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ABSTRACT
This study presents an approach for modelling and mapping fluvial
flooding, considering both land use/land cover (LULC) change and
climate change, and applies it to the Brahmani River Basin in east-
ern India. Climate change projections were obtained from the
Coupled Model Intercomparison Project Phase 6 (CMIP6), and their
impacts on the hydrology of the catchment were investigated using
HEC-HMS and HEC-RAS software. Results reveal that changes in
LULC types, specifically an increase in proportions of agricultural
and built-up areas and a decrease in forest cover, as undergone
between years 1985 and 2018, have increased peak discharge fol-
lowing a storm, thereby causing an increase in spatial extent of
floods of different return periods. Moreover, downscaled climate
change scenarios from two General Circulation Models were used
to determine potential changes in river discharge according to two
GHG emission scenarios from the latest IPCC: SSP245 and SSP585.
The projections indicate that peak discharge and the spatial extent
of flooded areas will increase for floods with return periods ranging
from two to 100years. This study demonstrates the important influ-
ence that changes in LULC have had on the susceptibility of the
BRB to flooding, with climate change projected to further enhance
the risk of flooding as the century progresses.
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1. Introduction

Extreme weather and climate-related disasters, for instance, storms, landslides, heatwaves,
droughts, and flooding, including glacier lake outbursts, affect many countries worldwide
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(Wallemacq et al. 1995; Quir�os and Gagnon 2020). Nonetheless, of all natural hazards,
flooding is the most recurrent and widespread disaster (Merz et al. 2007; G�omez-Palacios
et al. 2017; Jain et al. 2019; Shafapour Tehrany et al. 2019). During the period 1995–2015,
for instance, flooding accounted for nearly half of all weather-related disasters worldwide
(Wallemacq et al. 2018) and it has been reported to be responsible for as many as a third
of all deaths, injuries and damages caused by natural disasters (Sanyal and Lu 2004).
India is one of the countries most affected by floods (Dhar and Nandargi 2003; Jain et al.
2019); they affect many regions of the country every year, with most episodes being the
result of excessive rainfall during the Southwest monsoon season, which extends from
June through September (Dhar and Nandargi 2003). According to EM-DAT (2020), there
were 353 floods reported across the country from 1926 to 2020, causing approximately
80,000 deaths, in addition to damages estimated at approximately $US 7.3 billion.

Hu et al. (2018) reported an increase in the occurrence of floods across the globe and
inevitably in the number of people affected by floods during the period 1975–2016, a
trend that they associated with human interventions on the landscape and climate change
(Kjeldsen 2010; Zope et al. 2016; Dang and Kumar 2017). Worldwide, the two main
human interventions that have altered the LULC of many catchments are urbanisation
and the conversion of natural ecosystems to agriculture (Ramankutty and Foley 1999;
Veach et al. 2017). Changes in LULC types can affect the speed of the flow of water fol-
lowing a storm on the ground surface as well as the natural course of rivers and, conse-
quently, the risk of flooding. The latter is particularly the case for rivers that have had
their conveyance capacity reduced as a result of an increase in bedload sediment transport
and the ensuing morphological changes (Pramanik et al. 2010; Singh and Awasthi 2011;
Miller and Hutchins 2017). Wan and Yang (2007), for instance, found that an increase in
the proportion of build-up areas in the catchment of Taihu Lake in China was one of the
primary factors for higher flood risk, with similar conclusions also reached by Shi et al.
(2007) in another catchment in China and Saghafian et al. (2008) in Iran. Bosch and
Hewlett (1982), for its part, found a high correlation between deforestation and recent
changes in the frequency and intensity of floods in small catchments, a correlation which
other studies focusing on larger catchments had not identified (e.g. Beschta et al. 2000;
Andr�eassian 2004). In addition, climate change is a factor often suggested for the increas-
ing trend in the severity of floods in many parts of the world (Frey et al. 2010; Zhai et al.
2018), given the projected intensification of the hydrological cycle under climate change
(D�ery et al. 2009; Wu et al. 2013). A warmer atmosphere can store more moisture and
therefore extreme precipitation events are more likely (Singh et al. 2021), increasing the
potential for flash-flooding (Schiermeier 2011; Alfieri et al. 2015).

Reducing vulnerability and building resilience to flooding requires the implementation of
a comprehensive, practical and integrated flood management strategy (Merwade et al. 2008;
Wilby and Keenan 2012), which generally involves the identification of zones at risk of
flooding on the basis of flood monitoring and modelling, the construction of physical infra-
structure (e.g. dams, embankments, levees and spurs on the river banks) to protect against
floods, planning and regulation of land use, and the development of flood early warning
systems. Amongst all measures, the modelling of floods to generate flood risk maps is con-
sidered the most efficient approach (Merwade et al. 2008; Shafapour Tehrany et al. 2019),
with other measures usually developed and implemented on the basis of those maps.

With the scientific and technological advancements in distributed hydrological and
hydraulic models, as well as the availability of climate change scenarios downscaled to the
scale of river catchments, our ability to simulate and predict the magnitude and frequency
of future flood events has improved significantly in recent years (Knebl et al. 2005; Forte
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et al. 2006; Pradhan 2010). The availability of high-resolution remote sensing data, which
are used to develop Digital Elevation Models (DEMs) and to provide estimates of rainfall
and evapotranspiration at an appropriate spatiotemporal resolution, and to identify soil
and LULC types over catchments has further improved the accuracy of these predictions
(Brivio et al. 2002; Patro et al. 2009; Zope et al. 2016; Quir�os and Gagnon 2020).

Hydrological models such as the Hydrologic Modelling System from the Hydrologic
Engineering Centre (HEC-HMS) are commonly used to investigate potential changes in river
discharge under climate change and/or as a result of changes in LULC (Knebl et al. 2005;
Sanyal et al. 2014; Hu and Shrestha 2020). Hydraulic or hydrodynamic models, for their
part, such as the River Analysis System of the Hydrologic Engineering Centre (HEC-RAS)
are by and large utilised to simulate the spatial extent and depth of floods (Mokhtar et al.
2018). For this reason, several studies have used either the HEC-HMS or the HEC-RAS mod-
els, or an integration of the two models, to simulate flood peaks, and to estimate the spatial
extent of floods. Sanyal et al. (2014), for instance, analysed the impact of changes in LULC
on the runoff of the Konar River in eastern India using HEC-HMS, while Mokhtar et al.
(2018) developed a flood inundation map on the basis of a given discharge for the Padang
Terap River in Malaysia using HEC-RAS, while integrating the two models has provided reli-
able results in fluvial flood studies, for instance, Knebl et al. (2005) in Texas and
Abdessamed and Abderrazak (2019) in the arid environments of southwestern Algeria. In
India, Zope et al. (2016) integrated the HEC-HMS model with the HEC-RAS software to
assess impacts of changes in LULC on flooding between 1966 and 2009 in the Oshiwara river
catchment in Mumbai, which has experienced an expansion of urban areas into flood plains.

The Brahmani River Basin (BRB) is an important basin in India, but it is recurrently
affected by flooding (Pramanik et al. 2010; Rai et al. 2018). A number of studies have pre-
viously been conducted to model floods of various return periods over the basin, with the
purpose of delineating areas at risk of flooding. Pramanik et al. (2010) studied the efficacy
of a Digital Elevation Model (DEM) over the Brahmani River catchment to simulate the
magnitude of a flood. Rai et al. (2018) developed a coupled hydrological-hydrodynamic
model to delineate the extent of inundation during floods in the deltas of the Brahmani
and Baitarani rivers, while Sindhu and Durga Rao (2017) used the HEC-HMS and HEC-
RAS models to forecast streamflow ahead of a flood and to simulate its potential inunda-
tion impact. These previous flood modelling studies over the BRB neither did investigate
the effects of changes in LULC types on flood risk nor the potential impacts of climate
change. The latter is important given that a number of studies have suggested that the
BRB is likely to experience severe flooding under climate change (Dahm et al. 2019;
Vandana et al. 2019; Bharat and Mishra 2021). Moreover, better knowledge of the impacts
of changes in LULC, notably as a result of the rapid urbanisation that the basin has expe-
rienced in recent decades, is vital for the development of effective strategies to prevent
and mitigate the risk of flooding (Bharat and Mishra 2021).

This study examines the impacts of anthropogenic interventions and future climate change
on flood peaks, and then generates flood risk maps for floods of various return periods over the
BRB. For this purpose, it considers the changes in LULC type that the basin has experienced in
recent decades and climate change projections by simulating floods of a 2-year, 10-year, 25-year,
50-year and 100-year return periods using the HEC-HMS and HEC-RAS models.

2. Study area

The BRB is an important river basin in India (Figure 1), supporting the livelihoods of 8.5
million people. Upstream of the Brahmani River is the South Koel River, which originates
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in Jharkhand State (CPSP Report 2015). The South Koel River joins the Sankh River in
Orissa State where the combined flow of both rivers is then known as the Brahmani
River. The Brahmani River runs through Orissa State prior to flow into the Bay of
Bengal. During the course of its flow, the river is joined by numerous tributaries, which
enhance the influx of water during the monsoon season, occasionally causing the riverflow
to be turbulent during that season. On an annual basis, the daily maximum, minimum
and mean flow of the Brahmani River during the period 2000–2014 was 10,372m3/s,
23.5m3/s and 512.3m3/s, respectively, at Jenapur.

The surface area of the BRB was estimated at 39,045 km2, of which 57.3% lies in
Orissa, 40.4% in Jharkhand and 2.3% in the State of Chhattisgarh, by delineating the
catchment using the Terra Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global DEM (GDEM).1 It is the second largest river basin in Orissa
State. The BRB is characterised by a humid and sub-tropical climate. According to the
India Meteorological Department (IMD) gridded dataset, total annual precipitation was
1388.8mm during the period 1981–2018 over the catchment, with the majority of which
(�80%) falling during the summer monsoon season. The catchment experiences strong
inter-annual variability in total annual precipitation, with the lowest (971.3mm) and high-
est (1755mm) amounts of precipitation recorded in 2010 and 1994, respectively during
the above period.

The BRB is abundant in terms of water resources. The water resource potential of the
basin is estimated at 2.1� 1010 m3/year (CPSP Report 2015). In addition to meeting the
domestic and industrial demand for water, water is used for irrigation. Agriculture is
intensive in the deltaic part of the basin, and irrigation is provided through the Rengali
dam project. The reservoir formed by the dam covers a surface area of 25,250 km2 and
has a water storage capacity of 3.4� 109 m3. The dam was constructed in 1985 with the
primary purpose of protecting the population living in the delta from flooding,

Figure 1. Map of the BRB, its location in India, and the location of the river discharge stations over the basin.
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particularly the devastating floods of August 1975, which affected millions of peoples and
caused huge economic losses (Maske and Day 1975). Although Rengali dam has signifi-
cantly reduced the risk of high floods, the BRB is recurrently affected by floods, with
floods occurring every few years (Rai et al. 2018), and with increasing economic losses.2

The regional hydrology of the BRB has changed considerably in recent decades, not
only due to changes in LULC, but also because of climate change (Islam et al. 2012).
Observations show that eastern India, including the BRB, has become warmer during the
period 1986–2015 (Krishnan et al. 2020), and that temperature will continue to increase
in the near and far future, according to the ensemble mean of the South Asia multi-
Regional Climate Model (RCM) of the World Climate Research Programme (WCRP)
Coordinated Regional Climate Downscaling Experiment (CORDEX) (Sanjay et al. 2020a,
2020b). Furthermore, the region has experienced an increasing, albeit weak, trend in total
annual rainfall, but this increase is projected to become more significant as the climate
continues to warm (Krishnan et al. 2020). An increase in average precipitation will further
increase the probability of extreme precipitation events, with the latter having the poten-
tial to increase peak flow and thus the risk of flooding.

3. Data

3.1. Hydro-meteorological data

Daily discharge data for the Brahmani River were obtained from the India Water
Resources Information System (WRIS)3 for four stations as detailed in Table 1 and
depicted in Figure 1. Daily temperature and rainfall data, available at a resolution of

Figure 2. Variation in elevation (a) and soil types (b) over the BRB.
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0.25��0.25�, were obtained from IMD for the period 1981–2018, with the catchment area
represent by 59 grid cells in the dataset.

3.2. Topographical data

Topographical information is important in hydrological studies, as it controls the rainfall-
runoff response over a basin (Horritt and Bates 2002). Such information is typically
obtained from a DEM, which can be generated using surveying, the digitisation of existing
topographic or contour maps, photogrammetry and remote sensing (Hawker et al. 2018),
with most DEMs nowadays generated using remote sensing (Smith and Clark 2005). This
study uses a DEM with 30m resolution, which was downloaded from ASTER GDEM4

(Figure 2a). Data from ASTER GDEM version 3 is freely available and covers the entire
globe between 83�N and 83� S. The DEM data was used to delineate the basin and to
generate Triangulated Irregular Network (TIN), which were then used to extract various
topographical and hydrological parameters that were required as inputs into the hydro-
logical and hydraulic models described below.

3.3. Satellite data

Information on the LULC types covering a river catchment is an integral part of a hydro-
logical modelling study, because it is used to determine Manning’s roughness coefficient
and the runoff curve number (CN). Multi-spectral satellite data from Landsat-4 (spatial
resolution: 56m), Landsat-5 (spatial resolution: 30m) and Sentinel-2A (spatial resolution:
10/20m), which were acquired from the United States Geological Survey (USGS) Earth
Explorer website5 were used to prepare the LULC maps of the basin for the year 1985,
2005 and 2018 (Table 2). Manning’s roughness coefficients for each LULC were obtained
from Chow et al. (1988).

3.4. Soil data

Data on the Hydrological Soil Groups (HSGs) of the basin were downloaded from the
Oak Ridge National Laboratory (ORNL) based Distributed Active Archive Centre
(DAAC)6 at a 250m resolution. In this dataset, the soils are grouped into four major cate-
gories depending on their infiltrability and thus runoff potential (Ross et al. 2018). Figure
2b illustrates the soil classification map over the BRB, as used in this study. It can be seen
that most of the basin is covered by soils falling into category C and D, which are charac-
terised as having a loamy and clayey soil structures with a relatively low infiltration rate
and thus high runoff potential.

3.5. Climate change scenarios

General (also referred to as Global) Circulation Models (GCMs) are used to determine
how the climate might evolve in the future, typically up to the year 2100, under different
scenarios of emissions of greenhouse gases (GHGs) into the atmosphere. Given their com-
putational requirements, the outputs from GCMs are provided at a coarse spatial reso-
lution of approximately 1.0��1.0� and, for this reason, they cannot readily be used in
impact studies focusing at the regional scale (Singh et al. 2015a), where the need for pro-
jections at a higher spatial resolution is often required, notably in regions of complexed
topography (Singh et al. 2015b).
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An investigation of the potential changes in runoff over the BRB requires projections
of future changes in precipitation and evapotranspiration, with the latter often estimated
using temperature projections. Accordingly, temperature and precipitation projections
were obtained from Mishra et al. (2020), a dataset providing bias corrected and down-
scaled GCM outputs for river basins across South Asia7 from 13 models taking part of
the Coupled Model Intercomparison Project Phase 6 (CMIP6). Climate change projections
are available for the historical (1951–2014) and future (2015–2100) time-periods for the
four latest GHG emission scenarios from the Intergovernmental Panel on Climate Change
(IPCC): Shared Socioeconomic Pathways (SSP) 126, 245, 370 and 585. The projections are
available at a daily time-scale and at a spatial resolution of 0.25��0.25�. Out of available
models, outputs from the two models that best capture the variability of temperature and
rainfall over South Asia were obtained, namely Earth Consortium (EC)-Earth 3 and the
Meteorological Research Institute Earth System Model version 2 (MRI-ESM2) for the last
30-year period of this century, i.e. 2071–2100, hereafter referred to as the 2080s, and for
the SSP245 and SSP585 GHG emission scenarios. The latter were chosen so as to assess
the uncertainty in the scenarios in terms of future GHG emission; SSP585 provides the
most severe emission of GHGs into the 21st century, while SSP126 is the most optimistic,
although it is already too late for this scenario to materialised in view of past emissions,
and for this reason, the most optimistic scenario used in this study was SSP245.

Table 2. Information on the satellite data used to prepare the LULC maps over the BRB.

Satellite system Sensor
Path/row/or
Tile number Bands (mm) Spatial resolution

Dates of
acquisition

Landsat-4 Thematic
Mapper (TM)

139/45 Band 1 (0.45–0.52)
Band 2 (0.52–0.60)
Band 3 (0.63–0.69)
Band 4 (0.69–0.76)
Band 5 (1.55–1.75)
Band 7 (2.08–2.35)

56m 21-04-1985
140/44 28-04-1985
140/45 28-04-1985
140/46 28-04-1985
141/43 19-04-1985
141/44 19-04-1985
141/45 19-04-1985
141/46 19-04-1985
142/44 26-04-1985

Landsat-5 Thematic
Mapper (TM)

141/46 Band 1 (0.45–0.52)
Band 2 (0.52–0.60)
Band 3 (0.63–0.69)
Band 4 (0.69–0.76)
Band 5 (1.55–1.75)
Band 7 (2.08–2.35)

30m 02-04-2005
141/45 02-04-2005
141/44 02-04-2005
139/46 04-04-2005
139/45 20-04-2005
140/45 27-04-2005
140/46 27-04-2005
140/44 27-04-2005

Sentinel-2A Multi-spectral
Imager (MSI)

T44QQL Band 2 (0.490)
Band 3 (0.560)
Band 4 (0.665)
Band 5 (0.705)
Band 6 (0.740)
Band 7 (0.783)
Band 8 (0.842)
Band 8A (0.865)

10/20m 21-04-2018
T44QQM 11-05-2018
T44QRM 08-05-2018
T44QRL 21-04-2018
T45QTC 18-05-2018
T45QTD 18-04-2018
T45QTE 08-05-2018
T45QTF 18-05-2018
T45QTG 18-05-2018
T45QUC 18-05-2018
T45QUD 18-05-2018
T45QUE 08-05-2018
T45QUF 08-05-2018
T45QUG 08-05-2018
T45QVC 18-05-2018
T45QVD 18-05-2018
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4. Methods

Figure 3 systematically explains the methodology adopted in this study. The models used,
and steps involved in flood inundation modelling were discussed under the following
sub-sections:

4.1. Hydrological modelling using HEC-HMS

HEC-HMS, version 4.3, is a distributed hydrologic model developed by the U.S. Army
Corps of Engineers at the Hydrologic Engineering Centre (HEC) (Feldman 2000; Knebl
et al. 2005). The model was used to simulate the hydrological processes over the BRB
catchment, including an estimation of peak flows. HEC-GeoHMS version 10.3, an exten-
sion of ArcGIS, was used for terrain processing and for estimating the model parameters
such as basin, sub-basins, junctions, stream network and reaches from the DEM. CN val-
ues of sub-basins for 1985 LULC and 2018 LULC scenario were also calculated using
‘Generate CN grid’ tool available in HEC-GeoHMS. These were further used as inputs in
HEC-HMS to setup the hydrological model for BRB. HEC-HMS has three main compo-
nents: basin model manager, meteorological model manager and control specification
manager. In this study hypothetical storm was selected to simulate the various return
period of rainfall after calibration and validation. The duration of the event (simulation
stat/end date and time) is controlled through the control specification manager. The topo-
graphical model-set up for the BRB is shown in Figure 4.

HEC-HMS includes different subroutines to estimate losses due to infiltration, which,
in this study, were estimated using the SCS curve number (CN) method. It estimates run-
off from a storm over any area based on LULC and hydrological soil groups using follow-
ing equations (Knebl et al. 2005):

Q ¼ P � Iað Þ2
P � Iað Þ þ Sð Þ (1)

Ia ¼ 0:2S (2)

Figure 3. Methodology showing major steps involved in the peak flow and flood hydrograph generation from HEC-
HMS and the integration of HEC-HMS with HEC-RAS model for modelling flood inundated areas in the BRB.
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S ¼ 1000
CN

� 10 (3)

Substituting Eq. (2) into Eq. (1)

Q ¼ P � 0:2Sð Þ2
P þ 0:8Sð Þ (4)

where, Q is runoff, P is rainfall, S is potential maximum retention, Ia is initial abstraction
and CN is the curve number.

The excess rainfall after infiltration is transformed into direct runoff using SCS unit
hydrograph transform method at the outlet of sub-basin. The delay in time taken by
water reaching at the outlet, i.e. Lag time (Tlag) and CN is required in SCS unit hydro-
graph method for transformation of excess rainfall into direct runoff (Subramanya 2008).
Tlag is estimated as the equations given below (Hu and Shrestha 2020):

Tc ¼ L0:8 þ Sþ 1ð Þ0:7
� �

1900þ Y0:5ð Þ (5)

Tlag ¼ Tc�0:6 (6)

where, Tc represents time of concentration, L is hydraulic length of the watershed and Y
represents slope of the basin. Further, the peak unit hydrograph (Up) is estimated from
the equations given below (Feldman 2000):

UP ¼ 484� A
Tp

(7)

TP ¼ Dt
2
þ Tlag (8)

where, A refers to watershed area, Tp and Dt represents time of peak and excess rainfall
duration, respectively. Initially, runoff for each sub-basin is computed using the

Figure 4. Established hydrological modelling setup for the BRB under HEC-HMS environment.
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Muskingum routing method, which is later on collectively routed to the main basin outlet.
It is based on storage-outflow relationship. Inflow, outflow, and storage for Muskingum
routing are described as follows:

Qjþ1 ¼ C1Ijþ1 þ C2IJ þ C3QJ (9)

where, Ij and Ijþ1 are inflows at upstream at time j and jþ 1, respectively. Similarly, Qj

and Qjþ1 are outflows at downstream at time j and jþ 1, respectively. C1, C2 and C3 are
coefficient that can be estimated from the following equations:

C1 ¼ Dt�2KX

2K 1� Xð Þ þ Dt
(10)

C2 ¼ Dt þ 2KX

2K 1� Xð Þ þ Dt
(11)

C3 ¼ 2K 1� Xð Þ�Dt

2K 1� Xð Þ þ Dt
(12)

where, K is travel time of a flood wave passing through reach, X is a measure of the
degree of storage, and Dt is time interval of simulation.

4.2. Model calibration and validation

The developed HEC-HMS model was calibrated and validated using discharge data from
the Brahmani River at Gomlai in the upper reaches of the river and at Jenapur in its
lower reaches. The calibration was performed in order to adjust model parameters so that
the simulated flows have had better agreement with the observed flows. The daily dis-
charge data of four years (2000–2004) was used in model calibration. The calibration pro-
cess included a combination of software automated calibration and manual calibration
methods. A comparison of simulated daily river flow with observed data was carried out
for both calibration and validation period (Figure 5). Model performance was also eval-
uated using the Nash-Sutcliffe efficiency coefficient (NSE) and the coefficient of determin-
ation (R2):

NSE ¼ 1�
Pn

i¼1 Oi � Pið Þ2Pn
i¼1 Oi � Oavgð Þ2

2
4

3
5 (13)

R2 ¼
Pn

i¼1 Oi�Oavgð Þ Pi � Pavgð ÞPn
i¼1 Oi � Oavgð Þ2Pn

i¼1 Pi � Pavgð Þ2

2
4

3
5
2

(14)

where, Oi is the ith observed value, Oavg is the average observed value for the entire study
period, Pi is the ith predicted (simulated) value, and Pavg is the average of the predicted
value over the entire study period. The values of the NSE can range from �1 to 1 (Nash
and Sutcliffe 1970), while those of R2 vary from 0 to 1.

The simulated daily flow showed good agreement with the observed values at Jenapur
for the calibration period with NSE¼ 0.52 and R2¼ 0.58. For the validation period, the
simulated and observed daily flow also revealed good agreement as indicated by the values
of NSE and R2 being 0.51 and 0.55, respectively. R2 values less than 0.65 during calibra-
tion and validation periods might be attributed to uncertainties related to the input data
(e.g. rainfall, DEM etc.), model structure and parameterisations. For examples: IMD
gridded (0.25��0.25�) rainfall data used as input in the hydrological model was derived
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from interpolation of a gauge station data that was not recorded at the hydrological sta-
tions. Spatial interpolation of this rainfall data thus inherited uncertainty in its approxi-
mation. Further, the input DEM (a raster based grid data) is also an approximation of the
true topographical characteristics of the basin. The accuracy of topographical and hydro-
logical parameters derived from DEM is highly subjective to the size of its resolution.
These uncertainties related to scale and approximations in system processes make HEC-
HMS difficult to model exact hydrologic phenomena. Usually, a larger value of NSE than
0.4 and R2 than 0.5 is considered satisfactory (Motovilov et al. 1999; Moriasi et al. 2007).
After the calibration and validation, HEC-HMS model was used to simulate peak flows
for floods with a 2-year, 10-year, 25-year, 50-year, and 100-year return period for LULC

Figure 5. Comparison of observed and simulated discharge for calibration and validation period at Gomlai
and Jenapur.
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changes scenarios of the year 1985 and 2018. These hydrographs were saved as time series
data and used as an input into the HEC-RAS model for estimating flood inundation in
the BRB.

4.3. Uncertainty estimation

Markov Chain Monte Carlo (MCMC) method that is based on Byes rule was used for
estimating uncertainty associated with the HEC-HMS model (Schoups et al. 2010). It
works by creating many alternative models of the watershed using an automated sampling
procedure (https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/latest/assessing-
model-uncertainty/uncertainty-analyses). Each sample is created by sampling the model
parameters according to their individual probability distribution. Further, the sample is
simulated to obtain a watershed response corresponding to the sampled parameter values.
All responses from all the samples can be analysed statistically to evaluate the uncertainty
in the simulated watershed response. The indices such as the percent of observations
bracketed by the 90PPU (P-factor) and the relative width (R factor) are adopted for the
uncertainty interval evaluation. The goodness of calibration and prediction uncertainties
is judged on the basis of the closeness of the P-factor to 100% with the smallest possible
R-factor. R-factor is estimate by following equation:

R� factor ¼
1
n

Pn
ti
QM

ti, 95% � QM
ti, 5%

� �
robs

(15)

where QM
ti, 95% and QM

ti, 5% is the upper and lower boundaries of predicted interval respect-
ively, and robs is the standard deviation of measured data. For this study, P- factor was
0.678 (67.8%) and R-factor was 0.91 that is in the acceptable range (Mousavi et al. 2012).

4.4. Hydraulic modelling using HEC-RAS model

HEC-RAS version 5.0.7 and HEC-GeoRAS version 10.2 (an ArcGIS extension) was used
for hydraulic modelling and estimating inundated areas in the BRB. 1D unsteady flow
simulation was performed under the subcritical flow regime to derive water levels in the
river networks. The equations (Horritt and Bates 2002) used in 1D unsteady flow simula-
tion are described as:

oA
ot

þ o;Q
oxc

þ o 1� ;ð ÞQ
oxf

¼ 0 (16)

oQ
ot

þ o
oxc

;2Q2

Ac

 !
þ o
oxf

1� ;ð Þ2Q2

Af

 !
þ gAc

oz
oxc

þ Sc

� �
þ gAf

oz
oxf

þ Sf

 !
¼ 0 (17)

; ¼ Kc

Kc þ Kf
(18)

where,

K ¼ A
5=3

nP2=3
, Sc ¼ ;2Q2n2c

R
4=3
c A2

c

, Sf ¼
1� ;2
� �

Q2n2f

R
4=3
f A2

f

(19)

where, Q is the total flow, Ac and Af is the cross-sectional area for flow in channel and
floodplain, respectively. xc and xf is distances along the channel and floodplain, P the
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wetted perimeter, R the hydraulic radius (A/P), n the Manning’s roughness value and S
the friction slope. / determines how flow is partitioned between the floodplain and chan-
nel, according to the conveyances Kc and Kf (Horritt and Bates 2002).

The different steps involved in the performance of the hydraulic analysis were grouped
into three categories: pre-processing, processing, and post-processing. During the pre-
processing stage, a TIN model of the BRB was generated from ASTER DEM data of the
study area. Further, different geometric layers such as the stream centreline, flow path
centrelines, bank lines, and cross-section cut lines were generated from the TIN using
HEC-GeoRAS. All these geometric layers were created in the form of polylines. HEC-
GeoRAS generates the cross-sectional cut lines automatically at a fixed, regular interval,
which was further processed manually according to the need. These data were imported
to HEC-RAS for processing. 1D unsteady flow simulation was performed under the sub-
critical flow regime to derive water levels in the river networks. The simulation was car-
ried out corresponding to the peak flows (hydrographs) of 2-year, 10-year, 25-year, 50-
year and 100-year rerun periods. The peak flows, together with the boundary conditions,
were put as inputs for the analysis of steady flow. Due to the subcritical flow regime, the
boundary condition was determined at the downstream end of the river reach. The slope
of the river bed was used as the boundary condition in normal depth. The simulation
generated water surface elevations for the corresponding flood events of different return
periods. The water level profiles of 2-year, 10-year, 25-year, 50-year and 100-year rerun
periods and river centrelines were stored in Spatial Data Format (SDF) and exported to
the ArcGIS for the post-processing. Inundation mapping was finally performed in two
stages: generation of water surface and delineation of floodplain using raster. For the gen-
eration of water surface, TINs were created for floods with a 2-year, 10-year, 25-year, 50-
year and 100-year return periods, using water surface elevation at each cross-section. The
delineation of floodplain was performed using water surface TINs that generated in the
previous step.

5. Results and discussion

5.1. Flood probability analysis

In this study, six commonly used probability distribution methods, e.g. Gumbel, Log-
Pearson-III, Lognormal (3 P), Weibull, Normal and Exponential were tested to determine
storm rainfall depths for various return periods. The return period or recurrence interval
is a measure of how often extreme event of certain magnitude is likely to happen
(Elsebaie 2012). However, based on the goodness of fit test analysis (Kolmogorov
Smirnov, Chi-Squared and Anderson-Darling), Gumbel and Log-Pearson-III distributions
were found to be best fitted among all of the above. Further owing to Gumbel’s distribu-
tion suitability for modelling maxima (Haktanir 1992; Loaiciga and Leipnik 1999; Elsebaie
2012), it was finally selected to determine storm rainfall depths for various return periods
within BRB.

The IMD daily rainfall data from 1981 to 2018 together with the Thiessen polygon
method were used to determine the average rainfall over the basin. By using mean basin
rainfall data of all the 38 years, 1-day annual maximum series was developed. From the
developed 1-day annual maximum series, the extreme rainfall depths for 2-year, 10-year,
25-year, 50-year and 100-year return period were estimated using following equations
(Gumbel 1941; Elsebaie 2012):

RT ¼ RAvg þ KS (20)
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where, K is Gumbel frequency factor defined as:

K ¼ �
ffiffiffi
6

p

p
0:5772þ ln ln

T
T � 1

� �� �� �
(21)

where, RT refers to rainfall (mm) for specific return period T (in year), RAvg is the average
of maximum rainfall corresponding to specific duration (for this study, 38 years) and S is
the standard deviation. RAvg is derived as per the equation given below:

RAvg ¼ 1
n

Xn
i¼n

Ri (22)

where, Ri is individual maximum value of rainfall and n is the number event or year
record. The standard deviation (S) is calculated by using the following equation.

S ¼ 1
n� 1

Xn
i¼1

ðRi�RAvgÞ2:
" #1=2

(23)

The adequacy of the Gumbel’s distribution was also evaluated through Anderson-
Darling (A2) goodness of fit test. The Cumulative Distribution Function (CDF) for the
extreme rainfall events generated from the Gumbel distribution method was compared
with the expected CDF. The equation used for estimating Anderson-Darling (A2) good-
ness of fit test is given below:

A2 ¼ �n� 1
n

Xn
i¼1

2i� 1ð Þ�½lnFðXiÞ þ ln 1� F Xn�iþ1ð Þð Þ� (24)

where, F(Xi) is CDF of ith sample (Xi) and n represents sample size. If the calculated
value of A2 given by the Gumbel probability distribution is less than the critical value at
the given significance level, then distribution is considered to be suitable for analysis of 1-
day annual maximum rainfall data (Kamal et al. 2017). The test statistic result was 0.63,
which is less than critical value of 2.501 at 5% of signification level. This suggests that the
Gumbel distribution method is suitable for frequency analysis of 1-day annual maximum
rainfall data. Table 3 shows the estimated extreme rainfall depths for various return peri-
ods. It was 57.2, 80.6, 92.4, 101.2, and 109.8mm for 2-year, 10-year, 25-year, 50-year and
100-year rerun periods, respectively. Flood hydrographs of 2-year, 10-year, 25-year, 50-
year and 100-year rerun periods in the BRB were generated from these extreme rain-
fall values.

5.2. Classification of LULC and change detection

Maps of the LULC types of the BRB were prepared for the year 1985, 2005 and 2018
using multispectral optical satellite data from Landsat-4, Landsat-5 and Sentinel-2,
respectively. The satellite images were acquired only between the pre-monsoon months of
April and May to minimise the effects of the cloud covers. Maximum likelihood algorithm
of supervised classification technique (Lillesand et al. 2015) was applied for defining
LULC classes from the satellite data. The entire basin was grouped broadly into four
LULC classes: forest cover, agriculture land, built-up land and water bodies. The areas
covered by different LULC types are summarised in Table 4 for the years 1985, 2005 and
2018. Agriculture land (51.1% to 54.7%) and forest cover (39.7% to 45.4%) were found to
be the most dominant LULC types in the BRB.
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The reliability of the classification results was checked through accuracy assessment.
Error matrix (Stehman 1997) was applied for assessing accuracy of individual class as well
as the overall classification. For 1985, 2005 and 2018 LULC maps, accuracy assessment
results showed an overall accuracy of 78.7%, 83.6% and 86%, respectively and overall
kappa statistic of the year 1985, 2005 and 2018 were 0.7, 0.8 and 0.8, respectively. The
relatively lower overall accuracy and kappa accuracy in 1985 than 2005 and 2018 might
be linked to the poor spatial resolution (56m) of Landsat-4 data. However, among the
individual classes, the highest (�95%) and lowest producer accuracy was reported for the
forest and built-up areas (�65%) in 1985, respectively. With the improved spatial reso-
lution (Sentinel-2A data), the producer accuracy for the built-up areas had increased
to �87%.

The changes occurred in LULC patterns of the BRB from 1985 to 2005, 2005 to 2018,
and 1985 to 2018 are shown in Table 4. The comparison of LULC maps of different years
(1985 and 2018) revealed increase in the areas of the agricultural land and built-up land,
and decline in the forest cover and the water bodies (Figure 6). During the 1985 and
2005 period, the area of built-up land and agricultural land increased by 24.3% and 3.3%,
while a reduction of around 4% and 0.5% in forest and water bodies was observed.
However, between 2005 and 2018, the increase in the built-upland and agricultural lands
were 292.1% and 3.6%, respectively. The areas of forest cover and water bodies showed
decrease of 8.8% and 7.7% for the same period. Thus, changes in the LULC patterns were
relatively more rapid in nature from 2005 onwards. Overall, within last 33 years (1985–2018),
there was an increment of 387.6% and 7.0% in built-up area and agriculture land, and 12.5%
and 8.1% reduction in the forest and the waterbodies coverage, respectively. In 1985, total
area under built-up land and agricultural land were 230.7 km2 and 19965.9 km2, which had
expanded to 1124.9 km2 and 21370.5 km2 in 2018, respectively. Deforestation caused by the
mining activities, and burning of the forest for agriculture in the eastern part of the upper
catchment is the primary reasons for the reduction in forest cover (http://mowr.gov.in/sites/
default/files/NWM_OR-FM-CC_2015_Vol-2_0.pdf). The region is bestowed mineral such as
iron ore, copper, chromite, coal, manganese, limestone, dolomite, lead and bauxite etc., which
has led to the set-up of several industries in the basin. The first steel plant, Rourkela Steel
Plant, was established in 1955 with the collaboration from Germany. At present, there are

Table 3. Estimated rainfall and frequency factor for various return periods.

Return period (T) in years

Standard deviation (r) 15.9 (mm)
Average rainfall (RAvg) 59.8 (mm)
Frequency Factor (K) Rainfall (RT) in mm

2 �0.2 57.2
10 1.3 80.6
25 2.0 92.4
50 2.6 101.2
100 3.1 109.8

Table 4. Percentage change in the LULC types over the BRB between 1985 and 2005, 2005 and 2018 and 1985
and 2018.

S.No. LULC class

Area in Km2 AREA (%) Change in LULC (%)

1985 2005 2018 1985 2005 2018 1985–2005 2005–2018 1985–2018

1 Forest 17720.8 17004.1 15513.9 45.4 43.5 39.7 �4.0 �8.8 �12.5
2 Agricultural land 19965.9 20631.7 21370.5 51.1 52.9 54.7 3.3 3.6 7.0
3 Built-up land 230.7 286.9 1124.9 0.6 0.7 2.9 24.4 292.1 387.6
4 Water bodies 1127.6 1122.5 1035.9 2.9 2.9 2.7 �0.5 �7.7 �8.1
Total 39045.2 39045.2 39045.2 100 100 100

GEOCARTO INTERNATIONAL 15

http://mowr.gov.in/sites/default/files/NWM_OR-FM-CC_2015_Vol-2_0.pdf
http://mowr.gov.in/sites/default/files/NWM_OR-FM-CC_2015_Vol-2_0.pdf


three major industrial belts: Raigarh industrial belt, Rourkela industrial belt and Angul-
Talcher industrial belt. The world’s second largest sponge iron plant (Jindal Steel and Power
Ltd.) is located in the Raigarh district of Chattisgarah. The development in industries has also
increased infrastructures such as roads, railway lines, housing societies, hospital and schools,
leading to the expansion of built-up areas in the catchment. Further, the construction of
Rengali dam in 1985, and other minor irrigation projects afterwards have greatly improved
irrigation facilities downstream. This has resulted into the expansion of agricultural lands in
the BRB. Manning’s n-values were also derived from the LULC maps. The noted values were:
0.10 for the forest cover, 0.05 for the agricultural land, 0.12 for the built-up land and 0.03 for
the water bodies.

5.3. Influence of changes in LULC types on the flood hydrograph

The impacts of changes in LULC between 1985 and 2018 on the flood peak discharge
were analysed in the BRB for the floods of various return periods. The developed HEC-
HMS model used SCS-CN loss method for simulating runoff from the floods of 2-year,
10-year, 25-year, 50-year and 100-year rerun periods. SCS-CN map for the BRB was pre-
pared for the year 1985 and 2018 from the digitally classified satellite image (LULC
maps), DEM and HSGs maps (Figure 7). It was used to estimate infiltration losses in the
BRB. The CN values assigned to individual LULC class and soil group is shown in Figure
7. CN values ranged from 70 to 77 in forest cover, 82 to 85 in the agricultural lands, 90
to 92 in the built-up lands and 100 in the water bodies. Among the classes, the forest
cover was marked with the lowest CN values (70 to 77), indicating the highest infiltration
rate and lowest surface runoff. Arsyad (2019) and Marie Mireille et al. (2019) also reached
on similar conclusions through their studies conducted in the teaching forest of
Hasanuddin University (Maros Regency) and Narok County (Kenya), respectively. The
infiltration rate for a LULC class is determined by the slope, intensity of rainfall and

Figure 6. Maps showing areas covered by different LULC types in the BRB for 1985 (6a) and 2018 (6 b).

16 P. K. MAHATO ET AL.



physical characteristics of the underlying soil groups (Halwatura and Najim 2013). The
slope in the BRB varies from �0� to 70� within forest cover, from �0� to 55� within agri-
cultural land and from �0� to 50� within built-up lands. The major soils in the BRB are
from C and D groups of HSGs. The water retention capacity in such soils are very high
due to their poor hydraulic conductivity (�10.mm/s to >1.0 mm/s for C group and
�1.0 mm/s for D group). Therefore, BRB as a large was marked with the high surface run-
off potential. A composite CN was also derived for each sub-basin using weighed average
method (Feldman 2000; Satheesh Kumar et al. 2017).

Figure 8 illustrates the flood hydrographs generated at the outlet point of the basin
(Jenapur) for the floods of 2-year, 10-year, 25-year, 50-year and 100-year rerun periods
under LULC change scenarios of the year 1985 and 2018. The change in peak flows of
the floods with 2-year, 10-year, 25-year, 50-year and 100-year rerun periods for the LULC
change scenarios of the year 1985 and 2018 is presented in Table 5. The comparison of
peak flows revealed that the volume of peak discharge had increased by 10%, 7.2%, 6.4%,
5.9% and 5.4% for the flood events of 2-year, 10-year, 25-year, 50-year and 100-year rerun
periods in 2018. The increase was relatively greater for the lower return period of 2-years
than the higher return period of 100-years. Over the past 33 years, the increase in peak runoff
for the 100-year return period varied around 5.4% compared to 10.0% for 2-year return. The
rise in the peak flow related with the flood events in 2018 are related with decline in forest
cover area of the BRB. The forest cover declined from 17720.8 km2 in 1985 to 15513.9 km2 in
2018; resulting a total loss of 2206.9 km2 in its area. The decrease in forest cover generally
causes increase in surface runoff as well as rise in the peak flow of the river (Hassaballah
et al. 2017). Guzha et al. (2018) reviewed 37 catchments in East Africa to investigate effects of
LULC changes on surface runoff and concluded that surface runoff had increased by
45±14% because of the deforestation in the catchments. In another study by Berihun et al.
(2019), it was observed that changes in LULC had intensified hydrological responses of the

Figure 7. Spatial pattern of variations in SCS-CN values in the BRB is shown for 1985 (7a) and 2018 (7 b).
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watersheds resulting increase in surface runoff ranging from 4% to 28.7%. Additionally, this
decrease in the forest cover area was compensated with the increased proportion of agricul-
tural and built-up lands. From 1985 to 2018, the agricultural and built-up area increased by
1404.6 km2 and 894.2 km2, respectively. The expansion in built-up land has increased imper-
meable surfaces in the basin, leading to the low infiltration rate and high overflow. The out-
comes of this study agree with the findings of the earlier studies conducted in other basins
(Wan and Yang 2007; Zope et al. 2016; Hu and Shrestha 2020).

5.4. The extent of floods according to the LULC types of 1985 and 2018

The flood inundation maps of 1985 and 2018 in the study area under changing LULC
scenarios (1985 and 2018) were prepared using HEC-RAS model from the simulated flood
hydrograph of 2-year, 10-year, 25-year, 50-year and 100-year rerun periods. Figures 9 and
10 shows modelled flooded areas in 1985 and 2018, respectively. The modelled inundated
areas under LULC conditions of 1985 for the floods of 2-year, 10-year, 25-year, 50-year
and 100-year rerun periods were 475.5 km2, 612.2 km2, 680.7 km2, 729.6 km2 and
758.3 km2, respectively. However, it was 614.1 km2, 778.7 km2, 820.2 km2, 868.2 km2 and
885.6 km2 under the LULC conditions of 2018. Thus, flood inundated areas recorded
increase under LULC conditions of 2018 as compared of 1985. The increase was 22.6%
for the floods of 2-year return period and 14.4% for 100 year return period. The lower
catchment which has been characterised with intensive agriculture and high population
density is highly susceptible to flooding than upstream due to the low elevation (7–100m)
and slope.

Figure 8. Flood hydrographs generated at the outlet point of the basin (Jenapur) using HEC-HMS for the floods of
various return periods under LULC change scenarios of the year 1985 (8a) and 2018 (8 b).

Table 5. HEC-HMS simulated peak discharge and inundated areas in BRB at Jenapur for floods of different return
periods ubased on the LULC types of 1985 and 2018.

Return
period (Year)

Peak discharge (m3/s) Percentage
(%) change in

peak
discharge
w.r.t. 1985

Inundated area (km2) Percentage
(%) change in
inundated
areas

w.r.t. 1985LULC 1985 LULC 2018 LULC 1985 LULC 2018

2 431.6 474.9 10.0 475.5 614.1 29.1
10 835.9 896.2 7.2 612.2 778.7 27.2
25 1060.1 1127.6 6.4 680.7 820.2 17
50 1233 1305.2 5.9 729.6 868.2 19
100 1409 1485.5 5.4 758.3 885.6 16.8
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Figure 9. HEC-RAS simulated flood inundated areas under LULC conditions of 1985 for the floods with 2-year (9a),
25-year (9 b), 50-year (9c) and 100-year (9d) rerun periods.

Figure 10. HEC-RAS simulated flood inundated areas under LULC conditions of 2018 for the floods with 2-year (10a),
25-year (10 b), 50-year (10c) and 100-year (10d) rerun periods.
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5.5. Impacts of climate change on flooding

To understand the impacts of climate change on fluvial flooding, the peak flows generated
based on the outputs of the two CMIP6 GCMs, i.e. EC-Earth3 and MRI-ESM2, forced
using the SSP245 and SSP585 GHG emission scenarios, were used for the future floods of
various return periods. The outputs from the CMIP6 models are likely to be more realis-
tic than those from previous generations of the IPCC models, i.e. CMIP3 and CMIP5,
given their significant improvement in simulating extreme precipitation events in histor-
ical records, which are key to the occurrence of flooding (Kim et al. 2020). Table 6 illus-
trates the peak flows for floods with a 2-year, 10-year, 25-year, 50-year and a 100-year
return period for the 2080s (2071–2100) under SSP245 and SSP585. The comparison
(with respect to 2018) of peak flow revealed that the volume of peak discharge would
increase in future for all return periods under both the scenarios. The increase would be
much greater under SSP585 (�139% to 312%) for all return periods than SSP245 (�86%
to 155%) in both the models. Between the models, the highest increase in peak flow of
floods for all return periods was projected under EC-Earth3 than MRI-ESM2 for SSP585.
Moreover, the increase was higher for the lower return period of 2-years than the higher
return period of 100-years under EC-Earth3 model. Opposite to this, MRI-ESM2 pre-
dicted relatively greater increase for the higher return period of 100-years than the lower
return period of 2-years. The increase in peak flows for the 100-year return period varied
around 129% to 303% compared to 86% to 307% for 2-year return. Such increase in peak
flows of the floods for different return periods might be attributed to the increased inten-
sity and amount of future rainfall events (Krishnan et al. 2020; Sanjay et al. 2020a).

Figures 11 and 12 show the modelled flooded areas with floods of various return peri-
ods in 2080s under SSP245 and SSP585, respectively. The inundated areas under SSP245
scenario of MRI-ESM2 model for the floods of 2-year, 10-year, 25-year, 50-year and 100-
year rerun periods were projected to be 1068.7 km2, 1476.2 km2, 1880.6 km2, 1946.9 km2

and 2206.4 km2, respectively. However, it would be 1118.3 km2, 1649.9 km2, 1775.9 km2,
2132.1 km2 and 2264.6 km2 under the scenario of SSP585. Similarly, the modelled inun-
dated areas under SSP245 scenario of EC-Earth3 model were projected to be 1124.3 km2,
1471.4 km2, 1725.4 km2, 1820.3 km2 and 1984.8 km2 with the floods of 2-year, 10-year, 25-
year, 50-year and 100-year rerun periods, respectively. The modelled areas inundated
under scenario of SSP585 for the floods of 2-year, 10-year, 25-year, 50-year and 100-year
rerun periods were 1389.1 km2, 2156.6 km2, 2321.4 km2, 2472.9 km2 and 2698.6 km2,
respectively. Thus, flood inundated areas recorded increase under climate change scen-
arios for both the models in 2080s as compared of 2018. The increase was in range of
�9% to 41%to for the floods of 2-year return period and �82% to 148% for a100-year
return period.

Table 6. HEC-HMS simulated peak discharge in BRB at Jenapur for floods of different return periods in 2080s
(2071–2100) under climate change scenarios SSP245 and SSP585.

Return period (Year)

Peak discharge (m3/s)

2018

SSP245 (2080s) SSP585 (2080s)

EC-Earth3 MRI-ESM2 EC-Earth3 MRI-ESM2

2 474.9 1165.2 886.6 1936.1 1137
10 896.2 2129.7 2140.9 3699.9 2446.7
25 1127.6 2594.8 3143.8 4617.6 2818.2
50 1305.2 3024.9 3331.3 5305.7 3669.7
100 1485.5 3411.5 3846.9 5992.9 4197.6
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Figure 11. HEC-RAS simulated flood inundated areas with floods of 2-year return period for EC-Earth3 and MRI-ESM2
models in 2080s under SSP245 (11a and 11 b) and SSP 585 (11c and 11 d) scenarios.

Figure 12. HEC-RAS simulated flood inundated areas with floods of 100-year return period for EC-Earth3 and MRI-
ESM2 models in 2080s under SSP245 (12a and 12 b) and SSP 585 (12c and 12 d) scenarios.
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6. Conclusions

This study examined the impacts of changes in LULC, as observed between 1985 and
2018, and future climate change for the 2080s (2071–2100) on peak discharge over the
BRB in eastern India and subsequently fluvial flooding for floods of a 2-year, 10-year, 25-
year, 50-year and 100-year return period. Between 1985 and 2018, the BRB experienced
deforestation as a result of an intensification of agriculture, population growth and urban-
isation. Accordingly, during that period, the surface area covered by agricultural land and
built-up areas increased from approximately 19,965 km2 to 21,370 km2 (seven percent)
and from about 231 km2 to 1125 km2 (387%), respectively, on the one hand, while on the
other hand, the area covered by forests decreased from approximately 17721 km2 to
15514 km2, a loss of almost 220 km2 (12.5%). Mining and the burning of the forests for
agriculture in the eastern part of the upper catchment are the main reasons for
deforestation.

The conversion of forested land to agriculture has led to significant increases in both
peak discharge and the areas prone to inundation. The comparison of peak flows revealed
that the volume of peak discharge increased by 10%, 7.2%, 6.4%, 5.9% and 5.4% for floods
with a return period of 2-year, 10-year, 25-year, 50-year and 100-year in 2018 than 1985.
The increase was relatively higher for the lower return period of 2-years than the high
return period of 100-years. Over the past 33 years, the increase in peak runoff for the
100-year return period varied around 5.4% compared to 10.0% for 2-year return.
Moreover, the inundated areas modelled under LULC conditions of 2018 were relatively
extensive than the LUCL conditions of 1985. It was also established that the percentage
change in the flood extent area during the three decades (1985–2018), is marginally more
for the lower return periods as compared to that of the higher return periods. An increase
in floods with a 2-year, 10-year, 25-year, 50-year and 100-year return period is also pro-
jected for the 2080s under both SSP245 and SSP585. The increase would be much greater
under SSP585 for all return periods than SSP245 (4.5W/m2) owing to the higher radiating
forcing under scenario of SSP585 (8.5W/m2). The likelihood that such flooding will fur-
ther increase according to climate change scenarios, mitigative measures will be required
and that such measures should integrate both structural and non-structural approaches.
This is because the former significantly alter the natural environment of the river, result-
ing in the loss of habitat etc. This knowledge will help to plan future development and
mitigate the risk of flooding in the BRB.

Notes

1. http://gdem.ersdac.jspacesystems.or.jp/.
2. http://mowr.gov.in/sites/default/files/NWM_OR-FM-CC_2015_Vol-2_0.pdf
3. https://indiawris.gov.in/wris
4. http://gdem.ersdac.jspacesystems.or.jp/
5. https://earthexplorer.usgs.gov/.
6. https://daac.ornl.gov/get_data/.
7. https://zenodo.org/record/3874046#.YBei_XPivIW
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