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Abstract

The ever-increasing density in cloud computing parties, i.e. users, services, providers and data centres, has

led to a significant exponential growth in: data produced and transferred among the cloud computing parties;

network traffic; and the energy consumed by the cloud computing massive infrastructure, which is required

to respond quickly and effectively to users requests. Transferring big data volume among the aforementioned

parties requires a high bandwidth connection, which consumes larger amounts of energy than just processing

and storing big data on cloud data centres, and hence producing high carbon dioxide emissions. This power

consumption is highly significant when transferring big data into a data centre located relatively far from the

users geographical location. Thus, it became high-necessity to locate the lowest energy consumption route

between the user and the designated data centre, while making sure the users requirements, e.g. response

time, are met.

The main contribution of this paper is GreeDi, a network-based routing algorithm to find the most energy

efficient path to the cloud data centre for processing and storing big data. The algorithm is, first, formalised

by the situation calculus. The linear, goal and dynamic programming approaches used to model the algo-

rithm. The algorithm is then evaluated against the baseline shortest path algorithm with minimum number

of nodes traversed, using a real Italian ISP physical network topology.
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1. Introduction

During the last decade, the use of cloud computing to run businesses and individual based services has

increased rapidly based on an on − demand pay-as-you-need pattern. This is due to the very simple cloud

computing services provision model: providers offer high performance computing resources to end users;

end-users subscribe to the resources they need, and obviously a high-speed network connection must be

established between users and providers to formulate the model. The International Data Corporation (IDC)

published in [1] surprising figures, which showed that the global cloud computing services use (i.e. network-

based storage) increased from $16 billion in 2008 into $42 billion in 2012; which inevitably required that

cloud computing provides strong storage, computation and distributed capability to structure and process the

big data (e.g. medical records, video and image archives, scientific applications) produced by all the above

cloud computing parties.

This enormous growth in cloud services, display and demand, is expected to generate revenues of nearly

35 billion euro just in Europe by 2014 [2]. The expectation was the spark for the biggest companies in

the world (e.g. Google, Amazon, Cisco) to start heavily investing in cloud computing infrastructure and

data centres. Not only big companies were aimed to build their own data centres, but also other enter-

prises and institutions (e.g. academic institutions) are all now planning to have their own private and public

cloud data centres. For example, University of Salford Manchester made £5.7 million in cloud computing

investment [3].

This ever-increasing density in cloud computing users, providers, and data centres have led to significant

increases in network traffic and the associated energy consumed by the huge infrastructure (e.g. extra servers,

switches) required to respond quickly and effectively to users requests. Moreover, transporting data between

data centres and cloud users can consume even larger amounts of energy than just processing and storing

the data on the cloud data centres [4], and hence producing high carbon dioxide emissions. This power

consumption is particularly significant when transferring data into a data centre located somewhere in the

world relatively far from the user geographical location; for example, the user is based in Liverpool in the

UK and Google data centre is in Hong Kong [5]. In addition, the higher bandwidth and high speed network

required to cope with the cloud network traffic and to speed up data transformation process generates higher

carbon dioxide footprint [6]. This is against the environmental requirements published by the 2011 report

of PBL Netherlands Environmental Assessment Agency and JRC European Commission [7] and also in [8]

to reduce the energy consumption to decrease the CO2 emission volume by 15%-30% before 2020 to keep

up the global temperature increase below 2oC. Thus, the rapidly growing energy consumption and CO2
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emission of using the cloud computing has become a key environmental concern.

Energy efficient routing solution for cloud computing is required to ensure the environmental sustain-

ability. Since the data centres energy consumption has seen great deal of interest and work in the last years,

however, cloud computing network energy consumption is still in its infancy and requires further research

and development to be fully achieved.

The rest of the paper is organised as follows: the next section highlights the main aim and objectives of

the paper. The related works have been summarised in section 3; the proposed model will be discussed in

section 4, which includes discussion about the situation calculus use to analyse the network topology. Linear,

Goal and Dynamic programmingmodelling approaches will be discussed in section 5. The evaluation of the

proposed model is detailed in section 6; finally, the paper concludes the results and paves the future work in

section 7.

2. Aim and Objectives

There are two main pillars for energy consumed at cloud computing that should be dealt with efficiently

and equally to achieve the full green cloud computing network:

(i) the amount of energy consumed at the data centre and

(ii) the amount of energy consumed on transporting the data between the user and the cloud data centre.

Since the current state-of-the-art solutions focus primarily on improving the energy consumed at the data

centres, as the next section shows; thereby, the primary aim of this paper is to propose and evaluate a high-

end routing algorithm entitled Green Director (GreeDi) to address the gap. GreeDi acts as an intermediary

bridge for directing the users requests to the green data centres based primarily on using the most energy

efficient route to achieve the full green cloud computing network ambition while making sure the users

requirements, e.g. response time, are met.

To accomplish this aim, we first model the cloud computing network and its power consumption as a

basis to compute the energy required by the cloud network before and after using the proposed algorithm.

We will then formalise the interconnection between the cloud user and a green data centre, by using a

situation calculus model to define the logical state of the network. Once the interconnection is established

and formalised, we then calculate the energy required for the transportation. Linear programming approach

will be used thereafter to model the proposed algorithm, which will finally be evaluated against the well-

known shortest path routing policy.
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3. Related Work

Energy consumption and analysis has been studied from different computer science domains and per-

spectives, such as from hardware architecture, software architecture network or even I/O technologies (i.e.

storage). A discussion of the various elements that contribute to the total energy consumption in cloud en-

vironments and how they are addressed in the literature can be found in [9]. However, the most relevant

solutions and the very interrelated ones to this work will be discussed in this section. Many energy efficient

routing algorithms and protocols have been proposed in the literature, such as [10, 11, 12], where they can

be classified into two main categories: (I) Minimum Energy routing algorithms [10] and (II) Maximizing

Network Lifetime routing algorithms [11, 12]. The first one tries to find the most energy efficient route to

transmit the data packets from sender to receiver; whereas the second one aims at balancing the remaining

battery power in each of the intermediate nodes.

In turn, The Minimum Energy routing algorithms can be divided into three sub-classes based on the

types of link costs:

(i) Minimum Total Transmission Power (MTTP) [13], which uses the transmission power as the link

metric and search for the path with minimum total transmission power between the sender and the

receiver. For example, the authors in [13] modified the Dijkstras Shortest path algorithm to get the

MTTP path.

(ii) Minimum Total TransCeiving Power (MTTCP) [14], which uses the transmission power as well as the

receiving power as the link cost.

(iii) Minimum Total Reliable Transmission Power (MTRTP) [12], which uses the total transmission power

for transmitting the data packets from one node to its adjacent node reliably as the link cost.

However, the above algorithms did not consider the energy and time required for computing/processing

a job (receive, process, forward) at each individual intermediate node, which is critical in moving big data

to cloud data centre. Recent studies in [15] and [16] presented two online algorithms to solve the issues

of moving big data to the cloud. First, Online Lazy Migration (OLM) Algorithm that seeks to prevent

moving a large amount of data back and forth too often by avoiding aggressive switches of the aggregation

data centre. The second is a Randomized Fixed Horizon Control (RFHC) algorithm, which can predict and

exploit future information based on Markov chain model. Based on their evaluation, (OLM) and (RFHC)

can achieve a very low competitive ratio; however, they concluded that energy efficient routing solution for

cloud computing is essential to ensure environmental sustainability.
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The authors in [17] presented a new routing strategy to reduce the cloud network CO2 emissions by dy-

namically routing/transferring the on-demand energy-intensive data processing requests, via IP-over-WDM

networks, to data centres that are powered primarily by renewable energy sources such as wind and solar.

However, this solution helps in reducing the CO2 emissions at data centres level only, and not at the data

transportation level.

Another complementary research reported in [18] studied the energy consumption in both: the data

centre and in data transportation to data centres. They have used optical networks and virtualisation in IP-

over-WDM architecture to save the power in the data centres and achieve green communication. Two models

are proposed in that research:

(i) Delay-Minimized Provisioning (DeMiP), which aims to select the nearest data centre based on pre-

computed distances between nodes in virtual topology, and then the virtual links from the virtual

topology are mapped on physical topology by utilising Dijkstras algorithm for shortest path;

(ii) The Power-Minimized Provisioning (PoMiP), which focuses on IP routers as power consumers in the

transport network and aim to minimise the utilisation of the IP router ports. It selects the virtual link

with low-power.

Another study presented in [19] targeted the data centre level but from a different angle in which it

tries to reduce the data centre power consumption while guarantee the service performance based on the

users’ perspective and expectation. Their proposed software architecture enables comprehensive online-

monitoring, live virtual machine migration, and VM placement optimisation.

Other proposals such as [20, 21] try to understand and find a tradeoff between energy efficiency and

performance. In particular, in [20], the authors study such a tradeoff using a social media analysis case

study, where there is likely to be a high level of variability (both in performance and energy use). In [21],

the tradeoff between power consumption and Service Level Agreement (SLA) enforcement is formulated as

constraint satisfaction problems, and it is developed within the context of cloud computing data centres.

In [22], a framework that integrates energy awareness, and even environmental impact as a part of

the SLA is proposed. The authors identified several parameters that could be used within a SLA, such as

the amount of CO2 correlated with environmental measurements that are easier to measure and understand

for a user. An interesting study in [23] presents a cloud energy management system by using a sensor

management function and a VM allocation tool. These sensors are deployed across multiple data centres

and can be accessed and monitored via a unified interface for those multiple data centres. The collected
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Figure 1: Cloud Broker Network Overview

data are used and analysed via the sensor management function through four main phases: Monitoring,

Calculation, Analysis, and Action. The study achieved 30% energy reduction at data centres level.

Another interesting approach is the one presented in [24]. It proposes a number of algorithms to reduce

power consumption by consolidating the hosting workloads and shutting down physical machines, which

become idle after consolidation. Linear programming has been utilised for the scheduling of tasks within

heterogeneous clusters [25]. By simulation, they showed that using their proposed policy results in sig-

nificant reduction in energy consumption. In the domain of automated workflow compositions and cloud

computing, an autonomic service composition engine based on AI techniques for cloud environments was

proposed and described in [26]. The paper presented a formal approach that uses Situation Calculus to

translate service requirements into an Intention Workflow Model (IWM). This IWM is then used to generate

autonomic cloud service composition.

6



4. Proposed Model: Basics and Rules

Since the previous research were focused on how to achieve green data centres, this has helped us using

the following assumption throughout the paper:

There are n green data centres to which a user machine i can be connected to through the Internet, to

accomplish a certain task.

So, one of these available data centres will be used, by which it must be accessible via the selected

most energy efficient route. In other words, amongst multiple routes to a green data centre, the most energy

efficient route will be chosen by the new framework.

4.1. Modelling power consumption of the network

Modelling power consumption of the cloud network is an essential part of this work since it is the basics

that the rest of the paper and other calculations and algorithms proposed here are all based on. Accord-

ing to [27, 28, 29, 30], one of the most widely accepted methods for modelling the power consumption of

massively distributed network infrastructure, such as cloud network, is based on the telecommunications

equipment inventory statistics and their historical sales figures (i.e. once the quantity and type of equipment

in the network are known, the energy consumption of these equipment can be easily calculated). However,

this approach alone cannot determine the actual network architecture and structure. Once the network ar-

chitecture is know, then required components can be identified and energy consumption can be calculated

accordingly.

As discussed in [31, 32], telecommunications network-based model is an essential approach to be used

side-to-side with the above one to address the gap. In this approach, the network is partitioned into a num-

ber of main parts: access network, metro/edge network, core network, data centre and IPTV web services

network. The network model presented in Figure 1 is a first-cut of such a massively distributed network,

and as such it does not include much of the fine details of the network true structure and topology. However,

it does show the main network architecture and the required components, which are needed for the energy

consumption calculation purposes. The energy consumption of the network is calculated using the manu-

facturers data on equipment quantity and energy consumption for a range of typical types of equipment for

each part of the network. Using a combination of the above two approaches help in calculating the power

consumption of the entire network using real world network infrastructure components; and it also helps

in predicting the growth in power consumption depends on the network architecture, and the equipment

inventory statistics and their historical sales figures provided by the manufacturers.
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Figure 2: Distributed network structure [33]

4.2. Modelling user connectivity to data centre

The interconnection between a user machine i and a data centre DCi, via the proposed algorithm, is

based on the public cloud structure shown in Figure 1 above and also [34], which will, in this paper, be

formalised as a graph. Thus, between any i and a DCi, we assume that we have an interconnection graph

Gi = (V i,T i, Pi,Ci, Ei, Li, Bi).

Where V i gives a list of all possible nodes available between any i and a DCi; and T i : V i −→ {1, . . . , 6}

states the nodes’ types, which are six different types of nodes available. Therefore, as shown in Figure 1,

each node v, where v ∈ V i, might be: an ethernet switch (T (v) = 0), a broadband gateway router (T (v) = 1), a

data centre gateway router (T (v) = 2), a provider edge router (T (v) = 3), a core router (T (v) = 4), and a high-

capacity Wavelength Division Multiplexed (WDM) transport equipments/links (T (v) = 5), to interconnect

the core routers, part of the public Internet.

Pi(v) and Ci(v) states the power consumption and the capacity of a node v ∈ V i, respectively.

Ei ⊆ V i×V i defines the interconnection nodes; Li : Ei −→ N gives the latency between connected nodes

Ei; and finally Bi denotes to the bandwidth.

4.3. Formal analysis of network topology

In initial analysis, this network is highly distributed and does not necessarily possess global knowledge

of its own state. It is thus necessary to apply a formalism to define the logical state of the user’s network that

does not rely on explicit state enumeration. For this, a calculus of situations is proposed as in [35] whereby

a situation is the history of previous actions and one situation, s, is transformed into another, do(a, s), by
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Figure 3: Network structure

applying action a in situation s. The logical state of the system is then determined from the initial conditions,

effect axioms, frame axioms and qualification axioms. As discussed in [35], the frame problem can often be

worked around combining frame and effect axioms into successor state axioms. Thus, the fitness of a node

v ∈ V i in users i’s network may be given by:

f itness(v, do(a, s)) = F ⇔ [ f itness(v, s) = F ∧ a < A(v)]∨ ∃m[ f itness(v, s) = F −m∧ value(a, s) = m]

where A(v) is the action set of node v and value is a function from the set of actions to the integers,

mapping each action to a reward (positive integer), cost (negative integer) or no effect (0). So, a relatively

simple value system can be defined to optimise the choice of components based on discovering the user’s

most energy efficient data centre network, or indeed to match any user requirement. For example, adding a

situation term to the capacity and power measures of a node:

value(addComponent(v), s) = r ≡ Pi(v, s) > Pi(v, do(addComponent(v), s) ∧ r = 50∨

Ci(v, s) < Ci(v, do(addComponent(v), s) ∧ r = 100 ∨ [(Pi(v, s) < Pi(v, do(addComponent(v), s)) ∨

(Ci(v, s) > Ci(v, do(addComponent(v), s)) ∧ r = −10]

Thus, for each node: f itness(do(a, s)) = f itness(s) + value(a, s). Additionally, probabilities can be

assigned to reflect the likelihood of success for network operations. Thus, it can be stated that for any node,

the likelihood of connecting/routing to another node, v′ is dependent on the fitness of that node:

prob(addLink(v′), s) =
fv′dv′∑

v ∈V i fvdv
(1)
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Alternatively, for any v ∈ V i this is the probability that (v, v′) ∈ Ei. Thus, in order to maintain connec-

tivity:

connections(v, do(a, s)) = N ⇔ [(connections(v, s) = N)∧a , connection trans f er]∨connections(v, s) =

N − m ∧ ∃v′( f ailed(v′, s) ∧ connections(v′, s) = m)poss(connection trans f er, s)⇒ ∃v′ f ailed(v′, s)

So, if v is the existing node that acquires the connections of a failed node, and v′ is the failed unit and

v′′ is a new node created, then:

connections(v, do(connection trans f er, s)) = connections(v, s) + connections(v′, s) − mvv′′ − hvv′

connections(v′′, do(connection trans f er, s)) = 1 − − − [A]

where hvv′ = 1 if v was connected to v′, and 0 otherwise, and mvv′ is the number of nodes with mutual

links to v and v′: mvv′ =
∑

u hvuhv′u

The probability that (v, v′) ∈ Ei is

connections(v, s)connections(v′, s)
nodeNumber(s) < connections(V i, s) >

where < connections(V i, s) > is the average number of connections in V i. Denoting cv for the number

of connections a node v has in s, and N for the number of nodes in s, so the average number of connections

to v and v′ is:

< mvv′ >=
∑

u
cvcu

N < cV i >
= Kcvcv′

where K =
< c2

V i >

N < cV i >2

Now, substituting the expressions given in [A] in the probability generating function for a power law

distribution

P(c) =
1
2

E(ccv′−mvv′−hvv′−hv′v+cv ) +
1
2

c =
1
2

[
c + E(ccv+cv′′eKcvcv′g(c)(1 +

cvcv′g(c)
N < cV i >

))
]

where g(c) = (1 − c)/c and hvv′ is a random bit. As N → ∞,K and
1

N < cV i >
→ 0.

So, letting K∗ =
1

N < cV i >
. P(c) can be expanded as a convergent power series in K and K∗. The first

term when K = K∗ = 0 gives 2P(c) = P2(c) + c so that: P(c) = 1 −
√

1 − c =
1

2Γ(
1
2

)

∑∞
v=1

Γ(v −
1
2

)

v!
cv
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Thus as N → ∞P(cV i ) =

Γ(cvi −
1
2

)

2Γ(
1
2

)cvi ! ∼ c−V i
3/2
.

Thus, the connectivity of the user’s network to the data centre is governed by a power law distribution

with exponent 1.5. Properties of such networks can then be utilised in identifying the most relevant green

data centre to the user. For example, a neighbour node of any particular node is likely to have greater

connectivity than that node [36, 37]. In this way, a strategy of ascertaining a green network overlay can be

pursued based on identifying only key nodes in the network and routing over these.

4.4. Energy required for transportation

For any user’s job to be processed, we assume that we have: the quantity of Flops that it requires wu; the

amount of input bits inu to be processed; the amount of output bits ouu to be returned.

Therefore, if we need an energy of ETsend(i) for sending a bit from the user to the data centre and ETrecv(i)

for the inverse sending, the total energy transportation cost required for processing Ju is: inu.ETsend(i) +

ouu.ETrecv(i). To model ETsend(i) and ETrecv(i), we assume that data sent from a user machine to a data

centre is always routed on a path that rely the two points connection (the shortest path). In using the

formulas proposed in [34], the energy required for sending one bit from a user to a data centre is:

ETS end(i) = 6

3Pi
es

Ci
es

+
Pi

bg

Ci
bg

+
Pi

g

Ci
g

+
2Pi

pe

Ci
pe

+
18Pi

c

Ci
c

+
4Pi

w

Ci
w

 (2)

where in this case, Pi
es, P

i
bg, P

i
g, P

i
pe, P

i
c, and Pi

w represent the power consumed by the nodes types listed

in subsection 4.2, Ethernet switches, broadband gateway routers, data centre gateway routers, provider edge

routers, core routers, and WDM transport equipment, that are located on the path used for routing a user’s

job to a DCi. Ci
es, Ci

bg , Ci
g , Ci

pe, Ci
c and Ci

w are the capacities of the corresponding equipment in bits per

second. The values Pi and Ci depend on the nodes used.

Since the above equation doesn’t take into account the power consumption of the other overheads in

the cloud network, hence, the entire equation is multiplied by the left factor (six). The factor of six stands

precisely for the power requirements for cloud redundancy (factor of 2), cooling equipments and other

overheads (factor of 1.5), and the fact that todays network typically operates at under 50% utilization [38]

while still consuming almost 100% of maximum power (factor of 2) [39]. The factor of three for Ethernet

switches is to include the Ethernet switches in the metro network as well as the Ethernet switches in the LAN

inside the data centre. The factor of two for provider edge routers is to include the edge router in the edge

network and the gateway router in the data centre, and in the same vein for the other factors in the equation.
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Let’s consider that Gi comprises the set of paths Pth = {pth1, . . . pthl} from a user machine i to the data

centre DCi. Then, if the path pthp was used for sending data, we will have Pi
es =

∑
(u,v)∈pthp |T (v)=0

Pi(v) and

Ci
es =

∑
(u,v)∈pthp |T (v)=0

Ci(v).

And in the same vein, for the other nodes’ types. For example, for the broadband gateway router, Pi
es

and Ci
es will consecutively be:

∑
(u,v)∈pthp |T (v)=1

Pi(v) and
∑

(u,v)∈pthp |T (v)=1

Ci(v).

4.5. Time required for transportation

We assume a simple communication model, Store and Forward, where each node waits for a complete

reception of the data before processing it. The approximate time required for sending α bits on a link e ∈ Ei

is equal to: max{Li(e), d α
Bi(e) e.L

i(e)}.

where, as mentioned in subsection 4.2 above that, Li : Ei −→ N gives the latency between connected

nodes e ∈ Ei; and Bi denotes to the bandwidth. The idea behind it is that either, the bandwidth can contain

the bits to send or, we must divide the data to send it in various blocks based on the bandwidth. Finally, we

assume that the paths pthp and pthp′ ∈ Pth were used for sending user data in both directions; then, the total

time required for the transportation of a Job Ju in both directions is equal to:

Tr(u, i) =
∑

e∈pthp

max{Li(e), d
inu

Bi(e)
e.Li(e)} +

∑
e∈pthp′

max{Li(e), d
ouu

Bi(e)
e.Li(e)} (3)

4.6. Energy and time required for computation

We assume that each job Ju will be processed by a single machine in the data centre. We also assume that

each data centre DCi is made of a finite set of homogeneous machines that consume EP(i) for processing

one flop. Therefore, for processing a job Ju, the data centre DCi will consume wu.EP(i).

Finally, any machine in a data centre DCi needs approximatively µ(i) time units for processing one flop.

The job Ju can then be processed in approximatively wu.µ(i) times units.

5. Modelling Approach

5.1. Linear programming formulation

For processing users’ jobs, the proposed GreeDi algorithm will be used, which routes users’ jobs to the

subscribed green data centres via the most energy efficient route; in order to minimize the energy consump-

tion and the Service Response Time (SRT). However, this creates the following computational problem that
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must be solved: there are m users’ jobs J1, . . . , Jm that have been submitted to the framework gateway. This

gateway can be seen here as a server machine connected to each data centre DCi by an interconnection graph

Gi. Each user’s job is submitted with an intention file, which includes non-functional SLA requirements such

as the maximal response time that the user expect for processing his request/job. Finally, each data centre

DCi is associated with a capacity qi stating the maximal number of jobs that GreeDi algorithm can route on

it. This parameter depends on negotiations, made between the framework and cloud provisioner. As we will

see also, qi is important for ensuring a minimal response time in the treatment of users’ requests. The frame-

work gateway must choose for each job Ju a data centre such that: minimise the total energy consumption

(both transportation and processing as discussed earlier), while ensuring processing data within a minimal

response time defined by the user’s intention file. For a linear programming formulation, we consider a deci-

sional variable x(i, u) ∈ 0, 1 which states whether or not the job Ju will be processed on the data centre DCi.

Let us denote to the Maximal Service Response Time, for processing job Ju (as defined in user’s intention

file), by MS RTu. Thus, the problem can be represented as the following mixed integer linear programme:

Model LP1 :

Minimize Z =

m∑
u=1

n∑
i=1

x(i, u).[wu.EP(i) + inu.ETS end(i) + ouu.ETRecv(i)]

Subject to:

1. ∀Ju,DCi : x(i, u) ∈ {0, 1}

2. ∀Ju :
n∑

i=1

x(i, u) = 1

3. ∀Ju :
n∑

i=1

x(i, u).[wu.µ(i) + Tr(u, i)] ≤ MS RTu

4. ∀DCi :
m∑

u=1

x(i, u) ≤ qi

Any LP1 solution states to route job Ju towards the data centre DCi if x(i, u) = 1. The constraint 3 in this

modelling defines the maximal response time expected by users. Such a maximum can only be guaranteed

if there is limitations on the maximal number of Jobs that can be processed in parallel in any data centre;

hence constraint 4, in which qi denotes to the maximal number of Jobs.

In LP1, we assumed that for sending user data in both directions, two paths, pthp and pthp′ , are used.

Different paths selections might lead to different values of Z. For including this combinatory we have two

options: (i) we include it in LP1. It is hard in this case to avoid non linear equations; (ii) we execute multiple

13



times the linear program with different path choices return the answer that leads to the minimisation of Z.

This approach is more efficient since we remain with a linear model. Algorithm 1 below summarises LP1.

Algorithm 1 LP1 Input, Output, Steps
INPUT: Jobs J1, . . . , Jm with workloads, inputs and outputs data, and intention files; Data centres

DC1, . . . ,DCn with energy consumption per flop and frequency; Interconnection graphs G1, . . .Gn

OUPUT: Return the best solution on Z

STEPS:

1. Define, for each i, a set of paths Cpthi that can be used for sending and receiving data.

2. For each i, choose a pair of paths (pthp, pthp′ ) ∈ Cpthi

3. Compute the resulting values of ETS end(i) and ETRecv(i) (equation 2);

4. For any job Ju and data centre DCi compute Tr(u, i) (equation 3)

5. Run LP1 and obtain Z; if it is the best obtained value then it will be kept.

6. If there is possible combination (pthp, pthp′ ) that has not been explored, goto 2

In the special case where Cpthi is defined by taking the shortest paths on the bandwidth, we do not loop

in this algorithm. It is trivial to observe that the intents set by users on maximal response time can make LP1

unrealisable. To circumvent this difficulty, we will adopt a goal programming formulation.

5.2. Goal programming formulation

For any job Ju, we introduce two real deviation variables d+
u and d−u . A job Ju can be put on data centre

DCi if:

wu.µ(i) + Tr(u, i) + d−u − d+
u = MS RTu

In order to approximate to user’s intents, we must minimise d+
u (the excess between the effective SRT and

the one expected by the user). Our objective within this new perspective is to minimise both: the deviation

on user requirements and the total energy consumption. For handling these two separate objectives in a same

function, we assume that there is a preference factor βu defined on each job by the user and stating what is

the relative importance of SRT minimisation over the energy consumption. From the above, we can derive

the following model:
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Model LP2 :

Minimize
∑m

u=1(1 − βu) Eu
Eu+d+

u
+ βu.

d+
u

Eu+d+
u

Subject to:

1. ∀Ju,DCi : x(i, u) ∈ {0, 1}

2. ∀Ju :
n∑

i=1

x(i, u) = 1

3. ∀Ju : d−u , d
+
u ≥ 0

4. ∀Ju :
n∑

i=1

x(i, u).[wu.µ(i) + Tr(u, i)] + d−u − d+
u = MS RTu

5. Eu =

n∑
i=1

x(i, u).[wu.EP(i) + inu.ETS end(i) + ouu.ETRecv(i)]

6. ∀DCi :
m∑

u=1

x(i, u) ≤ qi

The above modelling is based on two type of goals: users ones (submitted via intention which is a part

of SLA) and the energy minimisation. In the current formulation, we reduced the users intents to a threshold

for the SRT, as per constraint 4 of MSRT in the above LP2. But, it makes sense to envision an extension of

the modelling to include other requirements such as a maximal price or a minimal level of security for its

data. Finally, let us observe that we normalised the Energy and the goal deviation in order to make these

quantities comparable. This choice has however a drawback: the objective function becomes non-linear. As

such, we will propose a dynamic programming approach for computing fast solutions of LP2.

5.3. Dynamic programming approach

In this solution we maintain a two dimensional array Z ∈ Rn×m. Each Z(i, l) corresponds to an assignment

of the jobs J1, . . . Jl−1 to data centres in which Jl is associated with the data centre DCi. At the beginning of

the algorithm, we compute

Z(i, 1) = (1 − β1)
E1(i)

E1(i) + d+
1 (i)

+ β1.
d+

1 (i)
E1(i) + d+

1 (i)

for any data centre DCi. Here,

E1(i) = w1.EP(i) + in1.ETS end(i) + ou1.ETRecv(i)

and

w1.µ(i) + Tr(1, i)] + d−1 (i) − d+
1 (i) = MS RT1

For the computation of Z(i, l), l > 1, we proceed as follows:
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1. We consider the different assignments Z(1, l − 1), . . .Z(n, l − 1) in which the number of Jobs assigned

to DCi is lower than qi. We will refer to these assignment as (i, l) compatible ones.

2. If there are no (i, l) compatible assignments, we set Z(i, l) = +∞

3. Otherwise, we choose the (i, l) compatible assignment with the smallest objective value and sum this

value in Z(i, l), with the cost required for assigning Jl to the data centre DCi. In a formal manner, this

cost is

Z+(i, l) = (1 − βl)
El(i)

El(i) + d+
l (i)

+ βl.
d+

l (i)
El(i) + d+

l (i)

At the end, we have the values of Z(i, n), computed for each data centre DCi. We then select the assignment

that leads to the smallest objective value.

The Bellman rule of this modelling can be resumed as follows: the optimal assignment of Job Jl on the

data centre DCi is obtained from the optimal assignment of Jobs J1, . . . , Jl−1 in which the capacity used for

the data centre DCi is lower than qi. The optimality of this rule can be influenced by the way we sort the

jobs. We propose for this to use the user’s submission ordering. That is: J1 is the first submitted Job, J2 the

second etc. The advantage of this ordering is that implicitly, the first user will have the best services.

6. Evaluation

The scenario presented in this section is aimed to illustrate how the total energy transportation results on

directing a user’s request to a subscribed green data centre. In the following, we present first the network

physical topology used for the energy efficiency evaluation, then we detail the nodes types per route in the

presented topology and compute the energy consumption to compare the eventual results.

6.1. Physical topology

The network topology we used exploits the hierarchal design that is physically used by an Italian Internet

Service Provider (ISP) [40]. Four levels of nodes presented in this topology, namely: core, backbone, metro

and access nodes; where the top level represents the core nodes. Core nodes are distributed across what

so-called Central Points − o f − Presence (POPs), which are usually located in the big cities. Each Central

POP hosts a pair of core nodes. Core nodes in each one Central POP are connected to each other, and to

other core nodes in the adjacent cities usually by two links for failure protection. A high-capacity Internet

peering router is connected to the core nodes to offer connectivity to the Internet. Having said that, to

get connected to the Internet, there might be a number of traversed core nodes until Internet connection is

established via a Central POP.
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Figure 4: Hierarchal Topology of an Italian ISP

The backbone nodes are located in the second level of the topology. Each backbone node is connected

to two Central POPs. Backbone nodes are located in larger POPs, which are called Chie f POPs, spread

in large city. From the other side, the backbone nodes are connected to metro nodes. In the same vein,

each metro node is dual-homed to two backbone nodes for failure protection. Metro and backbone nodes

are located in the same Chief POP. At the bottom of the hierarchal topology, we can see the access nodes,

which provide connectivity to the Digital Subscriber Line Access Multiplexers (DSLAMs) to which users

are connected to via DSL, FTTN, or PON as per Figure 2 in this paper. Access nodes aggregate traffic from

users in the same area/vicinity. Each access node is dual-homed to the closest pair of metro nodes. As such,

by using the above topology, Figure 4, failure in any of the intermediate nodes will result in redirecting the

user’s job into one of the live connected nodes to the failed one, based on which level in the topology the

failure occurred. That means, the power consumption of each route can be vary. Hence, we need to know the
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Table 1: Route A Network Components

Type Equipment Capacity Power Consumption

Ethernet Switch (small) Cisco 4507R-E 64 Gbps 0.658 kW

Ethernet Switch Cisco 6509-E 180 Gbps 2.279 kW

BNG Juniper E320 320 Gbps 3.347 kW

Provider Edge Cisco 12816 160 Gbps 4.21 kW

Core Router Juniper T640 640 Gbps 6.283 kW

WDM (800km) Fujitsu 7700 40 Gbps 136 W/channel

energy consumption and the actual capacity of each equipment used in all possible routes starting from the

access nodes level all the way to the Internet, then to the data centre in a cloud scenario, as it was discussed

in section 4.1. As such, we consider to use the specification (power and capacity) of real network equipment

provided by the manufacturers as shown in Table 1, Table 2, Table 3, and Table 4 and apply them on the

above topology.

6.2. Energy evaluation and results

In this scenario, there are three standard routes leading to one of the green cloud data centres. These

three routes have different structure, in terms of number of nodes, power and capacity, depending upon the

Chief POP and Central POP traversed, as follows:

1. Route A (Table 1) composed of 8 core routers/nodes, 52 edge routers, 52 access routers, 260 residential

switches, and 260 end hosts; hence a total of 632 nodes.

2. Route B (Table 2) composed of a smaller number of intermediate nodes compared to route A. It

includes: 6 core routers, 48 edge routers, 47 access routers, 245 residential switches, and 260 end

hosts, hence a total of 606 nodes.

3. Route C (Table 3) composed of the least number of intermediate nodes including: 5 core routers,

45 edge routers, 45 access routers, 230 residential switches, and 260 end-hosts, hence a total of 585

nodes.

However, as mentioned earlier, nodes failure can happen anytime during the sending and receiving pro-

cess, which results in selecting, switching to, different routes to complete the process. For example, a Central
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Table 2: Route B Network Components

Type Equipment Capacity Power Consumption

Ethernet Switch (small) Cisco 4503 64 Gbps 0.474 kW

Ethernet Switch Cisco 6509 160 Gbps 3.8 kW

BNG Juniper E120 120 Gbps 1.638 kW

Provider Edge Cisco 12816 160 Gbps 4.21 kW

Core Router Cisco CRS-1 640 Gbps 10.9 kW

WDM (800km) Fujitsu 7700 40 Gbps 136 W/channel

Table 3: Route C Network Components

Type Equipment Capacity Power Consumption

Ethernet Switch (small) Cisco 4503 64 Gbps 0.474 kW

Ethernet Switch Cisco 6509 160 Gbps 3.8 kW

BNG Cisco ASR 9001-S 60 Gbps 3.3 kW

Provider Edge Cisco 12816 160 Gbps 4.21 kW

Core Router Cisco CRS-1 640 Gbps 10.9 kW

WDM (800km) Fujitsu 7700 40 Gbps 136 W/channel

POP node of Route A, which is the red-crossed node in Figure 4, drops out of the network due to hardware

failure. As a result, the backbone nodes will switch to a different Central POP, which is the yellow path in the

same figure that belongs to Route B, to get connected to the Internet. By looking at the new yellow route,

namely Route D in this example, it is clear that the number of the Central POP is 3-times more than the

Central POP required by the original route. That logically means, applying ETsend on the new route results

different energy consumption that might be less or more the the original one. As such, Route D (Table 4)

structure comprised of 8 core routers (all from route A), 52 edge routers (all from route A), 251 residential

switches (150 from route A and 101 from route B), 47 access routers (all from route B), and 260 end hosts
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Table 4: Route D Network Components

Type Equipment Capacity Power Consumption

Ethernet Switch (small) Cisco 4503 64 Gbps 0.474 kW

Ethernet Switch (Route A) Cisco 6509-E 180 Gbps 2.279 kW

Ethernet Switch (Route B) Cisco 6509 160 Gbps 3.8 kW

BNG Juniper E120 120 Gbps 1.638 kW

Provider Edge Cisco 12816 160 Gbps 4.21 kW

Core Router Juniper T640 640 Gbps 6.283 kW

WDM (800km) Fujitsu 7700 40 Gbps 136 W/channel

Figure 5: Path lengths of each route

(all from route B); hence the total is 618 nodes.

Figure 5 depicts the total number of the intermediate nodes to the data centre for each of the four routes

in this scenario. On calculating the total energy transportation cost for the above four network settings, it

is clear, as depicted in Figures 6 and 7, that although Route A has more traversed nodes than Routes B, C

and D, it consumes less energy than either of these routes. This is due to the relative capacity and the power

consumption of the equipment used in each of the routes. It is vital to mention that the values provided in

Figure 6 are based on ETsend calculations of the routes, and it is assumed to be nearly the same for ETrecv,
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Figure 6: Total Energy of each route

if the same route has been used for inverse sending. Hence it can be seen that Route A is the most energy

efficient and thus the best routes out of the four from a pure energy consumption perspective, while Route B

represents a potential compromise combination of shortest path and energy consumption, and Route D can be

looked at as a recovery route. Further energy efficient related results based on average energy consumption

per node of each route, as outlined in Figure 7, route A despite being the longest path, is not only the least

energy demanding route overall, but in addition is the most energy efficient route in that it has the lowest

average energy consumption per node. This is not seen in route B, which although is less energy demanding

than route C , overall, and is a shorter path than route A, is not efficient in term of energy consumption per

node; the energy advantages of route B are outweighed by energy cost of its additional nodes. Therefore it

can be argued that Route A is the most favourable route from an energy efficiency point of view.

7. Conclusion

Energy efficiency has become a high priority aim in cloud network environment, including data centres

sustainability. Since the data centres consume the largest amount of energy in the entire cloud network, it has

been greatly dealt with and solutions were already implemented and approved to get the green data centre.

This paper dealt with the energy efficiency of cloud routing rather than data centres energy consumption,

and proposes and evaluates a new energy efficient routing framework, dubbed GreeDi. A formal analysis of

the cloud network connectivity has been given via situation calculus. GreeDi algorithm was evaluated on a
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Figure 7: Average Energy consumption per node of each route

physical Italian ISP topology, that has three different routes to a green cloud data centre. From the example

results shown in this paper, the shortest path approach is different from the energy efficient one, and thus,

the energy efficient path is used to conform to the environmental objectives. As in any other network, nodes

failure can happen at anytime during the sending and receiving process; which can lead to different energy

and power consumption. As such, the number of intermediate nodes, capacity and power consumption of

each node between the user and the cloud data centre have a direct impact on ETsend and ETrecv, as shown

in the experiment results. The results gained from the evaluation section in this paper imply that a decision

on which route is most energy efficient one can only be made after each successful sending and/or receiving

process to make sure that the calculation has been done based on the traversed nodes.

Future extensions to this work include analysing and taking into account the time required for trans-

portation, and energy and time required for computation, between the data centres and users and among the

data centres themselves, in order to establish and evaluated how the proposed algorithm performs in terms

of computation consumption.
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