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Almost all machine learning (ML) is based on representing examples
using intrinsic features. When there are multiple relatedML problems
(tasks), it is possible to transform these features into extrinsic fea-
tures by first training ML models on other tasks and letting them
each make predictions for each example of the new task, yielding a
novel representation. We call this transformational ML (TML). TML is
very closely related to, and synergistic with, transfer learning, multi-
task learning, and stacking. TML is applicable to improving any non-
linear ML method. We tested TML using the most important classes
of nonlinear ML: random forests, gradient boosting machines, sup-
port vector machines, k-nearest neighbors, and neural networks. To
ensure the generality and robustness of the evaluation, we utilized
thousands of ML problems from three scientific domains: drug
design, predicting gene expression, and ML algorithm selection. We
found that TML significantly improved the predictive performance of
all the ML methods in all the domains (4 to 50% average improve-
ments) and that TML features generally outperformed intrinsic fea-
tures. Use of TML also enhances scientific understanding through
explainable ML. In drug design, we found that TML provided insight
into drug target specificity, the relationships between drugs, and the
relationships between target proteins. TML leads to an ecosystem-
based approach to ML, where new tasks, examples, predictions, and
so on synergistically interact to improve performance. To contribute
to this ecosystem, all our data, code, and our ∼50,000 ML models
have been fully annotated with metadata, linked, and openly pub-
lished using Findability, Accessibility, Interoperability, and Reusability
principles (∼100 Gbytes).

AI j drug design j transfer learning j stacking j multitask learning

Machine learning (ML) develops computational systems
that learn from experience (1–4). ML has a long history

of application to science, one of the first ML programs being
Meta-Dendral, which used ML to improve the analysis of mass-
spectrometric data (5). The importance of ML to science is
now widely recognized, and ML is now being applied to almost
all areas of science: drug discovery (6), organic synthesis plan-
ning (7), materials science (8), medicine (9), and so on.

Most ML represents examples using tuples of attributes, i.e.,
the data can be put into a single table, with the examples as
rows and the attributes as columns (1–4). Attributes are fea-
tures of examples which are believed to be important. Cur-
rently, such features are almost always intrinsic properties. For
example, if one wished to learn about the pharmacological
activity of a drug, then properties of its molecular structure
would be useful attributes. Typically, one attribute is singled
out for prediction, and the other attributes contribute informa-
tion to make this prediction. If the predicted attribute is cate-
gorical then the problem is a discrimination/classification task,
and if the attribute is a real number then the problem is a
regression one. Here we focus on regression.

In cases where there are multiple related ML problems
(tasks) it is possible to use extrinsic features: predictions made
about examples by ML models learned on other tasks. We call
this transformational ML (TML). TML transforms a represen-
tation based on intrinsic attributes of examples to an extrinsic
representation based on the predictions of previously learned
models. As we will discuss, TML is very closely related to and
synergistic with stacking, multitask learning (MTL), and trans-
fer learning (TL). It enables the utilization of knowledge previ-
ously learned from related tasks, rather than learning each new
model from scratch. TML is thus a metalearning idea that is
applicable to enhancing any nonlinear ML method. It is partic-
ularly well suited when there exist many related small learning
tasks.

To intuitively explain this idea, we take as an illustrative
example the problem of learning to recognize multiple animal
species (Fig. 1A). If there are many types of animals, with new
ones expected to be added, then it would be reasonable to learn
classifiers for each species, rather than learning a single large
classifier. The standard (baseline) ML approach to such a
learning task would be to use intrinsic attributes (e.g., size or
presence of fur) to learn these prediction models. The TML
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approach is to first learn prediction models for all known spe-
cies in the standard way and then to use the predictions from
these learned baseline models to represent all animals, i.e., by
their “catness,” “rabbitness,” or “horseness,” and to train a
(meta) ML model (Fig. 1A) to make predictions using this rep-
resentation. TML is applicable to any domain where ML tasks
share a common set of intrinsic features and related target vari-
ables, which is commonly the case in scientific domains, e.g.,
drug design where targets (proteins) can be related, as can
drugs (Fig. 1B). The underpinning justification for TML is utili-
zation of prior knowledge about the regularity of the world
encoded in the previously learned prediction models.

More formally, the input to TML is a set of previously
learned prediction models and a new learning task with labeled
examples. TML is performed in two stages. First, the examples
from the new learning task are applied to the prediction models
and the predictions of the models used to generate the trans-
formed representation. Then, the transformed representation is
used to learn a prediction model for the new task (Fig. 1). Con-
sider a set of n tasks (learning problems) Ti, i ¼ 1.n, each repre-
sented by a common set of p attributes Xi ¼ (x1, x2, … , xp), and

a unique prediction attribute yi. On each task we train a model
using a baseline ML method A, yielding n models Ai = A(Xi) ≈
yi. We then apply an ML method Φ (possibly different from A)
to predict a new target ynew for a new task Tnew by using the n
previously trained models Ai to generate n latent features yi
and learning the relationship from the latent features to the
new target ynew: Φ(Xnew) = Φ(A1 (Xnew), A2 (Xnew), … , An

(Xnew)) = Φ(y1, y2, … , yn) ≈ ynew.
In the case of QSAR (quantitative structure activity relation-

ships) predictions, a common step in early-phase drug discovery
(23, 24), the task Ti, is as follows: given a target (usually a pro-
tein) and a set of chemical compounds (small molecules) with
associated activities (e.g., inhibition of the target protein), learn
a predictive mapping from molecular representation to activity:
Xi is a set of drug descriptors with known activity yi (Fig. 1B).
Baseline ML methods (e.g., random forest and k-nearest neigh-
bor [k-NN]) are first applied to each QSAR prediction task Ti,
yielding prediction models Ai ! activity [of the form Ai(1, 0, 1,
1, … ) ! 0.9; see Fig. 1C]. In the TML approach, for a new
QSAR task we apply an ML method Φ (which could be differ-
ent from any of previously used Ai, or one previously used) to
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Fig. 1. (A) Baseline ML vs. TML for prediction of animals. We illustrate TML using a toy example with three ML related problems: donkey, kitten, and
rabbit prediction. In baseline ML intrinsic attributes (descriptors) are used to build predictive models, e.g., size, ears, edible. Instantiation of these attrib-
utes in the rabbit example gives: Rabbit(Size ¼ Small, Ears ¼ Big, and Edible ¼ No) ! 1.0. Rabbit() is a mathematical model that inputs instantiated exam-
ples of animals and outputs the probability of an example’s being a rabbit. For TML three baseline models are learned: Donkey(), Rabbit(), and Kitten().
The predictions from these baseline models are used as extrinsic attributes for TML learning. Using the same rabbit training example (Size ¼ Small, Ears ¼
Big, and Edible ¼ No) produces the TML instantiation Rabbit ðDonkey ðSize¼ Small,Ears¼ Big, _Þ,Kitten ðSize¼ Small,Ears¼ Big, _ÞÞ ! 1:0; which evalu-
ates to give the TML example: Rabbit(0.1, 0.8, _) ! 1.0. Intuitively, one can see the TML form of representation is useful because a rabbit has some resem-
blance to a donkey in having cute long ears and to a kitten in being small and cute. Note that this transformed representation enables TML models to
capture attributes of animals not originally used, like cuteness, having eyes at the side of the head (shared by rabbits and donkeys), and so on. (B) Learn-
ing QSAR models. The QSAR prediction task is as follows: Given a target (usually a protein) and a set of chemical compounds (small molecules) with asso-
ciated activities (e.g., inhibition of the target protein), learn a predictive mapping from molecular representation to activity. The ML problems (tasks Ti,
i ¼ 1,… , n) are characterized by a target protein, together with a set of drugs with associated activities [Xi ¼ (x1, x2, … , xp)]. The learned ML models are
represented as Ai(Xi). (C) Baseline ML vs. TML for QSAR prediction. In applying baseline (standard) ML to QSAR problems, each target protein is associated
with multiple drugs each of which is described by intrinsic attributes, in this case Boolean values indicating the presence or absence of specified chemical
groups. These attributes along with associated activities are used to learn a model Ai(Xi) ! activity. The examples are of the form Ai(1, 0, 1, 1, … ) ! 0.9.
In applying TML to QSAR problems the attributes are now the predictions from baseline QSAR models Ai. The examples are therefore of the form
Φ1ðA2ð1, 0, 1, 1, :::Þ,A3ð1, 0, 1, 1, :::Þ, :::Þ ! 0:9: Note that model Φi only includes predictions for the other tasks. This produces the following example
after running the baseline ML QSAR models: Φ1ð0:2, 0:3, :::Þ ! 0:9:
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make a new prediction by using the n previously trained models
A(Xi). The attributes are now the predictions from baseline
QSAR models Ai (of the form Φ(0.2, 0.3, … ) ! 0.9; see
Fig. 1C).

TML has very close similarities to other ML approaches.
However, the specific TML concept does not seem to have
been previously identified or systematically evaluated. TML has
very close similarities to MTL (10). In MTL related problems
(tasks) are learned simultaneously with the aim of exploiting
similarities between the problems to improve performance.
MTL has been successful in many scientific applications (e.g.,
refs. 11 and 12). MTL is defined as “an approach to inductive
transfer that improves generalization by using the domain
information contained in the training signals of related tasks as
an inductive bias. It does this by learning tasks in parallel while
using a shared representation; what is learned for each task can
help other tasks be learned better” (10). MTL starts, as does
TML, with a set of n task (learning problems) Ti, i ¼ 1…n,
each represented by a common set of p attributes Xi ¼ (x1,
x2,… , xp), and a unique prediction attribute yi. MTL aims to
improve the learning of a model for Ti using ML method A by
learning in parallel all the n models Ai ¼ A(Xi) ¼ yi (12). There
are two main differences between MTL and TML: MTL typi-
cally learns the tasks in parallel, while TML typically learns
tasks sequentially, and in TML information is shared between
tasks using the data representation, while MTL uses a single
model.

TML is also very closely related to TL (13), where informa-
tion is transferred from a specific source problem to a specific
target problem. The idea of TL is to extract knowledge from
one or more source domains and to reuse this knowledge in a
target domain where data are scarce, with the aim of building
better-performing learning models in the target domain. Lin
and Jung (14) define TL as “given a source domain DS and
learning task TS, and a target domain DT and learning task TT,
TL aims to help improve the learning of the target predictive
function f(�) in DTusing the knowledge in DS and TS, where DS

6¼ DT, or TS 6¼ TT” (14). This definition of TL is very general
but typically TL differs from TML in that just one source task
is learned, while TML requires many source tasks. TL has pre-
viously been successfully applied in drug design with several
prospective applications demonstrating the usefulness of this
ML approach (15).

TML resembles MTL in using a single joint representation
and TL and metalearning in transferring task information.
However, in TML instead of using a predefined similarity mea-
sure or another criterion to preselect a set of similar tasks the
different tasks are projected into a joint numeric representation
(embedding), and then any ML can be applied to this new
transformed representation to learn how to make accurate pre-
dictions for a specific problem.

TML also has very close similarities to stacking (16, 17), a
form of ensemble ML. In ensemble ML multiple learning meth-
ods are combined to obtain better predictive performance than
could be obtained from any of the constituent learning algo-
rithms alone. In stacking multiple baseline models are first
learned, then a metamodel is learned using the outputs of the
baseline level model. Stacking starts with a single task Ti, repre-
sented by a set of p attributes Xi ¼ (x1, x2,… , xp), and a unique
prediction attribute yi. We then train m baseline models using m
baseline ML methods Aj, j ¼ 1…m. Aj(Xi) ¼ yij. We then apply
a ML method U (possibly different from any Aj) to learn the
relationship between the latent features yij and yi. The main dif-
ference between TML and stacking is that TML learns across a
large set of tasks Ti, i = 1…n, each containing potentially dif-
ferent examples, while in stacking different baseline models are
typically trained on the same task; e.g., one might stack together
random-forest and neural-network predictors for a specific

problem. In contrast, in TML the models are not trained on the
same task and could simply be a set of pretrained models.

Within the field of drug design TML also closely resembles
the idea of using ML models to predict affinity fingerprints
(18). Similarly, in natural language processing, Strubell et al.
(19) have successfully used a MTL/TL approach that resembles
TML.

TML also resembles the concept of an inductive database
(ID) (20) in its focus on multiple models. An ID is a general-
purpose database in which both the data and ML models can
be represented, retrieved, and manipulated. TML is similar in
its focus in considering ML models to objects of interest out-
side of their initial purpose. It differs in being directly focused
on a specific method of using models to aid prediction.

TML is applicable to improving any nonlinear ML method.
To evaluate TML we selected five ML methods that exemplify
the main families of nonlinear ML methods (1–4): random for-
ests (RF) (21), gradient-boosting machines (XGB) (22),
support-vector machines (SVMs) (23), k-NN (3), and neural
networks (NN) (3, 4). To ensure the generality and robustness
of the evaluation we utilized thousands of ML problems from
three important scientific problems: drug discovery (QSAR
learning), predicting human gene expression (across different
tissue types and drug treatments), and metamachine learning
(predicting how well ML methods will work on problems). For
each ML method, and each problem area, we compared TML
vs. baseline (standard) ML. We investigated two forms of pre-
diction improvement: strong improvement, where predictions
made using the new TML features outperform those based on
the baseline (intrinsic) features [Φ(XTML) vs. Φ(Xbaseline)] and
combined improvement, where the new TML features improve
performance through augmenting the baseline features
[Φ(XTML plus Xbaseline) vs. Φ(Xbaseline)]. To augment the TML
predictions we used the simplest possible form of stacking:
combining the predicted outputs. We found that TML signifi-
cantly improved the average predictive performance of all
methods in all three domains (from 4 to 50%), i.e., models
trained on the novel extrinsic features generally outperformed
those trained on the intrinsic ones (Table 1).

Almost every form of statistical and ML method has been
applied to QSAR learning (23), but no single method has been
found to be clearly best (24, 25). QSAR problems are well-
suited to TML as they can be related by having related target
proteins (e.g., the problem of inhibiting the enzyme dihydrofo-
late reductase [DHFR] in Mus musculus [mouse] and Homo
sapiens are similar because they have similar ligand binding
sites [active centers]) (26), and they involve the same or chemi-
cally related molecules (26–28). To evaluate TML for QSAR
learning we utilized 2,219 QSAR problems (24, 25). The base-
line (intrinsic) QSAR representation was a 1,024-bit molecular
fingerprint representation, which has previously been shown to
be effective (25). For each ML method (RF, SVM, k-NN, and
NN) we generated the TML extrinsic attributes by predicting
compound activities using the previously learned ML models
(see SI Appendix, QSAR Learning) then learned the TML
QSAR models using the same ML method. Use of TML out-
performed baseline ML for all methods. The results are given
in Table 1. We found that the best overall results were for
stacked TML XGB, which achieved a 7% overall improvement
over baseline XGB, followed by TML NN. It is noteworthy that
these datasets have been extensively studied [18 learning meth-
ods and 6 molecular representations (25)], and TML signifi-
cantly outperformed the best previous results.

For our second problem domain we used the Library of Inte-
grated Network-based Cellular Signatures data (LINCS) (29),
which describes the measured expression levels of 978 land-
mark human genes under 118,050 experimental conditions. We
cast the ML task as learning a model for each gene able to
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predict its expression level given experimental conditions (cell
type, drug, and dosage) (see SI Appendix, Gene Expression
Learning). The problem domain is suitable for TML as there
are relationships between genes (homologies, common signal-
ing pathways, etc.) and between experimental conditions (drug
similarity, etc.) that can be exploited to improve performance.
Using the same methodology as on the QSAR problem we per-
formed a comparative assessment of RF, SVMs, k-NN, and
NNs on the original intrinsic representation and the TML rep-
resentation. The results for the problem are given in Table 1.
Use of TML outperformed baseline ML for all methods. We
found that the best overall result was for TML RF with a 4%
overall improvement over baseline RF, followed by TML XGB
and TML SVM.

Our third evaluation problem area was from ML, where a
fundamental problem is to select the best ML method to use
on a new learning task. An effective approach to this task is to
use ML to solve this problem, which is a kind of metalearning
(30). The ML task is to learn a metamodel to predict the per-
formance of an ML method (given an exact configuration) on a
new task, given the characteristics of the training data (e.g., sta-
tistics of the training data distribution). The problem domain is
suitable for TML as ML tasks can be related by having similar

data distributions and data properties (e.g., missing values) or
by containing data being generated by similar processes. From
OpenML (31) we took a set of 10,840 evaluations on 351 tasks
(datasets) and 53 ML methods, which produced 351 learning
tasks (SI Appendix, Meta-Learning for Machine Learning). The
results for the problem are given in Table 1. Use of TML out-
performed baseline ML for all methods. We found that the best
overall result was TML stacking RF, with a 50% improvement
over RF. A similar level of improvement was found for TML
XGB over baseline XGB, with TML SVM and TML NN pro-
ducing the best SVM and NN results. For k-NN stacking TML
performed best. The percentage improvement with TML was
much greater with the other tasks. This may be due to the fact
that the original (intrinsic) features are rather weak descriptors
of the training datasets, while the TML features encode much
more implicit information about how algorithms behave on dif-
ferent tasks. In addition, measuring predictive performance has
lower empirical noise than the other problem areas.

An increasingly important branch of ML is explainable AI,
for in many applications (e.g., medical or financial) there is a
necessity to make predictions understandable (32). In science,
explainable ML predictions lead to new scientific insights. The
understandability of ML models depends on model simplicity

A B C

Fig. 2. (A) Clustering methodology. To cluster the drugs (examples) we applied the TML models to form example profiles. In these profiles each element
is the predicted value of the drug on one of the targets (problems). For example, in the case of penicillin the first element could be its predicted activity
from the H. sapiens serotonin 5a receptor model, the second element its predicted activity on the M. musculus DHFR model, and so on. Using the n exam-
ple profiles, the drugs are clustered using hierarchical clustering (see SI Appendix, Clustering). To cluster the targets (problems) we first used the TML
models to form problem profiles, one profile for each problem. In a problem profile each element is the predicted value of a specific drug (example) on
the target (problem). For example, in the case of the QSAR prediction problem H. sapiens DHFR, the first element could be the predicted activity of triclo-
san, the second of penicillin, and so on. To form the final clustering we utilized the n prediction profiles and then clustered them using hierarchical
clustering (see SI Appendix, Clustering). (B) Chemical compounds clustered by activity on QSAR targets. The figure shows the overall clustering of FDA-
approved compounds (colors representing clusters) and a magnified section of the clustering with three closely related clusters and singletons. The magni-
fied section includes compounds treating migraines, pituitary tumors, bleeding during pregnancy, Parkinson's disease, hypertension, sleep disorders,
depression, irritable bowel syndrome, nonsmall-cell lung cancers, and so forth. The TML clustering reveals order to this complexity. All compounds are
structurally either ergot-derived (clusters 1 and 2) and tryptamines (cluster 3)—pergolide is the closest compound in cluster 3 to clusters 1 and 2 and is an
exception in being ergot-derived. The serotonin link occurs even when the primary pharmacology is different. For example, indoramin is classed as antia-
drenergic agent, but it is also a serotonin receptor inhibitor (43); alectinib is primary an anaplastic lymphoma kinase inhibitor, but it also a serotonin
receptor inhibitor (44). Many of the compounds in cluster 3 are used to treat migraines (eletriptan, naratriptan, sumatriptan, and zolmitriptan). It is
insightful that the other two remaining compounds in the cluster are also effective against migraines: indoramin (45) and melatonin (46). Below melato-
nin in the clustering is tegaserod, which was used to treat irritable bowel syndrome (IBS constipation). It is noteworthy that melatonin is also effective
against IBS (47). Tegaserod was withdrawn by the FDA because of increased risks of heart attack or stroke. The position of tegaserod as an outlier to a
cluster of compounds involved in vasoconstriction might have provided a warning of this problem. (C) Drug targets clustered by chemical profile. The fig-
ure shows the overall clustering of the protein targets of FDA-approved drugs (colors representing clusters) and a magnified section of one cluster (see SI
Appendix, Clustering). The proteins in the cluster do not share any obvious structural similarity: mTOR is a serine/threonine-protein kinase; vitamin D
receptor is a nuclear receptor transcription factors; and Endothelin receptor ET-A, Neuropeptide Y receptor type 5, Ghrelin receptor, Alpha-1a adrenergic
receptor, Corticotropin releasing factor receptor 2, and Melanocortin receptor 3 are all G protein-coupled receptors. These proteins in the cluster are also
not currently known to be linked by disease or biochemical pathway. However, there is a clear theme to the function of these (mammalian) proteins,
related to control of metabolism: the mTOR pathway is a central regulator of mammalian metabolism and physiology; ghrelin is the “hunger hormone”;
vitamin D is involved in controlling growth; neuropeptide Y is associated with control of food intake; the alpha-1a adrenergic receptor is associated with
the flight-or-fight response; corticotropin releasing factor affects aggression, feeding, and locomotor activity; and the melanocortin system is thought to
play a fundamental role in the control of feeding and body weight. This interpretation is supported by the growth hormone-releasing hormone receptor
clustering nearby.
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and on how closely the model reflects human concepts. The
standard theory of the structure of concepts originated with
Aristotle and is based on the presence of necessary and suffi-
cient conditions that define and explain a concept. The explain-
ability of TML models is based on the alternative approach of
relating concepts based on the similarity between prototypes
(33, 34).

Using RF models, and the domain of drug design, we illus-
trate the use of TML models to generate scientific understand-
ing in three ways. In the first we illustrate how TML models
can be used to provide insight into QSAR predictions for the
specific drug target H. sapiens DHFR. Table 2 shows the top 10
attributes (baseline models) found to be important for predict-
ing H. sapiens DHFR drug activity. As expected, there are
other DHFR-targeted models in the list of important attributes,
but intriguingly these are bacterial (Lacticaseibacillus casei,
Escherichia coli, and Mycobacterium avium) and not mamma-
lian. These three bacterial DHFR models triangulate the pre-
dictions for human DHFR: L. casei DHFR has the highest
weight, suggesting it is most human-like, while E. coli and M.
avium DHFRs differ significantly as E. coli DHFR strongly

binds the antibiotic trimethoprim, while M. avium DHFR is
resistant. This information can be used operationally to help
design better human DHFR inhibitors to treat cancer. The
other attributes (baseline models) in Table 2 provide similar
insight.

TML can also be used to provide scientific insight through
clustering (unsupervised learning). In chemoinformatics a fun-
damental problem is the estimation of the similarity of chemical
compounds. The standard approach is to base similarity on sim-
ilarity of chemical structure; commonly used methods are
Tanimoto (Jaccard) coefficient distance between molecular fin-
gerprints and graph similarity. However, what is generally of
interest when comparing drugs is not structural similarity but
functional similarity (15). This functional similarity can be mea-
sured using the accumulated information from empirical
experiments encoded in QSAR models to calculate drug pro-
files: their predicted activity on drug targets (Fig. 2A). Such
profiles can then be used to estimate distances between drugs
and understand their pharmacology (see SI Appendix,
Clustering). Fig. 2B shows a section of the TML-based cluster-
ing of Food and Drug Administration (FDA)-approved drugs

Table 1. Prediction results

Problem area ML method Baseline Transformed Stacked: convex Stacked: ridge Significance: sign Significance: Wilcoxon

QSAR RF 0.6647 0.6609 0.6616 0.6491 <0.0001 <0.0003
XGB 0.6944 0.6590 0.6809 0.6462 <0.0001 <0.0001
SVM 0.6735 0.6696 0.6619 0.6700 <0.0001 <0.0001
KNN 0.7158 0.7360 0.6989 0.6982 <0.0001 <0.0001
NN 0.6638 0.6494 0.6761 0.6658 <0.0001 <0.0001

LINCS RF 0.0694 0.0664 0.0664 0.0670 <0.0001 <0.0001
XGB 0.0687 0.0669 0.0669 0.0688 <0.0001 <0.0001
SVM 0.0692 0.0677 0.0692 0.0687 <0.0001 <0.0001
KNN 0.0719 0.0721 0.0715 0.0689 <0.0001 <0.0001
NN 0.0742 0.0707 0.0715 0.0703 <0.0001 <0.0001

Meta-ML RF 0.1203 0.0607 0.0605 0.0792 <0.0001 <0.0001
XGB 0.1268 0.0718 0.0738 0.0874 <0.0001 <0.0001
SVM 0.1400 0.1007 0.1008 0.1111 <0.0001 <0.0001
KNN 0.1445 0.1277 0.1273 0.1274 <0.0001 <0.0001
NN 0.1320 0.1096 0.1105 0.1104 <0.0001 <0.0001

All results are average root-mean-squared error (RMSE). Results underlined are the best for an application area. Results in bold are the best for an ML
method on an application area. The baseline results are for the tuned standard ML methods using standard intrinsic representations. The transformed
results are the TML results using the extrinsic representations. The results are averaged over the thousands of problems in the different application areas.
We tested two forms of stacking: convex (nonnegative least) squares and ridge (ridge regression). We used two forms of significance test: sign (sign test)
and Wilcoxon (Wilcoxon signed-rank test). Both check for RMSE inequality (P value < 0.05) between standard and transformed methods; the former tests
whether their RMSE medians are statistically different, while the latter tests whether their RMSE means are different.

Table 2. Top 10 models used to predict H. sapiens DHFR activity

Order Target ID Weight Name Species

1 CHEMBL2902 13.5 Dihydrofolate reductase L. casei
2 CHEMBL5372 12.2 Methionyl-tRNA synthetase Staphylococcus aureus
3 CHEMBL3048 10.6 Nitric-oxide synthase, brain Rattus norvegicus
4 CHEMBL2111414 8.6 Tyrosine-protein kinase ABL H. sapiens
5 CHEMBL329 8.5 Type-1A angiotensin II receptor R. norvegicus
6 CHEMBL2014 7.4 Nociceptin receptor H. sapiens
7 CHEMBL5491 7.2 Serine/threonine-protein kinase WEE1 H. sapiens
8 CHEMBL5441 7.2 Dihydrofolate reductase E. coli
9 CHEMBL5457 6.8 Dihydrofolate reductase M. avium
10 CHEMBL1075294 6.6 Indoleamine 2,3-dioxygenase 1 M. musculus

The seven non-DHFR targets seem to have little in common with DHFR; however, digging deeper provides biological insight. It is interesting that H. sapiens
Tyrosine-protein kinase ABL was selected as it has been empirically shown that it is possible to jointly target H. sapiens DHFR and tyrosine kinases (42). The
use of Nitric-oxide synthase (NOS), and the Serine/threonine-protein kinase WEE1, is also interesting. All known DHFR inhibitors share a bifurcated H-bond
of an “aminopyridine” unit to glu30 in DHFR. In NOS there is a glutamate residue that binds the arginine over the heme with a similar bifurcated H-bond,
and many NOS inhibitors mimic the arginine by being amidines, or amino pyridines etc. It is therefore possible that the selection of NOS is picking out the
shared requirement for a donor/acceptor interaction to glutamic acid. It is also noteworthy that all kinase inhibitors hinge binders also share a similar
donor acceptor interaction, which might also explain the kinase model.
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with three clusters and associated compounds. Although the
pharmacology of these compounds is complex, it is known to be
based on a nexus of serotonin and dopamine receptor interac-
tions. These interactions are correctly predicted by TML mod-
els and used in the clustering (see SI Appendix, Predicted Drug
Activities). The pharmacology of compounds is explained by
their relative position in the clustering (Fig. 2B).

We applied an analogous approach to the bioinformatic
problem of estimating the similarity of protein targets (Fig. 2C)
(see SI Appendix, Clustering). The standard approach to this
task is to use evolutionary distance estimated by sequence com-
parison. However, what is most important in most problems is
not evolutionary distance but the functional similarity of pro-
tein active sites. We can estimate this using the accumulated
information in the TML QSAR models. For each of the targets
we calculated its drug-activity profile: the predicted activity of
FDA-approved compounds on the target. As with chemical
compounds we argue that this clustering is more informative in
drug design than conventional evolutionary distance, as it is
based on how the target empirically responds to chemical com-
pounds. One intriguing cluster of proteins (drug targets)

identified by the similarity of their QSAR predictive models is
shown in Fig. 2C. Although the proteins in the cluster do not
share any obvious structural similarity, there is a clear theme to
the function of these (mammalian) proteins, related to control
of metabolism.

It is instructive to compare TML with the currently most sig-
nificant form of ML, that of deep neural networks (DNNs) (35).
DNN input is typically spatially or sequentially structured, and
prior knowledge of structure is encoded in the structure of the
network. This learned structure is latent. The success of DNNs is
based on their ability to utilize multiple neural network layers,
and very large amounts of data, to learn how to map poor input
representations (e.g., image pixel values) into rich and effective
latent representations. This is achieved through use of a differen-
tiable learning model and end-to-end learning. The ability to
improve weak input representations has enabled DNNs to suc-
ceed in domains that had previously proved recalcitrant to ML:
beating World Champions at games such as Go (36), diagnosing
skin cancers better than human specialists (9), and so on. A key
lesson from the success of DNNs is therefore to use ML to
enhance ML representations—which is precisely what TML

Fig. 3. (A) Baseline TML. Each learning task is illustrated as an oval, models are squares, and learning methods diamonds (for clarity we only show RF).
We focus on learning task T1. In (i) baseline learning is used to learn RF models for all the tasks (problems). In (ii) the predictions from the different
learned RF models are used to learn a TML model for task T1. In (iii) stacking is used to combine the RF model RF1 and TML model TM1 to form the output
stacking model SΦ. (B) Variants of TML. The figure illustrates three possible variants of TML applied to the same problem P1. (I) Shows TML feature selec-
tion. This selection could be done using baseline ML feature selection methods, or based on understanding the semantics of the relationships between
the tasks (e.g., in drug design one might wish to consider the homology of related targets), and so on. (II) Illustrates the use of ensemble learning at the
TML level. RF, SVM, k-NN, and NN are combined together using stacking. (III) Illustrates second-order (multilevel) TML. (C) ML as an ecosystem. Currently
ML tasks are generally seen as to be solved stand-alone, or perhaps in small groups by MTL and TL. The TML-inspired view is that learning is cumulative
and never-ending: When learning a new task, one should utilize existing models (knowledge) even if they were learned for different (but related) tasks,
and when new problems, methods, models, and examples appear these should be used to improve existing models and predictions.
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does. DNNs are most applicable to problems where there are
large amounts of available data to learn good representations
and where there is no essential requirement for human-friendly
symbolic models. These criteria are not met in most scientific
problem areas.

The standard DNN approach to multitask problems is to
learn a single large model that encompasses all the problems.
In this approach, and in contrast to TML, neither the relation-
ships between problems nor the relationships between exam-
ples are made extrinsic in the form of transformed features.
For multitask problems, TML also has the advantage of
enabling incremental learning: If new data or a new task is
added, then each task model need not necessarily immediately
be relearned. TML adds some additional computational costs
to learning, but the additional cost of TML is low compared to
DNN learning.

We have presented only the most basic form of TML (Fig.
3A). Many other variants with potentially greater performance
are possible. For example, it is possible to integrate TML with
feature selection and stacking in multiple possible ways (Fig.
3B). Given that TML can often produce better predictions than
the original intrinsic representation, it is natural to extend the
idea of TML by applying it a second time, i.e., to use the pre-
dictions from the transformed representation to form a second-
order transformed representation (Fig. 3B). It is of course also
possible to combine feature selection, ensemble learning, stack-
ing, TML, second-order TML, and so on.

The traditional approach to ML is to view each learning task
as a separate problem. This view is starting to change with pro-
gress in MTL (10), TL (13), life-long learning (37), and so
forth. TML leads to an even broader vision of ML as an ecosys-
tem (Fig. 3C). In this ecosystem, learning tasks, learning exam-
ples, ML methods, ML predictions, meta-ML methods, and so
on all interact synergistically to produce enhanced performance
and understanding over all tasks in the ecosystem. If more
training examples are added, then both the specific task model
is improved (using feature selection, ensemble learning, stack-
ing, TML, second-order TML, etc.) and all the other models
that use the task model (TML, second-order TML, etc.). Simi-
larly, if a new task is added, then the new task model is used to

extend the transformed representation, and hence improve all
the other task models improved through TML, second-order
TML, and so forth. If a new ML or meta-ML method is added,
then all the task models are incrementally improved (Fig. 3C).
In such an ML ecosystem, as new knowledge is added predic-
tive performance will incrementally improve (38). The predic-
tions will also be more robust, as prior knowledge from many
different sources is used in any prediction (38).

Within ML there is increasing interest in the automation of
ML, and there exist a number of both free and commercial sys-
tems that automate the application of ML to new problems
(39). For example, Auto-WEKA and Auto-sklearn (39) search
through a space of possible ML methods, and hyper-
parameters, to optimize ML predictions. However, no current
ML automation system has discovered a valuable new ML idea
such as dropout, stacking, and so on. Although there is increas-
ing amount of research on AI systems designed to automate
scientific discovery (40), and these systems are heavily based on
ML, little work has been done on applying AI discovery systems
to ML. The development of a ML system able to learn impor-
tant new ML ideas would transform ML and the world.

Materials and Methods
To enable reproducibility, all of the thousands of datasets (QSAR, LINCS, and
Metalearning), the links to the code (TML, RF, XGB, SVM, k-NN, NN), and the
∼50,000ML RF (counting all decision trees) models are available under the cre-
ative commons license at the Open Science Platform: https://osf.io/vbn5u/. This
amounts to∼100 Gbytes of compressed data. FewML projects have put online
so much reusable data. To maximize its added value we follow the FAIR (Find-
ability, Accessibility, Interoperability, and Reusability) principles for publishing
digital objects (41) (see SI Appendix, FAIR Sharing).

Data Availability. Datasets, code, and ML models reported in this study have
been deposited in Open Science Framework (https://osf.io/vbn5u/).
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