

time-varying augmented control (c) and the values of the relative maximum deflection 

measured at 𝑥𝑠2 in percent (d). 

 

 

 

Figure 5.29. Effect of using time-varying gain k(m1) (left) and scheduled for each mass 

specifically (right) k(m1) – k(m4) for the augmented control. 
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5.5 Concluding Remarks  

In chapter 5, the finite time optimal control approach was validated on a small-scale rig of a 

simply supported beam. When using state feedback control methods it is crucial to estimate 

the states with sufficiently high accuracy in the given sampling time. Especially the 

estimation method using the mode shapes proved efficient, whereas the full-state observer, 

especially the discrete optimal control approach failed because sufficient small sampling 

times were not reachable by the hardware.  

The finite time optimal control approach was implemented successfully by using a reduced 

number of estimated states. Especially the augmented optimal control was able to 

accomplish the task of reducing the beam deflection. Further it is possible to schedule the 

precalculated gains to a specific speed in real-time as well as to a given mass. These can be 

a foundation for an application of a vibration control, which can react to specific load cases 

of a moving load structure.  

In the next chapter a proportional feedback control is validated experimentally using MFC-

actuators on a simply supported beam as well as on two-span continuous beam. 
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 Case Study 2: Proportional Displacement Feedback Control  

 

A straightforward control method is the proportional feedback control illustrated in Figure 

6.1. The displacement 𝑤(𝑥𝑠𝑖, 𝑡) is measured at the location collocated to the actuator. 

Additionally, to smoothen the displacement signal a Butterworth filter of 10th order with a 

cut-off frequency of 10 Hz is applied. The input for the plant u is calculated by the product 

of the filtered displacement, the control gain 𝑘 and the gain of the amplifier𝑔𝑎, see equation 

(6.2).  

 

 

Figure 6.1. Block diagram of the dispalcement feedback control for the one-span beam. 

 

Preumont emphasises in [42] the importance of a collocated sensor actuator pair. This leads 

to an alternating pole-zero pattern whereas non-collocated systems can lead to pole zero 

flipping. The property of colocation can guarantee stability for a wide range of single-input-

single output control systems even if the systems are subject to large perturbations. This is 

because the root locus keeps its general shape and stays entirely within the left half plane. 

Generally the gain should be raised carefully to see experimentally, if the system becomes 

unstable. By that, reaching the gain margin, the system might become unstable only for a 

short period of time, when the mass is traveling on the structure and in is not excited in 

destructive resonance. Stability can also be tested for the time-invariant system with well-

known methods. The open-loop system has theoretically a gain margin of 2.6783e+06 and a 

phase margin of ∞. Robustness with the influence of the moving mass will be tested with 

experimental tests.  

The equation of motion of a simply supported beam controlled by an MFC- actuator is  



96 

 

(𝐌 + ∆𝐌)�̈� + (𝐊 + ∆𝐊)𝐪 = 𝑢(𝑡)𝑀𝑝(−𝛙′(𝑥1) + 𝛙′(𝑥2))  − 𝑁𝛙(𝑣𝑡) (6.1) 

 

The input u(t) is calculated by  

𝑢(𝑡) = −𝑘 𝑔𝑎 𝑤(𝑥, 𝑡) 
(6.2) 

 

where 𝑔𝑎 is the gain of the amplifier. 𝑤(𝑥, 𝑡) is taken in mm.  

An extension of the proportional displacement feedback is the cubic displacement feedback. 

𝑢(𝑡) = −𝑘 𝑔𝑎 𝑤(𝑥, 𝑡)
3 

(6.3) 

 

This feedback rule might be more effective for higher disturbances and can set the maximum 

deflection under a specified limit. For lower disturbances less control action is applied.   

 

 

6.1 Simply Supported Beam Controlled by a Piezoelectric Actuator 

 

The experimental set-up presented in section 0  is used and the linear displacement feedback 

control equation (6.2) and the cubic displacement feedback control equation (6.3) are 

utilised. The deflection 𝑤(𝑥𝑠2) at sensor location 𝑥𝑠2 = 0.3 m is taken and fed back to control 

the structure. A constant control gain k = 2 is utilised for both control approaches.  

In order to assess the reduction of the maximum deflection at sensor location 𝑥𝑠2 the four 

masses 𝑚1 -𝑚4 were tested at speeds between v = 0.3 m/s and v = 0.55 m/s. The slightly 

different speeds between the runs might not have a very high influence on the deflection 

results. Previous results in Table 5.1 and Table 5.2 showed only a very slight difference 

between the speeds of v = 0.3 m/s and v = 0.55 m/s, for the maximum deflection. 

Nevertheless, higher vibrations for higher travelling speeds v > 0.5 m/s for 𝑚4 can be noticed 

when the mass is leaving, see Figure 6.3. 
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Figure 6.2 illustrates the time history of displacement responses 𝑤(𝑥𝑠2) for mass 𝑚1 = 0.261 

kg, comparing uncontrolled structure, the liner feedback control and the cubic feedback 

control. A good match between the numerical and the experimental data is accomplished. 

As expected, the cubic control is less efficient for this small mass. The maximum 

displacement is reduced by approx. 5% whereas the linear control reduces the maximum 

deflection by approx.. 10%.  

 

 

Figure 6.2. Mass 𝑚1 = 0.261 kg moving on the structure, comparison of the displacement 

𝑤(𝑥𝑠2) for the experimentally measured data (blue continuous) and the numerically 

calculated data (red dashed), for the case without control (a), with the liner displacement 

feedback control (b) and the cubic displacement control (c). 

 

Figure 6.3 shows a different picture for mass 𝑚4 = 0.509 kg. At this higher mass the cubic 

control proves more efficient. The maximum deflection is reduced by approx. 18%, whereas 

the linear control accomplishes a reduction of the maximum deflection of 10%. The cubic 

control might not be able to reduce the vibrations after the mass is leaving, as the numerical 

data indicates. The structure vibrates at approximately 17 Hz. Note that in the experimental 

data these vibrations are filtered.  
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Figure 6.3. Mass 𝑚4 = 0.509 kg moving on the structure, comparison of the displacement 

𝑤(𝑥𝑠2) for the experimentally measured data (blue continuous) and the numerically 

calculated data (red dashed), for the case without control (a), with the liner displacement 

feedback control (b) and the cubic displacement control (c). 

 

It can be noticed that the structure tends to oscillate for the cubic control with 𝑚4 at low 

speed = 0.28 ms−1 , see Figure 6.4 right. Comparing the unfiltered displacement responses 

𝑤(𝑥𝑠1) and 𝑤(𝑥𝑠3) with the filtered response 𝑤(𝑥𝑠2) one can notice on one hand that the 

sensor noise is filtered. On the other hand, a delay is added to the system which might be the 

reason for possible instabilities. Also the digital computer adds delay to the system. The 

control cannot react fast enough to the vibrations with a frequency of approximately 𝑓 =10 

Hz. As Stancioiu [41] shows, an additional lead compensator can increase the phase margins 

and stabilize the system. The proportional control decreases the damping of the poles 

slightly. A proportional derivative control might be more suited as the poles move towards 

increased damping. Simulations done with the help of the MATLAB SISO tool including 

the 10th order Butterworth low-pass filter show no improvement by using a PD or lead 

compensator. The oscillations could be reduced by reducing the cut-off frequency of the 

low-pass filter to 𝑓3𝑑𝐵= 5 Hz. 

Preumont [42] recommends using an analogue anti-aliasing filter before the analogue to 

digital converter of the controller to avoid aliasing. This should be considered in future 

studies. The utilised analogue-to-digital converter (ADC) module NI 9222 does not feature 
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an anti-aliasing filter. Other ADC modules have an anti-aliasing filter in-build. In contrast 

to the finite time optimal control the proportional control excited all the modes of the 

structure with the same proportional gain, which could cause instability as well. A more 

advanced control approach, like the previously presented finite time optimal control seems 

necessary.  

 

 

Figure 6.4. Time history of the displacement responses experimental (blue continuous) and 

numerical (red dashed) 𝑤(𝑥𝑠1) - 𝑤(𝑥𝑠3) comparing the uncontrolled structure with the cubic 

displacement rule controlled structure (right), mass 𝑚4, k = 2 at v= 0.28 m𝑠−1. 

 

The saturation limit of 𝑢𝑚𝑎𝑥  <= 1500V was not reached, see Figure 6.5. Measurements of 

the input voltage 𝑢(𝑡) were taken from the compactRio controller and multiplied by the 

amplifier gain 𝑔𝑎 = 200 for the purpose of illustration. 
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Figure 6.5. Control input 𝑢1(𝑡) for the cubic controlwith k = 2 and 𝑚4. 

 

Figure 6.6 summarises the relative deflection reduction at sensor location 𝑥𝑠2 for the 

different masses 𝑚1 −𝑚4 for the two control approaches and the applied gain k=2. The 

relatively constant reduction with the linear gain from 9% to 11% can be noticed. The cubic 

control approach constantly increases the relative displacement reduction from 5.5% to 

18.5%. As shown in Figure 6.4 the result for 𝑚4 for the cubic control should be viewed with 

caution as additional oscillations are added.  

 

Figure 6.6. Comparision of the reduction of deflection for the linear control (blue) and for 

the cubic controll (red) for masses 𝑚1 = 0.261 kg, 𝑚2 = 0.322 kg, 𝑚3= 0.371 kg and 𝑚4 = 

0.509 kg. 
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It can be noticed that the linear control is more effective for lower masses (𝑚1 and 𝑚2). 

Whereas the cubic control is more effective at higher masses (𝑚3 and 𝑚4). To limit the 

control effort for small masses and to have a more effective control for heavy masses a 

simple gain scheduling approach could be implemented, see Figure 6.7. One could think of 

a gain scheduling approach and use the linear control with k = 2 for masses up to m= 0.345 

kg. The linear gain is then switched to 𝑘 = 3 up to a mass of m= 0.45, where the gain is 

switched again to 𝑘 = 3.6. The mass margins for switching were captured numerically. In 

this way a more efficient gain scheduling control could be accomplished. Figure 6.7 

illustrates this procedure. Future studies could test this approach experimentally.  

 

 

Figure 6.7. Gain scheduling approach for the linear displacement control (blue) and for the 

cubic displacement control (black). 

 

In the previous section, it was also shown, that a straightforward displacement feedback 

control is able to reduce the structural maximum deflection of the simply supported beam by 

about 8 % to 13 %. For mass 𝑚4 the limit to apply this approach was shown. A modal filter 

could be applied to actuate only the first mode of the structure.  
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6.2 Two-Span Continuous Beam Controlled by Piezoelectric Actuators 

 

The cubic displacement feedback is implemented for the experimental setup of the two-span 

beam depicted in section 2.1.3 . The displacement sensors are now collocated to the MFC 

actuators at 𝑥𝑠1 = 0.3 m and 𝑥𝑠3= 0.9 m. A third additional sensor measures the displacement 

at 𝑥𝑠2 = 0.45 m. A low pass filter with 𝑓3𝑑𝐵 = 20 Hz is utilised at 𝑥𝑠1 and 𝑥𝑠3. A constant 

gain k = 2 is applied in equation (6.3) to actuate the two piezoelectric actuators. Figure 6.8 

illustrates the time history of the experimentally and numerically obtained displacement data 

sets 𝑤(𝑥𝑠1) - 𝑤(𝑥𝑠3) for the uncontrolled two-span beam (NC), the linear controlled 

structure and the by the cubic displacement rule controlled structure. A good match is 

achieved between the numerically derived and the experimentally derived data.  

 

Figure 6.8. Time history of the deflection 𝑤(𝑥𝑠1) - 𝑤(𝑥𝑠3) of the uncontrolled two-span 

beam (left) and the controlled two-span beam (right), experimentally (blue continuous) and 

numerically (red dashed). 
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Table 6.1 illustrates the maximum deflection at 𝑤(𝑥𝑠1) for the four masses 𝑚1- 𝑚4 applying 

the different control approaches. Due to the cubic displacement feedback rule the control is 

more active at higher disturbances. In this way less control effort is needed for lower masses. 

When 𝑤(𝑥) ≥ 1 mm in equation (6.3), the cubic control results in higher control inputs and 

lower deflections compared to the linear control, which offers higher control inputs when 

𝑤(𝑥) ≤ 1mm. 

For mass 𝑚4 the maximum displacement is reduced by 12.84%. For mass 𝑚1 the maximum 

displacement is reduced by 3.4%. The linear control reduces the maximum deflection for all 

masses by approx. 10%.  

 

Table 6.1. Maximum experimental  deflection at 𝑤(𝑥𝑠1) open-loop (NC), cubic feedback, 

and difference dw between NC and cubic, theoretical linear control for reference. 

 
NC 𝑤(𝑥𝑠1) 

in mm 

cubic 𝑤(𝑥𝑠1) 

in mm 

dw in % 

𝑤(𝑥𝑠1) 

Linear (th) 

𝑤(𝑥𝑠1) in 

mm 

dw in % 

𝑤(𝑥𝑠1) 

𝑚1 -0.676 -0.653 3.40 -0.605 10.51 

𝑚2 -0.833 -0.782 6.12 -0.752 9.72 

𝑚3 -0.959 -0.895 6.67 -0.8607 10.25 

𝑚4 -1.331 -1.160 12.84 -1.196 10.14 

 

Similar results are obtained for the maximum deflection at the second midspan 𝑤(𝑥𝑠3) 

depicted in Table 6.2. Due to the higher deflection at the second span, the cubic control is 

slightly more effective with a relative reduction of the maximum deflection of 13.25% for 

𝑚4 compared to 12.84% at 𝑥𝑠1. Also, for masses 𝑚2 and 𝑚3 the relative reduction is slightly 

higher, with 6.5% for 𝑚2 compared to 6.1% at 𝑥𝑠1 and 8.02% for 𝑚3 compared to 6.67 % 

at 𝑥𝑠1.  

The results obtained numerically for the linear control approach show again that the linear 

control is more efficient (deflection reduction of 10%) for smaller masses. dw for the linear 

control is related to the theoretical results of the uncontrolled case. In Table 6.1 the 

theoretical maximum deflection for NC is not listed because it coincides with the 

experimental results.  
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Table 6.2. Maximum experimental (ex) and theorethical (th) deflections 𝑤(𝑥𝑠3) open-loop 

(NC), cubic feedback and linear control, difference dw (ex) between NC (ex) and cubic (ex), 

difference dw (th) between NC (th) and linear control (th) for reference. 

 

NC (ex)  

𝑤(𝑥𝑠3) in 

mm 

NC (th)  

𝑤(𝑥𝑠3) in 

mm 

Cubic (ex) 

𝑤(𝑥𝑠3) in 

mm 

dw (ex) in 

% 𝑤(𝑥𝑠3) 

Linear 

(th) 

𝑤(𝑥𝑠3) in 

mm 

dw (th) in 

% 

𝑤(𝑥𝑠3) 

𝑚1 -0.701 -0.669 -0.683 2.56 -0.607 9.26 

𝑚2 -0.873 -0.836 -0.816 6.53 -0.755 9.67 

𝑚3 -0.997 -0.959 -0.917 8.02 -0.864 9.91 

𝑚4 -1.383 -1.320 -1.200 13.23 -1.188 10 

 

The positive maximum deflections for NC and the cubic case are listed in Table 6.3. Relative 

reduction achieved for the cubic control ranges from 4.3% for 𝑚3to approx. 4.7% for masses 

𝑚1 and 𝑚2 to 8.77% for mass 𝑚4.  

 

Table 6.3. Maximum positive deflection at 𝑤(𝑥𝑠3) open-loop (NC), cubic feedback, and 

difference dw 

 NC 𝑤(𝑥𝑠3) cubic 𝑤(𝑥𝑠3) dw in % 𝑤(𝑥𝑠3) 

𝑚1 0.277 0.264 4.69 

𝑚2 0.338 0.322 4.73 

𝑚3 0.394 0.377 4.31 

𝑚4 0.536 0.489 8.77 

 

Figure 6.9 displays the input voltages 𝑢1 and 𝑢2 for the piezoelectric actuators. The 

maximum positive control voltage is noticed for mass 𝑚4 moving on the second span with 

𝑢2 = 680 V. The minimum control voltage is noticed for 𝑚1 moving on the first span with 

𝑢1= 111 V. The saturation limits of the actuators are defined as -500 V ≤ u ≤ 1500V. It 
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becomes clear that a more efficient control could be achieved, when the control saturation 

limits can be taken into account in the control approach. The model predictive control 

approach, which takes into account the saturation limits will be presented in the next chapter.  

 

 

Figure 6.9. Experimental input values 𝑢1 and 𝑢2 for the piezoelectric actuators with the cubic 

displacement feedback control. 

 

An experiment with a higher gain k=3 caused the system to become unstable. The 

displacement response at sensor location 𝑤 (𝑥𝑠1) is displayed in Figure 6.10. It can be 

noticed, that the control is able to control mass 𝑚1moving along the beam, but becomes 

unstable for mass 𝑚2=0.322 kg and higher masses.  

 

Figure 6.10. Time history of the deflection data 𝑤(𝑥𝑠1) 𝑐ubic displacement feedback control 

applied to the two span beam with k=3 

 

Nevertheless, the simple way to implement the displacement feedback control makes it easy 

to control multiple masses moving on the beam with random speeds, Figure 6.11. The 
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maximal negative deflection is reduced by 10.5% at 𝑥𝑠3. The uncontrolled case was 

simulated numerically only, as it is difficult to launch the balls manually synchronously to 

achieve similar experimental results. 

 

Figure 6.11. Deflection responses 𝑤(𝑥𝑠1) - 𝑤(𝑥𝑠3) of the uncontrolled structure (left) and 

the cubically controlled structure (right), numerically (red dashed) and experimentally (blue 

continuous) when two masses 𝑚3 = 0.371 kg and 𝑚4 = 0.509 kg travel on the beam. 
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 Model Predictive Control for Moving Load Structures 

 

The previous examples showed that with simple displacement feedback control the 

maximum input voltages of -500 V≤ U≤ 1500 V cannot be reached without causing the 

system to become unstable. An control approach to include the saturation limits is the model 

predictive control. The main idea is to include future states of the system into the 

optimization procedure.  

 

7.1 The Control Algorithm  

 

For the receding horizon model predictive control approach an augmented discrete state 

space model is used [79]: 

 

[
∆ 𝐱𝐦 (𝑘 + 1)

𝐲(𝑘 + 1) 
]

⏞        
𝐱(𝑘+1)

= [
𝐀𝐦 𝟎𝑚𝑇

𝐂𝐦𝐀𝐦 𝐈
]

⏞        
𝐀

[
∆𝐱𝐦(𝑘)
𝐲(𝑘)

]
⏞      

𝐱(𝑘)

+ [
𝐁𝐦
𝐂𝐦𝐁𝐦

]
⏞    

𝐁

∆𝐮(𝑘) 

 

𝐲(𝑘) = [𝟎𝐦 (1 . . .  1)]⏞           

𝐂

[
∆𝐱𝐦(𝑘)
𝐲(𝑘)

] 

(7.1) 

 

 

Where ∆𝐱𝐦 is the difference of the state variables.  

∆ 𝐱𝐦 (𝑘 + 1) = 𝐱𝐦 (𝑘 + 1) − 𝐱𝐦(𝑘);   ∆ 𝐱𝐦 (𝑘)

=  𝐱𝐦 (𝑘) − 𝐱𝐦(𝑘 − 1) 
 

 

(7.2) 
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The future control trajectory vector ∆𝐔 is donated by: 

∆𝐔 = [∆𝐮(𝑘𝑖), ∆𝐮(𝑘𝑖 + 1),… , ∆𝐮(𝑘𝑖 + 𝑁𝑐 − 1)]
𝑇 (7.3) 

 

Where 𝑁𝑐 is called the control horizon, defining the number of future trajectory points. The 

prediction horizon 𝑁𝑝 defines the number of future states 𝐱(𝑘𝑖 +𝑚|𝑘𝑖) calculated with the 

given state vector x(𝑘𝑖) and the length of the optimization window. The future output 

variables 𝐘 = [𝐲(𝑘𝑖 + 1|𝑘𝑖), 𝐲(𝑘𝑖 + 2|𝑘𝑖), … , 𝐲(𝑘𝑖 + 𝑚|𝑘𝑖), … , 𝐲(𝑘𝑖 + 𝑁𝑝|𝑘𝑖)]
𝑇
 get calculated by 

𝐘 = 𝐅𝐱(𝑘𝑖) + 𝚽∆𝐔  
(7.4) 

 

where 

 

𝐅 =

[
 
 
 
 
𝐂𝐀
𝐂𝐀𝟐

𝐂𝐀𝟑

⋮
𝐂𝐀𝐍𝐩  ]

 
 
 
 

;    𝚽 =

[
 
 
 
 

𝐂𝐁 𝟎 𝟎 ⋯ 𝟎
𝐂𝐀𝐁 𝐂𝐁 𝟎 . . . 𝟎
𝐂𝐀𝟐𝐁 𝐂𝐀𝐁 𝐂𝐁 … 𝟎
⋮ ⋮ ⋮ ⋱ ⋮

𝐂𝐀𝑁𝑝−1𝐁 𝐂𝐀𝑁𝑝−2𝐁 𝐂𝐀𝑁𝑝−3𝐁 ⋯ 𝐂𝐀𝑁𝑝−𝑁𝑐𝐁]
 
 
 
 

 (7.5) 

 

 

The cost function J that reflect the control objective, which is to minimize the output 

variables and the control input and is defined as 

𝐽 = 𝐘T𝐘 + ∆𝐔T�̅�∆𝐔 
(7.6) 

 

Where �̅� = 𝑟𝑤𝐈𝑁𝑐×𝑁𝑐 and 𝑟𝑤 is utilised as a tuning parameter for the desired closed-loop 

performance. Inserting equation (7.4) in equation (7.6) leads to  

𝐽 = (𝐅𝐱(𝑘𝑖))
T
 (𝐅𝐱(𝑘𝑖)) + 2∆𝐔

T𝚽T𝐅𝐱(𝑘𝑖) + ∆𝐔
T(𝚽T𝚽+ �̅�)∆𝐔 

(7.7) 

 

 

Minimizing 𝐽 by seting the first derivative to zero the new control vector ∆𝐔 can be found: 
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𝜕𝐽

𝜕∆𝐔
= 2𝚽T𝐅𝐱(𝑘𝑖) + 2(𝚽

T𝚽+ �̅�) ∆𝐔 = 𝟎 
(7.8) 

 

 

∆𝐔(𝑘𝑖) = (𝚽
T𝚽+ �̅�)−1𝚽𝑇(−𝐅𝐱(𝑘𝑖)), 

(7.9) 

 

Considering the time variation of the system, matrixes F(𝑘𝑖) and 𝛟(𝑘𝑖) change at every time 

step 𝑘𝑖 due to time variation of the system matrixes 𝐀(𝑘𝑖), B(𝑘𝑖) and C(𝑘𝑖). The change of 

the control force is  

∆𝐔(𝑘𝑖) = (𝚽(𝑘𝑖)
𝑇𝚽(𝑘𝑖) + �̅�)

−1𝚽(𝑘𝑖)
𝑇(−𝐅(𝑘𝑖)𝐱(𝑘𝑖)), 

(7.10) 

 

 

 

7.2 Discrete Time Model Predictive Control with Constraints.  

 

For the use of the piezoelectric actuator the input voltage has be constrained, e.g. to -2.5 V 

≤ u(k) ≤ 7.5 V. This are the minimum  and maximum input voltages for the amplifier for 

MFC P1 actuators [101]. These constraints have to be considered in the optimization 

otherwise the closed loop performance could drastically deteriorate [79]. MPC control 

approach has an explicit constraint handling feature [87,109]. Constraints can be applied on 

the elements of ∆𝐔 of MIMO systems. The constraints are expressed as  

𝐌𝐱 ≤ 𝛄  
(7.11) 

The general objective function of a constraint problem is described as  

𝐽 =
1

2
𝐱𝑻𝐄𝐱 + 𝐱𝑻𝐅 

(7.12) 

This is a quadratic programming problem. To be consistent with the literature the decision 

variable is defined by 𝐱. To minimize the objective function subjected to equality constraints 

the Lagrange expression is introduced. 
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𝐽 =
1

2
𝐱𝐓𝐄𝐱 + 𝐱𝐓𝐅 + 𝛌𝐓(𝐌𝐱 − 𝛄) 

(7.13) 

 

The value of equation (7.13) is the same as of equation (7.12) if the constraint 𝐌𝐱 = 𝛄 is 

satisfied. Taking the first derivatives with respect to x and 𝝀 and equate these to zero  

𝜕𝐽

𝜕𝑥
= 𝐄𝐱 + 𝐅 +𝐌𝐓𝛌 = 0 

(7.14) 

 

𝜕𝐽

𝜕𝜆
= 𝐌𝐱 − 𝛌 = 0 

(7.15) 

 

 

one can calculate the solutions for x and 𝛌: 

𝐱 = −𝐄−𝟏(𝐌𝐓𝛌 + 𝐅) (7.16) 

 

𝛌 = −(𝐌𝐄−𝟏𝐌𝐓)−𝟏(𝛄 +𝐌𝐄−𝟏𝐅) (7.17) 

 

The number of inequality constraints in equation (7.11) could be larger than the number of 

decision variables. To obtain a feasible solution, by converging of the quadratic 

programming algorithm, the number of inequality constraints has to be less than or equal to 

the number of decision variables. An ith inequality is said to be active if 𝑀𝑖𝑥 = 𝛾𝑖 and 

inactive if 𝑀𝑖𝑥 <  𝛾𝑖. For an active constraint applies 𝜆𝑖 ≥ 0. The idea of active set methods 

is to define a set of constraints that are active at each iteration step which is called the 

working set [79]. Solutions based on the decision variable (also called primal variable) 

belong to the primal method and are characterised by a high computational effort if the 

number of constraints is large. In the dual method, the solution is based on the Lagrange 

multiplier (called dual variable). It can be used to find constraints that are not active, which 

are then eliminated from the solution. This method leads to more simple programming 

procedure, the Hildreth’s quadratic programming. Assuming there is an x such that 𝐌𝐱 < 𝛄 

the primal problem is equivalent to  
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max
𝛌≥0

min
𝐱
[
1

2
𝐱𝐓𝐄𝐱 + 𝐱𝐓𝐅 + 𝛌𝐓(𝐌𝐱 − 𝛄)] 

(7.18) 

 

The minimization over x is unconstrained and is attained by equation (7.16), substituting this 

into (7.18) leads to the dual problem  

max
𝝀≥0

−
1

2
𝛌𝑇𝐇𝛌 + 𝛌𝑇𝐊−

1

2
𝐅𝑇𝐄−1𝐅) 

(7.19) 

 

Where the matrices H and F are given by  

𝐇 = 𝐌𝐄−1𝐌𝑇 
(7.20) 

 

𝐊 = 𝛄 +𝐌𝐄−1𝐅 
(7.21) 

 

The Hildreth’s quadratic programming procedure uses the dual method. Having a vector 𝛌 >

0 the algorithm takes an element 𝜆𝑖 and minimizes the objective function. If therefore 𝜆𝑖 <

0 is required, 𝜆𝑖 = 0. Then the next component 𝜆𝑖+1 is considered. If one iteration is 

considered to be one cycle throughout the elements of the vector 𝝀𝑚 to 𝝀𝑚+1 the method can 

be explicitly expressed as [79]: 

𝜆𝑖
𝑚+1 = max (0, 𝑤𝑖

𝑚+1) (7.22) 

 

with  

𝑤𝑖
𝑚+1 = −

1

ℎ𝑖𝑖
 [𝑘𝑖 +∑ℎ𝑖𝑗𝜆𝑗

𝑚+1

𝑖−1

𝑗=1

+ ∑ ℎ𝑖𝑗  𝜆𝑗
𝑚

𝑛

𝑗=𝑖+1 

 
(7.23) 

 

Where ℎ𝑖𝑗 is the 𝑖𝑗𝑡ℎ element in the matrix H (equation (7.20)) and 𝑘𝑖 is the ith element in 

the vector K (equation (7.21)). The converged 𝜆∗ vector contains either zero or positive 

values of the Lagrange multiplier. The decision variable can be calculated by equation 

(7.16).  
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From equation (7.9) the objective function for the MPC can be obtained as  

𝐽 = 2∆𝐔T𝚽T𝐅𝐱(𝑘𝑖) + ∆𝐔
T(𝚽T𝚽+ �̅�)∆𝐔 

(7.24) 

wherein the matrices E and F in equation (7.13) are apparent as  

𝐄 = 𝟐 (𝚽T𝚽+ �̅�) 
(7.25) 

 

𝐅 = 2𝚽T𝐅𝐱(𝑘𝑖) 
(7.26) 

 

 

7.3 Numerical Examples of the Model Predictive Control for the Beam 

Structures Controlled by Piezoelectric Actuators 

 

The previously presented MPC approach will be applied to the simply supported beam 

structure and to the two-span continuous beam structure validated in section.2.4.2 The 

augmented system presented in equation (5.8) is applied with 𝑡 = 0. The 𝑁𝑐 inequality 

equations for the one-span beam structure are defined as  

𝑢𝑚𝑖𝑛(𝑘) ≤ 𝑢(𝑘|𝑘) ≤ 𝑢𝑚𝑎𝑥  (𝑘)  

𝑢𝑚𝑖𝑛(𝑘 + 1) ≤ 𝑢(𝑘 + 1|𝑘) ≤ 𝑢𝑚𝑎𝑥  (𝑘 + 1) 

⋮ 

𝑢𝑚𝑖𝑛(𝑘 + 𝑁𝑐 − 1) ≤ 𝑢(𝑘 + 𝑁𝑐 − 1|𝑘) ≤ 𝑢𝑚𝑎𝑥 (𝑘 + 𝑁𝑐 − 1) 

(7.27) 
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The inequality equations can be written in matrices as in relation to the decision variable 

∆𝐔 (𝑘) as [79]: 

[
 
 
 
 
 
 
 
1 0 0 … 0
1 1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 … 1
−1 0 0 … 0
−1 −1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
−1 −1 −1 … −1]

 
 
 
 
 
 
 

[

∆𝑢(𝑘|𝑘)
∆𝑢(𝑘 + 1|𝑘)

⋮
∆𝑢(𝑘 + 𝑁𝑐|𝑘)

] ≤

[
 
 
 
 
 
 
 

𝑢𝑚𝑎𝑥(𝑘) − 𝑢(𝑘 − 1)
𝑢𝑚𝑎𝑥(𝑘 + 1) − 𝑢(𝑘 − 1)

⋮
𝑢𝑚𝑎𝑥(𝑘 + 𝑁𝑐 − 1) − 𝑢(𝑘 − 1)

−𝑢𝑚𝑖𝑛(𝑘) + 𝑢(𝑘 − 1)

−𝑢𝑚𝑖𝑛(𝑘 + 1) + 𝑢(𝑘 − 1)
⋮

−𝑢𝑚𝑖𝑛(𝑘 + 𝑁𝑐 − 1) + 𝑢(𝑘 − 1)]
 
 
 
 
 
 
 

 
(7.28) 

The following relationships between ∆𝑢(𝑘) and u(k) are used herein 

𝑢(𝑘|𝑘) = ∆𝑢(𝑘|𝑘) + 𝑢(𝑘|𝑘 − 1) 

𝑢(𝑘 + 1|𝑘) = ∆𝑢(𝑘 + 1|𝑘) + 𝑢(𝑘|𝑘) = ∆𝑢(𝑘 + 1|𝑘) + [∆𝑢(𝑘|𝑘) + 𝑢(𝑘|𝑘 − 1)] 

⋮ 

𝑢(𝑘 + 𝑁𝑖 − 1|𝑘) = ∆𝑢(𝑘 + 𝑁𝑐 − 1|𝑘) + ∆𝑢(𝑘 + 𝑁𝑐 − 2|𝑘) + ⋯ 

+∆ 𝑢(𝑘 + 1|𝑘) + ∆ 𝑢(𝑘|𝑘) + 𝑢(𝑘 − 1) 

(7.29) 

 

Equation (7.28) can be written in a compact form as  

𝐌2𝑎𝑁𝑐×𝑁𝑐∆𝐔2𝑎𝑁𝑖×1   ≤ 𝛄2𝑁𝑐×1   
(7.30) 

 

where 𝐌 is the coefficient matrix and 𝛄 is the solution vector. Herein the multi-input case is 

considered, where a is the number of inputs. ∆𝐮(k|k), 𝐮, 𝐮𝑚𝑎𝑥 , 𝐮𝑚𝑖𝑛 become vectors of 𝑎 ×

1 dimension. Further restriction could be placed on the rate of control input change ∆𝑢, 

which could reduce unwanted oscillations, if ∆𝑢 is too large.  
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7.3.1 Numerical Experiment on the Simply Supported Beam 

 

The input voltage, which is fed into the amplifier, is constrained as -2.5 V≤ 𝑢 ≤ 7.5 V.  A 

mass of m = 0.509 kg travels on the simply supported beam with a travelling speed of 1 

ms−1. The sampling time is 𝑡𝑠 = 0.01 s. The control weighting factor is defined as 𝑟𝑤=1 ×

10−11. The parameter 𝑟𝑤 has a major influence on the control result of this study. It defines 

the strength of the control action. If 𝑟𝑤=0 in the cost function (7.6), the optimization would 

not pay any attention on how large ∆𝑈 becomes and solely make the error 𝐘T𝐘 as small as 

possible [79]. For the control horizon and for the optimization horizon, values of 𝑁𝑐 = 4 and 

𝑁𝑝= 6 are chosen respectively. The response does not improve for higher 𝑁𝑝 and 𝑁𝑐, but the 

computational load increases. With too short prediction and control horizons the predictive 

control system is not necessarily stable [79]. The calculations of 𝐅 and 𝚽 are accomplished 

before the actual control iterations for the time-invariant structure. For this case there was 

no advantage in deflection reduction noticed when 𝐅(𝑘) and 𝚽(𝑘) are updated at every 

iteration step k. The sensor is located in the middle of the structure at 𝑥𝑠 = 0.3 𝑚. It is 

assumed that the states of the system are available. No observer is implemented. The 

Hildreth’s quadratic programming procedure described in equation (7.22) to equation (7.23) 

is applied.  

Figure 7.1 (left) illustrates the deflection response for the constraint MPC control (red 

dashed) and compares it with the uncontrolled structure (blue continuous) when the mass is 

traversing it. The maximum deflection is reduced by 22%. No additional vibrations are added 

as it was the case for the experimental data obtained by the cubic feedback control (see 

Figure 6.4). But it should be noted that these additional vibrations were due to the 

experimental implementation, which is open for future studies for this MPC control 

approach. Also, the free vibration after the mass has left, is reduced successfully. With the 

choosen 𝑟𝑤 close to 0 the control 𝑈(𝑡), Figure 7.1 (right), is able to react to the change of 

values in 𝑤(𝑥𝑠) with large ∆𝑈 values. The constraint maximum voltage of 7.5 V is reached 

after 0.04 s. The control is able to supply its maximum control action after a very short time.  

In contrast the deflection response 𝑤(𝑥𝑠) and the control voltage 𝑈(𝑡) of an example with 

an altered larger value of 𝑟𝑤=1 × 10−6 is illustrated in Figure 7.2. Herein the values of 

∆𝑈 are smaller. The maximum voltage is reached after 0.32 s and the control is not able to 

counteract the free vibration after the mass is leaving the beam.  
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Figure 7.1. Time history of the deflection response 𝑤(0.3 m)of the beam structure with a 

mass of m = 0.509 kg travelling with a speed of v = 1 m/s, 𝑟𝑤 = 1 × 10
−11, 𝑁𝑝 = 6, 𝑁𝑐 = 4, 

 

 

Figure 7.2. Time history of thedeflection respone w (0.3 m) (left) and of the  control Voltage 

(right) of the MPC controlled simplysupported beam, 𝑁𝑝 = 6,  𝑁𝑐 = 4, 𝑟𝑤 = 1 × 10
−6 

 

Figure 7.3 (left) illustrates the deflection response 𝑤(𝑥𝑠 = 0.3 m) for the case when 𝑁𝑐= 1, 

𝑁𝑝 = 6 and 𝑟𝑤= 1 × 10−11. Compared to Figure 7.1 one can notice higher vibration during 

the traveling time. The control cannot react to the slight peak at 0.06 s. Another peak can be 
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noticed at 0.58 s. As it was stated before 𝑁𝑝 and 𝑁𝑐 should not be chosen too small to 

guarantee stability and control performance.  

 

Figure 7.3. Time history of the deflection respone w (0.3 m) (left) and of the  control Voltage 

(right) of the MPC controlled simplysupported beam, 𝑁𝑝 = 6,  𝑁𝑐 = 1, 𝑟𝑤 = 1 × 10
−11 

  

Figure 7.4 illustrates the runtime of each iteration step over the travelling time for the two 

previously presented cases, where the parameter 𝑁𝑐 is altered. It can be noticed that when 

the constraint conditions are met at 0.04 s the runtime increases from 0.5 ms to 13.5 ms for 

the case with 𝑁𝑝 = 6, 𝑁𝑐= 4. For the case with 𝑁𝑐=1 this peak of the runtime is at 7 ms. 

Reducing of the control horizion 𝑁𝑐 reduced the overall runtime. The runtime is measured 

between the calculation of ∆𝑼 (see equation (7.10)) and the Hildreth quadratic programming 

(see equation (7.23)) The simulation was accomplished on a computer with an Intel Core i5-

3320M Processor with 16 GB Ram. The runtime is below the targeted 10 ms. It is likely that 

this runtime could not be reached with the CompactRio cRIO-9022 microcontroller, which 

has a 533 MHz CPU and 256 MB DRAM. If 𝐅(𝑘) and 𝚽(𝑘) are time-varying the runtime 

at 0.04 s increases to 13 ms.  
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Figure 7.4. Runtime during the control loop over the travelling time. 

 

 

7.3.2 Numerical Experiment on the Two-Span Continuous Beam Structure  

 

In the following example the MIMO case of the two-span continuous beam structure is 

considered with mass m= 0.509 kg travelling on it. The structure was previously presented 

in section 2.1.3. Two MFC 8557 P1 actuators are placed in the middle of the test structure 

with a high ℎ = 2.83 mm and a correction factor of c = 0.39. The sensors are located in the 

middle of each span at 𝑥𝑠1= 0.3 m and at 𝑥𝑠2 = 0.9 m. The input voltages are constrained by 

-2.5 V ≤u ≤ 7.5 V. Again these are the allowed input voltages for the power amplifier. The 

MPC parameters are chosen to be 𝑁𝑐 = 3,𝑁𝑝 = 4 and  𝑡𝑠 = 0.01 𝑠 .  Eight modes are used 

for the MPC control. Figure 7.5 depicts the displacement responses of the continuous two-

span beam at its two mid-point locations 𝑤(𝑥𝑠1) and 𝑤(𝑥𝑠2). After 0.08s the saturation limit 

𝑢𝑚𝑎𝑥 of the first actuator is reached. 𝑢𝑚𝑖𝑛 of the second actuator is reached after 0.09 s. See 

Figure 7.6, where the values of 𝐮(k) are illustrated. Once the mass moves onto the second 

span the control actions of 𝑢1 and 𝑢2 switch. The maximum deflection at 𝑤(𝑥𝑠1) is reduced 

by 29% for the first half of travelling time and by 64% for the second half of of travelling 

time. At the second mid-span location 𝑤(𝑥𝑠2) the maximum deflection is reduced by 46% 

during the first half of travelling time and by 19 % during the second half of travelling time.  
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Figure 7.5. Time history the beam’s deflection at the first mid-span location (a) and at the 

second mid-span (b) of the uncontrolled structure (blue-dashed) and of the MPC constrained 

controlled structure (red continuous). 

 

 

Figure 7.6. Time history of the control input variables 𝑢1 and 𝑢2. 

 

If the control and prediction horizon are chosen to be larger with 𝑁𝑐=4 and 𝑁𝑝=6 the 

vibrations in the structure can be reduced, see Figure 7.7. The reduction of the maximum 

deflection is with 54% slightly lower at the second half of travelling at 𝑤(𝑥𝑠1).  
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Figure 7.7. Deflection responses 𝑤(𝑥𝑠1) and 𝑤(𝑥𝑠2) for MPC control with 𝑁𝑐= 4 and           Np 

= 6. 

 

With the number of modes used for the control reduced to three, 𝑁𝑐 = 1 and 𝑁𝑝=2 it is tried 

to reduce the runtime. These are the minimal parameters needed to have an effective control. 

The maximum runtime reduces from 21 ms to 16.5 ms, see Figure 7.8. With Np  = 1 the 

system would be exposed to unwanted oscillations.  
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Figure 7.8. Comparison of the runtime of the constraint MPC control with 𝑁𝑝 = 6 and 𝑁𝑐 =

4, 8 modes used and the minimal MPC control with Np =2 and Nc=1 and 3 modes used.  

 

Figure 7.9 illustrates the deflection response of the structure  𝑤(𝑥𝑠1) with the MPC control 

with 3 modes (red continuous). The calculated 𝐮 is fed into a model with 12 Modes, which 

is a more accurate representation of the actual structure. It can be noticed that the MPC 

control simulated with 3 modes is able to reduce the deflection response also for the 

structure, which should be modelled especially for the two-span beam with a higher number 

of modes, not smaller than 8.  

 

Figure 7.9. Deflection responses 𝑤(𝑥𝑠1) for the uncontrolled structure (blue dash-dotted), 

of the MPC controlled structure with 3 modes (red continuous), and the 12 modes structure 

fed with u of the 3 modes MPC (black dotted). 
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7.4 Concluding Remarks  

 

Theoretically, an efficient control approach was accomplished for the one-span and two-

span structure. The saturation limits of the actuators can be taken into account online. The 

control could also take into account the change of the system variables and update the control 

matrices 𝐅(𝑘) and 𝚽(𝑘) accordingly. This might be of special interest when the structure is 

excited by a stream of random moving masses. As the control relies on the availability of 

the state variables, they have to be calculated through state estimation techniques presented 

in sections 4.1 and 4.2.   

In [79] Wang introduces a set of orthonormal basis functions into the design process. The 

future incremental control trajectory ∆𝑢(𝑘𝑖 +𝑚),𝑚 = 0.1.2… is expressed using a set of 

Laguerre functions. The problem of finding the future incremental control trajectory is 

converted into one of finding the set of optimal coefficients for the expansion. The Laguerre 

function offers simplicity for programming. With their use the runtime could be reduced for 

real-time applications. In [87] the Laguerre function approach is utilised by Oveisi et al. to 

actively control a lightly damped cantilever beam . A recursive least square algorithm is used 

to estimate the disturbance signal. The system model is constructed by a frequency domain 

subspace system identification. Classical dual-mode control system can guarantee stability. 

Classical infinite horizon LQR LQG controller guarantee stable closed-loop systems [80]. 

However, they can only be used for unconstrained systems. The dual-mode MPC uses first 

a predictive controller with constraints that brings the states to a terminal constraint set X0, 

that contains the origin [79,110]. From there classical infinite horizon controller can be used 

to stabilize the system. The cost function for a dual mode problem can be written as 

[109,111] 

𝐽𝑘 = ∑(𝐱(𝑘+𝑖) 
𝑇 𝐐𝐱(𝑘+𝑖)

𝑇 + 𝐮(𝑘+𝑖) 
𝑇 𝐑𝐮(𝑘+𝑖)

𝑇 )

𝑛−1

𝑖=0

+ 𝐱(𝑘+𝑖) 
𝑇 𝐏𝑓(𝑘)𝐱(𝑘+𝑖)

𝑇  
(7.31) 

 

It utilises free inputs for the first n steps and a fixed feedback controller afterwards. 𝐏𝑓(𝑘)is 

the solution of the unconstrained, infinite horizon quadratic regulation problem [112]. For a 

nominal model this could be determined by a Lyapunov equation [112]. In [109] Takacs et 

al. computed 𝐏𝑓(𝑘) online with the discrete-time algebraic Riccati equation due to parameter 

changes in the model.  
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Takács et al. applied an adaptive-predictive control to a cantilever beam using extended 

Kalman filtering to approximate the system states and the model parameter. The continuous 

beam was simplified by a 1 DOF system taking into account the first resonant frequency.
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 Conclusions and Future Work 

 

The present study is one of the few that extended numerical investigations of the problem of 

controlling beam structures subjected to a set of moving masses. It presented and analysed 

the synthesis and experimental implementation of active control on two small-scale test 

structures. This comprised an original method of state estimation, a novel gain scheduling 

approach with adaptation of the optimal time-variant gain towards the load’s speed and 

masses, first time implementation of an augmented control system. MFC actuators were 

modelled and experimentally validated for the moving mass control problem and for the first 

time the MPC control approach was numerically studied for the beam structures acted upon 

by moving masses.  

Numerical models for the simply supported beam and the two-span continuous beams were 

derived in modal coordinates and validated successfully against experimental displacement 

data. Two mathematical models for the chosen electrodynamic actuator were presented. For 

frequencies up to 10 Hz a simplified first order model can be utilised, which can be included 

in the state space representation as a beam-shaker system. The beam-shaker system was 

validated successfully against experimental displacement data for the simply supported 

beam. For higher frequencies the numerical FRF of the transferred force over input voltage 

revealed a higher complexity, especially the resonance of the transferred force over input 

voltage at 27 Hz has to be treated with caution to avoid instabilities. 

In chapter 3 optimal control approaches relevant for the time-varying moving mass problem 

were presented. In the optimal finite time control approach the algebraic Riccati equation 

can be solved backwards for a given final time. This method is preferred as it meets the 

condition of optimality. 

Inherent problems which result from the experimental implementation of active control 

solutions of the moving mass problem were tackled. These are: 1. States of the system must 

be estimated as they are not directly measurable. 2. Implementations in discrete time come 

with discretization errors. Two state estimator techniques were studied in this regard in 

chapter 3.2. Although the classical discrete time observer represented the states accurately 

for the open-loop case, the discrete time observer-based feedback control was prone to 

discretization errors at the given sampling time and actuator position and even worsened the 

structural deflection response. Whereas estimation based on the mode shape vector proved 
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to be straightforward to implement and offers excellent real-time abilities. Because of that, 

the superior properties of this technique were applied successfully for the application of the 

finite time optimal control approach. Detailed experimental validation in that context was 

presented in chapter 5, where the reduced order control was applied to the electrodynamic 

shaker located close to one of the simply supported beam supports. The first order actuator 

model proved correct while contact is maintained, a small inaccuracy is observed when the 

mass leaves the beam. As expected, due to the time-varying nature of the control system, it 

was shown both experimentally and numerically that a control method based on a terminal-

time optimal control solution provides better performance than a time invariant optimal 

controller. Especially the augmented system approach taking into account the moving load 

in the system equation proved very effective with a reduction of the maximum deflection of 

up to 38%. The possibility of using different moving masses travelling at different speeds 

also pointed toward a control solution that adapts the control effort, taking into account the 

type of load. Therefore, a simple gain scheduling solution that makes a better use of the 

control effort is presented and proves to be the basis of further work and developments of 

the method. 

The numerical models of 33-mode MFC actuator attached to the test structures were 

presented in modal coordinates and validated successfully against experimental 

displacement data. 33-mode MFC actuators were applied for the first time to control a simply 

supported beam and a two-span beam acted upon moving masses. Although MFC actuators 

are currently not particularly made for the control of bridge structures due to their limited 

actuation force, these studies are also relevant for the application in control of general light 

structures like linear robots or aeroelastic structures subjected to transient loads.  

Two control approaches were studied for the MFC controlled structures, straightforward 

displacement control and more sophisticated MPC control. Results of the Linear and 

nonlinear cubic displacement feedback controls implemented on the one-span and two-span 

test rig were presented in chapter 6. Each span was controlled by a collocated laser 

displacement sensor MFC-actuator pair. The cubic displacement rule proved more efficient 

for higher masses, where a maximum reduction of 18% was reached for the simply supported 

beam. At which the linear control reduces the maximum deflection more effectively for 

smaller masses with approx. 10% deflection reduction. This feedback controls offers the 

advantage of a straightforward way of implementation. In addition, a stream of multiple 

masses can be controlled easily. Hereby a reduction of the maximum deflection of 10% was 
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achieved. A drawback is that the actuator saturation limits could not be reached without 

undermining the system stability.  

To include the saturation limits of the MFC-actuator the MPC control was studied 

numerically and for the first time in combination with the moving mass problem. With the 

help of quadratic programming, inequality constraints were considered in the optimization 

process. Theoretically the maximum deflection can be reduced by 22% for the one-span 

beam and by 29% when the mass travels on the first span of the two-span beam. 

Table 8.1 summarizes the achieved performance, which is the reduction of the maximum 

deflection, for the different control approaches for the two test structures when mass 

𝑚 =0.509 kg is traversing.  

 

Table 8.1 Main results summerized for mass m=0.509 kg, comparing different control 

approaches 

Control Method Structure Actuator 
Reduction maxi-

mum deflection 

Finite time optimal 

control 

Simply supported 

beam 
Electro Dynamic 18% 

Finite time optimal 

control (augmented 

model) 

Simply supported 

beam 
Electro Dynamic 38% 

Linear 

Displacement 

feedback 

Simply supported 

beam 

Piezoelectric MFC 

patch 
11% 

Cubic Displacement 

feedback 

Simply supported 

beam 
 18% 

Linear 

Displacement 

feedback 

Two-span beam 
Piezoelectric MFC 

patch 
10 % 

Cubic Displacement 

feedback 
Two-span beam 

Piezoelectric MFC 

patch 
13 % 
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Model Predictive 

Control (numerical) 

Simply supported 

beam 

Piezoelectric MFC 

patch 
22% 

Model Predictive 

Control (numerical) 
Two-span beam 

Piezoelectric MFC 

patch 
29 % 

 

All in all, it can be said that this study successfully solved vital problems concerned with 

experimental implementation of active control of single and two-span moving mass beam 

structures.  

Main contribution to knowledge 

- Implementation of active control solutions on two small scale rigs. This includes the 

reduced order finite time control of a simply supported beam [28] 

- The limitations of observer based feedback control for the moving mass problem 

where stated. The studied discrete linear quadratic regulator was prone to 

discretization errors. State estimation by mode shapes proved very efficient and 

capable of being implemented in real-time.  

- For the first time MFC actuators were applied experimentally to the simply supported 

beam and the two-span continuous beam for active control of a moving mass 

structure. This was achieved by using direct displacement feedback, which was 

validated experimentally.  

- Further the MPC approach was applied successfully for the first time to a moving 

load structure numerically. This complex control approach can handle control 

constraints online in the optimal control approach 

 

Future work 

It was shown that it is crucial for the application of active control approaches of moving load 

structures to estimates the states correctly. For the further application of active control 

approaches of slender structures subjected to transient loads crucial points are the state 

estimation and the real-time ability of control algorithms. With a changed actuator location 

and the pushing of the hardware limits also classical discrete observer techniques could 

deliver precise modal states. The practical application of the MPC approach requires 

powerful hardware capable of solving the quadratic programming problem in the required 



127 

 

sampling time. The approach seems very promising with its constraint handling abilities. 

Moreover, a stream of moving masses can be considered in future studies as the control input 

is calculated online.  

Future experimental studies could include controlled cars with variable speeds, where the 

gains adopt in real-time. The presented finite-time optimal control approach was limited to 

one mass moving on the structure. It can also be applied for the case of multiple masses 

travelling on the structure but still the leaving times have to be known in advance for the 

gain calculation. For a real-time implementation of the problem of multiple masses travelling 

on the beam, it has to be solved how the variant gains calculated for each specific mass 

beforehand could be interpolated for the various multi mass cases. The displacement 

feedback control approaches presented proved capable of controlling the structure subjected 

to a stream of moving loads. However, stability and robustness issues have to be considered 

in more detail in the future. The study could be unscaled to a real moving mass structures. 

Robustness of the sensors and the actuators against environmental influences like wind and 

rain has to be proven to guarantee the safety and functionality of the system. 

The present study was based on a simply supported Euler Bernoulli beam. For real 

applications the system model might be more difficult to derive. System identification 

methods could be applied like the Receptance Method [113,114] where a non-parametric 

system model is utilised for the control approach.  

The general problem studied in this thesis is the control of flexible structures subjected to 

time varying loads. Apart from bridge-vehicle interactions this study could also be applied 

in a wide field of applications. For example in 3D printer heads [115], the vertical vibrations 

of the nozzle are influenced by different feed parameters. These vibrations influence the 

printing quality. Portal cranes or more specifically ship unloaders are another so far less 

studied example of a moving load structure [116]. The interaction between the lifting boom 

and the moving system can lead to high stresses, which have to be assessed as accurate as 

possible to determine its fatigue life. The problem is characterized by a high DAF of 1.5, 

which makes it  necessary to include the inertia effect into the equations of motion[116]. 

Another important field of application is aeroelasticity, the interaction between aerodynamic 

loads and a non-rigid wing structure, which has a wide range of applications, e.g. active 

morphing of wings [23,117], flutter control [118,119] or aeroelastic loads of wind turbine 

blades [120]. Aerodynamic loads affect the stiffness and the damping in a similar way as 
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presented in this study, as they depend on the air speed and air density which might change 

in time [93]. 
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 Appendix  

 

The Normal Mode of the Simply Supported Beam  

The general solution for the normal mode or characteristic equation is given as  

 

𝜓(𝑥) = 𝐶1 sin(𝛽𝑥) + 𝐶2 cos(𝛽𝑥) + 𝐶3 sinh(𝛽𝑥) + 𝐶4 cosh(𝛽𝑥) (9.1) 

 

Where C1, C2, C3 and C4 are constants, which can be found from the boundary conditions, 

which for the simply supported beam are 

𝜓(0) = 0    (9.2) 

𝜓(𝐿) = 0 (9.3) 

𝜓′′(0) = 0 (9.4) 

  𝜓′′(𝐿) = 0 (9.5) 

 

The second derivative of equation (9.1) is  

 

𝜓′′(𝑥) = −𝐶1 sin(𝛽𝑥) − 𝐶2 cos(𝛽𝑥) + 𝐶3 sinh(𝛽𝑥) + 𝐶4 cosh(𝛽𝑥) (9.6) 

 

Using condition (9.2) in equation (9.1) gives 𝐶2 = −𝐶4 and using condition (9.4) in equation 

(9.6) gives 𝐶2 = 𝐶4. As a result 𝐶2 = 𝐶4 = 0. Using condition (9.3) and (9.5) gives 

 

𝜓(𝐿) = 𝐶1 sin(𝛽𝐿) + 𝐶3 sinh(𝛽𝐿) = 0 (9.7) 

𝜓(𝐿) = −𝐶1 sin(𝛽𝐿) + 𝐶3 sinh(𝛽𝐿) = 0 (9.8) 
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Substituting equation (9.7) in equation (9.8) C3 = 0. The normal mode of a simply supported 

beam is  

𝜓(𝑥) = 𝐶1𝑠𝑖𝑛(𝛽𝑥) 
(9.9) 

 

Equation (9.7) and (9.8) is a homogeneous equation system. For the nontrivial solution for 

C1 and C3 the determinant of the coefficients must be equal to zero. This leads to  

 

sin(𝛽𝐿) = 0 (9.10) 

The root of equation (9.10) are given by  

𝛽𝑛𝐿 = 𝑗𝜋, with  𝑗 = 1,2,3… 
(9.11) 

 

; see [88,89]. 

Inserting equation (9.11) in equation (9.9) gives the normal mode for the simply supported 

beam  

𝜓(𝑥) = sin (
𝑗𝜋𝑥

𝐿
) 

(9.12) 

 

 

The natural frequencies of vibrations become  

𝜔𝑛 = (𝛽𝑛𝑙)
2√

𝐸𝐼

𝜌𝐴𝑙4
= (𝑛𝜋)2√

𝐸𝐼

𝜌𝐴𝑙4
 

(9.13) 
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The Dirac Delta Function  

The Dirac delta function (also called Dirac impulse function) is defined as [8]: 

𝛿(𝑥) =
𝑑𝐻(𝑥)

𝑑𝑥
 

(9.14) 

 

With 𝐻(𝑥) defined as the Heaviside function:  

𝐻(𝑥) = {
0    𝑓𝑜𝑟    𝑥 < 0
1    𝑓𝑜𝑟    𝑥 ≥ 0

 
(9.15) 

 

The following relations hold for the Dirac delta function (a,b, 𝜉 denote constants and f(x) is 

a continuous function in the interval 〈𝑎, 𝑏〉) 

∫ 𝛿(𝑥)𝑑𝑥 = 1
∞

−∞

 (9.16) 

 

∫ 𝛿(𝑥 − 𝑎)𝑓(𝑥)𝑑𝑥 = 𝑓(𝑎)
∞

−∞

 (9.17) 
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