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Abstract
Background  Humans display an age-related decline in cerebral blood flow and increase in blood pressure (BP), but changes 
in the underlying control mechanisms across the lifespan are less well understood. We aimed to; (1) examine the impact of 
age, sex, cardiovascular disease (CVD) risk, and cardio-respiratory fitness on dynamic cerebral autoregulation and cardiac 
baroreflex sensitivity, and (2) explore the relationships between dynamic cerebral autoregulation (dCA) and cardiac barore-
flex sensitivity (cBRS).
Methods  206 participants aged 18–70 years were stratified into age categories. Cerebral blood flow velocity was measured 
using transcranial Doppler ultrasound. Repeated squat-stand manoeuvres were performed (0.10 Hz), and transfer function 
analysis was used to assess dCA and cBRS. Multivariable linear regression was used to examine the influence of age, sex, 
CVD risk, and cardio-respiratory fitness on dCA and cBRS. Linear models determined the relationship between dCA and 
cBRS.
Results  Age, sex, CVD risk, and cardio-respiratory fitness did not impact dCA normalised gain, phase, or coherence with 
minimal change in all models (P > 0.05). cBRS gain was attenuated with age when adjusted for sex and CVD risk (young–
older; β = − 2.86 P < 0.001) along with cBRS phase (young–older; β = − 0.44, P < 0.001). There was no correlation between 
dCA normalised gain and phase with either parameter of cBRS.
Conclusion  Ageing was associated with a decreased cBRS, but dCA appears to remain unchanged. Additionally, our data 
suggest that sex, CVD risk, and cardio-respiratory fitness have little effect.

Keywords  Cerebral autoregulation · Cardiac baroreflex sensitivity · Cardio-respiratory fitness · Ageing

Introduction

Ageing is a non-modifiable risk factor for cerebrovascular 
diseases (Boehme et al. 2017). Evidence shows that both 
cerebral blood flow (CBF) (Lu et al. 2011) and cerebral 
blood flow velocity (CBFv) decline with age (Ainslie et al. 
2008). Yet, age-related changes in cerebrovascular function 
and its interaction with systemic haemodynamic regulation 
are not well established. Within the cerebrovasculature, 

the intrinsic ability to maintain adequate CBF in the pres-
ence of transient changes in blood pressure (BP) that occur 
over a number of seconds is referred to as dynamic cerebral 
autoregulation (dCA) (Aaslid et al. 1989; Claassen et al. 
2016). dCA acts as a defensive mechanism protecting the 
brain from potential damage from high or low BP (van Beek 
et al. 2008). Simultaneously neural control of systemic BP 
occurs via the baroreceptors, yet the relationship between 
these two regulating processes has not been well studied and 
may provide insightful mechanistic information into CBF 
regulation. Indeed, whether changes in BP control alter acute 
cerebral haemodynamics may in turn provide a potential tar-
get for interventions.

Previous research assessing dCA using forced BP oscil-
lations with repeated squat-stand manoeuvres has shown, 
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despite age-related reductions in CBFv and increases in BP 
(Ainslie et al. 2008), there is little evidence of impairment 
in dCA between groups of young and old (mean age 23 vs 
66 years) healthy individuals (Smirl et al. 2015). A finding 
which has also been replicated within clinical populations 
(e.g., Alzheimer’s) (Claassen et al. 2009a; Smirl et al. 2014; 
Lewis et al. 2019). Xing et al. (2017), in a larger sub-sam-
ple of individuals across the age range 18–70 years, also 
observed that dCA from driven oscillations was not different 
across the lifespan in healthy individuals free of cardiovas-
cular disease (CVD). Although there was some evidence that 
women had a better dCA compared to men, this finding was 
in contrast to a recent study (Labrecque et al. 2019a). One 
research group have also highlighted the potential impor-
tance of cardio-respiratory fitness when assessing sex dif-
ferences in dCA (Labrecque et al. 2017, 2019a, b). Despite 
this, no study has examined the interaction of sex, cardio-
respiratory fitness, or CVD risk factors on dCA in a large 
sample of individuals across the life span.

Ageing negatively influences cardiac BRS (cBRS) 
(Monahan 2007), with conflicting evidence as to whether 
there are sex differences in this response (Xing et al. 2017; 
Okada et al. 2012), and Hart et al. (2011). cBRS positively 
correlates with dCA in young but not middle aged or older 
healthy participants (Xing et al. 2017). However, the fun-
damental relationship between dCA and cBRS is unclear 
as other studies suggest an inverse relationship in young 
healthy individuals (Tzeng et al. 2010), and no relation-
ship in older endurance trained athletes (Aengevaeren et al. 
2013) or in heart transplant recipients (Smirl et al. 2014). 
Understanding such relationships is further complicated by 
the use of a number of different techniques to bring about 
changes in BP and analysis methods to quantify dCA and 
cBRS. Our aim was twofold; (1) to examine the impact of 
sex, cardio-respiratory fitness, and CVD risk factors on dCA 
and cBRS over the life span; and (2) to explore the relation-
ships between cBRS and dCA whilst controlling for age and 
sex. To address these aims, we used secondary data from 
studies undertaken in our laboratory, that employed the same 
technique to bring about changes in BP (repeated squat-stand 
manoeuvres) and analysis method (transfer function analy-
sis) (Claassen et al. 2016), in a large sample of individuals.

Methods

Participants

Data from 11 studies collected at Liverpool John Moores 
University, Research Institute for Sport and Exercise Sci-
ence were examined for eligibility. Data were included if: 
(1) all measurements were performed with strict adherence 
to Cerebral Autoregulation Network (CARNet) guidelines 

(Claassen et al. 2016), (2) individual-level minimum data-
set was available [i.e., age, sex, body mass index (BMI), 
and resting BP], and (3) data were collected in studies that 
adhered to the Declaration of Helsinki. Data were included 
from four previously published studies (Carter et al. 2018, 
2020; Maxwell et al. 2019; Brislane et al. 2020) where dCA 
and cBRS recordings were collected with corresponding 
participant characteristics and medical history (where avail-
able). When studies adopted a repeated-measures design, 
only baseline data were included. Participant data was 
excluded if the duration of recordings was < 5-min, and if 
the coherence value was < 0.4 (Claassen et al. 2016). Based 
on these criteria, 206 participants were included consisting 
83 males and 123 females aged between 18 and 70 years. 
All participants were non-smokers, with no previous myo-
cardial infarction, stroke, or thrombosis. Individuals clini-
cally diagnosed with Type 2 diabetes mellitus (T2DM) were 
treated with Metformin (n = 18) or diet (n = 8) at the time 
of data collection. Additional medications taken by partici-
pants included anti-hypertensive (n = 15) and lipid lowering 
(n = 16) medication. Participants that had a BMI > 30 kg/
m2, diagnosed with hypercholesterolemia or T2DM, as well 
treated or untreated ≥ stage 1 hypertension were stratified 
to a CVD risk group. Fifty eight of the females were post-
menopausal. These women were classified based on hav-
ing no menstrual cycle for at least 12 consecutive months 
and not previously or currently taking any form of hormone 
therapy (Moreau et al. 2012).

Protocol

All participants arrived at the laboratory following an over-
night fast and had refrained from alcohol and exercise for 
≥ 24 h, and caffeine for ≥ 12 h, prior to the visit. Following 
a minimum of 20 min supine rest, measurements of middle 
cerebral artery velocity (MCAv) were obtained using tran-
scranial Doppler ultrasound (TCD) following standardised 
procedures (Willie et al. 2011). Two 2-MHz Doppler probes 
(Spencer Technologies, Seattle, USA) were placed over the 
temporal window and adjusted until an optimal signal was 
identified and held in place using a Marc 600 head frame 
(Spencer Technologies, Seattle, USA). Beat-to-beat blood 
pressure was recorded using a Finometer (Model 1, Finapres 
Medical Systems BV, Amsterdam, The Netherlands). Partici-
pants were fitted with a photoplethysmographic cuff on the 
right index finger, and the output was corrected by referenc-
ing the cuff to heart level using a height correction unit and 
heart rate (HR) acquired from a 3-lead electrocardiogram. 
Partial pressure of end tidal carbon dioxide (PETCO2) was 
continuously monitored by instrumenting participants with 
a two-way valve mouthpiece (Hans Rudolph) connected to 
a calibrated gas analyser (ML206 ADinstruments, Colorado 
Springs, USA). All data were sampled at 50 Hz with the data 
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acquisition system PowerLab via the interface LabChart 7 
(ADinstruments, Colorado Springs, USA).

Baseline haemodynamics

Resting MCAv, HR, mean arterial pressure (MAP) and 
PETCO2 were continuously recorded for 5 min in the supine 
position. Participants were instructed to maintain normal 
breathing and refrain from closing their eyes. Baseline data 
were averaged over the 5-min recording.

Dynamic cerebral autoregulation

dCA was assessed using repeated squat-stand manoeuvres to 
induce oscillations in MAP. This technique has been shown 
to be the best protocol for eliciting high interpretable lin-
earity between MAP and MCAv signals (Smirl et al. 2015; 
Claassen et al. 2009b). Beginning in a standing position, 
the participants mimic the experimenter by squatting down 
obtaining a ≈ 90° angle and then returning to the standing 
position. The manoeuvres were performed at a frequency 
of 0.10 Hz (5-s squat–5-s stand) for a period of 5 min. This 
frequency of manoeuvre was performed as these large oscil-
lations in MAP are extensively buffered by cerebral ves-
sels when completed at frequencies within the high-pass 
filter buffering range (< 0.20 Hz) (Zhang et al. 1998). By 
executing repeated squat-stand manoeuvres, this optimises 
the signal-to-noise ratio and improves the interpretability of 
the recordings through the physiologically relevant change 
in MAP (Smirl et al. 2015). Whilst performing the manoeu-
vres, participants were instructed to maintain normal breath-
ing and avoid Valsalva manoeuvres. Throughout the 5-min 
protocol, MCAv, HR, MAP, and PETCO2 were continuously 
assessed.

Data for dCA were analysed in accordance with the 
most recent recommendations from the CARNet (Claas-
sen et al. 2016). Both beat-to-beat MCAv and MAP signals 
were extracted from LabChart and then spline interpolated 
before being re-sampled at 4 Hz for spectral analysis and 
transfer function analysis (TFA) based on the Welch algo-
rithm. Each of the 5-min recordings was subdivided into 5 
successive windows overlapping by 50%. Each window was 
passed through a Hanning window prior to Fourier transfor-
mation. The cross spectrum between MCAv and MAP was 
determined for TFA by the MAP auto-spectrum to determine 
transfer function parameters absolute gain, normalised gain, 
phase, and coherence. dCA data (squat–stand manoeuvres) 
were sampled at the point estimate of the driven frequency 
(0.10 Hz). TFA parameters were only included for subse-
quent analysis when coherence exceeded 0.4. Additionally, 
data were excluded if 5 min of clear artifact free recordings 
were not present.

Cardiac baroreflex sensitivity

During the same 5-min 0.10 Hz squats-stand manoeuvres, 
continuous cBRS was measured. The cBRS was determined 
by applying TFA to systolic BP and R–R interval (pressure-
cardiac interval) at the point estimate of the driven frequency 
of the squat-stand manoeuvres (0.10 Hz). Data analysis was 
performed using a commercially available software Ensem-
ble (Version 1.0.0.28, Elucimed, Wellington, New Zealand). 
Mean gain, phase, and coherence along with spectral power 
of systolic BP and R–R interval were calculated in the low-
frequency range.

Cardio‑respiratory fitness

Breath-by-breath expired gases were continuously moni-
tored (Oxycon Pro, Jaeger, Hochberg Germany) for oxygen 
consumption (ml/kg/min) during an incremental maximal 
exercise test and were averaged over 15 s (Sprung et al. 
2013). Peak oxygen uptake was calculated from the highest 
consecutive 15-s period of expired gas fractions. All par-
ticipants reached the criteria for volitional exhaustion based 
upon heart rate, peak oxygen uptake, Borg scale, and respira-
tory exchange ratio (Sprung et al. 2013; Bailey et al. 2016).

Statistical analysis

Statistical analysis was performed using IBM SPSS version 
26 (SPSS Inc., Chicago, IL). First, participants were strati-
fied into three age categories: young (18–35 years, n = 93), 
middle age (36–55 years, n = 62), and old age (56–70 years, 
n = 51). Between age-category differences in baseline char-
acteristics and power spectrum densities during squat-stand 
manoeuvres were explored using one-way ANOVA. To 
examine the influence of age, sex, CVD risk, and VO2max 
linear regression was employed. Cross-sectional associa-
tions between age and measures of dCA and cBRS were 
examined using linear regression adjusting for sex (Model 
1). Multivariable linear regression was used to further adjust 
for health status (model 2) as well as VO2max (model 3). 
To examine specifically changes associated with cBRS and 
menopause, pre vs post-menopausal women were compared 
using a general linear model with age as covariate.

Relationship between cardiac BRS and dCA

The linear relationship between cBRS and dCA was deter-
mined using the Coefficient of determination (R2). For the 
models, each parameter of cBRS was independently used 
as a predictor variable and each parameter of dCA an out-
come variable with adjustments for age and sex. Evidence of 
multicollinearity was explored using the variance inflation 
factor. Statistical significance was set a P < 0.05.



	 European Journal of Applied Physiology

1 3

Results

Participant characteristics

There was an increase in SBP, DBP, and BMI (P < 0.001) 
and decrease in MCAv and VO2max (P < 0.001) with age 
(Table 1) at baseline. Age, SBP, DBP, and BMI were signifi-
cantly higher (P < 0.001) in the CVD risk group compared 
to healthy, with VO2max and MCAv significantly lower in the 
CVD risk group (P < 0.001) (Table 1).

dCA

Age, sex, CVD risk factors, and VO2max did not impact 
dCA parameters normalised gain, phase or coherence with 
minimal change (β) compared to the young aged reference 
group (18–35 years) in all statistical models (P > 0.05, 
Table 2). There was a significant reduction in dCA gain 

with age, which was apparent when adjusted for sex and 
CVD risk factors (young—middle age; β = − 0.09, P = 0.02 
and young—old age; β = − 0.18, P < 0.001, model 2) but not 
when adjusted for VO2max (model 3).

BRS

cBRS gain was attenuated with age when adjusted for sex 
and CVD risk factors (young—middle age; β = − 2.18, 
P < 0.001 and young—old age; β = − 2.86 P < 0.001, model 
2) along with BRS phase (young—middle age; β = − 0.31, 
P < 0.001 and young—old age; β = − 0.44 P < 0.001, model 
2) but not adjusted for VO2max (model 3). cBRS gain was 
significantly lower in the post-menopausal group compared 
to pre-menopausal (− 1.59 ms/mmHg; 95% CI − 2.43–0.77 
P < 0.001) but not when using age as a covariate (− 0.50 ms/
mmHg; 95% CI − 2.06, 1.06 P = 0.79). Similarly, cBRS 
phase was attenuated in the post-menopausal group com-
pared to pre-menopausal (− 0.39 radians; 95% CI − 0.62, 

Table 1   Participant characteristics when divided into age categories

Data presented as mean ± SD
SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index, MCAv middle cerebral artery velocity, PETCO2 partial pres-
sure of end tidal carbon dioxide, ANOVA analysis of variance

Characteristics Age categories ANOVA

18–35 years (young)
N = 93

36–55 years (middle age)
N = 62

56–70 years (old age)
N = 51

P value

Age (years) 26 ± 5 47 ± 6 61 ± 4
Male/female 45/48 18/44 20/31
SBP (mmHg) 115 ± 11 120 ± 15 138 ± 18 < 0.001
DBP (mmHg) 67 ± 11 73 ± 10 78 ± 10 < 0.001
VO2max (ml kg min) 42.2 ± 10.8 28.6 ± 7.4 23.7 ± 5.2 < 0.001
BMI (kg/m2) 24 ± 3 27 ± 6 29 ± 5 < 0.001
MCAv (cm s) 67 ± 13 64 ± 13 56 ± 13 < 0.001
PETCO2 (mmHg) 36.8 ± 4.3 37.9 ± 4.8 35.9 ± 4.9 0.08

Health status

Healthy
N = 166

CVD Risk
N = 40

P value

Age (years) 37 ± 14 56 ± 3 < 0.001
Male/female 57/109 26/14
SBP (mmHg) 117 ± 13 145 ± 15 < 0.001
DBP (mmHg) 68 ± 8 83 ± 9 < 0.001
VO2max (ml kg min) 34.0 ± 12.0 22.5 ± 5.1 < 0.001
BMI (kg/m2) 24.6 ± 3.6 33 ± 5 < 0.001
MCAv (cm s) 65.8 ± 13.4 54 ± 8 < 0.001
PETCO2 (mmHg) 36.8 ± 4.4 37.6 ± 5.7 0.37
Medications
 Anti-hypertensive mediation 0/166 19/40
 Metformin 0/166 17/40
 Lipid lowering medication 0/166 16/40
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0.15 P = 0.02) but not when using age as a covariate (0.06 
radians; 95% CI − 0.36, 0.45 P = 0.77).

Power spectral analysis

When stratified by age, dCA BP power, MCAv power, and 
cardiac BRS R–R interval power all demonstrated a negative 
relationship (P < 0.001) with no difference in SBP power 
(P = 0.55, Table 3).

Relationship between cBRS and dCA

There was little correlation between dCA normalised gain 
and dCA phase with either parameter of cBRS (P > 0.05; 
Fig. 1). dCA gain was correlated with cBRS gain (R2 = 0.19, 

P < 0.001) and with cBRS phase (R2 = 0.18, P < 0.001). 
However, the total variance explained in these significant 
outcomes is small, meaning that other factors are likely to be 
important, whether independent or as interacting variables.

Discussion

The aims of the current study were to (1) examine the impact 
of sex, cardio-respiratory fitness and the presence of CVD 
risk factors on dCA and cBRS over the life span; and (2) 
explore the relationships between cBRS and dCA whilst 
controlling for age and sex. We present the following obser-
vations. First, dCA measured using repeated squat-stand 
manoeuvres is preserved across the age range of 18–70 years 

Table 2   Cross-sectional associations between age and both dCA and cardiac BRS during 0.10 Hz squat-stand manoeuvres

The regression coefficient β represents the change in the parameter from either young (18–35 years)–middle (36–55 years) aged or from young–
old (56–70 yrs) aged when accounting for model covariates. Model 1: Adjusted for sex. Model 2: Adjusted for sex and health status (healthy or 
CVD risk). Model 3: Adjusted for sex, health status and VO2max

dCA dynamic cerebral autoregulation, BRS baroreflex sensitivity

Mean ± SD Model 1 Model 2 Model 3

β (95% CI) P value β (95% CI) P value β (95% CI) P value

dCA normalised gain (%·mmHg−1) (years)
 18–35 1.34 ± 0.28 Ref Ref Ref
 36–55 1.31 ± 0.30 − 0.04 (− 0.14, 0.06) 0.42 − 0.03 (− 0.14, 0.07) 0.55 0.00 (− 0.18, 0.18) 0.96
 56–70 1.29 ± 0.34 − 0.06 (− 0.16, 0.05) 0.29 − 0.04 (− 0.16, 0.08) 0.55 0.01 (− 0.20, 0.21) 0.96

dCA gain (cm/s/mmHg) (years)
 18–35 0.89 ± 0.23 Ref Ref Ref
 36–55 0.82 ± 0.22 − 0.09 (− 0.16, − 0.02) 0.01 − 0.09 (− 0.16, − 0.01) 0.02 − 0.05 (− 0.17, 0.08) 0.45
 56–70 0.70 ± 0.18 − 0.20 (− 0.28, − 0.13) < 0.001 − 0.18 (− 0.27, − 0.10) < 0.001 − 0.22 (− 0.36, − 0.08) 0.002

dCA phase (radians) (years)
 18–35 0.39 ± 0.28 Ref Ref Ref
 36–55 0.35 ± 0.32 − 0.007 (− 0.10, 0.08) 0.88 − 0.001 (− 0.09, 0.09) 0.98 − 0.004 (− 0.18, 0.17) 0.96
 56–70 0.39 ± 0.24 0.01 (− 0.08, 0.11) 0.78 0.02 (− 0.09, 0.14) 0.67 0.10 (− 0.09, 0.29) 0.29

dCA coherence (years)
 18–35 0.67 ± 0.1 Ref Ref Ref
 36–55 0.65 ± 0.1 − 0.02 (− 0.05, 0.02) 0.34 − 0.02 (− 0.06, 0.01) 0.20 − 0.02 (− 0.07, 0.04) 0.55
 56–70 0.70 ± 0.1 0.03 (− 0.01, 0.06) 0.18 0.01 (− 0.03, 0.05) 0.59 0.02 (− 0.05, 0.08) 0.58

BRS gain (ms mmHg) (years)
 18–35 5.99 ± 2.96 Ref Ref Ref
 36–55 3.57 ± 2.27 − 2.18 (− 3.00, − 1.36) < 0.001 − 1.85 (− 2.70, − 0.99) < 0.001 − 0.54 (− 1.67, 0.58) 0.34
 56–70 3.01 ± 2.06 − 2.86 (− 3.72, − 1.99) < 0.001 − 2.21 (− 3.20, − 1.22) < 0.001 − 0.60 (− 1.87, 0.67) 0.35

BRS phase (radians) (years)
 18–35 − 0.78 ± 0.42 Ref Ref Ref
 36–55 − 1.11 ± 0.56 − 0.31 (− 0.48, − 0.14) < 0.001 − 0.31 (− 0.49, − 0.13) 0.001 − 0.20 (− 0.50, 0.09) 0.18
 56–70 − 1.22 ± 0.61 − 0.44 (− 0.60, − 0.25) < 0.001 − 0.43 (− 0.63, − 0.22) < 0.001 − 0.28 (− 0.61, 0.06) 0.10

BRS coherence (years)
 18–35 0.70 ± 0.13 Ref Ref Ref
 36–55 0.64 ± 0.11 − 0.06 (− 0.09, − 0.02) 0.004 − 0.06 (− 0.10, − 0.02) 0.003 − 0.05 (− 0.11, 0.14) 0.13
 56–70 0.67 ± 0.11 − 0.03 (− 0.07, 0.01) 0.13 − 0.04 (− 0.09, − 0.01) 0.11 0.02 (− 0.05, 0.09) 0.60
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Table 3   Power spectral analysis 
of both dynamic cerebral 
autoregulation and baroreflex 
sensitivity during 0.10 Hz 
squat-stand manoeuvres

Values are mean ± SD
BP blood pressure, BRS baroreflex sensitivity, dCA dynamic cerebral autoregulation, MCAv middle cer-
ebral artery velocity, SBP systolic blood pressure

Age categories ANOVA

18–35 years (young)
N = 93

36–55 years 
(middle age)
N = 62

56–70 years (old age)
N = 51

dCA
 BP power (mmHg2) 215 ± 128 172 ± 105 140 ± 124 0.001
 MCAv power (cm/s2) 166 ± 97 132 ± 91 60 ± 41 < 0.001

BRS
 R–R interval power (ms2) 8916 ± 6932 4390 ± 5190 3146 ± 3991 < 0.001
 SBP power (mmHg2) 474 ± 368 412 ± 299 470 ± 429 0.55

Fig. 1   Relationship between dynamic cerebral autoregulation and baroreflex sensitivity during 0.10 Hz squat-stand manoeuvres. Data presented 
as individual data points with R2 and P values
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in healthy individuals ex, fitness or the presence of CVD 
risk factors had little effect. Second, cBRS declined with 
ageing. Finally, cBRS gain and phase displayed no relation-
ship with dCA.

Ageing is a risk factor for cerebrovascular disease and 
complications. A number of cerebral haemodynamic param-
eters change with age, including reductions in CBF volume 
and CBFv (Krejza et al. 1999; Ainslie et al. 2008; Lu et al. 
2011). Yet, our current data show that the intrinsic abil-
ity of cerebral vessels to maintain stable flow in response 
to acute changes in BP is unaffected by ageing across the 
lifespan up to the age of 70 years. This suggests that the age-
related decline in CBFv is not merely a result of impaired 
dCA. The ability of the cerebrovasculature to buffer tran-
sient changes in BP represents a vital defence mechanism 
protecting the brain from hypo- and hyperfusion (Claassen 
and Zhang 2011). Our data are in agreement with the previ-
ous studies, with smaller sample sizes or age group com-
parisons, which identified no reduction in dCA with older 
age using both squat-stand manoeuvres (Xing et al. 2017; 
Smirl et al. 2014; Oudegeest-Sander et al. 2014) or other 
dCA techniques (Yam et al. 2005; Carey et al. 2000; Dineen 
et al. 2011). We also show that dCA is not different between 
sexes when age is considered. Whilst some previous work 
has identified interactions between sex and dCA (Deegan 
et al. 2011; Labrecque et al. 2019a), suggesting this as possi-
ble explanation for increased orthostatic hypotension-related 
complications, the data from our large sample study did not 
show any interactions between sex across age ranges.

Another novel aspect of our study was that we exam-
ined the impact of the presence of CVD risk factors on the 
decline in dCA. Central obesity, hypertension, hypercho-
lesterolemia, and T2DM represent major risk factors in the 
development of systemic vascular disease and complica-
tions (Seven 2015) including significantly increased risk of 
cerebrovascular disease (Law et al. 2009; Kivipelto et al. 
2005; Pinto et al. 2004). Each risk factor individually or 
collectively is associated with endothelial dysfunction, 
increased arterial stiffness, alongside a range of other vas-
cular abnormalities (Stapleton et al. 2008). Despite these 
vascular changes, none of these CVD risk factors included 
within our study were associated with a reduction in dCA 
when age in considered. Our group has previously shown 
that in a small sample of individuals with increased CVD 
risk, dCA is not different to that of young healthy individuals 
(Carter et al. 2020); with the current study, we confirm the 
original observation using a markedly larger sample size. 
To date, no other studies have assessed dCA using squat-
stand manoeuvres in a population with these specific risk 
factors for CVD. Comparisons between previous studies that 
have assessed cerebral autoregulation in similar cohorts are 
challenging because of methodological differences. Previ-
ous studies employing squat-stand maneuverers and TFA 

examined one CVD risk factor, i.e., hypertension (Lipsitz 
et al. 2000; Eames et al. 2003) and T2DM (Huq et al. 2012) 
and also observed no change in dCA. Studies utilising the 
exact same dCA methods used in our study have observed no 
difference in patients with chronic obstructive lung disease 
(Lewis et al. 2019), in early stage Alzheimer’s (Claassen 
et al. 2009a), or even in heart transplant recipient patients 
(Smirl et al. 2014). Collectively, our data suggest that despite 
the vascular maladaptations that are associated with CVD 
risk factors, the intrinsic ability of the cerebral blood vessels 
to maintain stable flow upon fluctuations in BP is persevered.

Elevated cardio-respiratory fitness is associated with 
increased resting CBFv values (Ainslie et al. 2008) and 
enhanced cerebrovascular reactivity (Bailey et al. 2013), 
but its association with dCA is less clear. In fact, cardio-
respiratory fitness may be important when assessing dCA 
(Labrecque et al. 2019b). Using a relatively large sample 
size, of moderately fit individuals, we found VO2max is not 
related to variations in dCA. Interestingly, two previous 
studies concluded that higher VO2max was related to attenu-
ated dCA (Labrecque et al. 2017; Lind-Holst et al. 2011), 
whereas Aengevaeren et al. (2013) identified no effect of 
VO2max on dCA. Disparities in the study findings are likely 
due to differences in dCA assessment methods, but could 
also be explained by including individuals with fitness lev-
els at the lower and higher ends of the continuum. Moreo-
ver, differences in specific training status may alter dCA 
responses independent of VO2max; for example, the work by 
Labrecque et al. (2017) recruited individuals with a training 
load of 12 h per week for a minimum of 2 years, whereas in 
our study, we did not take into consideration training load/
status but rather just cardio-respiratory fitness based on a 
maximum capacity exercise test. Whether any changes asso-
ciated with improved/reduction in dCA are directly related 
to cardio-respiratory fitness or vascular/neural adaptations 
to chronic exercise requires further investigation. Our data 
provide some evidence, in a demographically varied cohort, 
using a single method of dCA assessment with TFA, sug-
gesting that VO2max has little impact on dCA, albeit within 
a small range of moderately fit individuals.

Our data further support a wealth of research that shows 
cBRS declines with age (Monahan 2007; Xing et al. 2017; 
Smirl et al. 2014; O'Mahony et al. 2000; La Rovere et al. 
2008). We provide evidence that CVD risk factors are 
linked to reduced cBRS (Skrapari et al. 2007; Sakamoto 
et al. 2019; Madden et al. 2010) and cBRS across a broad 
age range in females is reduced in post-menopausal women 
compared to pre-menopausal (Barnes et al. 2012). We pro-
vide some evidence that this is could be explained by age, 
rather than the menopause accelerating any decline in cBRS. 
We acknowledge that further investigation is warranted to 
explore the impact of the menopause. The direct relationship 
between dCA and cBRS is complex. Understanding whether 
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enhanced BP control leads to better control of CBF or vice 
visa is important in understanding how these regulatory 
mechanisms operate, and whether they should be the focus 
of interventions (Favre and Serrador 2019).

Our study provides evidence that cBRS parameters show 
no relationship with dCA normalised gain and dCA phase 
during forced BP oscillations, but do appear to have a rela-
tionship with dCA (absolute) gain. Absolute gain reflects 
absolute CBFv changes (Claassen et al. 2016), and thus with 
both CBFv and cBRS reducing with age, it is likely to result 
in a significant association between the two parameters, but 
when dCA gain is normalised for changes in BP no relation-
ship is present. Interestingly, one previous study using TCD 
to measure rate of regulation and autoregulation index for 
dCA and the modified Oxford technique to estimate BRS, 
reported an inverse relationship between the two processes 
(Tzeng et al. 2010). This implies that the lower an individu-
al’s BRS (i.e., reduced BP control), the more effective their 
dCA is at counteracting large fluctuations in BP and could 
imply an increased efficiency of dCA in protecting against 
the age-related decline in cBRS and various haemodynamic 
changes. On the other hand, previous studies utilising the 
same methods adopted in this present study concluded no 
relationship between dCA and cBRS parameters (Smirl et al. 
2014; Aengevaeren et al. 2013). Therefore, the data from 
our study outline that despite having a significantly greater 
BP control at a younger age, this does not alter how well the 
cerebral vessels regulate blood flow during BP challenges. 
Differences in study findings may simply be explained the 
assessment of cBRS and dCA, as work by Horsman et al. 
(2014) demonstrated that in squat-stand manoeuvres at 
0.10 Hz hysteresis is present which was not with the modi-
fied oxford technique. The squat-stand manoeuvres produce 
significant fluctuations in central blood volume and total 
peripheral resistance The overall input of the barorecep-
tors and neural feedback on dCA is complex and not well 
understood (Ainslie and Brassard 2014) with evidence from 
animal studies, showing that isolated dual elimination of 
baroceptor and chemoreceptor completely abolished cerebral 
autoregulation in dogs, whereas cerebral autoregulation was 
preserved in in sympathetically and parasympathetically 
denervated animals (Sagawa and Guyton 1961; Busija and 
Heistad 1984).

Our study utilises a large sample size, in a demographi-
cally varied cohort, employing the same technique and 
adhering to published guidelines. However, we acknowledge 
a number of limitations. First, the use of TCD assesses blood 
flow velocity rather than blood flow as arterial diameter is 
not taken into consideration and therefore a stable diameter 
cannot be verified. MCA diameter has been shown to be 
consistent during modest changes in CO2 (± 5 mmHg) (Ain-
slie and Hoiland 2014), as well as acute moderate changes 
in BP (Giller et al. 1993; Serrador et al. 2000); thus, our 

data should be interpreted with some caution. Second, we 
employed 0.10 Hz squat-stand manoeuvres only to interro-
gate dCA, incorporating 0.05 Hz manoeuvres and sponta-
neous oscillations may have provided an additional level of 
detail and strengthened interpretability of the results. Third, 
ageing was used as an individual variable within our analy-
sis rather than incorporating it into the CVD risk factors 
section, as age does represent a major non-modifiable risk 
factor for CVD. Finally, the Bruce protocol was utilised for 
the assessment of VO2max and using this protocol may have 
resulted in an underestimation of the VO2max in the younger 
individuals.

In conclusion, we show that older age was associated 
with a decreased baroreflex sensitivity, but dCA appears to 
remain stable with ageing, sex, CVD risk, and cardio-res-
piratory fitness have little effect. Therefore, cerebral vessels 
regulate blood flow during acute BP challenges across the 
age span.
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