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Clarity method of fog and dust image in fully mechanized mining face 
 
   
  Qinghua Mao1,2 · Yufei Wang1,2· Xuhui Zhang1,2 · Xiaoyong Zhao3 · Guangming Zhang4 · Kundayi Mushayi1,2 
 

 

Abstract 

At present, the abnormal state of equipment and surrounding rocks in the fully mechanized mining face is mainly detected by 

visual methods. However, the vision sensor works in a low-light environment and it is affected by factors such as water fog and 

dust, which lead to blurred images. The defogging algorithm of image based on boundary constraint and context regularization 

has a good effect on image restoration in the daily environment, but the recovery quality is poor in low illumination environment. 

Therefore, a method based on boundary constraint and nonlinear context regularization is proposed. The model of fog and dust 

image is established, and the transmittance function is roughly estimated by boundary constraint method. Then, the nonlinear 

context regularization method based on logarithmic transformation is used to estimate and optimize the scene transmission 

model to improve the brightness of the image, and the low illumination fog and dust image is restored by the optimized 

transmittance function. The logarithmic transformation multiple is selected according to the peak value of image brightness. 

In order to highlight the effectiveness of our method, the widely used and improved Dark Channel Prior or other methods 

are used for comparison. The experiment results indicate that our method can effectively remove fog and dust and improve 

the brightness of the image of the fully mechanized face. It is of great significance to ensure safe production and safety of 

workers and equipment in coal mine. 

 
Keywords Fully mechanized mining face · Low illumination · Fog and dust image · Boundary constraint and context 

regularization · Nonlinear transformation 
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With the development of intelligent monitoring technology, 

traditional coal mines have gradually transformed to intel- 

ligent coal mines with little or no people. The machine 

vision technology in coal mines is becoming more and more 

widespread. Real-time monitoring of working conditions is 

achieved by acquiring images of working faces. However, the 

working environment of the fully-mechanized working face 

is harsh and complicated, and a large amount of dust is gen- 

erated during the production process. At the same time, the 

spray dust-falling equipment in coal mine generates a large 

amount of fog and water droplets, which greatly interferes 

with the quality of image and makes it difficult to achieve 

accurate identification of abnormal status for equipment and 

working faces. Therefore, the clarity method of fog and dust 

images is of great significance to ensure safe production and 

safety of workers and equipment in coal mine. 

In recent years, many defogging and enhancement meth- 

ods of images are proposed, such as model-based sharp- 

ening algorithms, image enhancement-based sharpening 
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algorithms and learning optimization-based algorithms [1]. 

The model-based sharpening algorithm combines the prior 

knowledge to obtain a clear image based on the imaging 

mechanism of dust and fog image. The image enhancement- 

based sharpening algorithm uses a contrast enhancement 

function to improve the visual effects of images. The 

learning-based optimization algorithms have been applied 

in the field of machine vision and image processing, includ- 

ing convolutional neural networks and generative adversarial 

networks [2–4]. The defogging method based on physi- 

cal models has been widely used. Ni et al. [5] proposed a 

defogging method based on linear intensity transform (LIT) 

and local property analysis (LPA) for adaptive illumination 

parameter estimation. Tan et al. [6] proposed an image defog- 

ging method based on statistical rules, which successfully 

removed the fog of the images. However, the colors of the 

recovered image is oversaturated by this method. Fang et al. 

[7] proposed a variational model by combining the reformu- 

lation of the haze model and priors. But this method is not 

very effective in dense fog conditions. Fatal [8] proposed 

independent component analysis (ICA) method to estimate 

the scene and obtain a fog-free image. But this method is 

based on color information and is not suitable for grayscale 

images and dense fog weather conditions. Yang [9] proposed 

an adaptive decomposition method, which is a preprocessing 

method. It decomposes the image according to the transmis- 

sion mapping value of the image, and reduces the influence 

of noise. He et al. [10] proposed the dark channel prior (DCP) 

method, but it has the disadvantages of long processing time 

and color distortion. Galdran [11] proposed a image dehaz- 

ing technique that can remove the visual degradation due to 

haze without relying on the inversion of a physical model 

of haze formation. Huang et al. [12] proposed three subse- 

quent optimization processes: depth of field estimation, color 

analysis and visual restoration, which made the prior law of 

dark channel suitable for image defogging in severe weather. 

However, too bright or too dark conditions will affect the 

stability of this method. He et al. [13] used guided filter- 

ing to obtain refined transmission at high speed, but the 

image processing effect in some special environments was 

not good. Ehsan et al. [14] proposed a new strategy is adopted 

to compute the dual transmission maps using the dark chan- 

nel and atmospheric light, the transmission maps are refined 

to remove any remaining ill effects by using the gradient- 

domain-guided filter. Berman et al. [15] proposed a method 

for calculating the air-light which relies on the haze-lines 

prior that was recently introduced. This prior is based on the 

observation that the pixel values of a hazy image can be mod- 

eled as lines in RGB space that intersect at the air-light. Rong 

et al. [16] used wavelet transform to remove fog, and adjusted 

the approximate coefficient of wavelet transform to reduce 

noise and halo effect, but it could not improve the visibil- 

ity of image under the condition of nonuniform fog. Zhang 

et al. [17] proposed a method of significance detection based 

on super-pixel intensity contrast, and set an adaptive upper 

bound for scene brightness to prevent some areas from being 

too bright. However, this method does not perform well in 

low brightness environment. Salazar et al. [18] proposed a 

computationally effective defogging method based on mor- 

phological operations and Gaussian filtering, which provides 

better defogging effect in the case of uniform fog, but has a 

poor image processing effect on the dense fog. Wang et al. 

[19] improved the DCP method by combining Fourier filter- 

ing and Gaussian filtering, and improved the operation speed 

of image restoration, but there are still limitations in dealing 

with low brightness environment. Zhang et al. [20] proposed 

an image defogging algorithm combining multiscale con- 

volution network model and multiscale Retinex, which can 

effectively restore the image without fog. 

The above-mentioned defogging method is relatively 

mature, but it is often devoted to defogging under ordinary 

atmospheric environment. However, the fog and dust are 

more severe than ordinary atmospheric environment in the 

fully mechanized working face environment. In addition, the 

fully mechanized mining face has the disadvantages of low 

lighting brightness. The fully mechanized mining face mostly 

uses fluorescent lamps and incandescent lamps, while LED is 

mostly used for portable miner’s lamps. Moreover, because 

the lighting devices are only arranged on hydraulic support, 

and obscured by the hydraulic support, which will lead to 

insufficient lighting and low illumination in some places of 

fully mechanized mining face. 

The existing defogging method cannot be well applied 

to the actual working environment of fully mechanized 

mining face. In this paper, our main contribution is to pro- 

pose a clarity method of the fog and dust image of fully 

mechanized mining face based on boundary constraints and 

nonlinear context regularization, and logarithmic transfor- 

mation is used to improve image brightness. First, a boundary 

constraint method is used to establish a rough estimation 

model of image scene transmittance. Then, the established 

scene transmittance model is optimized by constructing the 

weighting function using a nonlinear context regularization 

method based on logarithmic transformation. The brightness 

of the image is improved by logarithmic transformation. 

At the same time, the logarithmic transformation multiple 

is selected according to the peak value of image bright- 

ness. Finally, the image of fully mechanized mining face is 

cleared by the optimized scene transmittance. This method 

can greatly improve the brightness of the image, and realize 

the clarity of fog and dust image of fully mechanized min- 

ing face. It lays a good foundation for the identification of 

abnormal conditions for equipment and surrounding rocks in 

a fully mechanized mining face, and it is of great significance 

to ensure safe production of coal mine. 
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Fig. 1 The clarity scheme of fog and dust image 

 

 

 
2 Clarity scheme of fog and dust image 

 
The method is applied to clear low-light fog and dust images 

of fully mechanized mining faces. The clarity scheme of fog 

and dust image is presented in Fig. 1. 

The working principle of clarity method of fog and dust 

image under the condition of low illumination in the fully 

mechanized mining face is as follows: 

 

 

 
(1) Visual sensors are arranged on the hydraulic support to 

collect images of the fully mechanized mining face. 

(2) The transmittance function model of fog and dust image 

is established based on the principle of fog and dust 

image formation. 

(3) The boundary constraint method is used for rough esti- 

mation of the transmittance function. 

(4) The nonlinear context regularization method is used for 

fine estimation of the transmittance function. 

(5) The brightness of the image is improved by logarith- 

mic transformation. At the same time, the logarithmic 

transformation multiple is selected according to the peak 

value of image brightness. 

(6) The fog and dust image in fully mechanized face is 

restored, and the brightness enhancement of the image 

is realized. 

3 Clarity method of fog and dust image 
of the fully mechanized mining face 

 

3.1 Model of fog and dust image 
 

During the propagation of light, due to the scattering of solid 

particles and liquid droplets in the air, the direction of the 

light is deviated, which leads to the intensity of the light to 

increase or decrease. In the fully mechanized mining face, 

the influence of dust and fog on the image is more serious 

than in the atmospheric environment. However, the principle 

is the same, and it can also be analyzed by the model of the 

fog and dust image in the atmospheric environment. Because, 

the fully mechanized mining face is not a closed indoor envi- 

ronment, which communicates with the ground atmosphere 

environment through the ventilation system. Therefore, its 

atmospheric scattering is similar to the atmospheric environ- 

ment. The atmospheric scattering model is the main physical 

model for describing foggy images, which is presented in 

Eq. (1). 

 

I (x) = t (x ) J(x) + (1 − t(x)) A (1) 

where I (x) is a foggy image, J (x) is a fog-free image, A is 

the global atmospheric light, A is generally considered to be 

constant, t(x) is the scene transmittance function. 

Assuming that the fog is homogeneous, the scene trans- 

mittance t(x) is presented in Eq. (2): 

 

t (x ) = e−βd(x) (2) 

where β is the extinction coefficient of the medium, d(x) is 

the depth of field. 

t (x ) J(x) is the direct attenuation term, which indicates 

the part of the reflected light attenuated by the scattering 

effect when it propagates in the medium. (1 t(x)) A is the 

ambient light or the atmosphere. Light curtain represents the 

part of ambient light enhanced due to scattering during the 

propagation of the medium. 

 
3.2 Rough estimation of transmission function 

based on boundary constraints 
 

Equation (1) is a fog and dust image formation model, which 

shows that for any pixel x in RGB color space, the corre- 

sponding vectors A, I (x) and J(x) are co-planar, and their 

endpoints are colinear. From a single pixel, according to 

Eq. (1), if this pixel x is foggy, then the gray value I (x) 

of this pixel x will be pushed to the global atmospheric light 

A. The larger the fog and dust, the closer the gray value I (x) 

of the pixel x to A is. The defogging process is to linearly 

extrapolate along the direction of A to I (x) to restore the 

Image acquisition of fully mechanized 

mining face 
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Fig. 2 Radiant cube and boundary constraints 

 
 

fog-free image J(x). The expression for linear extrapolation 

is presented in Eq. (3). 

In the dark channel prior, assuming C0  0, the gray 

value of the A is greater than the gray value of any pixel in 

the foggy image. Assuming that the gray value of the dark 

channel based on a single pixel of J(x) is 0, tb(x) of the dark 

channel prior method can be directly calculated by Eq. (1). 

According to reference [20], the block-based transmit- 

tance t˜(x) is presented in Eq. (7): 

t (x)  min max tb(z) (7) 
y∈ωx z∈ωy 

where ωx is a local block centered on x , and ωy is a local 

block centered on y. 

Equation (7) describes the local minimum filtering with x 

as the center to obtain the local minimum coordinate point y, 

and then the local maximum filtering with y as the center to 

obtain the local maximum coordinate point z. The gray value 

of coordinate point z is as the gray value of the new trans- 

mittance t˜ at the x point. By directly performing the closing 

operation in morphology on tb(x), a new transmittance t˜(x) 
can be obtained by Eq. (7). 

1 
 

 

t(x) 

J(x) − 

A 
 

I (x) − 

A 

 

(3) 
 

3.3 Fine estimation of transmittance function based 
on nonlinear context regularization 

The scene radiation of an image is always bounded, which 

is presented in Eq. (4): 

 

C0 ≤ J(x) ≤ C1,x ∈ (4) 

where C0 and C1 are two constant vectors associated with 

image. 

Because of any pixel x , the extrapolation of J(x) must be 

located in the radiation cube, which is composed of C0 and 

C1 boundary points. Otherwise, the physical model of the fog 

image is violated. The radiant cube and boundary constraints 

are presented in Fig. 2. 

Conversely, the boundary constraint on J(x) can be trans- 

formed into the boundary constraint of t(x). It is assumed that 

the global atmospheric light A is known, so that for any pixel 

x, we can calculate the corresponding boundary constraint 

point Jb(x) as shown in Fig. 2. The lower bound of t(x) 

can be determined by Eqs. (3) and (4). Finally, the following 

boundary constraint on t(x) can be obtained by Eq. (5). 

 

0 ≤ tb(x) ≤ t(x) ≤ 1 (5) 

where tb(x) is the lower bound of t(x), which is presented in 

Eq. (6): 

 
The principle of restoring for fog and dust images in a 

fully mechanized mining face is similar to the restoration 

of fog images in the atmospheric environment. The non- 

linear context regularization has a significant effect on the 

restoration of fog images. However, the core is to construct a 

weighting function to obtain the optimal solution to achieve 

image dehazing. In addition, the fog and dust in the fully 

mechanized mining face are serious and the light intensity 

is insufficient, so it is important to construct a reasonable 

weighting function. Weighting function W(x, y) is presented 

in Eq. (8). 

 
min W(x, y)(t(y)  t(x)) (8) 
x,y 

 
where x and y are two adjacent pixels. The smaller the W 

(x, y), the smaller the corresponding context constraint of 

the transmittance t(x) between the pixels x and y; 

A weighting function is constructed by calculating the 

brightness difference between adjacent pixels, and a loga- 

rithmic transformation is introduced, which is presented in 

Eq. (9). 

W(x, y) =
 

|log(x) − log(y)|α + ε
 −1 

(9) 

  
Ac − I c(x) Ac − I c(x) 

l
 

    1 A C A 

= 

tb(x) = 

min 

max 
c∈{r,g,b

} 

, 1 (6) 
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where log(x) is the logarithm of the 

brightness channel of 
 

 image I (x), the index α > 0, which is used to control the 
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Fig. 3 Comparison of 

restoration results with different 

log transformation multiples n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Image clarity result of  =3 (d) Image clarity result of  =5 
 

Fig. 4 Comparison of 

restoration results with different 

log transformation multiples n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Image clarity result of  =3 (d) Image clarity result of  =5 

 
 

brightness difference and sensitivity of two adjacent pixels. 

ε is usually taken as 0.0001, which is used to prevent the 

occurrence of 0 in the denominator [21]. 

By introducing 8 Kirsch operators and 1 Laplacian oper- 

ator and rewrite Eq. (9), which is presented in Eq. (10). 

 

where W j (i) is the weight matrix and D j is the introduced 

difference operator. 

Therefore, the optimized transmittance function t(x) can 

be obtained from Eq. (11). 

[ min 
λ 

1t − t˜21 + 
z:= 

1Wj · (Dj ⊗ t )1
1 (11) 

W j  (i) = 
 D j 

⊗ 
log(x) − log(y)  + ε 

−1 
 

 

(10) t 2 
2 

j ∈ω 

(a) Original image (b) Image clarity result of  =2 

(a) Original image (b) Image clarity result of  =2 

α 
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Fig. 5 The brightness peak maps 

of Figs. 4a and 5a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the first part is the data fidelity term, which is used to 
measure the fidelity between t(x) and the block-based trans- 

mittance t˜(x) based on the boundary constraint. The second 

part is the context constraint of t(x), that is the regularization 

term of the objective function, and that is used to constrain the 

ill-posedness of the restoration problem. λ is a regularization 

parameter for balancing the data fidelity and regularization 

terms. 

According to the solution process in the reference [9], 

an alternating minimization algorithm is used to solve the 

objective function. For a fixed β, the objective function is 

solved by optimizing u j and t alternately. The optimization 

results is presented in Eq. (12). 
⎛ 

λ FFT
 
t˜

 
+
  

j ∈ω FFT
 
D j

 
· FFT

 
u j

 ⎞
 

 
erally, the base number of logarithmic transformation is 

generally 10, that is, the common logarithm is used for log- 

arithmic transformation. 

 

t = n ∗ lg(c + 1) (13) 

where t is the output gray value, n is the conversion multiple, 

and c is the original gray value. 

 
3.5 The logarithmic transformation multiple 

selected according to the peak value of image 
brightness 

 
We selects the logarithm transform multiple according to the 

t ∗ = FFT−1 β 
 

 

β 
j∈ω FFT

 

Dj 

· FFT
 
Dj 

⎠ 

(12) 

peak value of image brightness. When the maximum lumi- 

nance of the image is less than 100, we can choose n more 

than 4 to restore. When the maximum brightness of the origi- 

nal image is between 100 and 200, we can choose logarithmic 

where FFT is a Fourier transform, FFT−1 is an inverse Fourier 

transform, () represents a complex conjugate, and · represents 
a matrix point multiplication, β is a weight, u j is the auxiliary 

variable. 

 
3.4 Image brightness enhancement based 

on logarithmic transformation 
 

In the ordinary atmospheric environment, the above methods 

have completed a detailed estimation of the transmittance 

function, and a fog-free image can be obtained. However, 

the fully mechanized mining face is different from ordinary 

atmospheric environment. In the fully mechanized mining 

face, the vision sensor works in a low-light environment and 

it is affected by factors such as water fog and dust, which 

lead to blurred images. 

Based on the above problems, the logarithmic transforma- 

tion is used to improve the image brightness. The expression 

for logarithmic transformation is presented in Eq. (13). Gen- 

transformation multiple n as 3 to restore. When the maxi- 

mum brightness of the image is between 200 and 300, we can 

choose logarithmic transformation multiple n as 2 to restore. 

When it is higher than 300, the brightness of image can be 

regarded as normal and we chose the logarithmic transfor- 

mation multiple n as 1. 

In order to verify the method, we chose different logarith- 

mic transformation multiple n to test the restoration effect of 

image in the fully-mechanized working face. The results are 

presented in Figs. 3 and 4, and the brightness peak graph of 

Figs. 3a and 4a is presented in Fig. 5. 

As can be observed in Fig. 4, it has the best visual effect 

with the logarithm transform multiple n as 3. It has the best 

visual effect with the logarithm transform multiple n as 2 in 

Fig. 5. According to the brightness peak graph of Fig. 6, the 

logarithm transform multiple n is selected as 3 in Fig. 4, and 

the logarithm transform multiple n is selected as 2 in Fig. 5. 

The results indicate that we can effectively avoid the problem 

that the image is too bright after restoration by selecting the 

+ λ 



  
 

 

Fig. 6 Comparison of image 

clarity results using different 

methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(g) Ehsan (h) Berman 

(a) Original image (b) Brightness peak graph 

(c) proposed (d) He 

(e) Meng (f) Galdran 



 

 

 

Fig. 7 Comparison of image 

clarity results using different 

methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(g) Ehsan (h) Berman 

 
 

logarithmic transformation multiple according to the peak 

value of image brightness. 

 

3.6 Image dehazing and recovery 
 

According to the atmospheric scattering model proposed by 

Eq. (1), the fog-free image J(x) is restored from the known 

observed fog-dust image I (x). In addition to the transmission 

function t(x), the global atmospheric light A needs to be 

estimated. Meng et al. [21] first filter each channel of the input 

image to obtain three dark channel images, and then take the 

 

maximum gray value of RGB three dark channels as the gray 

value of atmospheric light a in this channel. He et al. [10] first 

solved the input channel I for its dark channel image Idark 

and selected the brightest pixels at 0.1% of the total number 

of pixels in the image Idark. According to the coordinates of 

these pixel points, find the pixel point with the largest sum of 

these pixel points in the three channels of the original image 

I . The three-channel gray value of this point is used as the 

three-channel gray value of atmospheric light A. We can also 

select the most serious fog pixels as atmospheric light A in 

the fog image by the artificial method. This method is the 

(a) Original image (b) Brightness peak graph 

(c) proposed (d) He 

(e) Meng (f) Galdran 
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Fig. 8 Comparison of image 

clarity results using different 

methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(g) Ehsan (h) Berman 

 
 

most accurate, but it needs human interaction and cannot be 

automated. 

Once t(x) and A are obtained, a fog-free image can be 

obtained by Eq. (14). 

J(x) 
 I (x) − A  

A (14) 

[max(t (x), ε)]δ 

 

where ε is usually taken as 0.0001 to prevent the denomina- 

tor from appearing as 0, and δ is equivalent to the medium 

extinction coefficient in Eq. (2), which is used to fine-tune 

the defogging effect. 

(a) Original image (b) Brightness peak graph 

(c) proposed (d) He 

(e) Meng (f) Galdran 



 

 

 

Fig. 9 Comparison of image 

clarity results using different 

methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(g) Ehsan (h) Berman 

 

4 Results analysis and discussion 
 

4.1 Results analysis 
 

To verify the defogging and enhancement effects of clar- 

ity method of fog and dust image under the condition of 

low illumination in fully mechanized mining face, different 

methods are used to restore the image of fully mechanized 

mining face, and the contrast results are presented in Figs. 6, 

7, 8, 9, 10 and 11. In Figs. 6, 7, 8, 9, 10 and 11, Figure (a) is 

the original image. Figure (b) is the brightness peak graph. 

Figure(c) is the processing result of ours. Figures (d) to (h) 

(a) Original image (b) Brightness peak graph 

(c) proposed (d) He 

(e) Meng (f) Galdran 



  
 

 

Fig. 10 Comparison of image 

clarity results using different 

methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(g) Ehsan (h) Berman 

 
 

are the processing results of the methods of He [10], Meng 

[21], Galdran [11], Ehsan [14] and Berman [15]. According 

to the brightness peak graph of each image, the brightness 

peaks of Figs. 6, 8, 9 and 11 are between 200 and 300, and the 

brightness peaks of Figs. 7 and 10 are between 100 and 200. 

 

Therefore, the logarithm transformation multiple is selected 

as n for 2 in Figs. 6, 8, 9 and 11, and the logarithm transfor- 

mation multiple is selected as n for 3 in Figs. 7 and 10. 

In order to reflect the processing effect of this method 

on fog and dust image of fully mechanized mining face, the 

(a) Original image (b) Brightness peak graph 

(c) proposed (d) He 

(e) Meng (f) Galdran 



 

 

 

Fig. 11 Comparison of image 

clarity results using different 

methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(g) Ehsan (h) Berman 

 
 

Peak Signal-to-Noise Ratio (PSNR) and information entropy 

are selected as objective evaluation indicators. PSNR is a 

commonly used objective evaluation index of images. There 

is a positive correlation between image clarity and PSNR. 

Information entropy reflects the diversity of gray value of 

 

image. The comparison of image clarity results of different 

methods is presented in Table 1. 

Figure 6 is an image of the cutting process of shearer, the 

main fog and dust of image are concentrated in the drum 

of shearer. In the Figure, other methods have good effect 

on removing the fog and dust. However, the brightness of 

(a) Original image (b) Brightness peak graph 

(c) proposed (d) He 

(e) Meng (f) Galdran 



  
 

 

 

Table 1 PSNR and information entropy of different methods 
 

Figs. Methods PSNR Information entropy 

Figure 6 Proposed 18.346 7.648 

 He 17.056 7.624 

 Meng 14.290 7.490 

 Galdran 18.231 7.634 

 Ehsan 12.145 7.397 

 Berman 12.292 6.988 

Figure 7 Proposed 16.337 7.679 

 He 13.772 7.199 

 Meng 16.298 7.043 

 Galdran 16.731 7.518 

 Ehsan 14.637 6.971 

 Berman 13.939 6.591 

Figure 8 Proposed 16.949 7.732 

 He 11.274 7.615 

 Meng 11.238 7.518 

 Galdran 14.612 7.751 

 Ehsan 9.758 7.424 

 Berman 10.331 7.330 

Figure 9 Proposed 15.522 7.770 

 He 13.074 7.620 

 Meng 10.732 7.472 

 Galdran 15.515 7.708 

 Ehsan 10.231 7.355 

 Berman 9.142 6.833 

Figure 10 Proposed 18.703 7.437 

 He 18.092 7.274 

 Meng 17.457 6.913 

 Galdran 18.382 7.342 

 Ehsan 12.697 6.653 

 Berman 14.084 7.140 

Figure 11 Proposed method 16.882 7.551 

 He 8.885 7.176 

 Meng 12.137 7.297 

 Galdran 15.077 7.102 

 Ehsan 8.945 6.903 

 Berman 13.352 7.486 

 

 
 

these results is still insufficient. In our method, the coal 

wall near the drum is more clearly and the color is more 

full. Meanwhile, PSNR and information entropy have been 

greatly improved. Figure 7 is an image of the cutting process 

of shearer. The defogging effect of Figure (d) and Figure 

(e) is almost the same, but there is also a problem of lower 

brightness, and the result of Figure (g) and Figure (h) is very 

dark. But Galdran’s method performs well, and the results 

are similar to ours. The coal wall is clearly exposed, such as 

hydraulic support, are also clearer to observe, and the eval- 

 

 
 

Fig. 12 Gamma transformation function curve 

 

 
uation indicators are also highest, which is consistent with 

the visual observation. Figure 8 is a detailed image of cutting 

drum of shearer. The lower half of the coal wall is unclear in 

DCP method, which shows that the detail of DCP method is 

insufficient under the condition of high fog and dust. In our 

method, all areas of the middle coal wall are clearly visible, 

and the details are more abundant. The PSNR value is greatly 

improved due to the increase of brightness, and information 

entropy also increases with the increase in information in the 

image. Figure 9 is an image of a roadway in a fully mech- 

anized mining face. There is mainly interference from light 

and fog. The other method is not effective, the influence of 

light and fog still exists and the brightness is reduced, espe- 

cially Figure (g) and Figure (h). The brightness of ours has 

increased and coal walls, coal blocks and hydraulic supports 

in the figure are more clearly, the evaluation index also per- 

forms better. Figure 10 is an image of cutting process of 

the shearer. The brightness of the original image is high, 

so He and Galdran’s method have a good visual effect. In 

Fig. 11, the fog and dust is very serious, and the image 

quality is greatly disturbed, therefore, the results of other 

methods are visually poor. But our method performs best 

in visual effect and evaluation index, PSNR is much higher 

than others. After processing the image by our method, the 

logarithmic transformation effectively solves the problem of 

insufficient brightness, the PSNR and information entropy of 

our method are higher than other methods, and more detailed 

information can be observed. 

Subjectively, compared with the results of the other meth- 

ods, the brightness of our method can be improved, and more 

details of coal wall and equipment are apparent. At the same 

time, our method has a better effect on defogging and bright- 

ness improvement. It is more suitable for image defogging in 

the fully mechanized mining face environment. The image 

quality can better meet the needs of actual working condi- 

tions. It is shown in Table 1 that the PSNR and information 

entropy are the maximum by using our method, which indi- 

cate that our method has better effect on processing the fog 



 

 

 

Fig. 13 Results of gamma and 

log transformation processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(b) The result of gamma transformation (c) The result of logarithmic transformation 

 

(a) original image (b) n=2 (c) n=3 (d) n=5 

Fig. 14 Comparison results of different n in Fig. 6 

 

(a) original image (b) n=2 (c) n=3 (d) n=5 

Fig. 15 Comparison results of different n in Fig. 7 

 

(a) original image (b) n=2 (c) n=3 (d) n=5 

Fig. 16 Comparison results of different n in Fig. 8 

(a) Original image 



  
 

 

 

and dust images of the fully mechanized mining face, it lays 

a foundation for the research of target recognition and detec- 

tion in coal mine. 

 

 

 

 
 

4.2 Discussion 
 

Nonlinear transformation is the main means of brightness 

enhancement, which mainly includes gamma transformation 

and logarithmic transformation. We discuss the enhance- 

ment effect of logarithm transform and gamma transform 

in this section. The gamma transformation function curve 

is presented in Fig. 12. In order to compare the effect of 

gamma transformation and logarithmic transformation on the 

improvement of brightness, the image with lower brightness 

in the comprehensive mining face is used for verifying. The 

original image is presented in Fig. 13a. The result of logarith- 

mic transformation is presented in Fig. 13b, and the result of 

gamma transformation is presented in Fig. 13c. As shown in 

Fig. 13, the image clarity result of logarithmic transformation 

is better than gamma transformation. 

The gamma function curve shows the slope of the curve 

with the high grayscale value is larger, which indicates 

that the gamma transform has a poor enhancement effect 

on pixels with low grayscale values, and has a strong 

enhancement effect on pixels with high grayscale values. 

Comparing the image of two different nonlinear transforma- 

tions and the actual enhancement effect, it can be seen that in 

the fully-mechanized working face, some high-illuminance 

areas appear in the image due to mining lights and equipment 

reflections. The gamma transformation has over-enhanced 

these areas, while other areas with lower brightness have 

poorer enhancement effects. This is consistent with the 

gamma function curve. While the logarithmic transformation 

avoids the problem that these parts are excessively enhanced, 

and improves the brightness of other low-illumination areas. 

Therefore, we use a logarithmic transformation to improve 

image brightness. This method is suitable for the actual work- 

ing conditions of the fully mechanized mining face. 

In order to vertify the influence of n on the final output 

result, we select different n to process Figs. 6, 7 and 8. The 

results are as shown in Figs. 14, 15 and 16, respectively. 

When n is for 5, the images have been overexposed in 

Figs. 14, 15 and 16. In Fig. 14 and Fig. 16, the visual effect 

is the best when n is for 2, and when n is for 3, the image 

is too bright. In Fig. 15, when n is for 2, the brightness of 

the restored image is insufficient, but the effect of n for 3 is 

significantly better, and there is no over brightness. This is 

consistent with the experiment results in Sect. 4.1. The results 

indicate that n selected by the proposed method is effective. 

5 Conclusions 
 

Aiming at the problems of clarity for fog dust image with 

low brightness in the fully mechanized mining face, the clar- 

ity method of fog dust image based on boundary constraint 

and nonlinear context regularization, and the image bright- 

ness improvement based on logarithmic transformation is 

proposed. We found that under the condition of low illumi- 

nation and dense fog of fully mechanized mining face, the 

logarithmic transformation is more suitable than the gamma 

transformation, which can improve the brightness of the 

image without over lighting. In the proposed method, the 

logarithm transformation multiple is selected based on the 

image brightness peak. In the experiment verification, the 

proposed defogging method is compared to some of the exist- 

ing defogging methods. The contrast results indicate that the 

proposed method has the better clarity effectiveness and it is 

more suitable image clarity for the fully mechanized mining 

face environment. We will study the intelligent recognition 

of the abnormal state of equipment and surrounding rock for 

the fully mechanized working face based on this research. 
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