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Abstract Testing the structural integrity of pipelines is a crucial maintenance task in the oil and

gas industry. This structural integrity could be compromised by corrosions that occur in the pipeline

wall. They could cause catastrophic accidents and are very hard to detect due to the presence of

insulation and cladding around the pipeline. This corrosion manifests as a reduction in the pipe wall

thickness, which can be detected and quantified by using Pulsed Eddy Current (PEC) as a state-of-

the-art Non-Destructive Evaluation technique. The method exploits the relationship between the

natural log transform of the PEC signal with the material thickness. Unfortunately, measurement

noise reduces the accuracy of the technique particularly due to its amplified effect in the log-

transform domain, the inherent noise characteristics of the sensing device, and the non-

homogenous property of the pipe material. As a result, the technique requires signal averaging

to reduce the effect of the noise to improve the prediction accuracy. Undesirably, this increases

the inspection time significantly, as more measurements are needed. Our proposed method can pre-

dict pipe wall thickness without PEC signal averaging. The method applies Wavelet Scattering

transform to the log-transformed PEC signal to generate a suitable discriminating feature and then

applies Neighborhood Component Feature Selection method to reduce the feature dimension

before using it to train a Gaussian Process regression model. Through experimentation using ferro-

magnetic samples, we have shown that our method can produce a more accurate estimation of the

samples’ thickness than other methods over different types of cladding materials and insulation

layer thicknesses. Quantitative proof of this conclusion is provided by statistically analyzing and
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comparing the root mean square errors of our model with those from the inverse time derivative

approach as well as other machine learning models.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Transmission pipelines in the oil and gas industry are assets that
need to be inspected and maintained regularly because pipeline

failures may have potentially significant consequences in terms
of loss of lives, environmental damage, and high economic costs.
These challenges make the process unique in that it necessitates
sophisticated pipeline risk assessments, technical know-how,

and efficient and cost-effective methods. To overcome these
challenges, numerous engineering disciplines are needed includ-
ing structural monitoring and instrumentation, fracture

mechanics, and non-destructive testing, to name but a few [1].
The structural integrity of a pipeline could be compromised

by corrosions that occur in the pipeline wall that cause a signif-

icant reduction in the pipe wall thickness. During an inspec-
tion, the wall thickness of the pipeline needs to be
determined to ensure that any variations from the expected

value are still within the standard manufacturing tolerances.
The process of accurately measuring the pipeline thickness is
very challenging when it is covered by insulation and cladding
layers. The ability to estimate the pipe wall thickness without

the removal of the insulation is very beneficial because such
removal lengthens inspection time, increases downtime, and
incurs costly replacements of the insulation layer [2].

Pulsed Eddy Current (PEC) is the state-of-the-art Non-
Destructive Evaluation (NDE) technique for evaluation of cor-
rosion or wall-thinning in ferromagnetic structures, especially

when they are insulated or coated [34]. The wide frequency
range of the excitation signals allows them to penetrate to var-
ious depths and provide more information about the geometry
of the structures being evaluated [5]. The method exploits the

relationship between the natural log transform of the measured
voltage with the material thickness.

Faster inspection speed, better sensitivity and detection,

and cost-effectiveness are imperatively needed in many NDE
applications [6–8]. Unfortunately, due to the sensor’s signal
limitation and the non-homogenous property of ferromagnetic

materials, PEC techniques usually require signal averaging to
improve its performance [9], which slows down the inspection
significantly due to repeated measurements of the same loca-

tion must be made. With PEC, this is especially true when
thicker structures are involved as the pulse has to be wider
[7] to give sufficient time for the induced eddy current to
diffuse.

In the next section, we will present the problem statement
and literature review. This is followed by the description of
the proposed methodology and the experimentation and anal-

ysis of the experimental results.

2. Problem statement and literature review

In this section, the relationship between the signal produced by
a Hall Effect device and the thickness of the material is derived
by using existing work in the literature. Hall Effect sensors
measure the strength of the magnetic field B. Borrowing the
derivation of a mathematical model for the PEC-induced
detector coil voltage signal VC by Huang et. al. [10], the mea-

sured voltage can be expressed as the sum of multiple exponen-
tially decaying signals weighted by their amplitude over time:

VCðtÞ ¼
Xn

k¼1

bke
�ckt ð1Þ

where the amplitude parameters, bi and the decay rate con-
stants ci, are positive real numbers for all k. The parameter n

is a positive integer number that represents the effective order
of the model. Its value is determined by the number of coils in
the sensor. The value of the voltage signal VCðtÞ converges as
the value of n ! 1.

Chen and Lei [11] determined the largest time constant s1,
where s1 ¼ 1=c1 in Eq.(1) as a function of the magnetic perme-
ability l, the electrical conductivity r, and the thickness d, of

the ferromagnetic plate. This relationship is expressed in Eq.
(2).

s1 ¼ lrd2

p2
ð2Þ

Separating that corresponding exponential term (the one
that has the largest time constant) from the rest of the terms

in Eq.(1) yields:

VCðtÞ ¼ b1e
� p2

lrd2
t þ

Xn

k¼2

bke
�ckt ð3Þ

This exponential term is the dominant contributor to the
signal in the late stage, i.e., when t is much larger than 0.
Hence, we can approximate the signal when t � 0 as:

VCðtÞjt�0 � b1e
� p2

lrd2
t ð4Þ

Using the Faraday’s Law of electromagnetic induction, we
can derive the strength of the magnetic field BðtÞ that induced
the voltage.

VC tð Þ BðtÞ
dt

ð5Þ

Rearranging the equation and considering VH, the voltage
measured by the Hall effect device we then have,

VH tð Þ ¼ k:BðtÞ ¼ � k

N

Z
VC tð Þdt ð6Þ

where k is the gain factor. Substituting VC using Eq.(4) and

solving the integral gives us the value of VH when t � 0 as:

VHðtÞjt�0 ¼
kb1lrd

2

Np2
e
� p2

lrd2
t ð7Þ

By taking a natural logarithm of the function, we can

express the equation as:
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lnðVHðtÞjt�0Þ � � p2

lrd2
tþ ln

kb1lrd
2

Np2
ð8Þ

Taking the derivative of the equation yields:

d lnðVHðtÞjt�0Þ
dt

� � p2

lrd2
ð9Þ

Using this model, the gradient of the measured Hall Effect
voltage signal in logarithmic space is estimated to be inversely

proportional to the square of the ferromagnetic plate’s thick-
ness. However, since in practice the signals will be corrupted
by noise, determining the gradient of the signal in logarithmic

space at t ! 1 will be practically impossible. Therefore, it
needs to be evaluated between the time, ta, when the non-
dominant signals, i.e., those expressed as the second term in
Eq.(3), have small but non-negligible contributions [12] and

the time, tb, when the signal-to-noise ratio falls below a certain
threshold. In this paper, we subsequently refer to this time win-
dow as the Evaluation Period (EP).

The accuracy of the estimation of the plate’s thickness is
affected by the deformation of the straight line in Eq.(8) by
the other non-dominant signals and noise. The effect of the

other non-dominant signals can be reduced by choosing a lar-
ger ta whereas the effect of the noise can be reduced by choos-
ing a smaller tb. Performing this simultaneously will result in a

narrow EP that can result in a less accurate gradient
estimation.

As indicated above, the long decay part of the signal can be
used to predict the thickness of the specimen under test. Based

on this, many feature extraction techniques for thickness pre-
diction have been developed, such as those reported in [13–
15]. However, the accuracy of the thickness prediction when

the feature is extracted is affected by the noise in the signal.
Consequently, PEC systems and techniques that have been
reported typically use signal averaging to reduce the noise in

their sensing device’s output signals. Examples of such systems
are reported in [16–19], where a minimum of 10 signals are
used in the averaging. Huang et al [20] also suggested the use
of signal averaging for denoising noise in the PEC signals in

addition to the application of a median filter. The disadvan-
tage of the use of signal averaging is that the time needed for
each measurement will be increased significantly as multiple

cycles have to be acquired for each measurement point
[15,21], and as a result, the speed of inspection will be lowered.
This is especially undesired when the area of the specimen to be

tested is large and/or a fast scanning is required. The scanning
speed can be improved if only a single pulse is required for
each measurement. The use of Gaussian process regression

(GPR), instead of line fitting of the signal’s decay, has been
presented for improving the performance of the measurement
when a Hall device was used as the sensing device and the aver-
aging of signals is used [21]. Thanks to the generally smaller

detecting cross-section areas, magnetic sensors offer the advan-
tage of better spatial resolution over sensing coils, which may
make them the preferred solution in some applications despite

PEC systems mostly using detector coils.
It is also worth noting that our proposed method is differ-

ent from other feature-extraction-based approaches for PEC

NDT in the literature, such as [22,23] where Principal
Component Analysis (PCA) and Hilbert transform were used,
respectively. First, in this research, we used ferromagnetic
sample material whereas, in the other papers, non-magnetic
(aluminum) sample materials were used. The consensus in
the literature suggests that the magnetic permeability of the
samples under consideration affects the characteristics of the

resulting PEC signals and therefore, the type of signal process-
ing technique to use. Secondly, the feature-extraction tech-
niques in those papers were applied to the differential of the

PEC signal, which is obtained by subtracting the testing sam-
ple response signal from the reference signal. In this paper, on
the other hand, we apply the feature extraction technique on

the natural log transform of the normalized PEC signal to uti-
lize the strong relationship between the gradient of the mea-
sured voltage signal in logarithmic space and the square of
the plate’s thickness as derived in Eq. (1) to (9). For speeding

up PEC measurements, the use of an array or a matrix of sen-
sors has been proposed [7,9]. The main drawbacks of the use of
a sensor array are the complexity of the system and the man-

ufacturing cost involved. A fast crack profile reconstruction
method using transient slices and spectral components of
PEC signals has been proposed in [24], however, this method

was developed for crack estimation of non-ferromagnetic
materials, rather than for corrosion or wall loss estimation
of ferrous materials.

3. Methodology

Our approach to solving the problem of getting an accurate

estimation of a ferromagnetic material sample thickness
without having to obtain a large number of measurements
is elucidated as a flowchart in Fig. 1. The proposed method
uses several signal processing and machine learning tech-

niques that eventually lead to the development of a regres-
sion model that fits a set of discriminating features derived
from the measured PEC signals of known material thickness.

The main stages of the process are described in the remain-
der of this section.

3.1. Data Pre-Processing

Upon the acquisition of the PEC signals of a given material
thickness, a median filter is applied to remove any outliers in

the measurements that can occur due to measurement or
instrumentation errors. The process is carried out in the time
domain in overlapping windows of a pre-determined width,
wmf, over the entire length of the signal. The filtered signal

is obtained by placing the median of the values in the input

window, at the location of the center of that window. Med-
ian filter is chosen because this filter is widely used in other
PEC-based signal processing techniques in the literature
[9,20].

To reduce the effect of insulation layer thickness variations,
we employ the normalization technique as suggested in [25].
The signal data are normalized to the [0 1] range by subtract-

ing the mean of their lowest values and dividing the results by
the mean of their highest values. Since we will be working with
the data in the logarithmic space, we also need to cap the min-

imum value to a small positive value. We then determine the
time when the signal just drops below a certain threshold
and remove any data prior to this time, hence effectively set-

ting the time at that location to be the origin. We then deter-
mine the ta and tb that mark the start and end of EP by
inspecting the logarithmic plot of the data.



Fig. 1 Overview of the proposed methodology. The two outputs,

the Feature Selection model and the Regression model, will be

used in estimating the sample thickness.
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3.2. Feature calculation using wavelet scattering

The choice of features is a crucial step in machine learning. It
can significantly affect the performance of the model that is
developed. A good feature must capture as much as possible

all relevant and discriminating information that is inherent
in the data in as few dimensions as possible. We have selected
wavelet scattering as the technique to generate such a feature

for the PEC signal data.
Wavelet scattering of time series data generates a set of fea-

tures that is invariant to translation and is stable to deforma-

tions. The method also does not require training and can work
well with a small amount of data. The technique allows time–
frequency analysis of non-stationary data, which is an advan-
tage over Fourier analysis, the canonical signal analysis tech-

nique in the past few decades.
As is previously shown in Eq.(8), the gradient of the mea-

sured signal in natural logarithm space is inversely proportional

to the square of the material thickness. Other factors in themea-
surements, such as lift-off distances, insulation layer thickness,
and types of the cladding material, will affect the bias compo-

nent of the equation. Measurement noise, while is present
equally throughout the measurement period, will have different
amplitudes at different times in the log space.Wavelet scattering

transform of the natural logarithm of the signal should provide
the discrimination of the types of deformations, separation of
the deformation factors, and invariance to bias that we need.
To illustrate this, let’s denote the wavelet scattering trans-
form of a time series signal xt as UðxtÞ. It is shown that wavelet

scattering transform is invariant to translation [26], hence
UðxtÞ ¼ UðxtþTÞ, where xtþT is a time-shifted variant of xt by
T. In a linear system xt ¼ mtþ bx, (where m and b are the gra-

dient and bias, respectively), it can easily be shown that
another linear system of the same gradient yt ¼ mtþ by as a

time shifted variant of xt by ðby � bxÞ=m. By that reasoning,

the wavelet scattering features of the signal having different
bias values should be similar.

Wavelet scattering is also shown to be Lipschitz continuous
to deformations [26]. For Lipschitz constantC greater than 0

and a displacement field su causing a deformation to xt that

creates xt

�
, it is shown that:

kU xtð Þ � Uðxt

� Þk � supuð rsuj jÞC
Z

kxuk2du ð10Þ

This means the change in magnitude of the features that
represent the elements of the signal affected by the deforma-
tion should correspond linearly to the magnitude of the defor-

mation itself. Therefore, if such a deformation is responsible
for the variation in the gradient of the signal, that will be
reflected linearly in the wavelet scattering coefficients.

A wavelet scattering of a one-dimensional signal x for a

maximum scale factor of 2J works by iteratively convolving

the signal with a bank of Morlet wavelets fwj;kg and then tak-

ing their modulus. The parameters j and k denote the scatter-
ing stage and the wavelet number, respectively and such that

0 � j � J and 1 � k � Kj, where Kj is the maximum number

of wavelets in the jth stage.
The output of the wavelet convolution and modulus in each

stage j becomes the input of the next. At each stage, the results

are convolved with a scaling function /J which acts as a data
averaging process to produce that stage’s scattering coefficients
Sj. To start with, x is not convolved with any wavelets. The

scattering coefficient at this level, S0, is simply x � /J. That
scattering coefficient is also known as the zeroth-order scatter-

ing coefficient. At each of the subsequent stages, the following
steps take place:

1. The wavelet transform is applied to the output of the previ-
ous stage using each wavelet in the wavelet bank.

2. The modulus of each transformed output is taken. This
result will be used as the input to the next stage.

3. The result is also averaged by convolving with the scaling
function to produce a set of scattering coefficients of that
stage fSjg.

These sets of scattering coefficients are the feature that we
obtained as the product of this wavelet scattering transform.

3.3. Feature reduction using Neighborhood Component feature
Selection (NCFS)

The dimension of the feature produced by the wavelet scatter-

ing transform is typically very high. Prior to using the feature
in machine learning, it is therefore important to select a small
subset of the feature that captures most information about the

underlying data and discard others that are irrelevant or
redundant. This process effectively reduces the dimensions of
features which will improve the machine learning model that
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is developed. The model will have better generalization perfor-
mance, i.e., the ability to estimate a good outcome on unseen
input. The model will also be smaller, leaner, and computa-

tionally faster because it does not have a high requirement
for memory size and computational power to compute and
store large numbers of features.

For this, we decided to use the Neighborhood Component
Feature Selection (NCFS) algorithm [27] to perform the dimen-
sionality reduction process. This is a supervised feature reduc-

tion method with the goal of maximizing the prediction
accuracy of regression and classification algorithms compared
to unsupervised methods such as PCA [22] whose aim is to pre-
serve as much variance in the reduced data as possible. The

method is also non-parametric, i.e., making no assumptions
about the shape of the class distributions or the boundaries
between them; hence, is suitable for our thickness prediction

problem.
The NCFS method assigns a weight to each dimension of

the feature as a measure of that dimension’s importance. The

higher the weight, the more important that dimension of the
feature is in determining the correct response. The method is
essentially a nearest-neighbor-based feature weighting method.

It uses the gradient ascent technique to maximize the expected
leave-one-out classification accuracy with a regularization
term. The leave-one-out method attempts to maximize the
probability of correctly predicting the response of an input

variable, by analyzing the other input variables and their cor-
rect responses. The method applies regularization with param-
eter k whose purpose is to reduce the chance of overfitting. The

chance of overfitting is affected by the number of observations.
If we have only a small number of observations, the chance of
overfitting increases, and as a result higher regularization

parameter value is desirable. To get the best value for k, we
split the data into training and validation sets using cross-
validation method and apply NCFS on the training set using

several values of k in the ½kmin kmax� range. The best k value
is one that minimizes the average loss across the cross-
validation folds.

Once the best k value has been determined, we sort the fea-

ture according to its assigned weights and select the top few
features to be used for training regression models in the subse-
quent stage.

3.4. Thickness estimation using Gaussian process regression

The thickness prediction is performed via regression analysis

of the relationship between the selected wavelet scattering fea-
ture as an independent variable with the material thickness as
its dependent variable. There are several machine learning
regression models that can be used, each has advantages and

disadvantages over others, and some are more suitable for a
certain type of applications and requirements than others.
Our review of the literature in the field of regression analysis

suggests that Gaussian Process Regression (GPR) [28] fits well
to our need of a) being able to provide uncertainty measure-
ment on the resulted prediction and b) providing relatively

good performance using a small number of training data.
As the name suggests, GPR is a supervised machine learn-

ing algorithm that uses a Bayesian approach to solve the

regression problem between a set of input variables x and its
outputs y. Let’s express the relationship between the input
and output variables as a general function involving a param-
eter w, e.g., y ¼ wxþ � for a linear function. Within a limited
input space, GPR works by a) coming up with a prior distribu-

tion pðwÞ and b) using Bayes’ rule to relocate the probabilities
based on some observed data X and come up with a posterior
distribution pðwjy;XÞ. To get a prediction y� at some previ-

ously unobserved input x�, GPR develops a predictive distri-
bution p y�jx�; y;Xð Þ using all possible predictions of w
weighted by its posterior distribution.

p y�jx�; y;Xð Þ ¼
Z
w

p y�jx�;wð Þpðwjy;XÞdw ð11Þ

In practice, the prior and likelihood are assumed to be
Gaussian for the integration to be tractable hence the point

prediction can be calculated using the mean prediction and
its covariance. Furthermore, the technique can also incorpo-
rate independent-and-identically distributed Gaussian noise,

� Nð0; r2Þ to the predictions by summing the predictive distri-
bution and noise distribution.

GPR offers several advantages namely:

	 Ability to use the predictions to interpolate observations,
	 Ability to directly compute confidence intervals due to the

probabilistic nature of the predictions, and
	 Allows some flexibilities e.g., using different covariance
functions (kernel) and specifying noise distribution r.

The technique is considered very efficient on a small dataset
and small input dimension but loses its efficiency in high

dimensional spaces, i.e., when the number of features exceeds
a few dozens. This problem is alleviated in our case since we
apply NCFS to the wavelet scattering feature to reduce the fea-

ture dimension prior to it being used in GPR.

4. Experimental setup

We conducted an experiment to empirically assess the suit-
ability of the proposed methodology in estimating the thick-
ness of material using a single observation of the PEC
signal. We built a PEC system and connected it to a PC

that samples and records the signals as our raw data. The
data is split into training and test sets, where the training
set is used to build the models as illustrated in Fig. 1 and

the test set is used to evaluate the performance of the mod-
els, as shown in Fig. 2, and analyze the effectiveness of the
overall approach.

4.1. PEC system building and signal acquisition

We built a PEC-NDT system consisting of a probe, a data

acquisition, and a laptop running LabVIEW software as illus-
trated in a block diagram shown in Fig. 3.

The design of our PEC-NDT system takes into account the
findings of a study [25] on Lift-Off Invariance (LOI). The three

findings of that study that are most relevant to our case are as
follows:

1. LOI points exist in PEC systems whether using coils or
magnetic sensors for inductive voltages or magnetic field
measurement. For a Halls device, the point can be found



Fig. 2 Overview of the strategy to evaluate the accuracy of the

estimated sample thickness produced using the developed Feature

Selection and Regression models.

Fig. 3 The PEC-NDT system block diagram.
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as the crossing of two first-order derivatives of the magnetic
field signals against time for two different lift-offs when

plotted in the time domain.
2. For variable lift-off, multiple LOI points can be found.

These points define a range in which the LOI changes as

the lift-off varies. Two metrics are used to measure the
quality of LOI namely LOI-Range Width and LOI-Range
Center, where the smaller the LOI-Range Width is and

the larger the LOI-Range Center is, the better. The study
finds that placing the Hall sensor at the center of the probe
produces the best result.

3. The study also found that the LOI is closely related to the

conductivity of the samples under inspection.

Based on the above, five design decisions of our PEC-NDT

system are made. They are:

1. A Hall Effect sensor is used instead of a coil to reduce the

overall size of the PEC-NDT device. This should allow the
device to better touch the pipe surface hence reducing the
occurrence of lift-off.
2. The dimension of the Hall sensor we used is a lot smaller

than the inner diameter of the excitation coil.
3. The Hall sensor is placed exactly at the center of the excita-

tion coil.

4. We used two types of materials for cladding with very dif-
ferent values of conductivity.

5. We incorporate an insulation layer on top of the sample
and vary its thickness. By varying the insulation thickness

in our experiment, we also simulate variations in lift-off
values.

The probe consists of an excitation coil and a Hall Effect
sensor (DRV5053VA) whose sensitivity is 90 mV/G. A ferrite
core is used for concentrating the magnetic flux and strength-

ening the Hall device’s output signal. The inner and outer
diameters of the exciter coil are 100 mm and 110 mm, respec-
tively. The coil has 200 turns and has an effective height of
6 mm. A MOSFET was used to switch on and off high excita-

tion currents with a pulse width of 25 ms driven to the excita-
tion coil. The signal is detected by the Hall-effect device, sent
to the PC through a DAQ card which samples it at 20,000 sam-

ples per second. Fig. 4(a) shows the cross-sectional illustration
of the sample and excitation coil with their measurements,
while Fig. 4(b) shows a picture of the experimental setup,

which includes the PEC system.
Four square carbon steel S50C plates with different thick-

nesses with surface dimensions of 300 mm 
 300 mm are used

as samples. The samples have four thickness variations which
are 9.12, 10.02, 11.06, and 12.08 mm, and are uniform across
the sample’s volume. Two different materials were used for
the cladding, namely aluminum (grade 1100) and stainless steel

(grade 304). Both of them are non-ferromagnetic. The thick-
ness of the cladding for both materials is fixed at 0.5 mm. A
layer of non-conductive material, which simulates the insula-

tion layer, is inserted between the sample and the cladding.
Five different values of insulation layer thickness are used in
the experiment which are 3.0, 5.0, 8.0, 10.0, and 13.0 mm. This

results in twenty different combinations of sample thickness
and insulation layer thickness. For each combination, 50 dif-
ferent PEC signals, sampled at a rate of 20 KS/s, are recorded
– resulting in a total of 1000 observations, or 250 observations

per sample thickness, in a form of time series data, for each
cladding material type.

4.2. Data Pre-Processing

We applied a median filter to the signal. The width of the over-
lapping window wmf is set to 100. We find this value to be the

best in providing good a balance between maintaining the sig-
nal’s overall shape, and noise and outliers removal. Following

the data normalization step as described in the previous section
to make the signal value in the range of [01], we remove the
first part of the signal where it is stationary. We mark a time

in the signal where the signal drops to and below 0.98 and dis-
card all data prior to that time. To determine the values of ta
and tb that mark the start and end of EP, we plot the average

of the normalized signals for each combination of sample
thickness, insulation layer thickness, and cladding material
type on a semi-logarithmic scale. Four examples of such a plot

are shown in Fig. 5. The plots in the left column are at a fixed
insulation layer thickness of 3 mm whereas those in the right



Fig. 4 (a) Cross-sectional illustration of the sample and excitation coil (drawn not to scale); (b) Picture of the experimental setup.

Fig. 5 Plots of the normalized PEC signals on a semi-logarithmic scale at varying sample thickness when the insulation layer thickness is

fixed at 3 mm (left column), and at varying insulation layer thickness when the sample thickness is fixed at 9 mm (right column) for both

types of cladding material.
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column are at a fixed sample thickness of 9.12 mm. The plots

for aluminum and stainless steel cladding material are shown
in the top and the bottom row, respectively. After inspecting
all the plots, we decide the values of the ta and tb time marks

to be 10 and 35 ms, respectively. They are determined by visu-
ally identifying parts of the signal that have roughly a constant
rate of decay in semi-logarithmic space.

4.3. Feature calculation and reduction

At this stage, each of the 1000 observations has a length of 499
points. Before calculating the features, we apply a natural log

transform to the data. We then calculate the features using
wavelet scattering transform by setting the maximum number

of stages J as 2, and K1 and K2 are 8 and 1, respectively. This
results in a 576-dimension feature for each observation.

The data is then split into two sets, a training set ATRAIN

and a test set ATEST with a ratio of 9:1. The training set is then
further divided using the kfold method into two more sets,
A0

TRAIN and AVAL, which are the sub-training set and validation
set, respectively. The value of k is set to 5. We find the best k
value for the NCFS between kmin ¼ 0 and kmax ¼ 0:11 in 20
increments by selecting k that yields the lowest mean loss
across all five cross-validations. This is found to be 0.0058

for both types of cladding material. We proceed by applying
NCFS with the chosen k to all wavelet scattering features in
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ATRAIN set and obtain a weight value for each of the 576 ele-
ments of the feature. We then sort the feature according to
their weights and select Nf number of feature elements that

have the highest weights to represent the entire 576-

dimension feature. We describe the process to decide the value
of Nf in the next section.

4.4. Thickness estimation process

The relationship between the selected features and their

expected responses is to be modeled using a Gaussian process
regression. Like most other machine learning models, the
GPR model has several hyperparameters, which are essentially

internal values that need to be tuned to control the way the
model training process works. In this implementation, we
employ an automatic process to optimize these hyperparame-
ters by using Bayesian optimization and cross-validation. The

process starts by training the model using a set of hyperpa-
rameter values and evaluating the model performance using
an objective function. The estimate for the next best set of

hyperparameter values to use is obtained using an acquisition
function. This is a mathematical function that combines the
predicted mean and predicted variance, obtained from evalu-

ating the model performance, into a criterion that will direct
the search.

In practice, before training the GPR model the training set
ATRAIN is again split using kfold into a sub-training set and a

validation set. Though this time, the sets contain the
reduced-length features as opposed to full-length features in
the previous step. The value of k is set to 5. During training,

the hyperparameter optimization seeks to minimize the log-
transformed objective function, logð1þ lossÞ, where loss is
the cross-validation mean squared error, with the Expected-

Improvement function [29] set as the acquisition function used
to search the hyperparameter space. We set the noise distribu-
tion r as the only hyperparameter in this case. Once the best r
value is found, the model is then trained using the entire train-
ing set ATRAIN. The data in the test set ATEST are then passed on
to the workflow shown in Fig. 2 to evaluate the trained model’s
performance.
Fig. 6 A box plot of the RMSE of the measured sample thickness (A

The best number of elements is three.
5. Experimental results and analysis

5.1. Thickness estimation results

The experiment is repeated 20 times, each using a different set
of 100 randomly selected observations from the 1000 observa-

tions as the test set. We also experimented with using different
values of Nf ranging from 1 to 11 to find one that gives the

lowest average Root Mean Square Error (RMSE) on the test
set. Using the results, as shown in Fig. 6, we concluded that
the best values for Nf are 3 and 5 for Aluminum and

Stainless-Steel cladding case, respectively. Using these values,
we then proceed with analyzing the performance of the models

by comparing the results with other machine learning models
and approaches.

5.2. Results analysis and discussion

We implemented the proposed method and record the pre-
dicted thickness values and compare them to the actual thick-

ness values. We use RMSE as the metric to assess the
performance of the proposed method. We also implemented
other methods to allow us to provide a qualitative comparison

of the proposed method. Subsequently, we denote the results
of our proposed method as GP.

The first comparative method is the Inverse Time Deriva-

tive (ITD), or rj j�1
method proposed in [19]. This method is

based on a mathematical model that is analytically derived
from the relationship between the thickness of the material
and the pulse signal. We showed parts of this derivation in

our literature review section, i.e., Eq. (1)-(8). This method
relies on averaging several pulse signals in order to reduce
the noise and obtain a more accurate determination of the time

derivative. To show the validity of applying the same method
to our data, we plot the average of the normalized PEC signal
in the logarithm domain for each sample thickness value and
insulation layer thickness value in the left and right columns

of Fig. 7, respectively. Each line in the left column diagrams
represents the average signal over all insulation layer thickness
luminum) from 20 experiments using the first eleven values of Nf.



Fig. 7 Plots of the averaged normalized PEC signal inside the Evaluation Period on a semi-logarithmic scale at varying sample thickness

values (left column), and varying insulation layer thickness values (right column) for both types of cladding material.
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values and is calculated from 250 observations. Each line in the

right column diagrams, on the other hand, represents the aver-
age signal over all sample thickness values and is calculated
from 200 observations. The diagrams in the top and bottom

rows correspond to aluminum and stainless steel cladding
material data, respectively.

As can be seen from the figure, the plots are generally linear

with their gradients being affected by the sample thickness and
are insensitive to the insulation layer thickness values as sug-
gested by the mathematical model. This observation also
proves that our data still has the properties described in [19]

hence the ITD method described in that paper should be appli-
cable in this case.

In practice, however, taking the average of a large number

of observations is not practical since it will considerably
increase the inspection time. Therefore, for the purpose of per-
formance comparison in this experiment, we average only five

observations before calculating the inverse time derivative fea-
ture used to fit the quadratic regression model. In subsequent
discussion and analysis, we denote this method with its abbre-

viation as ITD.
As the second comparative method, we develop a GP

regression model without using the wavelet scattering and fea-
ture selection processes. The feature, in this case, is an 11-point

sampled log-transformed normalized signal, similar to the one
suggested in [30]. The eleven points are spread equally between

the ta and tb time marks that mark the start and end of EP. We
denote this method as GPX. In addition, we also develop other
regression models, ranging from the simplest ones such as Lin-

ear Regression, Kernel Regression, and Binary Regression
Tree [31 32], to Support Vector Machine (SVM) Regression
[33] to LSBoost [34] on an ensemble of weak regression trees.

The workflow to develop these regression models is identical to
the one used to develop the proposed method, i.e., the models
are trained using features that are the result of wavelet scatter-
ing and NCFS processes.

As mentioned previously, the experiment is repeated 20
times, each using a different set of 100 randomly selected
observations from the 1000 observations as the test set. The

mean RMSE of the predictions using all the models is pre-
sented in Table1. As can be seen from the table, our method
produces the smallest RMSE for both cladding material types.

To provide a more complete picture of the relative perfor-
mance of our proposed method compared to the others, we
also show the box plot of the results in Fig. 8. The figures show

the minimum, median, maximum, and first and third quartiles
of RMSE of the models.

We employ a null hypothesis test to determine the statistical
significance of the difference in the performance of our pro-

posed method compared to other approaches and machine



Fig. 8 Box plot comparing the performance over 20 experiments of the proposed method with other approaches and machine learning

models.

Table 2 Statistical analysis of other methods’ and models’ performance when compared to the proposed GP method (Aluminum).

Model Normal Distribution? Similar Variance? Statistically Similar? Hypothesis test used

GP Yes (0.20) N/A N/A N/A

GPX Yes (0.72) Yes (0.09) No (<0.05) t-test

SVM Yes (0.99) Yes (0.13) No (<0.05) t-test

Linear Yes (0.99) Yes (0.22) No (<0.05) t-test

Kernel Yes (0.34) No (<0.05) No (<0.05) Welch’s

Ensemble Yes (0.82) Yes (0.66) Yes (0.09) t-test

Tree Yes (0.61) Yes (0.15) No (<0.05) t-test

ITD Yes (0.93) No (<0.05) No (<0.05) Welch’s

Table 3 Statistical analysis of other methods’ and models’ performance when compared to the proposed GP method (Stainless Steel).

Model Normal Distribution? Similar Variance? Statistically Similar? Hypothesis test used

GP Yes (0.44) N/A N/A N/A

GPX Yes (0.87) Yes (0.85) No (<0.05) t-test

SVM Yes (0.71) Yes (0.46) No (<0.05) t-test

Linear Yes (0.91) Yes (0.61) No (<0.05) t-test

Kernel Yes (0.99) Yes (0.85) No (<0.05) t-test

Ensemble Yes (0.85) Yes (0.62) Yes (0.12) t-test

Tree Yes (0.60) No (<0.05) No (<0.05) Welch’s

ITD Yes (0.90) Yes (0.78) No (<0.05) t-test

Table 1 Averaged RMSE Of The Proposed Method And Other Approaches. The Top And Bottom Numbers Correspond To

Aluminum And Stainless Steel Results, Respectively.

GP GPX SVM Linear Kernel Ensemble Tree ITD

0.221 0.267 0.378 0.381 0.312 0.248 0.296 0.370

0.222 0.245 0.353 0.358 0.275 0.237 0.294 0.378
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learning models. The type of null hypothesis test used depends
on whether the distribution of the two sets of results under

comparison follows a normal distribution and whether they
have similar variances. We use the Kolmogorov-Smirnov test
[35] to check the former and the Bartlett’s test [36] to confirm

the latter. If the two sets of results under comparison follow a
normal distribution and have similar variances, then the two-
tailed t-test is used, otherwise, the two-tailed two-sample

Welch’s t-test [37] is used. The statistical analysis of the results
is given in Table 2 and Table 3. The second column in the
tables shows the result of the Kolmogorov-Smirnov test, the

third column shows the result of the Bartlett’s test, and the



Table 4 The summary of the statistical test results. Positive DmRMSE means that the proposed method has lower RMSE than the

corresponding approach/machine learning model.

Model Aluminum Stainless Steel

DmRMSE Statistically significant? DmRMSE Statistically significant?

GPX 0.046 Yes 0.023 Yes

SVM 0.157 Yes 0.131 Yes

Linear 0.160 Yes 0.136 Yes

Kernel 0.091 Yes 0.053 Yes

Ensemble 0.027 No 0.015 No

Tree 0.074 Yes 0.072 Yes

ITD 0.149 Yes 0.156 Yes
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fourth column shows the result of the two-tailed t-test compar-
ing the distribution with the proposed GP method. The type of

t-test used is shown in the fifth column. The numbers in brack-
ets are the p-value of the respective test result.

The summary of the statistical test results is provided in

Table 4. The results show that our method has consistently
lower RMSE than all other methods and machine learning
models. The improvement ranges from 0.015 to 0.160. Our

experiment has also shown that these improvements are statis-
tically significant in all but one model, namely the ensemble of
weak regression trees using the LSBoost technique.

The proposed method can significantly improve the inspec-

tion speed depending the pulse frequency used. For example,
when the pulse frequency is 10 Hz, for the conventional ITD
method, 1 s is required to obtain 10 repeated measurements.

With the new proposed method, only 100 ms is required for
the data acquisition and the performance is also better in
RMSE. As the data acquisition is taking most of the inspection

time, it can be safely said that the new method will cut the
inspection time by 90% without sacrificing the performance.

6. Conclusion

We have developed a machine-learning-based method to pre-
dict ferromagnetic sample thickness using the Pulsed Eddy

Current non-destructive testing technique. Our method applies
Wavelet Scattering transform to the log-transformed PEC sig-
nal to generate a suitable discriminating feature and then
applies Neighborhood Component Feature Selection method

to reduce the feature dimension before using it to train a Gaus-
sian Process regression model. This approach has several
advantages over other state-of-the-art PEC NDT approaches.

First, it removes the need of taking multiple measurements of
the PEC signals and calculating their average to reduce the
effect of measurement noise and bring the prediction accuracy

up to an acceptable level. We have shown through statistical
analysis of experimental results that our method produces a
lower average root mean square error than other comparable
methods over twenty repeats of the experiment. We also have

shown that these improvements are statistically significant in
all but the ensemble of weak regression trees with the LSBoost
technique. Additionally, our proposed method is lightweight

since the feature reduction technique that we apply before
training the regression model will produce a smaller model
making it deployable on a portable device, hence suitable for

an in-situ pipeline inspection. On the other hand, our method
shares a similar set of disadvantages with other machine
learning-based approaches, which is requiring many data and

a capable high-spec computer for model training. In our future
work, we will apply this technique to PEC signals that are pro-
duced using different types of sensors to assess the technique’s

generalizability as a PEC-NDT solution.
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