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Abstract 

With one million species at risk of extinction, there is an urgent need to regularly monitor 

threatened wildlife. In practice this is challenging, especially with wide-ranging, elusive and cryptic 

species or those that occur at low densities, such as chimpanzees (Pan troglodytes). Monitoring 

is needed to establish conservation actions, but also to assess population trends. For 

conservationists, key questions concern species distributions and densities. These data must be 

regularly updated, allowing conservation planners to effectively execute and assess conservation 

efforts. Conservationists benefit from methods that are time- and cost-efficient and simultaneously 

provide accurate and precise data. I evaluate passive acoustic monitoring (PAM) as a tool for 

detecting, localising, and estimating densities of chimpanzees. I compare with results from 

camera traps (CT), a more common method. I deployed two arrays of acoustic sensors in Issa 

Valley, Tanzania: one comprising twelve non-GPS-synchronised acoustic sensors across the 

whole study area for nine months to estimate chimpanzee presence/absence and density. I 

simultaneously deployed 53 CT for methodological comparison and used spatial capture-

recapture (SCR) and distance sampling (DS) methods. Another acoustic array comprised four 

custom-built GPS synchronised acoustic sensors, deployed for a 3-month period around a single 

valley (~2km2), to localise chimpanzees. I found chimpanzee detectability varied over seasons. It 

is five times faster than an equivalent method using CT. Furthermore, I found that the estimated 

density of calling chimpanzees with acoustic SCR was lower than density derived from SCR with 

CT data, but within the 95% CI obtained with DS and CT data. Playback sounds were localisable 

with 27 ± 21.8m error and chimpanzee calls were localisable within 52m from the location of a 

researcher following the calling individuals. These results suggest PAM is a promising non-

invasive method for chimpanzee monitoring. Despite the current challenges to automate data 

analysis, improvements of automatic call detection are promising. I anticipate that PAM will 

become more common in the conservationist’s toolbox for loud calling terrestrial species 

monitoring such as chimpanzees, gibbons, orangutans, wolves or elephants. 
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Résumé 

Avec un million d'espèces à risque d'extinction, il est urgent de surveiller régulièrement les 

espèces sauvages menacées. En pratique, c’est cependant un défi, en particulier avec les 

espèces qui se déplacent à large échelle, difficiles à détecter ou celles qui sont présentes à faible 

densité, comme les chimpanzés (Pan troglodytes). La surveillance est nécessaire pour établir 

des mesures de conservation, mais aussi pour évaluer les tendances des populations. Pour les 

conservationnistes, les questions clés concernent la distribution et la densité des espèces. Ces 

données doivent être régulièrement mises à jour, afin de permettre aux conservationnistes 

d'exécuter et d'évaluer efficacement les plans d’action pour la conservation. Les 

conservationnistes bénéficient de méthodes qui sont efficaces en termes de temps et de coûts, 

et qui fournissent simultanément des données précises et exactes. Dans cette thèse, j'évalue la 

bioacoustique passive en tant qu'outil pour détecter, localiser et estimer la densité de 

chimpanzés. Je compare les résultats avec ceux obtenus avec des pièges photographiques, une 

méthode plus couramment utilisée. J'ai déployé deux réseaux d’enregistreurs audio en Tanzanie, 

dans la vallée d'Issa : l'un comprenant douze enregistreurs audio - non synchronisés par GPS - 

dans toute la zone d'étude et pendant neuf mois pour estimer la présence/absence et la densité 

des chimpanzés. Simultanément, j’ai déployé 53 pièges photographiques pour une comparaison 

méthodologique et utilisé les méthodes de distance sampling (DS) et spatial capture-recapture 

(SCR). Un autre réseau acoustique a consisté en quatre enregistreurs audio synchronisés par 

GPS et fabriqués sur mesure, déployés pendant une période de trois mois autour d'une seule 

vallée (~2 km2), pour localiser les chimpanzés. J'ai montré que la détectabilité des chimpanzés 

variait selon les saisons. C’est cinq fois plus rapide qu'une méthode équivalente utilisant les 

pièges photographiques. De plus, j'ai montré que la densité de chimpanzés vocalisant estimée 

avec la méthode de capture-recapture spatiale acoustique était inférieure à la densité dérivée de 

SCR avec les données de pièges photographiques, mais dans les 95% d’intervalle de confiance 

obtenus avec la méthode de DS avec les données de pièges photographiques. Les sons 

préenregistrés et rejoués avec un haut-parleur ont été localisés avec une précision de 27 ± 21.8m 

et les vocalisations de chimpanzés ont été localisées à moins de 52m de l'endroit où un chercheur 

suivait les individus qui vocalisaient. Ces résultats suggèrent que la bioacoustique passive est 

une méthode non invasive prometteuse pour la surveillance des chimpanzés. Malgré les 

difficultés actuelles pour automatiser l'analyse des données, les améliorations de la détection 

automatisée des vocalisations sont prometteuses. Je prévois que la bioacoustique passive va 

devenir de plus en plus utilisée par les conservationnistes pour la surveillance des espèces 

terrestres qui vocalisent fort comme les chimpanzés, gibbons, orangs-outans, loups ou éléphants. 
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Chapter 1. General introduction 

The thesis’ overall aim is to assess passive acoustic monitoring (PAM) as a non-invasive method 

for loud calling terrestrial species monitoring. I focus my study on chimpanzees (Pan troglodytes), 

a highly threatened and charismatic species whose loud calls can travel up to 1km. I evaluate 

PAM at three levels: detection (presence/absence), density estimation and localisation of calling 

chimpanzees. This preliminary chapter aims to provide a broader context to the general aspects 

explored in this thesis, before outlining the thesis structure. 

 

 The chimpanzee, a species threatened by extinction 

Numerous papers and reports increasingly warn about the risk of extinction for one million species 

and a sixth extinction crisis ongoing, triggered and intensified by anthropogenic disturbance (Koh 

et al., 2004; Barnosky et al., 2011; Ceballos et al., 2015; Johnson et al., 2017; Díaz et al., 2020). 

There is an urgent need to curb the biodiversity loss. However, there is much data lacking on 

species distribution and density. Conservation actions need to be prioritised to monitor and 

ultimately, mediate species-loss. Conservation planners need to focus efforts on the most diverse 

or vulnerable species or else those most impacted by intense human activity. They also need to 

monitor changes in wildlife abundance over time, looking for signs of human impact on behaviour 

(Kühl et al., 2019), but mostly to evaluate conservation decisions (Junker et al., 2020). 

Primates are severely impacted by anthropogenic pressures and about 60% of wild 

populations are threatened with extinction (Estrada et al., 2017). All great apes (chimpanzee, 

bonobo – P. paniscus, gorilla – Gorilla gorilla and G. beringei, and orangutan – Pongo abelii, P. 

pygmaeus and P. tapanuliensis) are listed as endangered or critically endangered on the IUCN 

red list (IUCN, 2020). Chimpanzees live in Africa, with a range of over 2.6 million km2, from 

Southern Senegal to western Tanzania and Uganda. They inhabit various habitats, from rainforest 

to savanna woodland. Chimpanzee populations are globally severely fragmented (Humle et al., 

2016). Several studies report the dramatic decline of chimpanzee populations over the past 

decades (Campbell et al., 2008; Greengrass, 2009; Tranquilli et al., 2012; Junker et al., 2012; 

Funwi-Gabga et al., 2014; Kühl et al., 2017). In Tanzania, for instance, it is estimated that only 

2700 individuals remain, with approximatively 60% found outside protected areas (Moyer et al., 

2006). Regular surveys to establish baseline figures and monitor these threatened populations 

are necessary, especially for these extra-park populations. 

Three major threats are responsible for chimpanzee populations decline (e.g. Strindberg 

et al., 2018). First, chimpanzees face habitat loss and degradation, with a dramatic deterioration 

of suitable environmental conditions over the recent years, especially for central and western 

chimpanzees (e.g. Junker et al., 2012; Kühl et al., 2017). The ongoing growing human population 

in Africa results in the conversion of forests to farmland, or degradation of forest for the purpose 

of mining, logging, charcoal production and oil extraction (Humle et al., 2016). Second, 

chimpanzees are threatened by poaching, predominantly for meat and the pet-trade, but also 

amidst human-primate conflict (Kuehl et al., 2009; McLennan et al., 2012). Lastly, (human-linked) 
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infectious diseases affect chimpanzee populations. Because chimpanzees are genetically similar 

to humans, they are highly vulnerable to many human-borne diseases (Leendertz et al., 2004; 

Köndgen et al., 2008; Negrey et al., 2019; Patrono et al., 2020). These threats result in population 

declines. Rapid monitoring is needed to evaluate the intensity of these threats and establish 

conservation actions, but also to assess population trends. 

For conservationists, the key questions to answer concern chimpanzee distribution and 

density. These data need to be regularly updated, allowing conservation planners to execute and 

assess conservation efforts effectively. To answer these questions, we need to be able to reliably 

detect, localise and estimate density of chimpanzee populations. Several non-invasive monitoring 

methods have been developed and are available in the primatologist’ toolbox. 

 

 Non-invasive monitoring for chimpanzee conservation 

Semi-arboreal and elusive by nature, chimpanzees are difficult to observe in the wild and flee 

upon contact when not habituated to human presence (Plumptre, 2000). They range over large 

areas and at low density. Consequently, direct visual study can be a challenge without a lengthy 

habituation process. Monitoring methods rely mostly on non-invasive and indirect indices. They 

consist traditionally on genetic material from faeces (Schwartz, Luikart & Waples, 2007; 

Arandjelovic et al., 2011; Moore & Vigilant, 2014; McCarthy et al., 2015) or sampling of 

chimpanzee signs, such as nests (Hashimoto, 1995; Kouakou, Boesch & Kuehl, 2009). Weaned 

chimpanzees build at least one daily nest for night-time sleep, and sometimes another one for 

day-time rest (Plumptre & Reynolds, 1997; Stewart, Piel & McGrew, 2011). However, these 

methods present some disadvantages. For instance, genetic samples require costly analyses in 

time and money (e.g. reagents, lab technicians) and necessitate specialised lab skills. These 

analyses also present logistical challenges, such as sample transport and export processes. 

However, new on-site field methods already show promise and suggest a safer future for sample 

collection, preservation, and extraction (e.g. Gower et al., 2019). Line transects are another 

traditional means of monitoring wildlife. Transects, however, are labour intensive and estimates 

of density from nests can be difficult to compare due to inter-observer reliability in finding the 

nests and in estimating their age. Furthermore, confidence intervals are large due to the 

challenges with accurate measures of nest production - some chimpanzees build more than one 

nest a day, and some reuse older nests (Stewart, Piel & McGrew, 2011) - or decay rate that varies 

between vegetation types and nest heights and a process that is not constant over time (e.g. 

Walsh & White, 2005; Mathewson et al., 2008). 

 Primatologists are therefore increasingly turning into new technologies, such as camera 

traps (CT), portable genomics and drones for their monitoring needs (Fig. 1.1). Over the past 

decade, these technologies have proven effective in detecting chimpanzee nests (e.g. drones: 

van Andel et al., 2015) and providing data for detection and occupancy modelling (e.g. CT: 

Crunchant et al., 2017). Density of chimpanzee populations has also successfully been estimated 

with CT (Head et al., 2013; Després-Einspenner, Howe, Drapeau, & Kühl, 2017; Cappelle, 

Després-Einspenner, Howe, Boesch, & Kühl, 2019; Howe, 2019). CT has the advantage of being 
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autonomous, can be remotely deployed for long periods of time and record on a 24h cycle when 

triggered (e.g. Rovero et al., 2013; Burton et al., 2015). However, its detection range is limited. 

Drones are also autonomous but operate for short amounts of time, limited by the battery capacity 

(Wich & Koh, 2018). For assessing habitat or density of chimpanzees, long duration flights are 

required to capture sufficient ground (Burke et al., 2019). Drones and their required batteries are 

often prohibitive. To overcome these limitations of visual monitoring, primatologists have begun 

to use passive acoustic monitoring (Fig. 1.1). However, it is important to stress data collection 

and analyses, with finding the best balance relative to the needs. For instance, with a line transect 

the data are in hand after the survey. With drones, CT, and PAM there are large time inputs 

needed to extract the chimpanzee data from all the images or recordings. 

 

Figure 1.1. Numbers of papers published on primate conservation conducted with new technologies (i.e. 

portable genomics, drone, passive acoustic monitoring and camera trapping) from 2009 to 2019. Literature 

search was done on Web of Science with the keywords “primate” or “ape”, with “camera trap”; “drone” or 

“UAV”; “ARU” or “acoustic sensor” or “passive acoustic monitoring”; “genetics” or “genomics” and “field 

method”. 

 

 Conserving chimpanzees with passive acoustic monitoring 

Passive acoustic monitoring (PAM) is a method that uses a unit composed of one or several 

microphones. It has the capability to record wildlife sounds in both marine and terrestrial 

environments. PAM is applicable to any taxa that produces acoustic signals, including insects, 

fish, herpetofauna, birds and mammals (Sugai et al., 2019). PAM is non-invasive and especially 

applicable when visual detection is limited, for instance in dense tropical forests, at night. Because 

it records sounds remotely, disturbance to primates is minimal. It can be deployed for long periods 

in the field (months or years) and simultaneously with various units at multiple locations, offering 

the possibility to record animal calls at large spatiotemporal scales to study e.g. habitat use over 

areas of multiple square kilometres. However, PAM can be limited in terrestrial environments 

when conditions are interfering with recordings (i.e. heavy rain or wind), limitation also true for 

line transects or drones.  
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While the first system that listened to wildlife sounds was deployed underwater during 

World War 1 (reviewed in Sousa-lima et al., 2013), recent advances in bioacoustics have 

expanded the applications of acoustic sensors for terrestrial species, mostly to study bats and 

birds (Blumstein et al., 2011; Sugai et al., 2019). PAM has rarely been used for terrestrial 

mammals, despite its great potential for recording wide-ranging and loud calling species, such as 

wolves (Papin et al., 2018; Kershenbaum, Owens & Waller, 2019) or elephants (Wrege et al., 

2012; Hedwig, DeBellis & Wrege, 2018). Chimpanzees, orangutans and gibbons are 

characterized by long calls that can travel a few hundred meters (up to 1000-3000m) (e.g. Wich 

& Nunn, 2002), which makes these species ideal candidates for PAM. So far, only a few teams 

have used PAM for studying apes. Applications ranged from localising Bornean orangutans 

(Spillmann et al., 2015), whose long calls were localised with a 58m error, to assessing the 

potential of a chimpanzee buttress drum detector with occupancy modelling (Kalan et al., 2015). 

Vocal temporal patterns (Piel, 2018) and group territories and spatiotemporal patterns of habitat 

use (Kalan et al., 2016) have also been studied with PAM. Due to the challenges of other methods 

to determine the location and density of chimpanzees, it is of interest to investigate under what 

circumstances PAM allows for localisation and density estimation of chimpanzees.  

 

 Thesis structure 

The thesis focuses on three aspects that are relevant for chimpanzee monitoring: detection, 

density estimation and localisation (Fig. 1.2). To provide a background, I start with a literature 

review (chapter two): its aim is to review how traditional and more emerging bioacoustic 

techniques can address species conservation issues, for both marine and terrestrial 

environments. 

 

▪ Detection. Establishing whether a species is present/absent in an area is often a first and 

fundamental step in conservation. As mentioned previously, CT is a common monitoring 

method; however, its detection range is limited, with the necessity of the animal to pass 

in front of the CT to trigger a detection. In chapter three, I conduct a study comparing 

the efficacy in chimpanzee detection from CT and PAM. With occupancy modelling, I 

evaluate the efficacy of each method, using the estimated number of sampling days 

needed to establish chimpanzee absence with 95% probability, as measure of efficacy. I 

hypothesise that chimpanzee detectability would be higher with PAM compared to CT, 

given the larger area covered by the acoustic sensors. 

 

▪ Density estimation. Once species presence is confirmed, a natural next parameter to 

establish is density. Recently, new methods combining passive acoustic monitoring 

(PAM) and spatial capture-recapture (SCR) models to estimate animal density have been 

developed (e.g. Stevenson et al., 2015). Call rate is a parameter that allows conservation 

planners to convert call density into animal density when detecting calls with PAM. In 

chapter four, I investigate chimpanzee call rate during the late dry season by conducting 

focal follows. I examine the socio-ecological factors that influence call production rate of 
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savanna woodland chimpanzees, such as vegetation type, behaviour, party size, time of 

day and presence of swollen female. I evaluate the call rate among the different 

demographic classes. Estimated call rates allowed me to estimate chimpanzee density 

from a 3-month PAM deployment and an acoustic spatially capture-recapture (aSCR) 

model (chapter five). I compare estimates from those from SCR and the distance 

sampling framework from camera trap footage, methods that have been empirically 

demonstrated as highly accurate. 

 

▪ Localisation. Detecting caller presence via an acoustic localisation system (ALS) can 

inform on their distribution and social organisation, locating individuals in space and time 

across their home range. ALS also improves density estimations and can locate 

chimpanzees at key resources, such as important fruiting trees or at their nesting sites. 

In chapter six, I evaluate a custom-made acoustic sensor array in localising 

chimpanzees through their landscape. I assess error and precision of the estimated 

locations by conducting a playback study at known locations. I explore the different 

ecological parameters such as temperature and wind speed that influence sound 

propagation and thus localisation error. 

 

To conclude, chapter seven summarises the main outcomes of the thesis to demonstrate the 

potential of PAM not only for the chimpanzee, but also for all loud calling terrestrial species 

monitoring and conservation. I compare the different methods available for chimpanzee 

monitoring (i.e. drone, PAM, CT, line transects and genetic sampling) in terms of data collection 

and analyses to answer questions about chimpanzee distribution, density and threats. I discuss 

the costs and time needed for each method for estimating chimpanzee density before presenting 

directions for future research. 

 

Figure 1.2. Overview of the thesis framework. My research objective is to demonstrate the potential of 

passive acoustic monitoring (PAM) for detecting, estimating density and localising calling chimpanzees for 

their conservation.
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Abstract 

Animals share acoustic space to vocally communicate. The employment of passive acoustic 

monitoring to establish a better understanding of acoustic communities has emerged as an 

important tool in assessing overall diversity and habitat integrity as well as informing species 

conservation strategies. The aim of this chapter is to review how traditional and more emerging 

bioacoustic techniques can address conservation issues. Acoustic data can be used to estimate 

species occupancy, population abundance and animal density. More broadly, biodiversity can be 

assessed via acoustic diversity indices, using the number of acoustically conspicuous species. 

Finally, changes to the local soundscape provide an early-warning of habitat disturbance, 

including habitat loss and fragmentation. Like other emerging technologies, PAM benefits from 

inter-disciplinary collaboration between biologists, engineers and bioinformaticians to develop 

detection algorithms for specific species that reduce time-consuming manual data mining. We 

describe here different methods to process, visualise and analyse acoustic data, from open 

source to commercial software. The technological advances in bioacoustics turning heavy, non-

portable and expensive hardware and labour and time intensive methods for analysis into new 

small, movable, affordable and automated systems, make acoustic sensors increasingly popular 

among conservation biologists for all taxa. 

 

Keywords: vocalisations; spectrogram; ecoacoustics; bioacoustics; PAM; sound; machine 

learning 
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 Introduction 

1.1. What questions are we asking? 

Animals share acoustic space to vocally communicate. Similar to food, mates, and territory, 

acoustic space can also be a scarce resource for which animals compete, with callers adjusting 

spatial, temporal and frequency patterns in response to both abiotic and biotic factors, especially 

the sounds of sympatric fauna (Araya-Salas et al., 2017). Acoustic sensors offer an important 

method of monitoring animal behaviour not requiring humans to be in the field with the animals. 

Moreover when visual detection is limited, as for instance at night, in lush tropical forests, or when 

weather conditions are poor (e.g. Verfuss et al., 2018), the employment of acoustic sensors is an 

important tool to reveal and monitor the composition of acoustic communities as well as assess 

biodiversity, habitat integrity and even threats. More so, as a non-invasive and remote method 

applicable for any taxa that produces acoustic signals, from insects to fish, herpetofauna to birds 

and mammals (Sugai et al., 2019), passive acoustic monitoring (PAM), is an increasingly common 

technique integrated into species conservation (Sugai et al., 2019).  

Compared to alternative methods of biomonitoring such as point counts or drones and 

similarly to camera traps, acoustic sensors can be deployed for long periods in the field (months 

or years) and simultaneously at multiple locations and because of their large detection range, can 

monitor places that may be difficult to access by researchers. Moreover, they are non-invasive 

and require low researcher-hours for deployment compared to alternative devices that demand 

frequent visits or maintenance. Sensors can also be used in adverse weather conditions (Philpott 

et al., 2007; Elliott, Dawson & Henderson, 2011). The first device capable of listening to sounds 

underwater was developed during World War 1, before being used for marine sciences (reviewed 

in Sousa-lima et al., 2013). Recent advances in bioacoustics have expanded the applications of 

acoustic sensors for terrestrial species (Blumstein et al., 2011; Kalan et al., 2015; Wrege, 

Rowland, Keen, & Shiu, 2017). Like with nearly all technology, devices have become more 

affordable and smaller with technological advances, from where systems began (portable 

handheld tape recorders) to digital audio recorders and currently, autonomous recorders. 

However, the non-standardization of monitoring protocols, the labour-intensive acoustic analyses 

and the limited data curation make PAM a tool that requires careful consideration prior to 

deployment (Sugai et al., 2019). The increasing inter-disciplinary collaboration between engineers 

and field ecologists is driving new, affordable and effective biomonitoring methods with reduced 

size and weight, but increased applicability. 

PAM offers a wide variety of applications for the study of wildlife ecology, behaviour, and 

conservation (Fig. 2.1). It was initially developed for marine species (Marques et al., 2013; 

Spiesberger & Fristrup, 1990; Tavolga, 2012), before being adopted for birds (e.g. Efford et al., 

2009; Bardeli et al., 2010; Leach et al., 2016) and more recently terrestrial species (e.g. reviewed 

in Blumstein et al., 2011; Huetz & Aubin, 2012; Kalan et al., 2015; Spillmann et al., 2010), insects 

(Penone et al., 2013) and anurans (e.g. Stevenson et al., 2015). Like with many of the other topics 
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discussed in this volume1, understanding the relationship between the physical environment, and 

here, animal acoustic communication, is highly interdisciplinary. That is, data collection (sound 

production, propagation, measurement) and analyses (machine learning for detection and 

classification) are largely challenges that physicists and computer scientists are trained to 

address, whilst biologists tend to focus on animal vocal anatomy, call type, flexibility and 

behaviour (Erbe et al., 2019).  

 

 

Figure 2.1. Different applications of PAM for ecology, behaviour and conservation 

 

In this chapter, we present the current state of PAM as a tool for conservation biologists, 

using examples from both terrestrial and marine systems, with a focus on recent developments 

and applications. Besides PAM, there are other systems that integrate acoustic sensors, namely 

telemetry and bio-loggers. These systems are often invasive techniques, such as collar-mounted 

acoustic sensors (e.g. Lynch et al., 2013; Wijers et al., 2018; Yan et al., 2019); we focus instead 

here on PAM, given its historic and increasing use in conservation. Below, we review how PAM 

has been used to address related topics across taxonomic groups under each of these themes 

mentioned above (ecology, behaviour and conservation). 

 

 

Behaviour 

Ranging, territoriality and activity patterns – Acoustic sensors are powerful tools to reveal 

elements of animal behaviour, especially when subjects cannot be observed visually by 

researchers. Historically (Watkins & Schevill, 1972) but also more recently (Elliott, Dawson & 

Henderson, 2011), PAM has been the primary means of revealing cetacean habitat use and 

behaviour. It is beyond the scope of this chapter to comprehensively review this body of work, but 

for example, PAM has been used to reveal seasonal and daily temporal movement patterns of 

harbour porpoises (Phocoena phocoena), common (Delphinus delphis) and bottlenose dolphins 

(Tursiops truncatus) (Dede et al., 2014), or night-time movements of Yangtze finless porpoises 

 

 

1 This is a reference to the book “Conservation technologies”. Wich, S. & A. Piel (Eds), Oxford 
University Press. 
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(Neophocaena phocaenoides asiaeorientalis) (Akamatsu et al., 2008), seasonal migrations of 

mink whales (Balaenoptera acutorostrata) (Risch et al., 2014), and simultaneous ranging 

behaviour of seven adjacent killer whale (Orcinus orca) pods (Yurk et al., 2010). It has also been 

used to study right whale (Eubalaena glacialis) use of corridors in urbanised coastal regions 

(Morano et al., 2012). For the most part, study of marine mammal behaviour using PAM is based 

on either stationary underwater hydrophones towing or multiple hydrophone arrays behind sea 

vessels. 

There is far less, but nonetheless growing application of PAM to terrestrial species. These 

studies involve attaching acoustic sensors to stationary locations (e.g. trees usually) and setting 

recording schedules (i.e. duty cycling, e.g. continuous, 10 minutes every hour, etc. to save battery 

life and memory). Some of the earliest work assessed wildlife behavioural responses to human 

activity (see more below). Wrege and colleagues (2010) investigated whether forest elephants 

(Loxodonta cyclotis) avoided areas of higher oil exploration activity in Loango National Park, 

Gabon. To their surprise, elephants did not, and in fact, neither dynamite blast intensity nor 

explosion frequency affected elephant presence. In fact, elephant abundance figures followed 

patterns of other, non-disturbed areas. However, temporal (activity) patterns of behaviour did 

change in the explored areas, with elephants exhibiting more nocturnal calling behaviour the 

closer they were to areas of oil exploration (Wrege et al., 2010). 

Whilst PAM has rarely been used to assess territoriality, strategic acoustic sensor 

deployments across territorial boundaries can reveal how vocalisation patterns change with caller 

location. Forest-dwelling chimpanzees (Pan troglodytes) are highly xenophobic and change their 

behaviour near territorial boundaries. In Tai National Park, Ivory Coast, Kalan and colleagues 

(2016) used PAM and showed that chimpanzee drumming events were more frequent near 

territorial boundaries, supporting earlier observational results of vocalisations by Wilson et al. 

(Wilson, Hauser & Wrangham, 2007). PAM has been used to assess similar questions about 

vocalisations and territoriality in birds. Male and female wren (Thryothorus rufalbus) co-defend 

territories and were hypothesized to have a territory size and overlap comparable between sexes. 

Researchers found that both sexes exhibited congruent patterns of singing behaviour within their 

territory (Osmun & Mennill, 2011). Additional acoustic monitoring of other terrestrial taxa from 

numerous other groups, including insects, amphibians, and mammals, has provided data on 

breeding partner coordination in calling, either by overlapping or alternating call elements (e.g. 

Bryant et al., 2016; Geissmann, 2002). This is also the case for more than 220 species of birds 

(Mennill et al., 2012). Given the difficulty of not only following wide-ranging species like 

chimpanzees and elephants, but also monitoring their behaviour at key areas like boundaries, 

PAM is well poised to reveal location-specific calling patterns. 

In species that produce context-specific vocalisations, recording and identifying call types 

inform on animal activity. For example, chimpanzees (e.g. Crockford & Boesch, 2003), bottlenose 

dolphins (Janik & Slater, 1998), chipmunks (Tamias striatus) (Burke da Silva et al., 1994), 

humpback whales (Megaptera novaeangliae) (Mercado III et al., 2007), short-finned pilot whales 

(Globicephala macrorhynchus) (Jensen et al., 2011), and white-bearded wildebeest 
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(Connochaetes taurinus mearnsi) (Calabrese et al., 2018) exhibit call types that reveal behaviour 

such as travelling, foraging, greeting, cohesion maintenance, or rutting. Thus, we can remotely 

infer inter-site and inter-seasonal habitat use across diel phases just by knowing how animals are 

calling. For example, in bottlenose dolphins, this approach was used to identify areas of higher 

feeding activity (Elliott, Dawson & Henderson, 2011), whereas in Serengeti wildebeests, call types 

revealed a highly synchronized reproduction (Calabrese et al., 2018). There are obvious 

limitations to this employment of PAM, however. Silent individuals go undetected, and so 

presence/behaviour is not always revealed. Moreover, call types are not always discretely 

different, instead grading into each other, making the relationship between call type and behaviour 

inherently difficult to decipher.  

 

Localisation – Using PAM to study more specific social dynamics like sub-group coordination and 

reunions or territory boundaries requires knowing caller locations, not just caller presence. By 

localising callers on the landscape through acoustic triangulation (Klimley et al., 2001; Blumstein 

et al., 2011) we can also reconstruct animal movements if individual identify of callers is known. 

Acoustic triangulation uses the time difference of arrival of sounds to multiple sensors to produce 

an estimate of the sound origin. Beside these behaviour purposes, localization also allows to 

improve algorithms to automatically detect a species by separating animal sounds from 

background noise but also estimate density (see below) and quantify sound amplitude or 

directionality (Rhinehart et al., 2020). Initial systems exploited the speed and distance that sounds 

propagate underwater, with marine vessels toeing hydrophones only centimetres apart (e.g. 

Filatova et al., 2006; reviewed in Marques et al., 2013). Studies of birds then followed (e.g. Wang 

et al., 2005a; Mennill et al., 2006). An early prototype system used an eight-microphone cable-

based array with sensors placed approximately 75m apart for the study of duetting rufous-and-

white wrens (Thryothorus rufalbus) (Mennill et al., 2006). This system consistently and accurately 

localised callers to within 3m. A later prototype with portable and wireless sensors, including 

GNSS (Global Navigation Satellite System) for time synchronization, showed similar accuracy 

localisation, as well as offered increased deployment flexibility (Mennill et al., 2012). Location 

accuracy varies as a function of inter-caller and inter-sensor distance, as well as wind, humidity 

and vegetation, which impacts the sound transmission and the signal-to-noise ratio, but also 

sensor synchronization accuracy and recording sample rate (reviewed in Rhinehart et al., 2020).  

 

Ecology 

Ecoacoustic indices - Biodiversity assessments can be very labour-intensive and time-

consuming, often requiring detailed taxonomic identification of obscure animal species (Sueur et 

al., 2012). Acoustic approaches to biodiversity, however, have the advantage that they can inform 

on biodiversity at a community level (group of different species) without species identification and 

document biodiversity using various acoustic diversity indices (Depraetere et al., 2012). Over 60 

indices have been developed to address different types of research questions, such as 

biodiversity, temporal patterns, and habitat and site effect among others (Buxton et al., 2018b). 
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However, ecoacoustic (or acoustic ecology) indices are often site-specific (e.g. Gasc et al., 2015; 

Harris et al., 2016). Moreover, for estimates to be reliable, data should be collected - and indices 

tested - at a large scale and in reality, sample size is often small. Thus, although generalizing 

across taxa and ecosystems has not yet been well demonstrated (Buxton et al., 2018b), 

ecoacoustic indices can be used in longitudinal studies for specific sites. This approach has 

recently been manifested in soundscape analyses, which include both animal’s use of acoustic 

space and their interactions with all other sources of abiotic and biotic sound sources, including 

how they partition acoustic space to increase the likelihood of sound transmission to conspecifics 

(e.g. Ruppé et al., 2015). This field has received increased attention recently, given the increasing 

global anthropogenic footprint and associated animal vocal and non-vocal responses 

(behavioural adaptations) to disturbance (Rendell & Gordon, 1999; Brumm et al., 2004; Holt et 

al., 2015). 

 

Soundscapes – Pijanowski et al.’s (2011a; 2011b) early descriptions of soundscapes integrated 

biophony (biological sounds), geophony (environmental sounds), and anthrophony 

(anthropogenic sounds) to characterise the sound environment in a landscape context. They are 

grounded in the interaction of bioacoustics, landscape ecology, community ecology, and 

engineering (Gasc et al., 2017). PAM is best placed to document these interactions given the 

need for continuous recordings of multiple frequencies and often, at times of the day that are not 

easy to record, for example pre-dawn. In contrast to species-specific PAM studies that are tuned 

to the frequency of the target vocalisations, soundscape recordings for biodiversity are more 

general and serve to detect audible signals ranging from 20Hz to 20KHz (Pijanowski et al., 2011). 

Analyses of entire soundscapes – versus specific sounds – have the potential to allow us to 

examine the biodiversity and inter-specific dynamics of vocally conspicuous species, especially 

where communities are disturbed by logging, urban, and agricultural expansion, or energy 

development (Deichmann et al., 2017). However, extensive preliminary work before the 

disturbance of a system is needed to have a comparative baseline necessary to estimate any 

subsequent change (Deichmann et al., 2018). 

Historically, questions that sought to understand the complex sound environment focused 

on birds, which were shown to acoustically partition singing competition by alternating the timing 

of overlapping frequencies (Cody & Brown, 1969; Popp, Ficken & Reinartz, 1985). In a simulation 

of the effect that call length would have on this phenomenon, Suzuki et al. (Suzuki, Taylor & Cody, 

2012) found that callers with longer songs were least likely to make timing adjustments to avoid 

overlap, and instead those species with shorter songs modified behaviour to fit into the available 

soundscape space. Similarly, acoustic niche partitioning has been demonstrated in primates as 

well. Schneider et al. (2008)examined the calling pattern of Kloss gibbons (Hylobates klossii), 

Mentawai macaques (Macaca siberu), pig-tailed langurs (Simias concolor), and Mentawai leaf 

monkeys (Presbytis potenziani) in Siberut, SE Asia. All four species vocalised mostly early 

morning, when background noise is low, but callers showed temporal offsets of calling patterns, 

likely to reduce acoustic competition. 
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Human impact – Similar to how acoustic sensors capture entire communities of animal acoustic 

activity, they also capture the human acoustic element. Human-generated noise can impact the 

basic ecological functions of a biological community, especially acoustic communication 

processes (Slabbekoorn & Ripmeester, 2008). The anthropogenic effects of noisy soundscapes 

have been largely investigated in two domains: the influence of (1) urbanization on birdsong and 

(2) shipping and natural resource exploration on marine mammals. We discuss each here briefly. 

 The rapid expansion of urban areas results in a rise in ambient noise levels, generated 

by ever growing transportation networks and human activities. Early studies showed the impact 

of anthropogenic sounds on the timing of the dawn chorus (Arroyo-Solís et al., 2013), with those 

bird species that are least variable in their timing being the most affected. Species richness and 

species abundance also decline significantly with increasing noise (Laiolo, 2010; Proppe, Sturdy 

& St. Clair, 2013). A recent study from LaZerte et al. (2017) demonstrated that male mountain 

chickadees (Poecile gambeli)adjust songs, calls and chorus composition with increasing ambient 

and experimental anthropogenic noise. In contrast to calls, songs are longer vocalisations and 

are more complex in terms of structure and thus, carry more information. In their study, LaZerte 

et al. (2017) showed that males increase the frequency of their calls in noisy areas and also use 

more songs than calls. 

PAM has also been a key method in the evaluation of marine mammal responses to 

drilling, sonar testing by military vessels, and general movements of commercial shipping (e.g. 

Dyndo et al., 2015; Pirotta et al., 2014; Wisniewska et al., 2018). Noise created by marine vessels 

is not isotropic (Arveson & Vendittis, 2000); instead vessel direction, speed, size, cargo type, and 

weight influence the resulting pattern of underwater disturbance (Erbe et al., 2019). For example, 

harp seals (Pagophilus groenlandicus) reduced the loudness of their calls when travelling near 

vessels in the Gulf of St. Lawrence, Canada (Terhune, Stewart & Ronald, 1979), while Florida 

manatees (Trichechus manatus latirostris) shift their orientation, depth, travelling speed, or diving 

behaviour as a response to approaching vessels (Rycyk et al., 2018). The diversity in manatee 

response behaviour, however, represents the interaction of physics and behaviour as mentioned 

in above. Initial suggestions that manatees were unable to detect oncoming vessels because of 

manatee hearing were later unsupported (Gerstein, 2002). Instead, the more likely explanation of 

these accidents concerns manatee preferences to travel near the ocean surface (where noise 

levels are low compared to lower depths) and their travelling speed (Gerstein et al., 1999). This 

example symbolizes the complex interaction between animal, sound, and human behaviour when 

trying to not only identify the sources of human-wildlife conflict, but also develop conservation 

strategies. The extensive acoustic frequency and geographic spectrum of data that PAM collects 

allows researchers to tackle these issues. 

 

Conservation 

To provide critical data that reveal changes in species abundance and distribution over time, 

systematic monitoring is necessary to assess the impacts of management decisions and evaluate 
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wildlife status (Akçakaya et al., 2018; Martin et al., 2018). PAM can inform on abundance, 

distribution, and wildlife population trends – critical information for conservation scientists.  

 

Occupancy - Occupancy is the proportion of an area used by a species (MacKenzie et al., 2017) 

but also the study relative to the presence/absence of a species. Occupancy statistical models 

use detection/non-detection data from multiple visits of a given area to infer the probability of 

species presence. Occupancy modelling provides a useful tool to assess the population status 

(i.e. declining, stable or increasing) of any species. It can be applied to numerous marine (e.g. 

whales: Miller & Miller, 2018) and terrestrial species (e.g. birds: Campos-Cerqueira, Aide, & 

Jones, 2016; chimpanzees: Kalan et al., 2015). The increased survey coverage of PAM compared 

to camera trapping sometimes results in better detection rates (Rayment et al., 2018; Enari et al., 

2019; Crunchant et al., 2020). However, some species change the frequency of vocalising in 

response to external contexts, such as human hunting pressure, or vocalizations can be sex-

specific and thus, other census methods are preferable in these scenarios. Studies from people 

acting as sensors to monitor animal calls have revealed that low caller activity may result from 

human disturbance (e.g. Hicks & Roessingh, 2010; Kone & Refisch, 2007). In these cases, PAM 

should be complemented with other methods to validate results.  

 

Abundance and density - Species abundance and density estimates are two important measures 

for species monitoring, especially to evaluate extinction risk and to assess the efficacy of 

conservation policy and practice. PAM was first used to reveal animal density for marine species 

(reviewed in Marques et al., 2013; McDonald & Fox, 1999) and only more recently for terrestrial 

species (Stevenson et al., 2015; Measey et al., 2017; Sebastián-González et al., 2018). Current 

methods to estimate abundance or density have been adapted from direct (visual) observation 

methods. They include capture-recapture (CR), distance sampling (DS), and a spatially explicit 

capture-recapture framework (SECR), reviewed in more detail in Marques et al., (2013) and study 

examples provided below: 

- CR: when individual identification is possible (e.g. Norwegian ortolan - Emberiza 

hortulana abundance estimation with automatic song-type and individual identity 

recognition; Adi et al., 2010) 

- DS: when the distance of the animal from the sensors are known, point transect and cue 

counting methods can be used (e.g. North Pacific right whale - Eubalaena japonica 

density using passive acoustic cue counting and sound propagation model; Marques et 

al., 2011) 

- SECR: when distances to detected animals are not known but the same sound can be 

detected and localized across multiple sensors and when individual recognitions is not 

possible (e.g. ovenbird - Seiurus aurocapilla density estimation with multiple four-

microphones arrays, Dawson & Efford, 2009; minke whale - Balaenoptera acutorostrata 

density from multiple hydrophones, Marques et al., 2012; Cape peninsula moss frog 
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Arthroleptella lightfooti density from a six microphones array, Measey et al., 2017, 

Stevenson et al., 2015). 

 

Call rate - To convert calling patterns to animal abundance if methods are based on acoustic 

cues, information on call rate is necessary, a parameter that is usually collected during focal 

follows of individuals. Call rate is enormously complex to quantify, as it changes with caller age 

or sex class, group size and composition, social context, and environmental surroundings, among 

others (Pérez-Granados et al., 2019). Knowing how often calls are produced can also reveal 

aggregation patterns of fission-fusion species for whom party composition is ephemeral. Payne 

et al. (2003), for example, showed that the rate of three different call types varied predictably with 

herd size in savanna elephants (L. africana) from Amboseli, Kenya. Similar relationships have 

been shown with porpoises (Wang et al., 2005b) and beaked whales (Ziphiidae spp.) (Dimarzio 

et al., 2008) amongst marine mammals. 

 

Vocal identity – Individual recognition of many species can be achieved with acoustic features of 

their vocalisations (e.g. giant pandas (Ailuropoda melanoleuca) - Charlton et al., 2009; four 

passerines: Gansu leaf warbler (Phylloscopus kansuensis), Chinese leafwarbler (Phylloscopus 

yunnanensis), Hume’s warbler (Phylloscopus humei) and Chinese bulbul (Pycnonotus sinensis) 

- Cheng, Sun, & Ji, 2010; eagle owl (Bubo bubo)- Grava et al., 2008; bottlenose dolpins (Tursiops 

truncatus) Kershenbaum et al., 2013) and these features will play the same role as physical marks 

(tags, scares, patterns) used in camera trapping for individual identification (Laiolo, 2010; Terry 

et al., 2005). These acoustic features allow us to study e.g. survival rate based on non-invasive 

acoustic mark-capture-recapture methods, as for instance with great bittern males (Botaurus 

stellaris) (Gilbert, Tyler & Smith, 2002) or Dupont’s lark passerine males (Chersophilus duponti) 

(Vögeli et al., 2008) that have distinctive vocalizations, and also estimate site fidelity with the 

same principle (Grava et al., 2008). Neural networks used to determine call similarities among 

killer whales (Orcinus orca) have shown that calls from individuals from the same matriline were 

more similar than those from different matrilines (Nousek et al., 2006). This demonstrates that 

social affiliations have also an effect on vocal identity. Lastly, and especially important for nearly 

all conservation scientists, vocal individuality can be integrated into census methods to count 

individuals within a population (e.g. Hoodless et al., 2008; Terry & McGregor, 2002). 

 

Poaching – The illegal killing of wildlife is a widespread and pervasive threat. In addition to 

revealing the above parameters of calling behaviour, PAM can also be used as a law enforcement 

tool to assist conservationists combatting poaching, by localising gunshots, for instance. Over two 

years, acoustic data have been continuously recorded within Cameroon’s Korup National Park. 

With a gunshot detection algorithm, spatiotemporal gun hunting patterns have been derived, 

allowing to adapt anti-poaching patrol activities (Astaras et al., 2017). There are multiple platforms 

that have been field-tested and have shown great promise in this context. CARACAL, a low-cost 

hardware and system, is able to locate gunshots with an accuracy of less than 35m within an 
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array of seven sensors 500m apart (Wijers et al., 2019). AudioMoth, another low-cost hardware, 

can detect gunshots up to 500m (Hill et al., 2018). Rainforest Connection (www.rfcx.org) is a non-

profit group that transforms old smartphones into autonomous solar-powered acoustic sensors. 

Sensors are deployed in the rainforest, and sounds of gunshots or chainsaw are picked up, 

recorded, and sent in real-time to a server in the cloud via a GSM connection. With this system, 

they are trying to prevent animal poaching by detecting patterns of activity in major roads used 

by poachers and illegal deforestation operations in rainforests around the world.  

 

Endangered and invasive species monitoring - The use of acoustic sensors to detect and monitor 

invasive species, such as freshwater drum (Aplodinotus grunniens) (Rountree & Juanes, 2017), 

Red-billed Leiothrix (Leiothrix lutea) (Farina, Pieretti & Morganti, 2013) and pest insects (Mankin 

et al., 2011) is promising to allow control and eventual eradication (Juanes, 2018). Acoustic 

monitoring reveals the presence of new or cryptic species as well. In the Gulf of Trieste, Italy, 

visual surveys have been carried out for decades and failed to detect the presence of the cusk-

eel (Ophidion rochei), an uncharismatic nocturnal predator species classified as Data Deficient in 

the IUCN Red List. However, after only ten surveys using hydrophones to assess fish acoustic 

signals, researchers detected its presence off the coast of the Adriatic Sea (Picciulin et al., 2019).  

 

1.2. Traditional methods and how technologies overcome limitations 

Point counts, especially for bird surveys, or dung counts for e.g. elephants (Jones et al., 2012) 

have long been the established method for collecting data on animal presence and abundance 

(e.g. Scott et al., 1981; Sedláček et al., 2015). Point counts consist on recording all animals of 

interest visually or aurally detected during a time period at a given point and certain species-

specific radius. But this technique is limited by the need for trained observers (Hobson et al., 

2002) and typically restricted in spatiotemporal coverage. One way to overcome spatial limitations 

is to have multiple observers working simultaneously, as it has been successfully demonstrated 

in northern yellow-cheeked gibbon (Nomascus annamensis) density estimation (Kidney et al., 

2016). Call-response surveys, that consist in broadcasting conspecific vocalisations to elicit 

responses, have been used to monitor different species, such as different waterbird species (pied-

billed grebe (Podilymbus podiceps), American bittern (Botaurus lentiginosus), least bittern 

(Ixobrychus exilis), Virginia rail (Rallus limicola), and sora (Porzana carolina) (Gibbs & Melvin, 

1993)) and coyotes (Canis latrans) (Hansen et al., 2015). However, limitations on the accessibility 

to the survey area exist and bias can manifest when detectability is low. Leach et al. (2016) 

conducted a direct comparison between point counts and automated acoustic monitoring in an 

Australian rainforest, and found that point counts detected significantly more species across an 

elevational gradient. They concluded that ‘quiet’ species (those that did not vocalise but were 

detected from visual cues) at least partially explained the variation. Nonetheless, they reported 

no differences in community-level patterns (e.g. turnover in species composition) across elevation 

from the two methods (Leach et al., 2016).  

http://www.rfcx.org/
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 In the case of larger terrestrial mammals, dung counts have traditionally been used to 

assess species abundance and distribution (Kuehl et al., 2007; Jones et al., 2012), but like point 

counts, these can be time intensive and spatially limiting. PAM offers a reliable alternative. 

Acoustic surveys for land mammals have successfully estimated elephant abundance, with 

confidence intervals half as wide as traditional dung count methods (Thompson, Schwager & 

Payne, 2010) and for chimpanzees, revealed their presence across an unusually large home 

range across seasons (Crunchant et al., 2020). In a comparison of visual and acoustic methods 

for studying anurans in an Afromontane wetland, visual surveys revealed more species during 

the day, whilst acoustic methods revealed more at night (Sinsch et al., 2012). Alas, combining 

methods may inevitably be the ideal solution in these scenarios. 

 

 PAM: from data collection to data analyses 

2.1. Data collection 

An acoustic sensor is composed of any sound recorder and a microphone/hydrophone. The 

choice of the acoustic sensor is made as a function of the different parameters necessary to 

monitor, such as the species studied and the frequency range of its vocalisations, the environment 

(marine or terrestrial), the design of the study (study length, area covered, etc.) and the budget 

available, amongst others. Table 2.1. lists some of the most common bioacoustic sensor 

manufacturers. 

 

Table 2.1. Principal bioacoustic sensor manufacturers for terrestrial and marine environments (adapted from 

Browning et al., 2017). 

Company Summary Species/ 

habitat 

Study 

example 

Price/unit 

(US$) 

Website 

AudioMoth (UK) Low cost and 

open-source 

device 

Terrestrial, 

audible range 

and ultrasonic 

Hill et al., 

2018 

60-75 https://www.openacous

ticdevices.info/ 

Chelonia (UK) C-POD and 

DeepC-POD 

Marine Brandt, et al., 

2011 

3800-3900 https://www.chelonia.co

.uk/ 

Dodotronic 

(UK) 

USB, parabolic and 

analogue 

microphones ; 

hydrophones 

Terrestrial, 

marine,  

audible range 

and ultrasonic 

Kloepper et 

al., 2016 

133-1111 https://www.dodotronic.

com/ 

Elekon 

(Switzerland) 

Bat recorders and 

detectors 

Terrestrial, 

bats 

Weier, et al., 

2018 

1192-4726 https://www.batlogger.c

om/en/ 

Frontier Labs 

(Australia) 

Bioacoustic Audio 

Recorder, with 

omnidirectional 

microphone, 

integrated GPS 

unit and sampling 

rate up to 96kHz.  

Terrestrial, 

audible range 

Metcalf et al., 

2020 

538-740 https://frontierlabs.com.

au/ 

Ocean 

Instruments 

(New Zealand) 

Self-contained 

sound recorder 

Marine Lillis et al., 

2018 

2850-6300 http://www.oceaninstru

ments.co.nz/ 

Petterson 

Elektronik 

(Sweden) 

Ultrasonic bat 

detectors, 

ultrasound USB 

microphones 

Terrestrial, 

bats 

Nakano & 

Mason, 2018 

173-4090 https://batsound.com/ 

https://www.openacousticdevices.info/
https://www.openacousticdevices.info/
https://www.chelonia.co.uk/
https://www.chelonia.co.uk/
https://www.dodotronic.com/?v=79cba1185463
https://www.dodotronic.com/?v=79cba1185463
https://www.batlogger.com/en/
https://www.batlogger.com/en/
https://frontierlabs.com.au/
https://frontierlabs.com.au/
http://www.oceaninstruments.co.nz/
http://www.oceaninstruments.co.nz/
https://batsound.com/
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Solo (UK) Open source, low 

cost, customizable, 

raspberryPi 

Terrestrial, 

audible range 

Whytock & 

Christie, 2017 

108 http://solo-

system.github.io/home.

html 

Titley Scientific 

(UK) 

Bat detectors Terrestrial, 

bats 

Teets et al., 

2019 

891-2590 https://www.titley-

scientific.com/uk/ 

Wildlife 

Acoustics 

(USA) 

Song Meter SM4, 

SM4Bat, SM Mini, 

SM Mini Bat, 

handheld bat 

detector Echo 

Meter Touch 2 

Terrestrial, 

audible range 

and ultrasonic 

Hagens et al., 

2018 

179-899 https://www.wildlifeaco

ustics.com/ 

 

Sounds can be recorded at different sampling rates, which is the number of times per second a 

sound is sampled, measured in Hertz (Hz). Sensors can cover different spectra, from infrasound 

(typically sounds below a frequency of 20Hz, e.g. whales, elephants), audible sounds (e.g. birds, 

mammals) to ultrasound (typically sounds above a frequency of 20kHz, e.g. bats) and recordings 

depend on the targeted species. The sampling rate must be at least twice as high as the highest 

frequency of the targeted sound to contain necessary acoustic information (namely Nyquist 

frequency). Therefore, the sampling rate for ultrasounds is much higher than for audible sounds 

(that is typically 44.1KHz) and is usually between 200 and 400KHz, which generate bigger files 

requiring larger data storage. 

 

2.2. Analysis 

Historically, acoustic data were analysed by visually sifting through hundreds if not thousands of 

spectrograms and aurally verifying sounds of interest. A spectrogram is a visual representation of 

a sound recording in the time-frequency domain. Time is represented on the x axis, frequency on 

the y axis and the amplitude of the signal shown as colour density (Fig. 2.2). One needs to set 

the frequency window according to the species of interest and identify patterns corresponding to 

the targeted call of interest. 

This visualisation allows analysts to identify and annotate calls manually or automatically through 

machine learning based algorithms, themselves based on the acoustic signal itself or on its 

spectrograms (e.g. Clink et al., 2019; Digby et al., 2013; Helble et al., 2015). 

http://solo-system.github.io/home.html
http://solo-system.github.io/home.html
http://solo-system.github.io/home.html
https://www.titley-scientific.com/uk/
https://www.titley-scientific.com/uk/
https://www.wildlifeacoustics.com/
https://www.wildlifeacoustics.com/
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Figure 2.2. Spectrogram of a lion and chimpanzees calling. 

 

Increasingly and because of the growing dataset size, automatic detection is becoming more 

common. Different pipelines exist to process sound files and create algorithms to detect, classify 

and thus automate sound identification, based directly on acoustic signal or on the derived 

spectrogram. These include supervised and unsupervised methods, with thresholding (e.g. Digby 

et al., 2013), spectrogram cross-correlation (e.g. Aide et al., 2013), random forest (e.g. Ross & 

Allen, 2014), hidden Markov models (e.g. Enari et al., 2019; Kogan & Margoliash, 1998), 

convolutional neural networks (e.g. Mac Aodha et al., 2018), support vector machines, and others. 

Below we describe the design of a chimpanzee detector, using convolutional neural networks, a 

supervised method without the need of a signal pre-extraction. 

Each method has however advantages and disadvantages. For instance, some methods 

do not require large training datasets but are sensitive to background noise and overlapping 

signals that will mask the signal of interest (e.g. Digby et al., 2013); some methods do not require 

training datasets but subsequent identification is necessary (e.g. unsupervised clustering 

algorithms, Frasier et al., 2016). For a more detailed review on the common methods, see Gibb 

et al. (2019) and Bianco et al. (2019). While the growing demand and application of artificial 

intelligence and especially machine learning is applicable to PAM data as well, a major issue with 

automated detection is the generation of false positives (incorrect identification) and false 

negatives (failure to identify signals of interest). When the researcher assigns the confidence 

score that a call has been matched with a known call, the threshold can impact on the false 

positive and false negative rates. If the threshold is low, for example, the number of false 

negatives decreases but the number of false positives may also increase. On the contrary, if the 

threshold is high, the number of false negatives might be high. A high rate of false positives could 

result in an inflated population size estimate, whilst the opposite could under-estimate the number 

of individuals in a population, which could impact decision makers. False negatives occur when 

for instance, the signal is too faint to be recognized, or when the signal-to-noise ratio is low. It can 

also happen when the signal is masked by other sounds, such as other species (e.g. dawn and 

dusk choruses), or abiotic noises (wind). This can change seasonally, for example detectability 
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might decrease during times of high rain or wind (e.g. Kalan et al., 2015). Automated detection 

performance can also vary as a function of site-specific characteristics and quality of recording. 

Ideally, training sounds are recorded under different conditions and from different locations to 

improve the generalizability of the detector. A manual step is always necessary to validate or 

reject the classifications, at least for part of the results as the accuracy of the classifications is not 

100% (e.g. Heinicke et al., 2015). We also need to bear in mind that algorithm development is 

often laborious and complex, requires programming and/or signal-processing expertise, and 

typically requires a large annotated dataset for training. 

 

Numerous software packages are available for acoustic analyses, from free and open-source 

software to proprietary ones. Table 2.2 lists some of the most common platforms. 

 

Table 2.2. Software available for analyses (adapted from Browning et al., 2017) 

Software Availability Summary Website/Reference 

Anabat Insight Free and 

paid versions 

Bat call detection, annotation, 

mapping 

https://www.titley-scientific.com/ 

ARBIMON II Free initially, 

charges 

apply for 

larger 

quantities of 

data 

Web-based analysis platform: 

store, visualise, annotate audio 

recordings; pattern matching 

detectors; soundscape 

analyses 

https://arbimon.sieve-analytics.com/ 

AviaNZ Free, open 

source 

Manual annotation, automated 

detection 

http://www.avianz.net/ 

Audacity Free, open 

source 

Multi track audio editor, to 

listen, visualise, subset and 

annotate files 

https://www.audacityteam.org/ 

AudioTagger Free Listen, visualise, annotate 

audio files 

https://github.com/groakat/AudioTagger 

AviSoft Avisoft Lite 

(free) 

Avisoft Pro 

(license 

needed) 

Visualisation, annotation, 

spectrogram cross-correlation 

(find TDOAs), geo-referencing 

tools and noise analyses 

http://www.avisoft.com/ 

BatScope4 Free Visualisation, analyse, 

classification of bat recordings 

https://www.wsl.ch/en/services-and-

products/software-websites-and-

apps/batscope-4.html 

CARACAL Free Acoustic localization https://github.com/OpenWild/caracal 

CPOD.exe Free Analyse data collected by T-

PODs and C-PODs 

https://www.chelonia.co.uk/cpod_downloads.

htm 

gibbonR  

(R package) 

Free, open 

source 

Classification, detection and 

visualization using machine 

learning 

https://github.com/DenaJGibbon/gibbonR-

package 

iBatsID Free Classification of European bat 

call recordings to genus and 

species; requires call 

parameters extracted by 

SonoBat 

http://ibatsid.eu-west-1.elasticbeanstalk.com/ 

Ishmael Free Visualisation, annotations tools, 

sound localisation and 

automated call recognition 

http://www.bioacoustics.us/ishmael.html 

https://www.titley-scientific.com/
https://arbimon.sieve-analytics.com/
http://www.avianz.net/
https://www.audacityteam.org/
https://github.com/groakat/AudioTagger
http://www.avisoft.com/
https://www.wsl.ch/en/services-and-products/software-websites-and-apps/batscope-4.html
https://www.wsl.ch/en/services-and-products/software-websites-and-apps/batscope-4.html
https://www.wsl.ch/en/services-and-products/software-websites-and-apps/batscope-4.html
https://github.com/OpenWild/caracal
https://www.chelonia.co.uk/cpod_downloads.htm
https://www.chelonia.co.uk/cpod_downloads.htm
https://github.com/DenaJGibbon/gibbonR-package
https://github.com/DenaJGibbon/gibbonR-package
http://ibatsid.eu-west-1.elasticbeanstalk.com/
http://www.bioacoustics.us/ishmael.html
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Kaleidoscope Free trial, 

license 

needed 

Visualisation, annotation of 

recordings, automated 

identification of bats, cluster 

analysis, noise analysis, batch 

processing 

https://www.wildlifeacoustics.com/products/ka

leidoscope-pro 

LibROSA 

(python 

package) 

Free Visualization https://librosa.org/librosa/ 

OpenSoundsc

ape 

Free Preprocessing audio data, 

machine learning models 

training, spatial localization of 

sounds 

https://github.com/kitzeslab/opensoundscape 

PAMGUARD Free, open 

source 

Developed for marine 

mammals, detection, 

classification, localisation 

https://www.pamguard.org/ 

Pumilio Free, open 

source 

Web-based management 

system for ecological 

recordings, with visualisation 

and manipulation of sound files 

http://ljvillanueva.github.io/pumilio/ 

Raven Raven Lite 

(free), Raven 

Pro (license 

needed) 

Visualisation, annotation, call 

detection and spectrogram 

correlation 

https://ravensoundsoftware.com/ 

scikit-maad 

(Python 

package) 

Free, open 

source 

Compute ecoacoustic indices https://github.com/scikit-maad/scikit-maad 

Seewave (R 

package) 

Free, open 

source 

Sound analyses and synthesis 

with acoustic indices 

calculations 

http://rug.mnhn.fr/seewave/ 

Songscope Free Spectrogram visualisation https://www.wildlifeacoustics.com/download/2

00-song-scope-software 

Sonobat Proprietary Visualisation, call detection, 

parameter extraction and 

species classification 

https://sonobat.com/ 

SonoChiro Proprietary Automated bat identifications http://sonochiro.biotope.fr/ 

Soundecology 

(R package) 

Free, open 

source 

Functions to calculate indices 

for soundscape ecology 

https://cran.r-

project.org/web/packages/soundecology/ 

SoundFinder 

(R package) 

Free, open 

source 

Position estimation (Wilson et al., 2014) 

Tadarida Free Developing and applying an 

acoustic classifier 

https://github.com/YvesBas 

WarbleR  

(R package) 

Free, open 

source 

Spectrogram visualisation, 

feature extraction, cross-

correlation functions, batch 

processing 

https://cran.r-

project.org/web/packages/warbleR/index.html 

 

 Case study: Detecting wild chimpanzees using PAM 

With the sixth extinction crisis ongoing (Barnosky et al., 2011; Ceballos et al., 2015; Johnson et 

al., 2017), one million species are at risk of extinction. For instance, numerous studies report the 

dramatic and global decline of chimpanzees over the past decades (e.g. Campbell, Kuehl, 

N’Goran Kouamé, & Boesch, 2008; Junker et al., 2012; Kühl et al., 2017). We need reliable, 

efficient, and affordable methods to prioritize conservation actions to monitor and ultimately, 

mediate species-loss. Chimpanzees are elusive and only a few communities are habituated to 

humans; thus, most chimpanzees are difficult to observe in the wild. Chimpanzees have large 

https://www.wildlifeacoustics.com/products/kaleidoscope-pro
https://www.wildlifeacoustics.com/products/kaleidoscope-pro
https://librosa.org/librosa/
https://github.com/kitzeslab/opensoundscape
https://www.pamguard.org/
http://ljvillanueva.github.io/pumilio/
https://ravensoundsoftware.com/
https://github.com/scikit-maad/scikit-maad
http://rug.mnhn.fr/seewave/
https://www.wildlifeacoustics.com/download/200-song-scope-software
https://www.wildlifeacoustics.com/download/200-song-scope-software
https://sonobat.com/
http://sonochiro.biotope.fr/
https://cran.r-project.org/web/packages/soundecology/
https://cran.r-project.org/web/packages/soundecology/
https://github.com/YvesBas
https://cran.r-project.org/web/packages/warbleR/index.html
https://cran.r-project.org/web/packages/warbleR/index.html
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ranges for a terrestrial mammal and rely on loud calls to communicate. PAM is therefore a useful 

way to detect them.  

For three months, we deployed a PAM system that enabled localisation of chimpanzee 

loud calls from the Issa Valley, Tanzania. The acoustic array consisting of four audio recorders 

has been deployed around the perimeter and on both sides of a single valley known to be an 

important part of the territory of the Issa chimpanzee community. Each acoustic sensor was 

composed of a microphone unit integrated with a nano-computer Raspberry Pi (Raspberry Pi 3 

Model B Motherboard), a GPS unit and three 10W solar panels and two 44V batteries (Voltaic 

systems) and was protected in a Pelicase (Pelican 1170 Case) (Fig. 2.3). Sounds were recorded 

continuously, saved as 1h audio files at 11025 Hz sampling rate in the .flac format and stored in 

a 64GB SD card. Each sensor was placed at a maximum distance of 500m from each other to 

maximise the likelihood of triangulation, while simultaneously minimizing the likelihood of missing 

calls, as calls can carry up to 1km. 

Our goal in designing a chimpanzee detector was twofold. First, we needed a system for 

processing and analysing many hours of existing data recordings. Our second and ultimate goal 

was to make detections in real-time on the PAM system, thus enabling real-time localization and 

more efficient use of data storage on these remote devices. Since the detector had to be designed 

to run on the Raspberry Pi and ultimately perform near-real time inference, it was required to have 

a low memory footprint. However, the memory constraint of the design could not come at the 

expense of achieving good classification accuracy.  

The detection system was trained with an existing dataset of audio recordings that were 

recorded at a sampling rate of 11025 Hz, 16-bit depth, and a mono channel. These 1-hour 

recordings were split into single input audio files with a length of 4 seconds. The raw audio files 

were then converted to a feature vector1 consisting of Mel Frequency Cepstral Coefficients2 

(MFCCs) using a Hann window of hop length3 512. The windowed signals were then padded4 

with zeros to form consistent vectors of length 2048. This corresponds to a 186 milliseconds 

recording at the 11025 Hz sampling rate. The 4 second audio clip was converted to 2-dimensional 

feature vector of size 40 x 87 which represents 40 MFCC channels. By organizing the feature 

vectors into this image-like representation, we were able to utilize Convolutional Neural Networks5 

(CNNs) which have been well studied in the image detection domain. 

 

 

1 A feature vector is a numerical representation of an object. 
2 MFCCs are a set of representations of the short-term power spectrum of a sound. 
3 The hop length is the number of samples between successive frames. 
4 Zero padding refers to adding zeros to end of a time-domain signal to increase its length. 
5 CNN is a specific class of artificial neural network to analyse data. 
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The high-level system architecture for the CNN can be seen in Fig. 2.4. The initial feature vector 

is first passed through a convolutional layer containing 16 filters to produce 16 feature maps1. 

The purpose of this first convolutional layer is to extract simple patterns such as lines. Here, each 

pixel in each feature map represents the output of a convolutional layer. The second level of the 

system is another convolutional layer containing 32 filters in order to extract structures of higher 

complexity. The outputs from this convolutional layer are then passed through a max-pooling2 

layer to produce space invariant, low level features. The purpose of the pooling layer is to reduce 

the overall size of the representation and therefore reduce the total number of parameters to 

compute in the network. Next, a fully connected layer is used to obtain the non-linear relationships 

between these features. This dense layer uses 128 hidden nodes and is followed by a final fully 

connected layer which gives the probabilities associated with each of the 12 possible classes 

under consideration. Additionally, the activation function is the Exponential Linear Units (Clevert, 

Unterthiner & Hochreiter, 2015), and dropout is performed after each max-pooling layer at a rate 

of 0.3. 

 

 

 

1 A feature map represents the output of one filter applied to the previous layer. 
2 Max pooling calculates the maximum value in each patch of each feature map to create a 
downsampled feature map. 

Figure 2.3. Acoustic unit as described in the text. (A) Sensor and three solar panels deployed at the top of 

a valley, (B) Raspberry Pi 3 model B motherboard with GPS unit and two 44V batteries (Voltaic Systems) 

protected in a pelicase (Pelican 1170 Case). 
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Figure 2.4. Convolutional Neural Network Architecture. 

 

When training and testing a classifier, it is generally better to include more classes than just a 

single positive (chimpanzee vocalizations) and a single negative (anything but chimpanzee 

vocalizations). In particular the resulting multiclass classifier is generally more robust to false 

positives and has improved sensitivity. Ideally, the additional classes would come from sounds 

commonly heard in the deployment area if such a dataset were readily available. Part of the 

ongoing work for this study is to build out a such a dataset, but at the time of writing, this dataset 

is not of sufficient size for use. The proposed multiclass detection system was trained and tested 

on a dataset using sounds from the Urbansound8K (public acoustic dataset) along with two 

distinct chimpanzee vocalizations. The resulting 12 possible classes included an air conditioner, 

car horn, children playing, a dog barking, drilling, an engine idling, a gunshot, a jackhammer, a 

siren, street music, a chimpanzee shriek, and a chimpanzee pant hoot. This particular dataset 

was chosen for two reasons. First, as described above, it allows the development of a more robust 

multiclass classifier. Second, it is a well-studied dataset thus allowing the comparison of 

performance of the proposed classifier to other benchmarked classifiers on the non-chimpanzee 

classes as a sanity check. 

While accuracy is a very intuitive measure of performance, it is generally not enough to 

evaluate model performance effectively. Accuracy is simply the ratio of observations that are 

predicted correctly to the total number of observations. This metric works best when the dataset 

is mostly balanced, and the classes are evenly distributed. Optimizing purely for accuracy makes 

the model sensitive and much more prone to detecting falsely labelled examples as 

positive. False positives are cases the model incorrectly labels as positive that are actually 

negative. Precision is the ratio of true positive predictions to the total number of positive 

predictions. Recall is the ratio of true positive predictions to the total number of positive 

occurrences. To balance out the true positive rate (precision) and sensitivity (recall) together, we 

use a metric called the F1 score. The F1 score is the harmonic mean of precision and recall, 

where a score of 1 is considered perfect. The resulting F1 scores for the instances of chimpanzee 
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shrieks and pant hoots were 0.89 and 0.78 respectively which signify accurate and reliable 

classification results. 

 The resulting post training size of the model described above was suitable for operation 

on a Raspberry Pi 3 platform. The neural network described above is designed to have 4 seconds 

of audio as input to the system. Each 1 second chunk of audio data is appended to the previous 

3 seconds to ensure that calls lasting longer than 1 second are detected. If a chimpanzee call is 

detected above a prescribed probability threshold, the respective audio clip is saved to file on the 

Raspberry Pi. By only saving audio signals which are predicted to contain useful information the 

limited storage space of the Raspberry Pi can be more efficiently utilized. 

 

 Limitations/Constraints 

Despite the diverse conservation applications for PAM as an instrument to reveal animal presence 

and movement, the approach has limitations. 

 

Power limitation – For continuous recordings, PAM is particularly energy consuming and 

supplying continuous power is challenging. The incorporation of radio-transmission into the 

system is also energy consuming, as well as on-board detection algorithms. For areas with 

sufficient sun exposure, sensors can be recharged with solar panels, potentially then offering 

unlimited deployment durations in terms of energy (Beason, Riesch & Koricheva, 2018; Hill et al., 

2018; Sethi et al., 2018), but with a limited period of time due to data storage if files are stored 

on-board. For areas without sufficient solar exposure, alkaline or rechargeable batteries are 

options, but those can be costly to import, store, and dispose of properly. 

 

Data storage – Acoustic data generate large datasets, and data storage can be problematic. File 

size depends on sample rate, number of channels, duration, and file format. Recordings in mono 

or stereo depends on the study design. Often mono recordings are sufficient but stereo recordings 

can be useful if one of the microphones fails in the field. If data are stored on the recording 

devices, researchers must visit sensors regularly (every few weeks or months, depending on the 

recording schedule and how the audio files are recorded and on which format) to retrieve and 

download the audio data with final datasets quickly approaching terabytes of audio files. 

Furthermore, data backup is necessary, and archival storage can be problematic in many 

countries (uploading speed to cloud, storage cost, storage environment of the data). One way to 

overcome this problem is to store audio data in compressed file formats without compromising 

sound quality, such as the lossless format .flac, for instance. Alternatively, some systems transmit 

data from sensors to a central station via wireless networks, e.g. via a 3G, radio-antenna system, 

Iridium satellite system or satellite internet, which can also be costly (Aide et al., 2013; Saito et 

al., 2015; Sethi et al., 2018; Baumgartner et al., 2019) or even lightweight aircraft to receive 

transmission. However, transmission of raw data is virtually impossible, due to large sizes. If only 

calls detected with an on-board processor are transmitted, the performance of the detector must 
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be determined a priori and additional validation with raw data would not be possible, which can 

decrease the quality of the data and generate false negatives and false positives errors. 

 

Data processing – As a result of the enormous datasets generated by continuous acoustic 

recordings, sophisticated, big data processing and analyses are required to post-process (e.g. 

filter) sounds of interest (Knight et al., 2017). Without automated detection, analyses of PAM data 

are extremely time-consuming and therefore not advisable for regular monitoring via manual 

analyses. However, in the past few years, major improvements in automated detection (species-

specific identification but also call types for examining vocal repertoire) (Knight et al., 2017) have 

transformed this process. Such algorithms have been successfully demonstrated to detect many 

acoustically active taxa, including elephants (Zeppelzauer, Hensman & Stoeger, 2015), bats (Mac 

Aodha et al., 2018), humpback whales (Helble et al., 2015), sika deer (Cervus nippon) and 

Japanese macaques (Macaca fuscata) (Enari et al., 2019), manatees (Castro, Rivera & 

Camacho, 2015), Diana (Cercopithecus diana) and king colobus (Colobus polykomos) monkeys 

(Heinicke et al., 2015) among others. However, for species that exhibit high intra and extra 

individual variation in acoustic structure, like chimpanzees (Clark & Wrangham, 1993; Riede, 

Owren & Arcadi, 2004), developing an algorithm is more challenging.  

Despite these improvements, manual validation to clean false positives remains 

compulsory, and involves listening to a sub-sample of pre-identified calls to confirm their identity. 

This validation is necessary over time and must be done repetitively to ensure against 

performance decline. Signal degradation and often structural changes to the primary sound are a 

result of propagation through the environment and vary due to fluctuating environmental variables 

such as temperature, humidity, and wind, but also the distance and orientation of the caller to the 

microphone (Schrader & Hammerschmidt, 1997). To compensate for this, intermediate 

processing steps, such as noise reduction, would help to increase the quality of the recordings 

and benefit detecting sounds of interest. However, this is costly in time and money for analysis 

and algorithm development. 

 

Costs – Besides data and power capacity, another principal constraint of acoustic sensors is the 

large cost of the on-shelf devices and accessories (i.e. microphones, batteries…etc.). For 

instance, the SM4 from Wildlife Acoustics cost US$849 per unit (www.wildlifeacoustics.com) and 

requires high capacity batteries (D batteries at 10000mAh) that are expensive (i.e. US$76 for a 

4-pack). Custom made units run however much cheaper (see above Table I e.g. Solo or 

Audiomoth - US$60-108) but can often not be made in mass quantities and risk structural inter-

unit variability. Software to analyse the data can also be expensive (e.g. US400$ for a non-profit 

Raven license or US$680 for Sonobat 4 Universal), which can limit use of PAM as a biomonitoring 

tool for small NGOs. 

 

http://www.wildlifeacoustics.com/
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 Social Impact/Privacy 

Privacy - Like drones and camera traps, acoustic sensors can reveal information on 3rd parties 

that threaten personal privacy, especially when sensors are deployed in urban areas. Human 

voices could be recorded without speaker’s knowledge and sensitive information overheard. 

Currently there is little discussion on the regulation of acoustic sensors, and nothing 

governmentally instituted (as compared to drones). To mitigate against these concerns, sensor 

locations could be published on a website for the public to access, including duration, study 

objectives, and contact information, among other details; however, with that information revealed, 

sabotage and theft could easily result, complicating how scientists protect privacy without risking 

the loss of valuable equipment. Another solution could be the inclusion of band filters to remove 

frequencies with human voices; the trade-off here would be the loss of animal vocalisations that 

overlap in these frequencies. Data sharing could also be restricted, and not allowed if human 

voices are heard. More simply, a general warning like with CCTV cameras could be placed on 

the boundaries of a protected area.  

 

Social impact - Over the last few years citizen science projects have been increasingly used to 

help collect and analyse large datasets, but also to promote the importance of biodiversity to the 

general public. Citizen science is a collaborative approach to research projects conducted by 

amateur and professional scientists, from data collection to data analysis. Some of the most well-

known projects involving citizen science include e.g. Chimp&See (www.chimpandsee.org), 

Snapshot Serengeti (www.snapshotserengeti.org., Swanson et al., 2015), iNaturalist 

(www.inaturalist.org) and solicit help with images and videos. Citizen science projects with 

acoustic data are rarer, but some exist. For instance, in Australia, Rowley and colleagues (2019) 

have developed “FrogID”, a database of frog occurrences based on acoustic validation. The 

platform relies on participants using their smartphones to record frog sounds and submit them for 

subsequent identification. This has allowed scientists to build a database that includes rare and 

threatened species, document the decline of native frog species from parts of their range, and 

detect invasive species. In only one year, over 66000 frog observations have been made, 

representing 13% of the total number of previous records made in Australia (Rowley et al., 2019).  

Similarly, in England, the Norfolk Bat Survey was launched by the British Trust for 

Ornithology in April 2013, to conduct a large scale survey on bat activity and distribution (Newson, 

Evans & Gillings, 2015) and also indirectly on bush-crickets (Orthoptera of the family 

Tettigoniidae) (Newson et al., 2017). Acoustic sensors can be borrowed by the public to record 

bat calls following a determined protocol (more information can be found on their website – 

www.batsurvey.org). After two years, the project generated over 600 million audio recordings 

(Newson, Evans & Gillings, 2015) and after four years 1.9 million bat recordings have been 

analysed (www.batsurvey.org). The dataset is one of the most extensive datasets in the world for 

bats. Finally, the large ultrasonic audio dataset collected along road-transects across Europe and 

labelled by citizen scientists has allowed scientists to use deep learning to detect bat species 

http://www.snapshotserengeti.org/
http://www.inaturalist.org/
http://www.batsurvey.org/
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(Mac Aodha et al., 2018). However, a large amount of the calls has been misidentified due to the 

difficulty of recognizing bat calls and the inexperience of some of the citizen scientists.  

Similarly, acoustic monitoring and citizen science offer several advantages for assessing 

insect biodiversity at large spatial and temporal extents (Penone et al., 2013). The authors found 

that urbanization has a negative effect on average mass of Orthoptera communities. In summary, 

PAM has both advantages and disadvantages, i.e. extensive audio datasets capture diverse 

acoustic soundscapes full of biodiversity and human activity, broadly, the increasingly large 

datasets require machine learning or armies of citizen scientists to help sieve through the noise. 

We see real potential for societal impact with these citizen science platforms, but also with the 

broader interest in what especially soundscapes provide. That is, already related sounds are 

incorporated into mobile phone applications used to calm tension (e.g. “Calm” – Huberty et al., 

2019), wake people, or provide background noise. Soundscape from different parts of the world 

are also made publicly available (e.g., www.naturesoundmap.com, acoustics.safeproject.net), 

and sometimes in real-time (Sethi et al., 2020). 

 

 Future directions  

As is the case of nearly each technological approach described in this book1, the ongoing 

development of new technologies and the increasing inter-disciplinary nature of especially field 

ecologists, computer scientists, engineers, and bioinformaticians are driving new affordable and 

effective acoustic biomonitoring methods. We close this chapter with where and how we see the 

future use of acoustic sensors in conservation science. 

 

Combination of new technologies - Similar to PAM, drones can provide real-time feedback for 

rapid surveys and offer an aerial perspective. By combining aerial and acoustic technologies, 

otherwise labour and time intensive species monitoring is being revolutionised by remotely 

recording sounds with drone-mounted microphones. Drones have already been integrated with 

acoustic sensors that have captured bat and bird sounds (August & Moore, 2019; Wilson, Barr, 

& Zagorski, 2017), and there are plans to diversify applications to terrestrial species. The 

excessive drone noise recorded by mounted sensors was initially an impediment to this work, but 

new signal processing algorithms and drone architectures that reduce this noise are promising 

(Hioka et al., 2019). 

As stated above, camera traps and acoustics sensors provide complementary 

information on wildlife behaviour. By combining these two sensor types into a single system, we 

capture complementary extents of human disturbance on wildlife, study biotic interactions and 

animal behaviour at multiple scales, and provide a more thorough picture of animal presence, 

movement, and communication (Buxton et al., 2018a). 

 

 

1 This is a reference to the book “Conservation technologies”. Wich, S. & A. Piel (Eds), Oxford 
University Press. 

http://acoustics.safeproject.net/
http://acoustics.safeproject.net/
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AI, real-time monitoring, and edge computing – Given the desire and usefulness of identifying 

acoustic events in real-time (e.g. gunshots), acoustic monitoring systems are being increasingly 

developed with on-board signal processing for event detection (e.g. Hill et al., 2018). Klinck et al. 

(2012) were one of the first to demonstrate this for marine mammals with an underwater vehicle 

(SeaGlider), equipped with an acoustic sensor and on-board data processing capabilities to 

passively scan for marine mammals. Methods with edge computing are in development (Sheng 

et al., 2019). Edge computing, or local processing, is a method consisting of data analysis at or 

near the source, on edge devices, and thus do not require transmitting large audio data volumes 

(Sheng et al., 2019). The advantage of on-board processing is the potential to detect in real-time 

and also record only sounds of interest, in so doing dramatically reducing dataset sizes, e.g. 

Audiomoth (Hill et al., 2018). The cost, however, is the loss of broader acoustic data that may 

provide researchers future questions to pursue (e.g. acoustic biodiversity, non-focal species 

presence, etc.) but also to control for quality of the call detector. The reality is that acoustic 

datasets can be mined for years to come to examine patterns and metrics that we may not yet 

realise are important. As always, then, the trade-off of collecting large datasets against the costs 

to manage them is one that any researcher must carefully consider. New projects looking at 

providing internet to remote areas, such as the project Loon (Nagpal & Samdani, 2017) and its 

use of helium balloons launched in the stratosphere are making acoustic real-time monitoring 

possible worldwide. 

 

Acknowledgments: We thank Ammie Kalan and Peter Wrege for their helpful comments on 

previous versions of the chapter. 
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Abstract  

1. With one million animal species at risk of extinction, there is an urgent need to regularly 

monitor threatened species. However, in practice this is challenging, especially with wide-

ranging, elusive and cryptic species or those that occur at low density. 

2. Here we compare two non-invasive methods, passive acoustic monitoring (n=12) and 

camera trapping (n=53), to detect chimpanzees (Pan troglodytes) in a savanna-woodland 

mosaic habitat at the Issa Valley, Tanzania. With occupancy modelling we evaluate the 

efficacy of each method, using the estimated number of sampling days needed to 

establish chimpanzee absence with 95% probability, as our measure of efficacy. 

3. Passive acoustic monitoring was more efficient than camera trapping in detecting wild 

chimpanzees. Detectability varied over seasons, likely due to social and ecological 

factors that influence party size and vocalisation rate. The acoustic method can infer 

chimpanzee absence with less than ten days of recordings in the field during the late dry 

season, the period of highest detectability, which was five times faster than the visual 

method. 

4. Synthesis and applications: Despite some technical limitations, we demonstrate that 

passive acoustic monitoring is a powerful tool for species monitoring. Its applicability in 

evaluating presence/absence, especially but not exclusively for loud call species, such 

as cetaceans, elephants, gibbons or chimpanzees provides a more efficient way of 

monitoring populations and inform conservation plans to mediate species-loss. 

 

Keywords: camera traps; chimpanzee; occupancy modelling; passive acoustic monitoring; 

Tanzania; savanna-woodland mosaic habitat; seasonality; vocalisations   
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 Introduction  

With the sixth extinction crisis ongoing, triggered and exacerbated by anthropogenic disturbance 

(Barnosky et al., 2011; Ceballos et al., 2015; Johnson et al., 2017), there is an urgent need to 

prioritize conservation actions to monitor and ultimately, mediate species-loss. Typically, 

conservation planners focus efforts on the most diverse or vulnerable species or else those 

suffering from intense human activity. To provide critical data that reveal patterns of species 

distribution over time, systematic monitoring is necessary to assess the impacts of management 

decisions and evaluate wildlife recovery (Akçakaya et al., 2018; Martin et al., 2018). However, in 

practice, wildlife monitors must overcome numerous challenges, especially when direct 

observations are nearly impossible, e.g. when studying nocturnal, cryptic, elusive or hunted 

species that have changed their activity pattern/behaviour. Consequently, innovative 

biomonitoring methods are revolutionising the way, the speed, and the reliability of providing the 

necessary data on not only the threats, but also how animals distribute themselves in ever-

changing landscapes. 

Detecting species presence is the first and fundamental step for population monitoring. 

Occupancy is the proportion of an area used by a species (MacKenzie et al., 2006). Occupancy 

statistical models then use detection/non detection data from multiple visits of a given area to 

infer the probability of species presence. Occupancy modelling provides a useful tool to assess 

the population status i.e. declining, stable or increasing, of any species and can be applied to 

numerous species. It has been successfully used with diverse taxa, including tiger (Panthera 

tigris) monitoring (Karanth et al., 2011) and Antarctic sperm whale (Physeter macrocephalus) 

occupancy and diel behaviour (Miller & Miller, 2018). In long-term monitoring programs, 

occupancy modelling can further reveal the effect of disturbance on animal presence by providing 

data that reveal landscape-use changes and site colonization and extinction, as well as reveal 

multi-species interactions as disturbance levels oscillate (Mackenzie et al., 2002; MacKenzie, 

Nichols, Hines, Knutson, & Franklin, 2003). Occupancy modelling allows us to refine species 

distribution models in conservation planning and adjust policy priorities. Whilst these models offer 

valuable information on species presence and the probability of occupancy, challenges remain to 

control for detection bias.  

Detection probability is the likelihood to detect a species when it is present. Imperfect 

detection is a common issue and a challenge for species monitoring (MacKenzie et al., 2002), as 

it can lead to underestimates of occupancy, e.g. type II errors. Occupancy models account for 

imperfect detection (MacKenzie et al., 2002), which can arise from a variety of causes, including 

a sensor’s placement (Cusack et al., 2015) and detection zone (i.e. closed forest or open area), 

habitat characteristics, use of baits (Comer et al., 2018), timing and duration of sampling, or 

animal density and behaviour (Neilson et al., 2018) among others.  

Autonomous methods such as passive acoustic monitoring (PAM) and camera trap (CT) 

monitoring are two ways to remotely monitor wildlife presence, distribution, and behaviour 

(Rowcliffe & Carbone, 2008; Burton et al., 2015; Sugai, Silva, Ribeiro Jr, & Llusia, 2019), and 

both provide data for occupancy models. These methods are non-invasive and for both methods, 
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sensors can be deployed for significantly longer periods (months or years) than time typically 

used in for example traditional approaches like point count surveys (Alquezar & Machado, 2015). 

Furthermore, multiple locations that may be difficult to access by researchers can be monitored 

simultaneously by autonomous recording units. This is particularly useful for detecting species 

that occur at low density.  

CT is widely used among conservationists and researchers to study birds and medium to 

large mammals (Rovero, Tobler & Sanderson, 2010). Originally, PAM was developed for use with 

marine mammals (Spiesberger & Fristrup, 1990) and continues to be widely employed for studies 

of cetacean ranging and abundance (Mellinger, Stafford, Moore, Dziak, & Matsumo, 2007; Sugai, 

Silva, Ribeirao Jr & Llusia, 2019). However, recent advances in bioacoustics have expanded the 

applications of acoustic sensors for terrestrial species (Blumstein et al., 2011; Wrege et al., 2017). 

More recently applications include study of gibbons (Nomascus gabbrielae) (Vu & Tran, 2019), 

and wolves (Canis lupus) (Papin et al., 2018), among others. Both methods allow for diverse 

applications (Burton et al., 2015; Gibb, Browning, Glover-Kapfer, & Jones, 2019; Sugai, Silva, 

Ribeiro Jr & Llusia, 2019), ranging from revealing occurrence and occupancy (Rovero et al., 

2013a; Campos-Cerqueira & Aide, 2016), population size and density (e.g. Marques, Munger, 

Thomas, Wiggins, & Hildebrand, 2011), demography (e.g. McCarthy et al., 2018), activity patterns 

(e.g. Oberosler, Groff, Iemma, Pedrini, & Rovero, 2017) and behaviour (e.g. Tsutsumi et al., 

2006). 

With numerous studies reporting the dramatic, global decline of chimpanzees over the 

past decades (e.g. Campbell, Kuehl, N’Goran Kouamé, & Boesch, 2008; Junker et al., 2012; Kühl 

et al., 2017), we need reliable, efficient, and affordable methods to monitor their population status. 

Like cetaceans, chimpanzees have wide ranges, and rely on loud calls to communicate. 

Seasonality influences activity patterns, ranging and feeding behaviour of chimpanzees (Doran, 

1997), and may consequently influence chimpanzee detectability with CT and PAM. CT studies 

on chimpanzees have been conducted to study uncommon behaviour, for example stone 

throwing (Kühl et al., 2016) and crab-hunting (Koops et al., 2019), but also for abundance and 

density estimation (Després-Einspenner et al., 2017; Cappelle et al., 2019) among others. Only 

a few studies have employed PAM with chimpanzees; those have focused on group ranging and 

territory use (Kalan et al., 2015, 2016) and temporal patterns of vocalisations (Piel, 2018).  

What conservation planners most need, however, is information on the reliability of these 

methods for application into understanding chimpanzee presence and distribution. Thus, the 

primary aim of the study was to compare the efficacy in chimpanzee detection from these two 

non-invasive methods, namely PAM and CT. Specifically, we had three objectives and for both 

PAM and CT we sought to: (1) estimate chimpanzee detection probabilities from occupancy 

modelling; (2) identify the parameters that influence the detectability and more specifically to what 

extent seasonality plays a role in detectability; and (3) estimate and compare the sampling effort 

needed to produce precise occupancy estimates and make recommendations for wildlife 

managers regarding which is the more suitable appropriate method for wildlife surveys. We 
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hypothesized that chimpanzee detectability would be higher with PAM compared to CT, given the 

larger area covered by the acoustic sensors. 

  

 Methods 

2.1. Study site 

The study was conducted between March and December 2018, in the Issa Valley, western 

Tanzania (Fig. 3.1). The area is comprised of a series of valleys separated by steep mountains 

and flat plateaus, with an altitudinal gradient ranging from 1050 to 1650 m above sea level. 

Vegetation is dominated by miombo woodland and also includes grassland, swamp and riverine 

forest. For analyses, we collapsed these categories into just two: ‘open’ (woodland, grassland, 

swamp) and ‘closed’ (riparian forest). It hosts eight primate and four large carnivore species 

(spotted hyena, lion, leopard, wild dog), and over 260 species of birds (Moyer et al., 2006). The 

region is one of the driest and most open habitat inhabited by chimpanzees (Moore, 1992). At the 

time of data collection, the mean monthly rainfall was 118.4 ± 92mm during the wet season (mid-

October to mid-May) and 0.6 ± 0.9mm during the dry season. Mean minimum and maximum 

temperatures per day were 16.6 ± 1.7°C and 27.7 ± 2°C, respectively for the dry season and 16.9 

± 1°C and 25.7 ± 2.2°C for the wet season. Data points were measured every five minutes by a 

weather station (HOBO model RX3000, Onset Corp., Bourne, MA) situated near the research 

station. The study site covers the territory of at least one chimpanzee community. 

 

Figure 3.1. Study site and camera trap locations (targeted and systematic placements) in Issa Valley, 

Western Tanzania. 
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2.2. Study design 

2.2.1. Camera trap deployment 

For nine months, we deployed twenty-one camera traps (Bushnell Trophy Cam) in a systematic 

layout (henceforth ‘systematic’ cameras), in grid cells of 1.67km x 1.67km. We deployed thirty-

two additional camera traps (Bushnell Trophy Cam) at targeted locations, i.e. animal paths or 

termite mounds (seven of them) (henceforth ‘targeted’ cameras, Fig. 3.1). We attached cameras 

to trees 90cm above the ground and were triggered by movement, which activated a 60s 

recording, followed by a minimum 1s break before another recording began. For technical 

reasons, some cameras recorded 15s videos instead of 60s and videos recorded within the same 

minute have been combined into one video for the analyses. Cameras monitored continuously 

and were checked once or twice a month to change batteries and SD cards.  

 

2.2.2. PAM deployment 

We deployed twelve acoustic sensors (SM2, Wildlife Acoustics) for the same nine-month period 

that were secured on trees at a height of approximately 1.65m, at the top of the valleys to 

maximize the chance of recording calls. We recorded sounds at a 16kHz sample rate and 16 bit/s 

in uncompressed .wav format. We scheduled the sensors to record for 30 minutes of every hour 

from 6:00 to 19:30 (7h/day) to maximize capturing calls when chimpanzees are the most vocally 

active. We set up the sensors in three clusters of four sensors/cluster, two sensors on each side 

of a valley (Fig. 3.2), with inter-sensor distance ~500m to allow for later sound localization. We 

drew a 500m buffer around each acoustic sensor, corresponding to the area within which a call 

could reliably be detected (Piel, unpublished data). We rotated the clusters to new locations within 

the study area every two weeks (four arrays, Fig. 3.2). We replaced batteries and SD cards every 

two weeks.  

We manually processed acoustic recordings by visualizing spectrograms and aurally 

confirming any detection, with the aid of the acoustic software Raven (Bioacoustics Research 

Program, 2019). Duplicate detections were controlled for by pooling detections from the four 

sensors belonging to the same cluster into one detection.  
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Figure 3.2. Location of acoustic sensors: each set-up (A, B, C, D) remained two weeks before being rotated 

to another one. Detectability is the area where a call can reach a sensor, defined as a 500m buffer around 

a sensor. 

 

2.3. Occupancy modelling 

2.3.1. Modelling framework 

Occupancy modelling estimates two parameters: Ψ, the probability that a species is present within 

a site, i.e. probability of occupancy, and p, the probability that a species present is detected within 

a site, i.e., probability of detection (MacKenzie et al., 2006). For a discussion of assumptions, see 

(MacKenzie et al., 2006; Kalan et al., 2015).  

For both datasets, we divided the sampling period into sampling occasions (SO) of eight 

days each, resulting in 34 and 35 occasions per site, for PAM and CT respectively. Detection 

histories were compiled into a matrix containing two different values: (0) non detection and (1) 

detection. When no survey was conducted during a SO (e.g. due to camera or audio recorder 

malfunctioning or not deployed), a value of NA was assigned. To estimate the occupancy and 

detection probabilities, we used a single-season model. We applied the “occu” function from the 

“unmarked” package in R (Fiske & Chandler, 2011).  

 

2.3.2. Covariates  

To account for imperfect detection and heterogeneity in occupancy as well as detection 

probabilities across sampling sites and occasions, we incorporated covariates into the model. To 

explain the variability in chimpanzee occupancy, we created six vegetation/topography 

combination categories: A- closed/slope, B- closed/valley, C- closed/plateau, D- open/plateau, E- 

open/slope and F- open/valley. We did not include site covariates for PAM, as acoustic sensors 

were only deployed in one type of location. 

For the CT dataset, variables that could influence the detectability were the number of 

camera-trap days a camera was functioning during a SO (henceforth ‘days’), and whether the 

camera was set-up on a systematic or targeted deployment (henceforth ‘method’). For the PAM 

dataset, variable that could influence the detectability was the number of 30-min occasions the 

sensors were recording (henceforth ‘hours’). For both datasets, we included the seasons (early 
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and late wet, early and late dry) as a covariate. We defined the beginning of the dry season as 

the first week with no rain (i.e. from 16th of May) and the beginning of the wet season the first 

week with rain (i.e. from 14th October). Camera trap days and acoustic sensor hours covariates 

were z-transformed to a mean of 0 and standard deviation of 1 before running the models. 

 

2.3.3. Model selection 

To determine the factors that best explained chimpanzee detection, we compared all possible 

combinations of covariates that can influence the detection probability, p. Akaike weights were 

used to evaluate the weight of evidence for each model and were summed for all models 

containing each predictor variable. Variables resulting in high summed model weights were 

considered more important in explaining heterogeneity in detection. For CT we first considered 

covariates for chimpanzee detectability (p) while keeping occupancy (Ψ) constant and evaluated 

the best model. We included season, camera placement and days as covariates. Then we 

evaluated the effect of the vegetation and topography on chimpanzee occupancy. For PAM, we 

evaluated the effect of seasonality on chimpanzee detectability (p), by evaluating the best model 

based on the AIC values. 

‘occu’ models produce estimates with lower and upper bounds for both occupancy and 

detection probability on the logit scale. Hence, values were transformed to the original scale using 

the functions ‘predict’ of the package “Unmarked” (Fiske & Chandler, 2011). To assess goodness-

of-fit of the models, we used the parametric bootstrap procedure (MacKenzie & Bailey, 2004) with 

the function ‘parboot’ from “unmarked” package (Fiske & Chandler, 2011), using 1000 

simulations. We found no indication of lack of fit for our best models (P > 0.05). 

With the estimation of the detection probability (p), it is possible to estimate the necessary number 

of sampling visits (N) to infer chimpanzee absence (Kéry, 2002). The probability α to not detect a 

chimpanzee after N visits is: α = (1-p) N (McArdle, 1990; Kéry, 2002). 

Thus, for α=0.05, corresponding to a confidence level of 95%, the minimum number of sampling 

visits Nmin is: Nmin =  log(0.05)/log(1 − p) (Kéry, 2002). 

We estimated the number of trap days corresponding, by multiplying Nmin by eight for CT and 

PAM given that one visit corresponds to eight days. 

All analyses were conducted in R studio version 1.2.1335; R Core Team, 2018; available online 

at: https://www.r-project.org) and maps were created in QGIS version 3.6.2 Noosa; QGIS 

Development team, 2018; available online at: http://www.qgis.org). 

 

 Results 

3.1. Visual vs acoustic detections 

For the total duration of the study, the cameras were functional for 11,342 camera days across 

21 systematic CT and 32 targeted CT. It resulted in 3349 chimpanzee videos. 125 videos were 

recorded on 12 systematic cameras and 3224 on 32 targeted cameras (Table 3.1). The acoustic 

sensors recorded for 5316 cluster hours (15344 sensors hours). Of the 10632 30-min occasions 
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analysed, at least one detection has been detected in 1024 occasions (9.6%) and detections have 

been made on all sites surveyed. Calls have been made at each hour of the day with a higher 

proportion early morning (6am and 7am). Both methods reveal a similar strict pattern of seasonal 

detection with a peak in detections during the late dry and early wet seasons (Fig. 3.3). 

 

Table 3.1. Summary of the visual and acoustic deployments 

 CT PAM 

systematic targeted 

Number of sensors 21 32 12 

Detection distance/sensor (m) Max. 29 Max. 29 500 

Trap days (per CT or acoustic cluster) 217.1 [147-260] 211.9 [66-280] 68.2 [55-75] 

Number of sites with detections (CT or 

acoustic cluster) 

12 32 12 

Total detections (videos or 30min audio 

files) 

125 3224 1024 

Average trap days with a detection  

(% per CT or acoustic cluster) 

1.94 [0-13.8] 8.33 [0.4-22.1] 38.9 [24.6-52.8] 

 

 

 

Figure 3.3. Heatmap of chimpanzee detections (proportion of recording days with at least one detection, 

call or video) for the CT (A) and PAM (B) datasets, in function of the four seasons, early/late wet and 

early/late dry. 

 

3.2. Factors influencing detectability 

The best model to predict chimpanzee detectability for PAM comprised season as a covariate 

(Table 3.2). The best model to predict chimpanzee detectability for CT comprised all covariates: 

days, season and camera placement (Table 3.2) and was strongly supported (Σw > 0.95; ΔAIC < 

2) (Burnham & Anderson, 2004) and ranked higher than the constant model (ΔAIC = 148.64). 
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Vegetation/topography had no significant effect on chimpanzee occupancy. Detection 

probabilities were lower during the late wet and early dry seasons and higher during the late dry 

and early wet seasons (Fig. 3.4). Detection probabilities were higher for the targeted placement 

compared to the systematic placement. To infer chimpanzee absence with a confidence level of 

95%, the number of trap days required was lower for PAM during the late dry and early wet 

seasons (Fig. 3.5).  

 

Table 3.2. Summary of occupancy modelling for the best models 

Models # Parameters AIC Δ AIC weight 

PAM     

p(season+hours) Ψ(.) 6 135.17 0.00 1 

p(season) Ψ(.) 5 161.64 26.47 1.8*10-6 

p(hours) Ψ(.) 3 173.15 37.98 5.7*10-9 

p(.) Ψ(.) 2 188.68 53.51 2.4*10-12 

     

CT     

p(season+method+days) 

Ψ(vegetation/topography) 
12 1507.38 0.00 0.95 

p(season+method+days) Ψ(.) 7 1513.33 5.95 0.049 

 

 

 

 

Figure 3.4. Detection probabilities for each method (PAM, systematic and targeted CT) depending on the 

season. Error bars represent upper and lower bounds. 
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Figure 3.5. Number of trap days necessary to infer chimpanzee absence at a confidence level of 95% in 

function of seasons and methods. Error bars represent upper and lower bounds. 

 

 Discussion 

CT and PAM methods revealed similar patterns of chimpanzee spatiotemporal distribution, with 

peaks of detections by both methods occurring in the same valleys in function of the seasons. 

However, when we compared the deployment duration required of each method to infer 

chimpanzee absence at a confidence level of 95%, PAM was superior, with only ten and fifteen 

days needed during the late dry and early wet seasons, respectively. Alternatively, CT required 

up to five times longer (e.g. 51 and 33 days for the late dry and early wet seasons, respectively, 

in an area of known for chimpanzee presence – ‘targeted placement’) at the same times of year. 

Detection probabilities varied as a function of season, with higher vocal and visual detections 

during the late dry and early wet seasons. We first discuss the efficiency of both methods, explore 

the ecological and social factors that can explain seasonal variability of detection, and then 

evaluate the advantages and limitations of these methods. 

 

4.1. Efficacy of PAM and CT in chimpanzee detection 

If we define efficacy as the shortest amount of time needed to detect a chimpanzee, PAM was 

more efficacious and acoustic detection rates were higher. The finding is similar to other studies 

comparing acoustic and visual methods in detecting southern right whales (Eubalaena australis), 

sika deer (Cervus nippon) and Japanese macaques (Macaca fuscata) (Rayment et al., 2018; 

Enari et al., 2019). This is likely due to the detection area with PAM being far larger than with CT, 

estimated to be up to 7000 times greater than those for CT in the study from Enari et al. (2019).  

Detection probabilities were higher on a targeted camera trap placement compared to a 

random placement, as expected. This suggests that when using the CT method, a pre-survey to 

find any feeding trees or animal paths will maximise the chance to capture an animal. 
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4.2. Ecological and social factors influencing detectability 

We can assume that acoustic and visual detectability are influenced by party size. Indeed, parties 

with more chimpanzees call more often (Fedurek, Schel & Slocombe, 2013). Likewise, there is a 

greater likelihood of chimpanzees being visually recorded on the cameras as party size increases. 

The variation in detection probabilities across seasons is likely due to seasonal differences in 

social grouping and ranging patterns. At Issa, for example, mean dry season party size is nearly 

twice that of the wet season (Piel, unpublished data). In our study, we found higher detectability 

during the late dry and early wet seasons. Fruit availability itself might not explain party size 

fluctuation but rather the interaction of food availability and food distribution.  

The presence of females showing full swellings is another important factor that influences 

party size, with parties larger when a swollen female is present (Sakura, 1994; Wallis, 1995; 

Mitani, Watts & Lwanga, 2010). Furthermore, male chimpanzees become more aggressive when 

they are in a party with oestrous females (Sobolewski, Brown & Mitani, 2013) and are therefore 

more vocal (i.e. more vocalisations because fighting) (Fedurek, Donnellan & Slocombe, 2014). At 

both Issa and Gombe National Park, females show full swellings more often during the late dry 

season (Gombe: Wallis, 1995; Issa: Piel unpublished data). Consequently, these extrinsic factors 

may explain the higher detection probability during the late dry season, both by PAM because of 

the increased calling behaviour and CT, because parties are larger overall.  

 

4.3. Potential applicability to other studies, advantages and limitations 

This study confirms the applicability and potential of PAM compared to CT to detect chimpanzees. 

The methods used here are highly applicable to other loud-calling species, such as elephants 

(Wrege, Rowland, Keen & Shiu, 2017), gibbons (Kidney et al., 2016), howler monkeys (Aide et 

al., 2013), and could also be applied to insects or frogs (Aide et al., 2013). Species behaviour 

plays an important role in detection and should be taken into consideration during study design. 

For instance, deer detectability will be higher during the rutting season (Enari, Enari, Okuda, 

Maruyama & Okuda, 2019), just as we might be seeing for chimpanzees as well. 

Despite PAM requiring less deployment time to confirm chimpanzee absence in this 

study, the limitations of the method are significant. In contrast to camera traps that record only 

when a detection is made, acoustic sensors record all sounds, continuously or on a pre-

determined schedule. This generates enormous datasets and sophisticated, big data processing 

and analyses are required to post-process (e.g. filter) sounds of interest (See below; Knight et al., 

2017). Data storage can be problematic as well for both methods. Another challenge is power, 

with regular visits needed to maintain the system. However, with only a few days required to 

detect a chimpanzee combined with the development of new low cost sensors that can be 

recharged with solar panels (e.g. Beason, Riesch, & Koricheva, 2018; Hill et al., 2018; Nazir et 

al., 2017; Sethi, Ewers, Jones, Orme, & Picinali, 2018), current challenges are already being 

overcome. Lastly, without automated detection, analyses of PAM and CT data are extremely time-

consuming and so not advisable when conducting regular surveys. For instance, in this study with 



Chapter 3: detection 

52 
 

10 days required for PAM to infer chimpanzee absence, this correspond to 1120min of manual 

processing (10 (days)*14 (audio files per day) *2 (minutes to process one audio file) *4 (sensors)). 

In the past few years, major improvements in automated species detection algorithms have 

transformed the way big data are analysed (e.g. Clink, Crofoot, & Marshall, 2019; Knight et al., 

2017; Wrege, Rowland, Keen, & Shiu, 2017). Different methods of machine learning (e.g. neural 

networks) are available, see the review from Bianco and colleagues (2019) for more details. A 

manual validation to clean false positives is, however, necessary (e.g. Campos-Cerqueira, Aide, 

& Jones 2016; Crunchant et al., 2017; Enari, Enari, Okuda, Maruyama & Okuda 2019; Kalan et 

al., 2015) to control for false positives. With species with high call variabilities, like chimpanzees, 

developing an algorithm is more challenging but as technology improves rapidly, we can expect 

the development of a detection algorithm in the near future. Lastly, these two approaches offer 

complementary information, and methods should be used in accordance with particular 

objectives. For instance, CT allows for individual identification, necessary to extract information 

on population abundance (e.g. Després-Einspenner et al., 2017). 

Similar to PAM, new technologies such as drones can offer an aerial perspective and provide 

real-time feedback for rapid surveys (Wich & Koh, 2018). By combining these two promising 

technologies, otherwise labour and time intensive species monitoring is on the cusp of being 

revolutionised by remotely recorded sounds with drone-mounted microphones. If the major 

drawback for using UAV in acoustic biomonitoring is the excessive UAV noise that can mask the 

targeted sound, new methods are already in progress, such as the development of signal 

processing algorithms that reduce noise in recording (Hioka et al., 2019). 

 

4.4. Conservation applications 

Regular surveys and monitoring are crucial for evaluating conservation efforts aimed at impeding 

the global decline of great apes and overall biodiversity. Developing an accurate and time-

effective method of surveying animals especially in remote areas is critical. Here we demonstrated 

the usefulness of PAM compared to CT to evaluate the absence of an endangered species. The 

continuing development of new technologies and the increasing inter-disciplinary collaboration 

between engineers, field ecologists and bioinformaticians are driving new affordable and effective 

biomonitoring methods. The dramatic improvements in biomonitoring techniques over the last 

decade are altering the way we remotely study wildlife distribution by helping to plan surveys (e.g. 

Hodgson et al., 2018), identify hotspots and prioritize patrols (e.g. Hambrecht, Brown, Piel, & 

Wich, 2019), and how we monitor the wildlife response to ever-increasing anthropogenic 

disturbance to their environments (e.g. Buxton, Lendrum, Crooks, & Wittemyer, 2018).  
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Abstract 

1. Background. Patterns of vocal communication have implications for species conservation: a 

change in calling behaviour can, for instance, reflect a disturbed habitat. More importantly, call 

rate is a parameter that allows conservation planners to convert call density into animal density, 

when detecting calls with a passive acoustic monitoring (PAM) system.  

2. Methods. We investigated chimpanzee (Pan troglodytes schweinfurthii) call rate during the late 

dry season in the Issa Valley, western Tanzania by conducting focal follows. We examined the 

socio-ecological factors that influence call production rate of savanna woodland chimpanzees. 

3. Results. We found that sex, proportion of time spent in a vegetation type, proportion of time 

spent travelling, time of day, party size and swollen parous female presence had a significant 

effect on the call rate. Call rate differed among the different demographic classes with subadult 

and adult males vocalising twice as often as the subadult and adult females and three times as 

often as the juveniles. 

4. Applications: The use of PAM and recent statistical developments to estimate animal density 

is promising but relies on our knowing individual call rate, often not available for many species. 

With the improvement in automatic call detection, we anticipate that PAM will increasingly be 

broadly applied to primates but also across taxa, for conservation. 

 

Keywords: fission-fusion, pant hoot, primate, sexual dimorphism, Tanzania, vocalization   
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 Introduction 

Vocal communication is a means through which senders and receivers exchange information via 

the production of acoustic signals and is likely influenced by natural and sexual selection (Seyfarth 

& Cheney, 2003). Vocal signals are widely diversified among taxa, produced by insects, fish, 

herpetofauna, birds, and mammals to communicate in various social and environmental contexts, 

from alerting conspecifics to predator presence (e.g. Schel et al. 2013; Vitousek et al. 2007), 

maintaining bonds (e.g. Fedurek et al. 2013; Wanker et al. 1998), and marking territorial 

boundaries (e.g. Peek 1972) among others. Similar to food, mates, and territory, acoustic space 

can also be a scarce resource for which animals compete. Callers must adjust spatial, temporal 

and frequency patterns in response to both abiotic and biotic factors, especially the sounds of 

sympatric fauna (Araya-Salas et al., 2017). Widely spaced individuals use long calls to maintain 

inter-individual contact, which allow them to coordinate movements, especially for socially fluid 

animals with high fission-fusion dynamics like elephants (Loxodonta africana) (e.g. Leighty et al. 

2008), spotted hyena (Crocuta crocuta), (e.g. Theis et al. 2007), bottlenose dolphins (Tursiops 

truncatus) (Janik & Slater, 1998), beluga whales (Delphinapterus leucas) (O’Corry-Crowe et al., 

2020), spider monkeys (Ateles spp.) (e.g. Spehar and Di Fiore 2013), bonobos (Pan paniscus) 

(e.g. Hohmann and Fruth 1994) and chimpanzees (e.g. Fedurek et al. 2014). 

Call rate, the number of calls emitted per unit time per individual, can advertise male 

quality (Pedroso et al., 2013) and rate changes with caller age and sex class, time of day, group 

size and composition, social context, and environment, among others (Pérez-Granados et al., 

2019). For instance, frog vocalizations are highly sexually different, energetically costly, and are 

mostly produced by males (Emerson & Boyd, 1999). Dawn and dusk chorusing are common for 

many species, exploiting low ambient and minimal wind noise levels (Ey & Fischer, 2009). 

Guereza black and white colobus monkey (Colobus guereza) calls are highly contagious and 

spread from one group to another (Schel & Zuberbühler, 2012). Furthermore, loud calls in 

baboons advertise male quality, with high-ranking males calling more often (Kitchen et al., 2003; 

Fischer et al., 2004). Therefore, loud calls serve multiple functions and spatiotemporally shift in 

predictable ways, which can be reflected in a variation of call rates. 

Additionally, vocal communication has implications for species conservation. A change 

in calling behaviour can reflect a disturbed habitat. Anthropogenic pressure affects call 

parameters, such as call duration and call frequency, and also the number of calls produced. For 

instance, a recent study at Los Tuxtlas in Mexico showed that howler monkeys (Alouatta palliata 

mexicana) produced fewer calls when exposed to anthropogenic noise (Cañadas Santiago et al., 

2020). There is also evidence that African elephants change the acoustic structure of their alarm 

calls when threatened by bees or humans (Soltis et al., 2014). LaZerte et al. (2017) demonstrated 

that male mountain chickadees (Poecile gambeli) adjust songs, calls, and chorus composition 

with increasing ambient and (experimental) anthropogenic noise. More importantly, call rate is a 

parameter that allows conservation planners to convert call density (the number of calls per unit 

time per unit space) into animal density (i.e.the number of callers per unit space). Acoustic spatial 

capture-recapture (aSCR) and distance sampling methods can be used to estimate animal 



Chapter 4: call rate 

56 
 

density by detecting vocalisations with acoustic sensors (e.g. Marques et al., 2013; Stevenson et 

al., 2015). This can be particularly useful for cryptic, elusive, wide ranging and not visually 

detectable species. Using this method, numerous studies have reported abundance and density 

for various species, such as ovenbirds – Seiurus aurocapilla (Dawson & Efford, 2009; Efford, 

Dawson, & Borchers, 2009), frogs – A. lighfooti (Borchers et al., 2015; Stevenson et al., 2015), 

northern yellow-cheeked gibbons - Nomascus annamensis (Kidney et al., 2016). We can convert 

caller density to population density once we know the call rate (Stevenson et al., 2015). Data on 

these parameters can be obtained by following individuals and recording call events. Obtaining 

these values is what motivated the current study. To accurately reflect the call rate of calls that 

can be detected on acoustic sensors, sometimes deployed hundreds of meters away from the 

caller for subsequent analyses, we focused only on screams, barks and pant hoots.  

Chimpanzees (P. troglodytes) are a gregarious species and form small parties that 

change in size and composition throughout the day. They move through a relatively large territory 

- e.g. from 7 to 40km2 for forest dwelling chimpanzees (Newton-Fisher, 2003; Després-

Einspenner et al., 2017) and 72 to 90km2 for savanna dwelling chimpanzees (Samson & Hunt, 

2012; Pruetz & Herzog, 2017) and are often hundreds of metres apart. Thus, they must rely on 

vocal communication to reveal to others information about, for instance, fruiting trees, predator 

presence, and movement coordination within and between parties. Eckhardt et al. (2015) reported 

that male chimpanzees from Taï Forest (Ivory Coast) remained out of visual range of conspecifics 

for almost half of observation time but within auditory range (<1km) for 70% of the time, 

suggesting chimpanzee vocalisations serve an important function as contact calls between 

spatially separated individuals. Some of the earliest studies on chimpanzee vocalisations noted 

an overall sex difference in pant hooting rates in adults, with males calling more than females ago 

(Marler & Hobbett, 1975, Goodall, 1986), and in some cases, all-female parties calling so rarely 

to make inter-sex comparisons impossible (Clark & Wrangham, 1994; Arcadi, 1996). Only 

recently, however, were these observations supported with empirical data from a single 

community in Tai Forest (Kalan, 2019). Thus, despite a half-century of investigation into 

chimpanzee vocalisation, much is still not known about call rate, and especially hot it changes 

between sexes, behavioural contexts, and communities. This intra- and inter-community rate 

variability has bearing on what value is used for density studies that rely on PAM data, where call 

rate is a critical parameter (Marques et al., 2013).  

The aim of this study was twofold: first, we wanted to estimate the call rate of 

chimpanzees living in a savanna woodland habitat. Given the known sex differences in 

chimpanzee acoustic communication, e.g. call rate and acoustic parameters (Kalan, 2019), we 

calculated the call rate for the following age/sex classes: subadult and adult females, subadult 

and adult males and male and female juveniles. Second, we investigated socio-ecological factors 

influencing call rate. We therefore examined the effect of (1) party size: we expected chimpanzees 

to call more often as party size increased due to the chorus effect and contagious calling 

(Fedurek, Schel & Slocombe, 2013); (2) presence of a swollen female: we expected that call rate 

would be higher when callers were in parties with at least one parous swollen female (Fedurek, 
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Donnellan & Slocombe, 2014); (3) time of day: we expected a temporal pattern with chimpanzees 

calling more often in the morning and late afternoon (e.g. Piel 2018); (4) vegetation: chimpanzees 

seem to spread more when in open area, likely because of higher visibility and we consequently 

expected chimpanzees to call more often when present in the open vegetation (woodland); (5) 

activity: two important call functions are to indicate fruiting trees and maintain spatial cohesion, 

especially during travelling, hence we expected that the proportion of time spent travelling or 

feeding would be positively correlated to the call rate (Clark & Wrangham, 1993; Fedurek, 

Donnellan & Slocombe, 2014). 

 

 Methods 

2.1. Study site 

We collected data for three months during the late dry season, between August and October 

2019, in the Issa Valley, western Tanzania (Fig. 4.1). The study area of about 70 km2 is comprised 

of a series of valleys separated by steep mountains and flat plateaus, with an altitudinal gradient 

ranging from 1050 to 1650 m above sea level. Vegetation is dominated by miombo woodland and 

also includes grassland, swamp and riparian forest. For analyses, we collapsed vegetation 

categories into ‘open’ (woodland, grassland, swamp) and ‘closed’ (riparian forest), see Fig. 4.1. 

The region is one of the driest and most open that is inhabited by chimpanzees (Moore 1992) and 

characterised by two seasons: wet (November to April) and dry (May to October) Annual rainfall 

averaged 1220mm per annum (range from 930 to 1490 mm from 2009 to 2014) and temperatures 

ranged from 11°C to 38°C (Piel et al., 2017). 

 

Figure 4.1. Study site in Issa Valley, Western Tanzania and chimpanzee locations during the late dry season 

from focal follows (7239 5-min scans). Each dot represents the location of an individual and a heatmap 

shows the preferentially used areas during the study period. 



Chapter 4: call rate 

58 
 

2.2. Study subjects 

The study site covers the territory of at least two chimpanzee communities (one habituated 

community and one or more neighbouring communities). When the study began, the habituated 

Issa community comprised nine adult females, seven adult males, four subadult males, one 

subadult female, three juveniles and four infants (Table 4.1). During the study period, one female 

(AZ) was not yet fully habituated so we have not included data on her, as researcher presence 

likely influenced her natural behaviour (Crofoot et al., 2010; Nowak et al., 2014). Two individuals 

(adult female and infant) were killed and a female gave birth during the study period. The 

habituated community has a home range ≥ 55km2. 

 

2.3. Data collection 

We selected a focal chimpanzee (adult, subadult or juvenile) each morning and tried to follow 

him/her for the entire day (i.e. from nest to nest). We conducted instantaneous focal animal 

sampling, with a scan defined as the behaviour of the animal recorded every five minutes, when 

we collected data on caller location (GPS), behaviour (travelling, feeding, resting, grooming, 

playing, other), vegetation (open or closed) and party size, defined as the number of juveniles, 

subadults and adults seen. We further noted all vocal behaviour ad libitum of the focal, including 

the type of vocalisation (pant grunt, grunt, hoot, pant hoot, bark, scream or combinations of 

different types (see e.g. Crockford 2019; Goodall 1986 for descriptions of chimpanzee 

vocalisations). Successive calls were considered as new events when separated by more than 

one second. We included only vocalisations that involved at least a scream, a pant-hoot or bark 

in the analyses, to match the calls that can be potentially recorded by an acoustic recorder 

deployed about 500m away from the caller. We thus excluded grunts and other closed calls that 

do not propagate far. We included only hours of follow data with at least 10 scans/hour, which 

corresponds to at least fifty minutes of observation per hour.  

 

2.4. Data analyses 

We conducted all analyses in R v.3.6.1 (R Core Team, 2019). For each hour of follow, we 

determined the proportion of time spent travelling, feeding or other behaviours, in open or closed 

vegetation by the focal individual. We defined the proportion of time in e.g. open vegetation as 

the number of scans in which the focal was observed in open vegetation divided by the total 

number of scans where the focal was in view.  

To model the number of calls per hour (call rate, CR) as a function of the covariates, we 

used a negative binomial distribution GAM with a log link function, that allowed us to account for 

overdispersion. Fixed covariates were (1) time (T, categorical with 11 levels: from 7am to 6pm), 

(2) mean hourly party size (PS, continuous), (3) presence of swelling female in the party (PrS, 

categorical with 2 levels: presence or absence), (4) proportion of time spent feeding (Fe, 

continuous), (5) proportion of time spent in the closed vs. open habitat (F, continuous), (6) 
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proportion of time spent travelling (Tr, continuous) and (7) age-sex class (AS, categorical with 3 

levels: adult-subadult female, adult-subadult male, juvenile). To incorporate the dependency 

among follows on the same day, we used “individual” as a random intercept and to incorporate 

the dependency We used the package mgcv (Wood, 2017) to fit the model. We centred and 

scaled continuous predictors.  

We tested predictors for collinearity by calculating variation inflation factors (VIF) using 

the package car (Fox & Weisberg, 2018) in an equivalent linear model including only the fixed 

effects from each model fitted with the package MASS (Brian et al., 2020). Multicollinearity was 

not present (maximum VIF: PS= 1.53). We verified model assumptions by plotting residuals 

versus fitted values and QQ-plots. We ran a set of models and ranked them by AICc value. 

 

 Results 

In total, we analysed 487 hours of follows on twenty-one chimpanzees (21.2 ± 12.2 hrs per 

individual, Table 4.1). Call rate varied individually, ranging from an average of 0.24 to 3.41 calls 

per hour. 

 

Factors influencing the call rate 

We did model averaging among models with ΔAICc <2. The significant effects in the best 

averaged model are age/sex, proportion of time in the forest, proportion of time travelling, time-

of-day, presence of swollen female, party size, and the two random intercept terms (individual 

and date) (Table 4.2).  

Results of the GAM revealed that the age-sex class had a significant effect on call rate: 

overall, Issa chimpanzees exhibited a mean call rate of 1.91 with 95% CI of [1.52 – 2.40] calls per 

hour for the subadult and adult males, 0.84 with a 95% CI of [0.59 – 1.21] calls per hour for the 

subadult and adult females, and 0.50 with a 95% CI of [0.24 – 1.05] calls per hour for the juveniles. 

With 95% confidence, males call between 1.5 and 3.8 times as frequently as females and between 

1.3 and 7.9 times as frequently as juveniles. Chimpanzees vocalised significantly more as the 

proportion of time spent in open vegetation and as the proportion of time spent traveling increased 

(Table 4.3). The smooth effect of time reveals call rates being highest in the morning decreasing 

thereafter, before increasing late afternoon (Figure 4.2). 
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Table 4.1. Summary of the number of focal follow hours per individual and their call rate. Mean call rate, 

defined as the number of pant-hoots, screams or barks per hour is presented with the individual range in 

brackets. 

 

Name Age Sex # hrs of 

follow  

Call rate (# calls/hr, min-

max) 

AZ Adult Female 0 NA 

BS Adult Female 13 0.38 [0-2] 

JU Adult Female 11 1.73 [0-4] 

KL Adult Female 5 0.60 [0-2] 

KN Adult Female 9 2.22 [0-5] 

KJ Adult Female 14 1.14 [0-3] 

MA Adult Female 18 1.56 [0-5] 

ZA Adult Female 17 0.24 [0-2] 

KS Sub-adult Female 26 0.31 [0-3] 

BG Adult Male 41 3.41 [0-11] 

EL Adult Male 23 2.04 [0-8] 

IM Adult Male 35 2.37 [0-9] 

KT Adult Male 37 2.65 [0-14] 

MY Adult Male 33 1.06 [0-6] 

SM Adult Male 35 2.23 [0-9] 

WA Adult Male 23 1.48 [0-8] 

DH Sub-adult Male 25 2.60 [0-7] 

MS Sub-adult Male 29 1.45 [0-6] 

SN Sub-adult Male 30 2.90 [0-13] 

WG Sub-adult Male 30 1.53 [0-8] 

MW Juvenile Female 5 1.20 [0-2] 

KK Juvenile Male 28 0.57 [0-5] 

BN Juvenile Male 0 NA 
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Table 4.2. Model selection. CR: call rate; AS: age/sex class; PrS: presence swelling female; Fe: proportion 

of time spent feeding; F: proportion of time spent in closed vegetation; Tr: proportion of time spent travelling; 

PS: party size; T: time, Fo: follow, D; date. 

 

Model df logLiK AICc delta weight 

CR ~ AS + PrS + F + Tr + PS + T + Fo 24 -814.710 1681.5 0.00  0.094 

CR ~ AS + PrS + F + Tr + PS + T + Fo + D 24 -814.710 1681.5 0.00 0.094 

CR ~ AS + PrS + F + Tr + Fo 25 -814.471 1682.4 0.84 0.062 

CR ~ AS + PrS + F + Tr + Fo + D 25 -814.471 1682.4 0.84 0.062 

CR ~ AS + PrS + Fe + F + Tr + PS + T + Fo 25 -814.078 1682.6 1.09 0.055 

CR ~ AS + PrS + Fe + F + Tr + PS + T + Fo + D 25 -814.078 1682.6 1.09 0.055 

CR ~ AS + F + Tr + T + Fo 24 -816.013 1683.0 1.50 0.045 

CR ~ AS + F + Tr + T + Fo + D 24 -816.013 1683.0 1.50 0.045 

CR ~ PrS + F + Tr + T + Fo 26 -813.445 1683.4 1.88 0.037 

CR ~ PrS + F + Tr + T + Fo + D 26 -813.445 1683.4 1.88 0.037 

CR ~ PrS + Fe + F + Tr + T + Fo 27 -812.771 1684.1 2.54 0.027 

CR ~ PrS + Fe + F + Tr + T + Fo + D 27 -812.771 1684.1 2.54 0.027 

 

 

Table 4.3. Outcome of a GAM investigating the effect of time, age/sex class, presence of swelling female, 

party size (PS), proportion of time spent in the closed area and proportion of time spent travelling for the 

averaged best three models. 

 

Predictors Parameter Estimate 

Estimate Std. E. z value Pr(>|z|) 

Intercept 0.477 0.225 2.115 3.44e-02* 

Age/sex class (male) 

Subadult/adult female 

juvenile 

 

-0.864 

-1.129 

 

0.252 

0.456 

 

3.413 

2.820 

 

6.43e-04*** 

4.79e-03** 

Closed area (forest) -0.171 0.063 2.698 6.977e-03* 

Swollen parous female 

presence 
0.315 0.141 2.236 2.536e-01* 

Party size 0.164 0.734 2.223 2.619e-02* 

Travel 0.237 0.059 3.977 1.60e-04*** 

 

* = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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Figure 4.2. Call rate change over the course of the day. Rates were highest in the morning and decreased 
thereafter, before increasing in the late afternoon. 

 

 Discussion 

In this study, we sought to establish the mean call rate of different demographic classes of wild 

chimpanzees, as well as examine the socio-ecological factors that influence call production rate. 

We found that time spent in a specific vegetation type, time spent travelling, time of the day, party 

size and swollen parous female presence had significant effects on call rate.  

 

4.1. Call rate among demographic classes 

Our results confirm early reports on sex differences between adult chimpanzee loud call 

production (Clark, 1996) and a recent study that subadult and adult male chimpanzees vocalise 

more than twice as often as subadult and adult females (Kalan, 2019). The sexual dimorphism 

seems to be even more pronounced for forest than savanna woodland dwelling chimpanzees. At 

Taï, males produced on average 2.5 ± 1.08 calls per hour and females produced 0.88 ± 0.32 calls 

per hour (Kalan, 2019), compared to 1.91 ± 0.12 calls per hour for the males and 0.84 ± 0.18 calls 

per hour for the females at Issa (this study). We propose two explanations for this sexual 

difference: (1) necessity of maintaining strong bonds and/or (2) sexual selection. Chimpanzees 

are male-philopatric, where males stay in their natal territory, while females disperse at sexual 

maturity and migrate to neighbouring communities (e.g. Moore et al. 2015; Nishida 1968). This 

sex difference in dispersal explains strong male-male relationships (e.g. Mitani 2009). Males tend 

to develop stronger bonds with other male community members with whom they spend more time, 

forming a linear dominance hierarchy and developing affiliations and coalitions. East African 

female chimpanzees, on the contrary, are far less gregarious than males, travel less and spend 
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most of their time alone or with their offspring in their core home range (Wrangham and Smuts 

1980). 

 

4.2. Ecological factors 

We found that chimpanzees called most at two times of day (morning and evening) and from open 

(miombo woodland) compared to closed (riparian forest) vegetation. This temporal information is 

important for conservationists, who can for instance record sounds with PAM systems at these 

periods to maximise the likelihood of detecting calls and simultaneously limit the number of audio 

files to analyse. There are ecological and social reasons for these patterns. Temporally, the 

bimodal pattern that we found in this study is similar to what has been reported previously at Issa 

(Piel 2018) and elsewhere (e.g. Wilson et al. 2007; Wrangham 1975). Vocalisations allow parties 

to coordinate movements, notably prior to arrival at their nesting sites (Fischer & Zinner, 2011) or 

feeding trees (Clark & Wrangham, 1993). Ecologically, callers may exploit ideal sound 

transmission conditions. The Acoustic Adaptation Hypothesis predicts that animals may adjust 

their vocal signals to maximize signal transmission and minimize sound degradation, specifically 

within each environment in which calls occur (Waser & Waser, 1977; Ey & Fischer, 2009; Brown 

& Waser, 2017). Environmental metrics, such as temperature gradients, humidity and wind, vary 

with time of day, and can degrade signals, resulting in structural changes to the primary sound 

(Waser & Brown, 1984). Relatedly, the natural habitat distorts signals as distance from the sound 

origin increases. Open vegetation, with increased wind-induced noises compared to closed 

vegetation, can further degrade signals but sounds attenuate faster in closed vegetation because 

of tree density (Brown & Waser, 2017). If chimpanzees rely more on close contact calls (not 

included in this study) to maintain party cohesion in closed, rather than open vegetation, the fact 

that chimpanzees vocalize significantly more often in open vegetation might be explained by their 

activity, rather than the external environment. Furthermore, the Issa landscape is dominated 

(>65%) by miombo woodland vegetation, thus it is unsurprising that they vocalize more from open 

than closed vegetation types. Calls made in open vegetation could serve multiple purposes. First, 

individuals may spread out more in these areas, given that food sources are more widely 

distributed here than in closed areas and so calls are functioning to preserve party cohesion. 

Additional data on inter-individual distance (e.g. party spread) in each vegetation type would help 

us resolve this. Second, calls travel further in open compared to closed vegetation, with fewer 

trees to attenuate sound (although see Waser & Brown 2017), so individuals also may be calling 

to communicate with distantly located parties. Often counter calls are heard from these woodland 

pant hoots (A. Crunchant, 2019, pers. obs.), but we do not have comparative data from forests. 

 

4.3. Travelling and feeding activities 

We evaluated the effect of activity, namely travelling and feeding behaviour, on call production 

rate. While previous studies have shown that chimpanzees frequently pant-hoot at food sources 

(Clark and Wrangham 1993; Fedurek et al. 2014; Wrangham 1977), call rate did not change with 
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the proportion of time spent feeding in our study. However, our brief field season took place during 

the late dry season, when fruit availability is highest (McLester et al., 2019). The abundance of 

food might reduce competition among individuals and thus depress the need for calling. 

Furthermore, we did not incorporate which food items were consumed. Fedurek and colleagues 

(2014) have shown that male chimpanzees were more likely to pant hoot at high-quality food 

patches and thus we suggest that subsequent studies consider food type consumption during 

calling bouts. 

The number of calls increased as the proportion of time spent travelling increased. It has 

long been demonstrated that loud calls facilitate fusion events and help regulate grouping 

dynamics and coordination among community members during travel (e.g. Goodall 1986). In 

other communities, males travel significantly more after a pant hoot is produced (Mitani & Nishida, 

1993) and males are more likely to repeat a call prior to, rather than after, fusion with other males 

(Fedurek, Donnellan & Slocombe, 2014).  

 

4.4. Party size and presence of parous swollen female 

We have shown that call rate was positively related to party size. Coordinating movement with a 

higher number of individuals requires more communication, especially for decision making and 

coordinating party fusion (Fischer & Zinner, 2011). Furthermore, a previous study has shown that 

the number of aggressive events is positively correlated to the number of males in a party (Muller 

2002), and thus the number of calls produced during agonistic events (i.e. barks, screams and 

pant hoots) would likely increase with the number of males in the party. 

Finally, the presence of a swollen female in the party did also impact call production rate, 

as expected. It has indeed been shown that males prefer to mate with parous females and are 

more involved in male-male competition in their presence because parous females are attractive 

to males, which exhibit aggressive displays and courtship behaviour during these times (Muller et 

al. 2006).  

 

4.5. Implications and limitations  

Variability in chimpanzee calling is well known, described in nearly every study on the topic; early 

work attributed variability to age, sex, context, party size, and community, among others (Goodall, 

1986; Arcadi & Wrangham, 1993; Arcadi & Wrangham, 1994; Mitani et al., 1992; Mitani et al., 

1994). For the most part, these studies reported variability in the context of call function. In the 

current study, however, we were not interested in call function. Whilst similar to some previous 

work, we report on context-specific variability, our primary interest is in the implications of call rate 

variability for conservation studies that rely on PAM to extract animal densities. For example, sex 

ratio, vegetation types and proportions, and activity budgets vary between communities. Our 

results here begin to reveal how call rate changes with each of these, which has direct bearing 

on how its parameterised in density analyses. Specifically, for community that range across more 
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open vegetation – Issa (Tanzania), Fongoli (Senegal), Semliki (Uganda) – call rate should reflect 

this in density models, varying with sensor location. 

Those implications notwithstanding, we are cautious interpreting these results and 

conclusions should not be generalized to scenarios other than that where data were collected. 

We sampled over a single and brief 3-month season and recorded only 487 hours of follows 

(compared to Kalan (2019) who recorded 731.5 hours of follows across 10 months). With food 

availability, party size and the number of swollen females highest at this time of year (A.Piel, 2021, 

unpublished data), it is likely that our data are inflated against annual means. More data collected 

across multiple seasons would resolve this uncertainty and would result in seasonal variation in 

call production, especially lower call rates in the early wet season when party size declines and 

fewer females exhibit maximum tumescence. We were also unable to equally balance data 

collection across the community, with some individuals being followed only 5hrs and some more 

than 30hrs. This was mostly due to the difficulty of following recently habituated females. Given 

that the call rate variation between two individuals is likely to be greater than the variation within 

the same individual, rather than over-sample fewer individuals, we chose to sample more 

individuals.  

 

4.6. Future directions 

Future studies can not only build off these results by adding more data, but also additional 

predictor variables that may influence chimpanzee call rate. Specifically, further analyses would 

benefit from evaluating the effect of rank on call rate. For instance, rank has been implicated in 

influencing call rate in chacma baboons (Papio cynocephalus ursinus) (Kitchen et al., 2003), 

gelada monkeys (Theropithecus gelada) (Benitez et al., 2016), orang-utans (Pongo pygmaeus) 

(Mitani, 1985) and also non-primate [fallow bucks (Dama dama) (Pitcher et al., 2014)] species, 

and strongly suggests that vocal communication is influenced by sexual selection. In support of 

this, multiple studies examining chimpanzee rank and call production reveal a positive relationship 

between male quality, testosterone, and rank (Clark, 1993; Clark & Wrangham, 1993; Mitani & 

Nishida, 1993; Fedurek et al., 2016). There is not yet empirical evidence however, demonstrating 

female preference for male vocalisations. 

Moreover, we recommend that subsequent studies include a spatial component. For 

example, chimpanzees spend the majority of their time in the core of their home range, usually 

representing about 75–90 % of their total territory (Wilson, Hauser & Wrangham, 2007). When 

males conduct patrols in high risk areas, e.g. croplands or territorial boundaries, call rate declines 

significantly (Wilson, Hauser & Wrangham, 2007). Chimpanzees from savanna habitats have far 

larger home ranges - e.g. ≥ 55km2 at Issa (C. Giuliano, 2021, unpublished data) or about 90 km2 

at Fongoli (Pruetz & Herzog, 2017) - than forest dwelling chimpanzees – e.g. 7km2 at Budongo 

(Newton-Fisher, 2003). Suzuki (1969) proposed that the low density and widely distributed foods 

in these savanna landscapes may promote more nomadism in savanna than forest chimpanzees 

and Moore (1992) suggested that the sheer scale of these home ranges may make them 

indefensible. Forest-dwelling chimpanzees are well known to be highly xenophobic and respond 
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aggressively to members from neighbouring communities (e.g. Goodall 1986; Mitani et al. 2010; 

Mitani and Watts 2005; Watts and Mitani 2001; Wilson and Wrangham 2003). In contrast to forest 

dwelling chimpanzees, recent observations at Issa suggest that chimpanzees there may be more 

tolerant of neighbouring individuals, sharing large parts of their territory with non-community 

members (pers. obs). Similarly, as mentioned in the introduction, many species modulate their 

call rate in response to human disturbance - e.g. amphibians (Sun & Narins, 2005), birds (LaZerte, 

Otter & Slabbekoorn, 2017), and elephants (Soltis et al., 2014). For example, in Bili, northern 

DRC, chimpanzees call significantly less when they nest near human settlements (Hicks & 

Roessingh, 2010). The Issa study site lies not far from a human settlement and a road. Despite 

the fact that snare encounter rates increased with distance from the research station (Piel et al., 

2015), the presence of cattle herding is still frequently observed in the area (AC, pers. obs.). We 

recommend that subsequent work evaluate whether Issa chimpanzees adjust their call rate near 

areas of increased human presence (e.g. road or cattle herders). 

 

 Conclusion 

Whilst we discussed the inherent importance of biological and social predictors of call rate in wild 

chimpanzees, this study was primarily motivated by the need to establish call rate to estimate 

chimpanzee density from passive acoustic monitoring (PAM) and acoustic spatial capture-

recapture (aSCR) methods (A. Crunchant, 2021, unpublished data1). Chimpanzee call rate is 

highly sexually dimorphic and like many other chimpanzee behaviours (e.g. Kühl et al. 2019; 

Whiten et al. 1999) shows community-specific patterns. To estimate an average and unbiased 

call rate, and consequently an unbiased density estimate, we need to weight values of each 

age/sex class by the proportion of each demographic class constituting the community. Similar to 

great ap nest decay and nest production rates, even context-specific call rate is likely to vary 

between communities. We recommend call rate studies to be conducted in parallel to PAM 

deployment. Call rates can only be studied in habituated chimpanzees, as follows are necessary 

to add context to vocalizing behaviour. Comparison of call rates between communities will be 

instrumental to evaluate how strongly it can affect density estimation from aSCR methods. The 

use of PAM and SECR to estimate chimpanzee density is promising and with the improvement 

of automatic call detection, we anticipate that PAM will become more common in the 

primatologist’s toolbox. 
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1 See chapter five. 
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Chapter 5. Counting calling chimpanzees: density estimation from passive 

acoustic monitoring and spatial capture-recapture modelling 

The dataset from this chapter is the same than in chapter 3. 

 

Abstract: 

1. Abundance and density are two important measures to evaluate extinction risk and to 

assess the efficacy of conservation interventions, policy and practice. Rapid and regular 

monitoring allows researchers to evaluate population trends and the potential threats to 

wildlife. In practice, however, monitoring wide-ranging, elusive species, and/or low 

density animals is difficult. Recently, new methods combining passive acoustic 

monitoring (PAM) and spatial capture-recapture (SCR) models to estimate animal density 

have been developed to overcome these challenges.  

2. We estimated chimpanzee (Pan troglodytes) density from a 3-month PAM deployment 

and an acoustic spatially capture-recapture (aSCR) model, in a savanna-woodland 

mosaic habitat at the Issa Valley, western Tanzania. We compared estimates with those 

from camera trap footage [camera trap capture-recapture (CTCR) and camera trap 

distance sampling (CTDS)]. 

3. Our chimpanzee density estimate obtained from aSCR (0.24 ind./km2) was lower 

compared to direct observations (0.45 ind./km2), CTCR (0.56 ind./km2) and CTDS (0.32 

ind./km2). Despite accounting for the sexual dimorphism in chimpanzee calling behaviour, 

we suspect that the occurrence of chorusing, where multiple animals vocalise 

simultaneously, likely contributed to the lower estimate using aSCR. With current 

methods, counting individuals in a chorus is not yet reliable and counting a group of calls 

as a single call underestimates the number of individuals. 

4. Synthesis and applications. We are encouraged by the potential applications of SCR with 

acoustic data to estimate density of any vocalising animals. With the improvement of 

automatic call detection, we anticipate that PAM and aSCR will soon become a reliable 

monitoring method of elusive but especially loud calling species, such as elephants, 

wolves, gibbons and chimpanzees. 

 

Keywords: call, camera trap, chimpanzee, density, distance sampling, passive acoustic 

monitoring (PAM), primate, spatial capture-recapture (SCR)   
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 Introduction 

Abundance and density are two important measures for species monitoring, especially to evaluate 

extinction risk and to assess the efficacy of conservation interventions, policy and practice. The 

main approaches to estimating abundance include capture-recapture (CR: e.g. Borchers, 

Buckland & Zucchini, 2002), distance sampling (DS; e.g. Buckland et al., 2015 and  spatial 

capture-recapture (SCR; e.g. Borchers & Efford, 2008, Borchers & Fewster, 2016) These 

approaches allow imperfect detections and estimate both detection probabilities and abundance. 

CR and SCR methods use traps of various types (e.g. pitfall, camera, hair, etc.) to 

“capture” individual animals. For conventional CR analysis, the population is sampled multiple 

times (at least two independent occasions), and any animal caught is marked before being 

released. The number of animals “recaptured” (marked from a previous occasion) contains 

information on capture probability and allows abundance to be estimated. Conventional CR 

methods are non-spatial, in that capture locations are not used. This makes it difficult to estimate 

density objectively because the data contain no information on how far animals range (Obbard, 

Howe & Kyle, 2010), and animals that live closer to traps have a higher probability of being 

detected. With a spatial component, DS overcomes this issue and assumes that the probability 

of detecting an animal decreases as its distance from the observer increases (Buckland et al., 

2001). Perpendicular or radial distances to animals are obtained from line or point transects and 

allow researchers to estimate a detection function (Buckland et al., 2001). DS has the advantage 

of not requiring individual identification, however it assumes that all animals with activity centres 

that are at traps are detected, and this may not be the case. SCR methods combine temporal and 

spatial components, and use the CR data with data on capture locations to estimate both 

abundance and density (Borchers & Efford, 2008). These three methods are well established and 

used across a range of taxa and environments.  

Historically, line transects have been the preferred sampling approach for terrestrial 

mammals (e.g. Plumptre, 2000; Marques et al., 2001). Where transects are not possible, 

researchers can use acoustic monitoring to detect and monitor vocalising individuals. Acoustic 

surveys estimate the density of sounds, which can subsequently be converted to animal density 

given a cue rate. Although in its infancy, the application of SCR to acoustic data represents a 

promising direction for surveying wide ranging, elusive, or cryptic loud calling species. 

Acoustic spatial capture-recapture (aSCR) methods can be used to estimate vocalising 

animal density. Numerous teams have reported aSCR for various species, such as ovenbirds – 

Seiurus aurocapilla (e.g. Dawson & Efford, 2009), frogs – A. lighfooti (e.g. Measey, Stevenson, 

Scott, Altwegg, & Borchers, 2017), northern yellow-cheeked gibbons - Nomascus annamensis - 

(Kidney et al., 2016) and Minke whales – Balaenoptera acutorostrata (Marques et al., 2012). 

Current methods have been adapted from visual methods and are reviewed in Marques et al. 

(2013). In contrast to DS, where detection locations are assumed to be estimated without error, 

aSCR does not assume this. The addition of auxiliary data, such as signal strength (e.g. Dawson 

& Efford, 2009), time-of-arrival (TOA, requires sensors to be time synchronized) (Stevenson et 

al., 2015; Measey et al., 2017), estimated angles (Kidney et al., 2016), improve estimation 
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precision (Borchers et al., 2015; Borchers & Fewster, 2016). We can convert estimates of call 

density to population density using estimates of the proportion of animals that call and the call 

rate (Stevenson et al., 2015).  

Monitoring primate populations is essential, given that 60% of wild populations are 

threatened with extinction (Estrada et al., 2017). Chimpanzees are listed as endangered by the 

IUCN, with a global population severely fragmented and in decline (Humle et al., 2016). They are 

threatened by poaching, habitat loss and degradation, and infectious diseases (Humle et al., 

2016; Kühl et al., 2019). Rapid and reliable monitoring are necessary to evaluate the potential 

threats and population trends.  

Semi-arboreal and elusive by nature, chimpanzees are difficult to directly observe in the 

wild without habituating them to human presence (Plumptre, 2000). Consequently, monitoring 

methods rely mostly on non-invasive and indirect indices. Several indirect methods have been 

used historically, and consist of sampling animal signs, like nests (e.g. Hashimoto, 1995) or 

genetic material from faeces (Waits & Paetkau, 2005). More recent technologies, for instance 

camera trapping (CT) and passive acoustic monitoring (PAM), have proven effective in detecting 

chimpanzees and providing data for occupancy modelling (Crunchant, Borchers, Kühl, & Piel, 

2020; Crunchant et al., 2017; Kalan et al., 2015), ranging and territoriality (Kalan et al., 2016), 

and density estimation (Head et al., 2013; Després-Einspenner, Howe, Drapeau, & Kühl, 2017; 

Cappelle, Després-Einspenner, Howe, Boesch, & Kühl, 2019; Howe, 2019). Chimpanzee is a 

wide- ranging species, whose calls travel hundreds of meters. Despite PAM offering many 

advantages, it is not yet widely used for chimpanzee monitoring. 

The aim of this study was to compare chimpanzee density calculated from PAM and 

aSCR with estimates from SCR and DS based on camera trap footage. We explore the factors 

influencing SCR detection functions and discuss the advantage and limitations of each method, 

especially as they contribute towards conservation planning. We demonstrate the potential of 

PAM for estimating abundance and density for any terrestrial, loud calling species and discuss 

the conservation implications for this emerging census technique. 

 

 Methods 

2.1. Data acquisition 

Study site, acoustic and camera trap surveys 

We conducted camera trap and acoustic sensor surveys during ten months between March and 

December 2018, in the Issa valley, western Tanzania. The study site of about 70km2 is comprised 

by a series of riverine valleys separated by steep mountains and flat plateaus. Vegetation is 

dominated by miombo woodland and includes grassland, swamp and riparian forest. For 

analyses, we collapsed vegetation categories into ‘open’ (woodland, grassland, swamp) and 

‘closed’ (riparian forest), see Fig. 5.1. We deployed 53 CTs (Bushnell Trophy Cam): 21 in a 

systematic layout (1.67x1.67km grid, henceforth ‘systematic’ CT) and 32 at targeted locations 

(animal paths or termite mounds, henceforth ‘targeted’ CT (Fig. 5.1A). We deployed 12 acoustic 



Chapter 5: density 

70 
 

sensors (SM2, Wildlife Acoustics), in three clusters of four sensor/cluster, at the tops of valleys 

(Fig. 5.1B) in miombo woodland trees, attached at 1.65m. We rotated the clusters to new locations 

within the study area every 2 weeks (four arrays). For more details on the study site, PAM and 

CT deployments, see chapter three. 

 

 

Figure 5.1. PAM (A) and CT (B) deployments in the Issa Valley, Tanzania. 

 

2.2. Data analyses 

a) PAM and aSCR 

 

Call extraction and signal strength 

Since call rate is likely to vary as a function of season and was known only for a specific season, 

we analysed a reduced dataset of three months of acoustic data, corresponding to the late dry 

season (mid-July to mid-October). We manually processed acoustic recordings by inspecting 

spectrograms and aurally confirming any detection, with the aid of the acoustic software Raven 

Pro (Bioacoustics Research Program, 2019). Vocalisations that were separated by one second 

or more were defined to be separate calls. We determined the signal strength of each call and at 

each sensor by manually drawing a square around the call in the spectrogram. We used the 

‘filtered RMS amplitude’ function in Raven to derive the signal strength. 

 

Model 

We fitted a multi-session model within the package ‘ascr’ (Stevenson & Borchers, 2017) in R (R 

Core Team, 2019). A session involved a group of at least two detectors from the same cluster 

that could potentially detect the same call. The data comprised the detection histories of each call 

(information about which calls were detected by which detector) and the log-transformed signal 

strength of each detected call on each detector. We defined a detection as a call visible on the 

spectrogram. All detections below a threshold signal strength of log(5) were discarded (Stevenson 

et al., 2015). The SCR models require a mask defined as the surveyed area containing the 
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acoustic sensors and an extended area surrounding them, large enough to ensure that any 

animals outside this area have a zero, or near-zero probability of being detected during the survey 

(Efford, 2004; Borchers & Efford, 2008). We defined the mask with a buffer of 3km around each 

acoustic sensor, given that chimpanzee calls can travel up to 1km. 

 

Density of chimpanzee callers 

To convert call density into calling chimpanzee density, we conducted an independent study on 

chimpanzee call rate during the late dry season (chapter four). To account for the age/sex 

variability in call rate, we weighted the call rate values of the different demographic classes with 

the proportion of all juveniles, subadult and adult females and males identified across all CT 

footage. The weighted mean call rate was 1.23 calls/hr. 

 

b) CT and SCR 

 

Models 

Chimpanzees were identified through a combination of facial and bodily characteristics and only 

observations of identified chimpanzees were included in the models. We ran a set of candidate 

models using a maximum likelihood approach within the package ‘secr’ (Efford, 2020) in R. To 

facilitate comparison with previous studies (e.g. Després-Einspenner et al., 2017), we defined a 

sampling occasion as one week of deployment. We accounted for variation in sampling effort (i.e. 

the number of days a CT was active each sampling occasion, from 0 to seven days) with the 

function ‘usage’ in all models (Efford, Borchers, & Mowat, 2013). We considered cameras as 

count detectors, allowing multiple detections per location and per occasion (Efford et al., 2009). 

We included only one observation per individual, per CT, per day to allow independence between 

observations. Each individual could then be detected up to seven times per CT during each 

occasion; the model fits a binomial distribution with a size determined by usage. 

Given well-established sex-differences in range-use (Bates & Byrne 2009), we defined 

the mask using the functions make.mask() and suggest.buffer() in ‘secr’ derived from the capture 

history of the subadult and adult males from the combined dataset, using a hazard half-normal 

detection function, to ensure that the mask was large enough to include the activity centres of all 

individuals (Borchers & Efford, 2008; Royle & Young, 2008). The mask is represented by a regular 

grid of points 400m apart.  

 

Factors influencing detectability 

The SCR detection function is defined by two parameters: λ0, the intercept of the detection 

function, i.e. the expected number of encounters at its activity centre, which can be interpreted as 

catchability and σ, the spatial scale, which quantify how far animals range. We investigated the 

effects of the following factors on λ0 and σ: 

1) Season: occasion level covariate, four levels – early dry, late dry, early wet, late wet. 

2) Sex: two levels – female or male. 

3) Design: trap level covariate, two levels – targeted or systematic. 
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4) Vegetation: trap level covariate, two levels – open (miombo woodland) or closed (forest). 

5) Individual heterogeneity, h2, defining a two-point finite mixture distribution. This model 

implicitly divides the population into two groups with similar detection probabilities for 

animals within each group, without assigning specific individuals to specific groups 

(Pledger, 2000; Borchers & Efford, 2008). 

 

We investigated the effects of sex, seasonality, vegetation and h2 on σ, and the effects of 

design (targeted or systematic CT placement), vegetation and season on λ0. The sex of two 

juveniles was unknown; we randomly assigned their sex (one male and one female) and we 

assumed that it would not affect the estimates since they were both seen regularly travelling with 

their mother. 

We did not attempt to investigate the effects of the behavioural responses to initial 

detection at any CT or at specific CT site (Otis et al., 1978), since 23 out of the 32 targeted CT 

have been deployed for multiple years prior to this study and chimpanzees no longer exhibit 

unusual behaviour when captured on film to these cameras (AC pers. obs.). 

 

Model selection 

To identify the most parsimonious models, we used AICc, the small-sample corrected version of 

Akaike’s Information Criterion (Hurvich & Tsai, 1989; Burnham & Anderson, 2004). We first built 

univariate models for λ0 and compared AICc values with the null model of constant parameter 

value. We selected the covariate that gives the lowest AICc and carried out a stepwise forward 

selection by adding one covariate at a time, while retaining the ones already selected until there 

is no decrease in the AICc value. We then built univariate models for σ while keeping the best 

parameters for λ0 determined previously and carried out a similar forward stepwise model 

selection.  

 

c) CT and distance sampling 

 

Availability 

Chimpanzees are semi-arboreal, spend their nights in tree nests, and stay in one place for part 

of the day, while resting or feeding. They are thus not detectable by CT all day. To account for 

this lower detection probability, we estimated the proportion of time when chimpanzees are likely 

to be detected, by quantifying the level of activity (A, see below) using the Rowcliffe method 

(Rowcliffe, Kays, Kranstauber, Carbone, & Jansen, 2014) with the R ‘activity’ package (Rowcliffe, 

2019). We defined an event as the first video that included a chimpanzee(s) with the following 

successive videos removed when the time between the start of videos was less than a minute. 

Because detections must be independent, we considered each event as a separate detection 

(rather than each video, for example). 
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Models and assumptions 

To estimate chimpanzee density, we applied the formula from Howe et al. (2017) for CT point 

transects: 

𝐷̂ =
∑ 𝑛𝑘

𝐾
1

𝜋𝑤2 ∑ 𝑒𝑘𝑃̂𝑘
𝐾
1

 .
1

𝐴
 

where sampling effort at point k is defined by 𝑒𝑘 =
𝛳𝑇𝑘

2𝜋𝑡
, with 𝑇𝑘 the total sampling time (s) at point 

k, t the interval chosen between snapshot moments (here, 2s), and ϴ (rad) the central angle of 

field of view (F.O.V.) of the CT. We used different models of CT (Bushnell trail cameras models 

#119476, 119678, 119776, 119876) with a F.O.V. of 38 or 45⁰ (www.bushnell.com). 𝑤 is the 

truncation distance beyond which any distances are discarded, 𝑛𝑘 is the number of observations 

at point k, 𝑃̂𝑘 is the estimated probability that an animal is detected when in front of the CT 

between ϴ and w; A is the availability as defined above. 

Following Howe et al. (2017), we post-processed videos and measured observation 

distances between CT and the midpoints of each filmed chimpanzee at 2s intervals. We recorded 

reference videos by holding distance labels during CT set-ups to measure afterwards observation 

distances. Animals were assigned to 1-meter distance intervals from 0 to 10m, then to 2-meter 

distance intervals from 10 to 20m, then to 5-meter distance intervals for distance above 20m. This 

is because precise distances were more difficult to assess for objects further away from the CT. 

When the midpoint of a chimpanzee was out of field of view, we discarded the observation. To 

avoid any potential bias created by researcher presence, we excluded the detections and 

sampling effort of the 24hrs following any visit (for e.g. maintenance) of a CT. Because an animal 

attracted by the CT and starring at or inspecting might introduce bias (Buckland et al., 2001), we 

also discarded all observations where animal behaviour seemed to be influenced by the CT. For 

comparison with the density estimates derived from aSCR and CTCR, that consider only weaned 

individuals, we excluded all detections of infants but not their mother. 

Chimpanzee density was estimated using Distance 7.3 (Thomas et al., 2010). For further 

explanations regarding CTDS, see Howe et al., (2017). We considered CTDS models with no 

adjustment term with half-normal, hazard rate and uniform key functions. We estimated variances 

from 999 bootstrap resamples of data from the different points. For comparison with CTCR, the 

region area was defined as the same one than the mask defined for CTCR (i.e. 236km2). We 

compared AIC values to select among candidate models. 

 

 Results 

3.1. PAM and aSCR 

Call detections and calling chimpanzee density 

Over the three-month study period and the 62120 minutes of audio recordings analysed, the 

sensors recorded 2036 calls. The aSCR model estimated a density of 0.24 chimpanzees per km2 

(Fig. 5.2). The probability to detect a call was half for sounds ~1km from a sensor and a call 

unlikely to be detected from about 1.75km of a sensor (Fig. 5.3). 

http://www.bushnell.com/
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Figure 5.2. Chimpanzee (weaned individuals) density estimates (individuals/km2) from aSCR, CTDS, and 

CTCR (this study) and line transect (Piel et al., 2015) methods. Density from direct observations is calculated 

from the number of weaned chimpanzees in the habituated community (25) divided by the estimated home 

range (55km2, Piel, unpublished data). Error bars represent 95% confidence intervals; CI with aSCR has not 

been estimated, and CI with line transect is too small to be visible on the figure. 

 

Figure 5.3. Probability to detect a call as a function of distance with the signal strength detection function 
from the acoustic spatially capture-recapture model. 

 

3.2. CT and SCR 

Chimpanzee detections and identifications 

A total of 3342 chimpanzee videos were recorded during 280 days of deployment with more than 

96% of chimpanzee videos captured on the targeted CT (Table 5.1). The targeted cameras 

yielded an encounter rate 2.5x higher of identified chimpanzees than with the systematic CT, and 

more unique individuals were detected and identified (83 unique, weaned individuals). From the 

combined dataset, 101 unique chimpanzees (88 weaned individuals) were identified in total. 2601 

(80.8%) videos with a total of 6880 identified and recaptured chimpanzees came from CT placed 

at termite mounds. 
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Table 5.1. Camera trap survey with camera trap effort (trap-days per camera trap), total number of videos 

containing chimpanzees, number of captured chimpanzees, number of identified chimpanzees, number of 

unique identified individual (weaned) and mean number of detections per weaned individual for the targeted, 

systematic and combined layouts. 

 

 Targeted Systematic Combined 

Trap-days per CT 211.9 [66-280] 217.1 [147-260] 214 [66-280] 

Total # of videos recorded 3217 125 3342 

Total # of chimpanzees detected 8609 333 8942 

Total # of chimpanzees identified 7030 (81.7%) 94 (28.2%) 7124 (79.7%) 

Total # of unique individuals 95 51 101 

Total # of unique weaned individuals 83 46 88 

Mean # of daily recaptures per 

weaned individual 

12.36 [1-83] 1.74 [1-5] 12.57 [1-90] 

 

SCR analyses 

The top model that minimized AICc included an effect of the design, season and vegetation on 

the catchability λ0 and an effect of season, h2, vegetation and sex for σ (Table 5.2). It gives a 

density of 0.56 chimpanzees per km2 (Fig. 5.2). The null model ranked last (ΔAICc=1279.2). 

λ0 estimated from the best model was 1.06*10-2. The targeted CTs (λ0=1.85*10-2) were seven 

times more likely to detect chimpanzees than the systematic CT (λ0=2.63*10-3). Furthermore, 

chimpanzees were twice as likely to be recorded on a CT deployed in closed (λ0=1.53*10-2) 

compared to open vegetation (λ0=5.77*10-3). Likewise, chimpanzees were almost three times as 

likely to be caught on a CT during the early wet (λ0= 2.9*10-2) than during the late dry seasons 

(λ0=9.9*10-3), and more than fifteen times as likely than during the early dry (λ0=2*10-3) and late 

wet (λ0=1.36*10-3) seasons. 

The estimates of σ were almost 1.5 times higher during the early dry (σ=2046m) and late 

wet (σ=2158m) seasons than late dry (σ=1468m) and early wet (σ=1291m) seasons. Males 

travelled slightly more (σ=1871m) than females (σ=1611m), and chimpanzees travelled slightly 

more in open (σ=1851m) compared to a closed area (σ=1631m). 

 

Table 5.2. Results for the best four SCR models with CT. Covariates are des= design, sea=season, 

veg=vegetation, h2=individual heterogeneity and sex; Par.=parameters, LL=log likelihood. 

 

Model Par. LL AICc Δ (AICc) w (AICc) Density (ind./km2) 

λ0~des+sea+veg; 

σ~sea+h2+veg+sex 

14 -4630.986 

 

9295.726 

 

0.000 

 

0.6251 

 

0.583 [0.407-0.765] 

λ0~des+sea+veg; 

σ~sea+h2+veg 

13 -4633.832 

 

9298.584 

 

2.858 

 

0.1497 

 

0.471 [0.364-0.608] 

λ0~des+sea+veg; 

σ~sea+h2+sex 

13 -4634.030 

 

9298.979 

 

3.253 

 

0.1229 

 

0.479 [0.372-0.616] 

λ0~des+sea+veg; 

σ~sea+h2 

12 -4635.594 

 

9299.348 

 

3.622 

 

0.1022 

 

0.463 [0.359-0.597] 
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3.3. CT and distance sampling 

Detections and distance observations 

Chimpanzees were detected on 11 of the 22 systematic CT. A total of 333 detections of individual 

chimpanzees (including infants) were made on 125 videos (Table 5.1); we excluded 38 detections 

of infants, as explained in the method section. 88 (69%) videos came from just three CT locations. 

We excluded 18 videos because they were recorded within the 24hrs following CT maintenance 

and 51 distance observations were discarded because we concluded that chimpanzees reacted 

to the CT (e.g. prolonged staring). Following exploratory analyses, we binned all distances up to 

14m into 2m intervals, left truncated at 2m (because of a paucity of data between 0 and 2m) and 

right truncated at 14m (the detection function shows a heavy tail). This resulted in 1644 distance 

observations. 

 

Availability for detection 

Chimpanzees were active from 5am to 7pm and had two main peaks of activity during the day: 

one early morning (7-8am) and a second one in the afternoon (4-5pm), as well as a lower peak 

at 11am (Fig. 5.4). CT detection availability (A) was 0.40 (SE 0.067). 

 

 

Figure 5.4. Chimpanzee movement activity from CT data. Grey histogram represents observed frequency 
(i.e. number of events per hour) and orange curve is fitted circular distribution, representing the pattern of 
relative activity over the day. 
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Distance sampling analyses 

The best density model was derived from the model with a hazard rate key function and no 

adjustment term (Fig. 5.5, Table 5.3). Due to the non-independence of observations, AIC ranking 

favour more complex models. The model estimated a density of 0.32 chimpanzees per km2 and 

an abundance of 79 unique individuals (Fig. 5.2, Table 5.3). Precision was poor (CV=0.48); 94% 

of the variance was explained by the encounter rate. 

Figure 5.5. Probability to detect a chimpanzee (A) and probability density function (B) as a function of 

distance with a hazard rate key function and no adjustment terms. 

 

Table 5.3. Density and abundance estimates for the three CTDS models (HR=hazard rate, HN=half normal 

or U=uniform, without adjustment terms) corrected for the activity pattern and after bootstrapping. Models 

are ranked with Akaike Information Criterion (AIC) and coefficient of variation (CV) is specified. 

 

Rank Key function AIC Δ AIC Density (ind./km2) Abundance CV 

1 HR 5690.25 0 0.321 [0.125-0.822] 79 [32-198] 0.478 

2 HN 5719.08 28.83 0.391 [0.153-1.003] 95.6 [35-263] 0.480 

3 U 5811.93 121.69 0.261 [0.102-0.666] 61.1 [17-119] 0.477 

 

 Discussion 

Our study assessed the applicability of an acoustic spatially capture-recapture method for 

monitoring wild chimpanzees. We have shown that aSCR yielded lower estimates than CTDS 

and CTCR, ranging from 0.24 to 0.56 chimpanzees per km2. Compared to CTCR, DS precision 

was low and has not been estimated for aSCR, since the bootstrap method assumes that 

chimpanzees are immobile during the acoustic survey. CT catchability (λ0) varied with CT study 

design and vegetation but mostly as a function of season, with a higher λ0 during the late dry and 

early wet seasons. We first discuss advantages and limitations of each method, then explore the 

factors that can explain the detection heterogeneity with CTCR and finally, evaluate which method 

is the most adequate given available means, skills and objectives. 

 

A B 
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4.1. Use of PAM and aSCR to estimate calling chimpanzee density 

Chorusing, where multiple animals vocalise simultaneously, might explain the lower density 

estimate with aSCR. Counting individuals in a chorus is difficult (Torti et al., 2018) and counting 

a group of calls as a single call underestimates the number of callers, negatively biasing an 

estimate of individual call density. More work would be needed to estimate the number of callers 

in a chorus, as has been done with wolf choruses (Passilongo et al., 2015). Furthermore, the 

acoustic sensors were not time-synchronized and did not allow us to include the time difference 

of arrival (TDOA) into the model. Adding TDOA information to signal strength to reveal animal 

location improves estimator precision and decreases bias (Stevenson et al., 2015). 

 

4.2. Use of CT with SCR and DS to estimate chimpanzee density 

Only three studies have previously applied CTCR to chimpanzees (Head et al., 2013; Després-

Einspenner et al., 2017; Howe, 2019). In an empirical evaluation of CTCR on a habituated 

chimpanzee community, Després-Einspenner et al. (2017) showed that estimates were highly 

accurate and precise from targeted and systematic designs. Five CTs deployed for ten months 

were sufficient to yield accurate estimates (Després-Einspenner et al., 2017; Howe, 2019). 

We attempted to estimate the density with CTCR from the systematic design, however, 

our recaptures were insufficient and yielded high estimates. Howe (2019) recommended at least 

three detections per animal (DPA); the mean DPA for our systematic design was 1.74 (compared 

to 12.57 for the combined dataset, Table 5.2). Furthermore, we were able to identify only 28.2% 

of the chimpanzees detected, vs. 76% in the Tai dataset (Després-Einspenner et al., 2017). 

Chimpanzees were often walking too far from the CT for us to identify (sometimes more than 15-

20m), or else away or perpendicular to the CT, thus impairing identification. In open vegetation, 

a targeted design would likely improve identifications and estimated accuracy. 

Lastly, we want to acknowledge potential violations of CTCR assumptions. The SCR 

models assume that all individuals are identified correctly. At Issa, an experienced observer made 

all identifications; given that 96% of detections were of habituated chimpanzees, we are confident 

these identifications are reliable. However, we acknowledge the possibility of misidentification. 

The model further assumes the population to be demographically closed (Borchers & Efford, 

2008). Given that females giving birth every five to seven years and adolescent females emigrate, 

we expected minimal violations of this assumption. Lastly, the model assumes independence 

between detections. Chimpanzees exhibit fission-fusion and are often detected as groups that 

can lead to an overdispersion of the data. SCR models are robust to moderate level of 

aggregation (Bischof et al., 2020), but further analyses would confirm the potential bias. 

CTDS has only been recently developed (Howe et al., 2017) and to date, just three 

studies have evaluated the method – all in closed-canopy forests: one on Maxwell’s duikers – 

Philantomba maxwellii (Howe et al., 2017), another on chimpanzees – P. t. verus (Cappelle et al., 

2019), and a third in a multi-species study in Salonga National Park, Democratic Republic of the 

Congo (Bessone et al., 2020). In contrast to these forest environments, Issa chimpanzees from a 
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savanna-woodland were detected at distances greater than 25m, compared to 12-15m in forests. 

Similar to Cappelle et al. (2019), the low precision is explained by the encounter rate variation, 

with most detections occurring at only three CTs. Low precision might be more extreme here 

given habitat heterogeneity. 

CT detection availability is estimated for each survey, as this parameter varies among sites 

and influences estimates. For instance, we calculated availability to be 0.40 vs. 0.26 at Tai for a 

24hr period (Cappelle et al., 2019).  

 

4.3. Ecological factors, design and detection heterogeneity 

We evaluated the effects of different parameters on the capture probability with the CTCR 

method. The probability to detect an individual at its activity centre (λ0) was higher during the late 

dry and early wet seasons and lower during the late wet and early dry seasons. We assume that 

there is greater likelihood of chimpanzees being recorded on a CT as party size increases. 

Monthly party size shows pronounced fluctuations across seasons (Giuliano & Piel, unpublished 

data), with larger parties observed in the late dry and early wet seasons. Furthermore, more than 

80% of the videos come from CTs deployed at termite mounds. Termite fishing is a seasonal 

activity, which increases during the early wet season (Stewart & Piel, 2014). Seasonality also 

affects σ (spatial scale), with lower values meaning that chimpanzees range less broadly, during 

the late dry and early wet seasons. Party size is also correlated to food availability, with smaller 

parties when food availability is low (Giuliano and Piel, unpublished data). As expected, the design 

of the CT had an effect on λ0, with targeted CT yielding three times more detections than 

systematic CT.  

 

4.4. Comparing estimates: selecting a method and conservation implications  

In this study, we compared density estimates from three methods, two of which were empirically 

evaluated to be highly reliable (CTCR - Després-Einspenner et al., 2017 and CTDS - Cappelle et 

al., 2019). Chimpanzee density at Issa has previously been estimated from nest counts at 0.25 

individuals/km2 (Piel et al., 2015), nearly identical to what we calculated from aSCR. However, 

nest counts are known to sometimes underestimate density (Cappelle et al., 2019). 

Nowadays, commonly used non-invasive monitoring techniques include CT, PAM, 

genetics, drones and line or point transects (Plumptre, 2000; Schwartz, Luikart & Waples, 2007; 

Burton et al., 2015; López & Mulero-Pázmány, 2019; Sugai et al., 2019). We suggest that field 

practitioners consider four parameters: (1) costs, (2) field and (3) analysis labour and time, and 

(4) estimate precision. It is beyond the scope of this paper to review advantages and limitations 

of each monitoring method. However, we present some considerations for conservation 

managers (Table 5.4). For loud calling species, PAM detects vocalising animals more efficiently 

and rapidly than CT (chapter three)-, however results may underestimate the true density by not 

accounting for chorusing behaviour. With the improvement of automatic call detection, we 
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anticipate an increasing and widespread use of PAM and aSCR in censusing and monitoring 

vocally conspicuous wildlife. 
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Table 5.4. Main density estimation and non-invasive monitoring methods used for terrestrial animals. 

 

Density 

estimation 

method 

Key assumptions Monitoring 

method 

Advantages Limitations Example application  

studies 

DS 

- Animals distributed 

independently from line or 

point 

- Animals are always 

detected 

- Instantaneous 

observation process 

(snapshots): animals 

detected at their original 

location 

- Distances are measured 

without errors 

Direct 

observations, 

signs (e.g. 

nests, dungs, 

vocalisations 

with active 

acoustic 

monitoring, 

aerial surveys) 

- Low material costs (e.g. binoculars, 

compass) 

- Need estimates of sign production or 

decay rate, for e.g. dungs or nests 

- Reliability and consistency between 

observers 

- High field labour 

- Chimpanzee nests: Kouakou, 

Boesch & Kuehl, 2009 

- Red foxes (Vulpes vulpes): 

Ruette, Stahl & Albaret, 2003 

CT, 

vocalisations 

(PAM) 

- Multi-species studies (e.g. songbirds) 

- Low long-term material costs 

- PAM more efficient than CT to detect 

calling species 

- Initial costs of CT or acoustic sensors 

- High analyses time 

- Mammals: Bessone et al., 2020 

- Birds: Sebastián-González et 

al., 2018 

 

SCR 

- Individuals are 

identifiable 

- Some individuals are 

detected more than once 

and at more than one 

location 

Genetic 

samples 

- Allow to conduct population viability 

analyses  

- High resolution of data 

- Can address other questions such as 

diet, parasitism, paternity analyses… 

- High analyses time 

- High analyses costs (reagents, lab 

technicians…) 

- Requires specialised lab skills 

- Logistical challenges: expensive and 

risky export process but new on-site 

field methods are on development 

- Chimpanzees: McCarthy et al., 

2015 

- American black bears (Ursus 

americanus): Howe, Obbard & 

Kyle, 2013 

CT - ID (demography: age/sex 

composition) provides data on decline 

stage or recovery 

- Low long-term material costs 

- Can address other questions e.g. 

social network 

- Initial costs of CT 

- Require experience skills for ID 

- Leopards (Panthera pardus): 

Hedges et al., 2015 

- Jaguars (Panthera once): Silver 

et al., 2004 

PAM - Low field labour and time 

- Low long-term material costs 

- More efficient to detect calling 

species than CT 

- Initial costs of acoustic sensors 

- High analyses time when no 

automated call recognition 

- Individual ID very difficult for now 

- Reserved for calling species 

- Frog (Arthroleptella lightfooti): 

Stevenson et al., 2015  

- Ovenbirds (Seiurus aurocapilla): 

Dawson & Efford, 2009 
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Chapter 6 : Localising wild chimpanzees with passive acoustics 

 

Abstract 

1. Localising wildlife contributes in multiple ways to species conservation. Data on animal 

locations can reveal elements of social behaviour, habitat use, population dynamics and 

help calculations of density estimation. Acoustic localisation systems (ALS) are a non-

invasive method widely used in the marine environment but not well established and 

rarely employed for terrestrial species. 

2. We deployed an acoustic array in a mountainous environment with a heterogeneous 

vegetation, comprised of four custom-built GPS synchronised acoustic sensors at about 

500m intervals in Issa Valley, western Tanzania, covering an area of near 2km2. Our goal 

was to assess the precision and error of the estimated locations by conducting playback 

tests, but also by comparing the estimated locations of wild chimpanzee calls with their 

true locations obtained in parallel during focal follows. We explored the factors influencing 

localisation error, such as wind speed and temperature, which fluctuate during the day 

and are known to affect sound transmission. 

3. We localised 282 playback sounds and found that the mean localisation error was 27 ± 

21.8m. Localisation was less prone to error and more precise during early mornings 

(6h30) compared to other periods, when temperatures were low. We furthermore 

localised 22 chimpanzee calls within 52m of the location of a researcher closely following 

the calling individuals. 

4. We demonstrate that acoustic localisation is a powerful tool for chimpanzee monitoring, 

with multiple behavioural and conservation applications. Its applicability in studying social 

dynamics and revealing density estimation among many others, especially but not 

exclusively for loud calling species, provides an efficient way of monitoring populations 

and inform conservation plans to mediate species-loss. 

 

Keywords:; acoustic array; ALS; apes; localisation; playback; precision  
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 Introduction 

Localising animals can help to answer questions related to species conservation. Its application 

ranges from informing on social behaviour, habitat use, and even revealing population dynamics, 

to estimate abundance and density (e.g. Blumstein et al., 2011; Rhinehart et al., 2020). Direct 

visual observations of animals are often difficult because animals can be cryptic, elusive, 

nocturnal, live in dense vegetation, or range widely. For decades, researchers have relied on 

animal-borne loggers to remotely track animals (Millspaugh & Marzluff, 2001; Kays et al., 2015). 

However, this invasive method is controversial. It often requires darting and capturing the targeted 

animal, which can be a stressful event for the animal, and can affect subsequent behaviour and 

survival (reviewed in Wilson & McMahon, 2006). Initially restricted to larger animals and offering 

limited resolution movement data, improvement in loggers have resulted in better location 

resolution and movement accuracy, and from far smaller devices (Kays et al., 2015). GPS loggers 

can be expensive and present battery issues, with collars/batteries requiring changing at regular 

intervals. To overcome this invasiveness and limitations of using GPS loggers, researchers also 

use acoustic localisation to monitor animals, by exploiting sounds that can travel long distances. 

Acoustic localisation uses the time difference of arrival (TDOA) of sounds to multiple (time 

synchronised) sensors to identify the sound origin location, following triangulation (e.g. 

Spiesberger & Fristrup, 1990; Blumstein et al., 2011). Despite its ubiquity in marine mammalogy, 

acoustic localisation system (ALS) work is not as pervasive with birds or terrestrial mammals. In 

studies applying ALS to birds, researchers synchronised acoustic sensors by deploying 

thousands of meters of cable (e.g. Mennill et al., 2006; Fitzsimmons et al., 2008) before later 

developing wireless time-synchronised arrays (e.g. Collier, Kirschel & Taylor, 2010; Mennill et al., 

2012). Location error varies as a function of inter-caller and inter-sensor distances; localisation 

can be limited in terms of applicability for widely spaced callers, as it would require a larger 

number of sensors. Sound transmission and thus localisation can also be impacted by 

environmental variables such as high temperature, high wind speed and vegetation – all that can 

distort acoustic signals and affect the signal-to-noise ratio, where in noisy environments target 

signals can overlap with other sounds. Lastly, sensor time synchronisation error and recording 

sample rate can bias the estimation of TDOA and lead to inaccurate localisations (reviewed in 

Rhinehart et al., 2020). 

Initially pioneered in the marine environment, early acoustic localisation systems (ALS) 

exploited low attenuation characteristics in underwater sound (Spiesberger & Fristrup, 1990; 

Stafford et al.,1998). Comparatively, fewer ALS deployments in terrestrial systems have been 

conducted, likely because of obstacles (i.e. trees) that attenuate sounds, but mostly due to 

technical constraints, such as the difficulty of simultaneously monitoring multiple acoustic 

sensors. Studies have mainly focused on birds (e.g. Wang et al., 2005; Mennill et al., 2006, 2012; 

Collier et al., 2010) and recently on some loud calling mammals, such as orangutans (Pongo 

pygmaeus wurmbii) (Spillmann et al., 2015), elephants (Loxodonta cyclotis) (Wrege et al., 2017; 

Hedwig et al., 2018) and wolves (Canis lupus) (Papin et al., 2018; Kershenbaum et al., 2019).  
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The aim of this study was to evaluate a custom-made ALS composed of four GPS time-

synchronised acoustic sensors to localise wild chimpanzees (Pan troglodytes schweinfurthii) in 

western Tanzania. Chimpanzees are a wide-ranging species and rely on loud calls that can travel 

hundreds of meters to coordinate movement (e.g. Uhlenbroek, 1996; Gruber & Zuberbühler, 

2013; Fedurek et al., 2014). Our goal was to assess the precision and error of the estimated 

locations by conducting playback sound experiments, but also by comparing the estimated 

locations of actual wild chimpanzee calls with the true (ground) locations obtained in parallel with 

focal follows. We explore the factors influencing the localisation error, such as wind speed and 

temperature that fluctuate during the day. We hypothesized that higher wind speed would lower 

localisation error. We demonstrate the potential of ALS for localising any terrestrial, loud calling 

animals and discuss the behavioural and conservation applications for this emerging census 

technique with wild chimpanzees. 

 

 Methods 

2.1. Study site 

We conducted the 3-month study between August and October 2019, in Issa Valley, western 

Tanzania. The study site of about 70km2 is comprised of a series of riverine valleys separated by 

steep mountains and flat plateaus. Vegetation is dominated by woodland and also includes 

grassland, swamp and riparian forest. For analyses, we collapsed vegetation categories into 

‘open’ (woodland, grassland, swamp) and ‘closed’ (riparian forest). For more information on the 

study site, see chapter three. 

 

2.2. Acoustic localisation system 

We deployed a passive acoustic monitoring (PAM) system that enables localisation of 

chimpanzee loud calls. The acoustic array consisting of four sensors was deployed on the ground, 

around the perimeter of a single valley known to be important for the Issa community during the 

late dry season (AC pers. obs.), when we collected the data. Each audio recorder was comprised 

of a microphone (USB Lavalier omnidirectional) unit integrated with a nano-computer Raspberry 

Pi (Raspberry Pi 3 Model B Motherboard); a GPS unit, three 10W solar panels and two 44V 

batteries and was protected in a Pelicase (Pelican 1170 Case). The recording script averaged 

sensor locations regularly determined by the GPS unit. Sounds were recorded continuously, 

saved as 30min audio files at 48kHz sampling rate in .flac format, and stored in a 32GB SD card. 

Each sensor was placed ~ 500m from each other, to maximise the likelihood of triangulation via 

detection on multiple sensors, while simultaneously minimizing the likelihood of missing calls. 

Chimpanzee calls can travel at least 500m, so we estimated that the area covered about 1.9km2 

by drawing a 500m buffer around the sensors. We downloaded and saved audio files to an 

external hard drive every ten days. 
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2.3. Localisation precision and error 

To quantify the error and precision of the system, we conducted two playback studies: a static 

test and a walking test. For both tests, playback sounds consisted of a tonal sequence (range 

500-1800Hz, Fig. 6.1). This sound sequence was used in place of a pant hoot (the chimpanzee 

long call – e.g. Goodall, 1986) to minimize disturbance to otherwise xenophobic chimpanzees 

(Herbinger et al., 2009). We broadcast sounds from 1m above the ground with a FoxPro Fusion 

portable loudspeaker (FoxPro Inc., Lewiston, PA, USA) at mean peak sound pressure level of 

102.4dB (A-weighting), measured at 1m from the speaker with a Sound Pressure Level meter 

(DL7103 Di-LOG, Manchester, UK). We chose this level to correspond to pant hoots produced by 

wild individuals (Herbinger et al., 2009). We recorded environmental variables (temperature, wind 

speed and relative humidity) with a HOBO weather station (model RX3000) deployed near the 

base station. 

The static test consisted of broadcasting repeatedly the tonal sequence at different times 

of day (6:30, 9:30, 12:30, 15:30, 18:30), fifty consecutive times at a single location, in the 

geographic centre of the array. The walking test consisted of broadcasting the tonal sequence 

along line transects, two times each at 30 different locations, sequentially separated by 50m. We 

recorded GPS locations with a handheld GPS (Garmin Rino750). In both tests, we faced North 

when broadcasting the tonal sequence. 

 

 

Figure 6.1. Spectrogram of the tonal sequence used for the playback tests (range 500-1800Hz), developed 

from acoustic parameters of a wild chimpanzee pant hoot by Adam Clark Arcadi). 

 

2.4. Validating the localisation system with calls from wild chimpanzees 

To validate the system with calls from wild chimpanzees, we conducted chimpanzee focal follows. 

We selected a focal chimpanzee (adult, subadult or juvenile) each morning and tried to follow 

him/her for the entire day. We conducted instantaneous focal sampling (Altmann, 1974) with a 

scan defined as the behaviour of the animal recorded every five minutes, when we collected 
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among other data the location of the individual (GPS). We further noted all vocal behaviour ad 

libitum of the focal. We then compared the estimated location (see below) of chimpanzee calls 

recorded by the sensors with the associated locations of the calling chimpanzees determined 

during focal follows. The minimal distance between the observer and the chimpanzee was 10 

meters to avoid human-chimpanzee disease transmission, and the GPS location was recorded 

every five minutes with a handheld GPS. 

 

2.5. Time of arrival and sound localisation 

The time of arrival (TOA) of the sounds was determined at the sub-second by visualising the 

spectrogram with the software Raven (Bioacoustics Research Program, 2019). We then 

estimated the sound localisations with the software SoundFinder (Wilson et al., 2014). The 

software uses the temperature at the time at which the sound is produced to calculate the sound 

speed following the formula from Wölfel and McDonough (2009). It estimates the location of the 

sound source by applying the least-squares solution developed for global positioning systems 

(Bancroft, 1985), using the time difference of arrival (TDOA), with the TOA of the sensor reached 

first set to 0. We defined localisation error as the Euclidean distance between estimated and true 

locations.  

 

2.6. Statistical analyses 

We conducted all analyses in R v.3.6.1 (R Core Team, 2019). To model the error of the 

localisation (E) as a function of the covariates, we used a linear model. Fixed covariates were (1) 

temperature (T, continuous), wind (W, continuous), number of sensors that detected the sound 

(S, two levels: 3 or 4 sensors), vegetation type at the sound source (V, two levels: open or closed). 

We centred continuous predictors. 

We tested predictors for collinearity by calculating variation inflation factors (VIF) using 

the package car (Fox & Weisberg, 2018). Multicollinearity was not present (maximum VIF: 

W=1.20). We verified model assumptions by plotting residuals versus fitted values and QQ-plots. 

We ran a set of models and ranked them by AICc value. 

 

 Results 

3.1. Localisation precision and error 

At some locations, the TOA at the acoustic sensors was not possible to calculate because the 

signal-to-noise ratio was too low, or the tonal sequence was only partially recorded. From the 30 

locations tested twice on the walking test, we managed to localise 45 of 60 (75%) sounds. From 

the 250 possible localisations for the static test, we succeeded to localise 249 sounds. 

SoundFinder calculates an error of the estimated locations, defined as a temporal error. Similar 

to Papin et al. (2018), to establish a threshold above which the estimated temporal error 



Chapter 6: localisation 

 

87 
 

associated to the estimated location is considered unreliable, we examined the relationship 

between localisation error (m) and temporal error (ms) (Fig. 6.2). Based on these results, we set 

the threshold to 200ms, subsequently excluding all estimated locations associated to a temporal 

error superior to 200ms. This resulted in 238 estimated locations for the static test (Fig. 6.3) and 

44 estimated locations for the walking test (Fig. 6.4). The mean error for all localised sounds was 

27 ± 21.8m [range 2.03-169.8m, N=282]. Localisation was the least prone to error and most 

precise at 6h30, the most prone to error at 12h30 and the least precise at 9h30 (Fig. 6.3).  

 
Figure 6.2. Relationship between the temporal errors associated to the estimated localisations from 

SoundFinder and the errors of the estimated localisations. The red dashed line represents the threshold 

(200ms) above which the estimated localisation associated to the temporal error is considered unreliable. 

 

Figure 6.3. Localisation error at different times of day for the static test. 
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Figure 6.4. Estimated (pink) and actual (red) locations from a (walking) playback test; arrows show link 
between estimated and actual locations. 

 

3.2. Factors influencing localisation error 

We did model averaging among models with ΔAICc <2 (Table 6.1). The significant effects in the 

best averaged model are temperature, vegetation, and wind (Table 6.2).  

 

Table 6.1. Model selection. E: error; T: temperature; V: vegetation; W: wind; S: sensor 

Model df logLiK AICc delta weight 

E ~ T + V + W 5 -1049.687 2109.6 0.00  0.656 

E ~ T + V + W + S 6 -1049.527 2111.4 1.77 0.270 

E ~ T + W 4 -1053.335 2114.8 5.22 0.048 

E ~ T + W + S 5 -1052.956 2116.1 6.54 0.025 
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Table 6.2. Outcome of a LM investigating the effect of temperature, vegetation type at the sound source, 

wind and number of sensors that detected the sound on localisation error for the averaged best two models. 

 

Predictors Parameter Estimate 

Estimate Std. E. z value Pr(>|z|) 

Intercept 24.477 1.495 16.304 <2e-16*** 

Temperature 1.488 0.324 4.498 6.9e-06*** 

Vegetation 18.538 6.9383 2.659 7.83e-03** 

Wind -5.2419 0.999 5.219 2..0e-07*** 

Sensor -1.378 2.452 0.558 0.577 

 

* = p < 0.05; ** = p < 0.01; *** = p < 0.001. 

 

 

3.3. Validating the localisation system with chimpanzee calls 

We estimated the locations of 22 chimpanzee calls (Fig. 6.5). The mean error was 51.2 ± 20.6m 

[range 19.9-96.04m]. 

 

 

 

Figure 6.5. Estimated locations by triangulation (light green) of chimpanzees and locations determined with 

a handheld GPS during parallel focal follows (true locations, dark green); arrows show link between 

estimated and true locations. 
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 Discussion 

In this study, we sought to demonstrate, as a proof of concept, that a custom-made acoustic array 

composed of four sensors could localise chimpanzees. The array enables sound localisation in a 

difficult mountainous environment with heterogeneous vegetation that makes sound propagation 

unpredictable. With a playback study, we found that the mean localisation error was 27 ± 21.8m. 

To empirically validate the system, we also successfully localised wild chimpanzee calls, applying 

this system under natural conditions. We compare the error of this system with previous ALS for 

terrestrial species described in the literature. We explore the behavioural and conservation 

applications of this approach to the study of wild chimpanzees and more broadly other loud calling 

terrestrial species and conclude with a discussion of the limitations of the current system. 

 

4.1. Error of the localisation system 

We found that error of the ALS was similar to those figures reported from other studies targeting 

terrestrial mammals. These systems covered areas that ranged from a few hundreds to thousands 

of m2, reflecting the ranges of the targeted species. Other systems that target birds and frogs 

localised animals to a much lower error, in some cases below 1m. These arrays were composed 

of spatially closer acoustic sensors (less than 50m) offering less spatial coverage (Table 6.3).  

Environmental variables such as temperature and wind speed influence sound behaviour 

e.g. sound attenuation (Harris, 1966) and consequently, localisation error. Sound localisations 

were less prone to error and sounds were more precisely localised in early morning (6h30), when 

temperature is the lowest. This is the same period when chimpanzees are the most vocally active 

(e.g. Wilson et al., 2007; Piel, 2018). Inversely, localisation was the most prone to error at 12h30, 

when temperature is the highest. Wind speed is the highest early morning (6h30 and 9h30) and 

might thus not be the main factor influencing localisation error, given that precision was the 

highest at 6h30 but lowest at 9h30, but the result of the influence of a combination of temperature 

and wind speed. 

 

Table 6.3. Previously described terrestrial acoustic localisation systems and reported error 

 

Target species Acoustic array Error Reference 

Cape buffalo (Syncerus 

caffer), chacma baboon (Papio 

ursinus) and spotted hyena 

(Crocuta crocuta) 

Four CARACAL stations at 

500m intervals  

Within 70m  Wijers et al., 2019 

Chimpanzee 

 (Pan troglodytes) 

Four custom-made recorders 

at 543.7 ±163.8m intervals 

27 ± 21.8m  This study 

Elephant 

 (Elephas maximus) 

Four Audio Technica 

recorders 

30m Dissanayake et 

al., 2018 

Orangutan (Pongo pygmaeus 

wurmbii) 

20 SM2 (Wildlife Acoustics) 

recorders at 500m intervals 

58m ± 7.2m  Spillmann et al., 

2015 

Wolf (Canis lupus) 20 SM3 (Wildlife Acoustics) 

recorders at 1km intervals 

167 ± 308m  Papin et al., 2018 



Chapter 6: localisation 

 

91 
 

Wolf (Canis lupus) Five SM3 (Wildlife Acoustics) 

at 1-3km intervals 

20m Kershenbaum et 

al., 2019 

Rufous-and-white wren 

(Thryothorus rufalbus) 

Eight microphones at 75.2 

±2.6m intervals  

2.82 ± 0.26m Mennill et al., 2006 

Antbird (Formicarius moniliger) Eight nodes (each node 

contains four microphones) 

at 39m intervals 

0.199 ± 0.064m 

for playbacks 

and 0.445 ± 

0.500m for wild 

bird songs 

Collier et al., 2010 

Different bird and frog species Four SM2 (Wildlife 

Acoustics) recorders at 25 or 

50m intervals 

1.87 ± 0.13m Mennill et al., 2012 

 

 

4.2. Behavioural applications 

Despite over a half century of research into wild chimpanzees (e.g. Pusey et al., 2007; Nakamura 

et al., 2015; Boesch et al., 2019) and in the deployments of PAM for wildlife in other systems 

(Spiesberger & Fristrup, 1990; Tavolga, 2012; Marques et al., 2013), only few studies have 

deployed this tool with wild apes, and only one, besides the current study, evaluated its 

localisation error (Spillmann et al., 2015). Acoustically localising chimpanzees offers multiple 

benefits to behavioural study of habituated and unhabituated individuals. First, resulting data can 

improve our understanding of social dynamics. Similarly to e.g. elephants (Loxodonta africana) 

(e.g. Leighty et al. 2008), spotted hyenas (Crocuta crocuta), (e.g. Theis et al. 2007), bottlenose 

dolphins (Tursiops truncates) (Janik & Slater, 1998) chimpanzees are socially fluid animals that 

exhibit a fission-fusion structure (e.g. Fedurek et al. 2014). They form ephemeral sub-parties that 

change in size and composition throughout the day. So far, little is known on how chimpanzees 

coordinate sub-group reunions, more specifically at their nesting sites, and maintain cohesion 

within the community (e.g. Lehmann & Boesch, 2004). This is especially the case of savanna-

mosaic dwelling chimpanzees, who live at a density up to 10 times lower than their forest-dwelling 

counter-parts - e.g. 0.56 ind./km2 at Issa, Tanzania (Crunchant et al., unpublished data) vs. 6.8 

ind./km2 at Budongo, Uganda (Newton-Fisher, 2003) - and cover a territory far larger - e.g. ≥ 55 

km2 at Issa, Tanzania (Giuliano, unpublished data) vs. 6.8km2 at Budongo, Uganda (Newton-

Fisher, 2003). Only two studies have attempted multiple, simultaneous focal follows (Uhlenbroek, 

1996; Eckhardt et al. 2015), despite our knowledge of the importance of vocalisations for spatially 

separated callers (e.g. Gruber & Zuberbühler, 2013; Fedurek, Donnellan & Slocombe, 2014). One 

means of overcoming the logistical demands of multiple follows is by using an ALS, consequently 

detecting (and potentially monitoring) caller presence in space and time, which has been done in 

the marine environment. For instance, dolphins (Delphinus delphis) can be tracked via their 

whistles that can propagate over multiple kilometres omnidirectionally (Wiggins et al., 2013). The 

authors showed with whistle localisation that dolphins were more widely spread and travelled 

more slowly at the beginning of the night in contrast to daytime and hypothesised that it was 

associated with foraging behaviour.  
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To track chimpanzee movements over time, we need caller individual identification. 

Acoustic detectors of chimpanzee calls are in development (Heinicke et al., 2015). Individual 

identification remains complicated, however, due to the high intra and inter-caller variability of 

chimpanzee calls and their large vocal repertoire highly graded (call types are difficult to 

categorise) (Mitani et al., 1996; Crockford, 2019). Call combinations and the chorusing effect, 

where multiple individuals vocalise simultaneously add another level of complexity for developing 

a call detector. Individual identification detectors have been developed for numerous other 

terrestrial species, such as tigers (Panthera tigris) (Ji et al., 2013), orangutans (Pongo pygmaeus 

wurmbii) (Spillmann et al., 2016) and gibbons (Hylobates muelleri) (Clink et al., 2018). With new 

machine learning pipelines, we believe that such an individual identification detector can be 

developed for chimpanzees as well. 

A second behavioural application of ALS is to accelerate the habituation process, one 

that is especially time-intensive with chimpanzees - e.g. ~ 5-7 years, Taï Forest, Côte d’Ivoire 

(Bertolani & Boesch, 2008). Historically, researchers attempted to habituate chimpanzees to 

human presence by provisioning them with food (Wrangham, 1974; Goodall, 1986; Nishida, 

2011). However, this method modifies natural behaviour patterns, for instance it induces 

increased aggression rates and exposes wildlife to disease transmission (Wrangham, 1974; 

Williamson & Feistner, 2003). Instead of provisioning, to find unhabituated animals, often 

researchers listen at specific spots (e.g. at the top and junction of different valleys), for 

chimpanzee loud calls to locate individuals or waiting at key spots such as feeding trees (e.g. 

Williamson & Feistner, 2003). If researchers had access to chimpanzee caller locations – 

especially when searching for parties, search efforts efficiency would be dramatically improved. 

It is nearly impossible to quantify the extent of this improvement, but Sommer et al. (2004) report 

seeing an individual chimpanzee in average once every 22.8 days during the two first years of 

habituation at the Gashaka Gumti National Park, Nigeria. Even though chimpanzees could be 

outside of sensor range, integrating traditional search efforts with an ALS would likely improve 

search efficiency, especially with (near) real-time data transmission.  

 

4.3. Conservation applications 

Density is a critical parameter for species monitoring. New methods combining PAM and spatially 

explicit capture-recapture (SECR) models have been developed to estimate animal density (e.g. 

Dawson & Efford, 2009; Efford, Dawson & Borchers, 2009; Stevenson et al., 2015; Measey et al., 

2017). The addition of auxiliary data, such as TDOA or signal strength provide more accurate 

information on the distance between the caller and the acoustic sensor, in turn allowing more 

precise detection functions and density estimation (Stevenson et al., 2015), and will thus benefit 

monitoring efforts. 

 The ALS also enables key resources localisation, such as the presence of chimpanzees 

at fruiting trees. Chimpanzees produce calls with a different acoustic structure (e.g. peak 

frequency and call duration) as a function of the food patch size or tree species (Slocombe & 

Zuberbühler, 2006; Fedurek et al., 2014; Kalan et al., 2015). Being able to locate such feeding 
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trees via the calls produced by chimpanzees will first help providing a broader picture of their 

feeding ecology and second further aid habituation efforts (see above). Similarly, the ALS will also 

enable researchers to identify chimpanzee nesting sites. Locating chimpanzees at their nesting 

sites and thus indirectly locating fresh nests with the ALS will benefit conservation by allowing 

researchers to collect e.g. fresh faecal samples that can reveal population dynamics (Schwartz 

et al., 2007) but also for health monitoring (Gilardi et al., 2015), or allowing for nest decay studies. 

Finally, poaching and deforestation are the two main threats to great apes. Besides 

detecting animals, ALS can also indirectly help species conservation by locating poachers via 

gunshot sounds (e.g. Wijers et al., 2019) or locating illegal logging via chainsaw sounds (e.g. 

Andrei, 2015). A few platforms have recently been field-tested but are not widely used yet. For 

instance, CARACAL is a low-cost hardware (~£150 per unit) and software able to extract and 

localise gunshots at an average error of 33.2m with an array of seven stations composed each of 

four microphones (Wijers et al., 2019). ALS can thus be used as a law enforcement tool to assist 

conservationists and prevent animal poaching or deforestation. 

 

4.4. Limitations  

There are three primary limitations of the current study. First, we did not consider the GPS error. 

GPS locations at each sensor were averaged and given that the sensors were stationary, we 

suspect minimal errors due to the GPS sensors. However, the exact error of the handheld device 

used to measure ground truth is unknown. 

Second, we were not able to capture microhabitat (environmental) variation, which may 

have affected sound propagation (Röhr & Juncá, 2013; Rodriguez et al., 2014). In the current 

study, we used the weather data from a centrally-located weather station, >1000m from the 

nearest sensor. More spatially-explicit weather data would be useful. This is especially important 

for some variables like wind speed, which is known to vary significantly, especially in valley 

systems (Lihoreau et al., 2006; Renterghem et al., 2007). Furthermore, we did not evaluate the 

effect of the caller position, i.e. whether they were terrestrial or arboreal. Previous studies have 

shown that caller height and the frequency at which they vocalise have an impact on sound 

transmission. Lower frequencies propagate further when the animal vocalises higher than 1m 

above the ground, due to an increase of the effective area by reducing the attenuating effect of 

soft ground (Marten & Marler, 1977; Forrest, 1994; Parris, 2002). Similarly, we did not assess the 

effect of ambient noise level on localisation error. The TDOA estimation error depends on the 

signal-noise ratio (SNR) (e.g. Urazghildiiev & Clark, 2013). It has been shown that sound level 

increases during early evenings (Piel, 2014), which could explain why error was higher at 18h30 

compared to 6h30 for similar temperature and relative humidity and higher wind speed early 

morning. Dawn chorus is a well-studied phenomenon exhibited by multiple species and has been 

studied especially on birds (reviewed in Gil & Llusia, 2020). Among multiple hypotheses for this 

behaviour such as advertising territory boundaries and social dynamics, the hypothesis of a better 

sound transmission at dawn has been evocated (Henwood & Fabrick, 1979) but is controversial 

(Gil & Llusia, 2020).  
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Lastly, we conducted manual analyses. TDOA is often estimated by pairwise cross-

correlations of the sound waveforms or spectrograms (e.g. Mennill et al., 2006; Harlow et al., 

2013; Spillmann et al., 2015). Similar to Papin et al. (2018) and Kershenbaum et al. (2019), we 

manually estimated TDOA from the spectrograms due to the low SNR of some of the playbacks 

or chimpanzee calls. If manual analyses allow to decrease the probability of missing a call, they 

can also be prone to errors. Indeed, TOA needs to be measured very accurately (onset can vary 

by less than 1ms) and manual measurement can increase localisation error (Rhinehart et al., 

2020). Furthermore, such analyses are time intensive.  

 

 Conclusion 

In this study, we have demonstrated the performance of a low-cost custom-made ALS for 

chimpanzee localisation, one that can also be applied to any loud calling and wide-ranging 

species. The ALS powered by a solar system can be deployed for long periods (only limited by 

storage capacity), and the recording script is easily modifiable in Python for e.g. adding a 

recording schedule, changing the recorded frequency or file length. Like other PAM systems, it 

allows for the study of conspicuous or even cryptic animals without disturbing them. With recent 

technological advances, devices are increasingly robust and affordable. Despite the current 

challenges to automate data analysis, improvements of automatic call detection are promising, 

and we anticipate that PAM and ALS will become more frequently deployed tools for loud calling 

terrestrial species monitoring. 
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Chapter 7: General discussion 

Throughout their distribution, chimpanzee (Pan troglodytes) populations are increasingly 

fragmented and in decline (Humle et al., 2016). They are mainly threatened by habitat loss, 

fragmentation and degradation, poaching and infectious diseases (e.g. Strindberg et al., 2018). 

Rapid monitoring is needed to evaluate the impact of these threats on population abundance and 

trends, and to assess the effect of conservation actions. Accurate, precise, and frequent data on 

chimpanzee distribution and density are crucial data to achieve this. However, chimpanzees 

occur at low densities – e.g. 0.03-6.8 ind./km2 (Newton-Fisher, 2003; Moyer et al., 2006) - and 

range over large territories – up to 90km2 (Pruetz & Herzog, 2017); monitoring populations is 

therefore challenging. Conservationists benefit from methods that are time and cost-efficient and 

simultaneously provide accurate and precise data.  

Five main non-invasive methods are available for chimpanzee monitoring: camera 

trapping (CT), passive acoustic monitoring (PAM), line transects, drone and genetic sampling 

(Table 7.1). I compare these methods in terms of equipment, field and analyses costs, labour and 

time required for data collection and analyses, and accuracy and precision. Line transects do not 

require equipment except binoculars, GNSS devices, measuring tape or range finder to measure 

distances of nests to transects and compasses. However, data collection is labour and time-

intensive; it requires walking often large distances and sometimes through difficult habitats (e.g. 

dense rainforest, mountains) and to set up satellite camps if study areas are large. PAM, CT and 

drones are more costly in terms of equipment. However, data processing, i.e. extracting 

detections (calls, nests, individuals) from audio files, videos or images is time-intensive, as most 

of the analyses are often conducted manually. Genetic sampling is costly, labour intensive and 

requires specialised lab skills; but data resolution is high (e.g. identification of relationships 

between individuals possible). The aim of my PhD was to evaluate PAM as a monitoring tool for 

chimpanzee detection, density estimation and localisation.  

PAM was developed half a century ago and is widely used for marine mammals 

(Spiesberger & Fristrup, 1990; Tavolga, 2012; Marques et al., 2013). Even though chimpanzees 

are characterised by long calls that can travel hundreds of meters (Wich & Nunn, 2002), and are 

thus an ideal candidate for PAM, it has only rarely been used to monitor them. Only two PAM 

systems have been deployed for chimpanzee monitoring, leading to five studies (Piel, 2014, 2018; 

Heinicke et al., 2015; Kalan et al., 2015, 2016). In this thesis, I demonstrated that PAM is a 

promising non-invasive method for monitoring loud calling chimpanzees. I deployed two arrays of 

acoustic sensors in Issa Valley, western Tanzania: one comprising twelve on-shelf non-GPS-

synchronised acoustic recorders (Song Meters 2, Wildlife acoustics) across the whole study area 

for nine months to estimate chimpanzee presence/absence and density. I simultaneously 

deployed an array of 53 CT for methodological comparisons. The other acoustic array comprised 

four custom-built GPS synchronised acoustic recorders, deployed for a 3-month period around a 

single valley (~2km2) known to be important for chimpanzees at the time of deployment, to localise 

chimpanzees. I have shown that chimpanzee detectability varies over seasons and chimpanzee 
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presence is determined in only 10 days of deployment during the late dry season with PAM. This 

rate was five times faster than an equivalent method using CT. Furthermore, I found that the 

estimated density of calling chimpanzees with acoustic spatially capture-recapture (aSCR) was 

lower to those derived from distance sampling and capture-recapture with CT data. The density 

with aSCR was however within the 95% CI of the estimate from camera trap distance sampling. 

With a playback experiment (N=282), I showed that sounds can be localised with 27 ± 21.8m 

accuracy. The localisation was most accurate and precise during early mornings (6h30) 

compared to other periods, when temperatures were low. Furthermore, 22 chimpanzee calls were 

localised within 52m from the location of a researcher closely following the calling individuals. 

In the remainder of this thesis, I discuss PAM and the results of my thesis within the 

broader context of the different monitoring methods available for chimpanzee conservation. I 

compare PAM, CT, drone, line transects and genetic sampling in terms of data collection and 

analyses to answer questions about chimpanzee distribution, density and threats. I discuss the 

costs and time needed for each method for estimating chimpanzee density, before exploring some 

directions for future research. 

 

 Which questions to answer and how to monitor chimpanzees? 

1.1. Chimpanzee distribution 

Detecting presence/absence is the first monitoring step for evaluating species distribution. All five 

monitoring methods available to chimpanzee conservationists allow evaluating animal 

presence/absence and territory use (Table 7.1). For instance, line transects have been used to 

identify hotspots of chimpanzee activity and to identify home ranges from nest counts, in Taï 

National Park Côte d’Ivoire (Kouakou, Boesch & Kuehl, 2011). Two studies have evaluated 

drones for chimpanzee nest detections. The first one conducted in Gabon evaluated nest 

detection with a camera on a fixed-wing drone that flew line transects, by comparing detections 

from aerial images and nests detected by a research team on the ground (van Andel et al., 2015). 

Nearly half of the ground nests in open forests were detected on the aerial images but only 8% in 

inland forests. The second study was conducted in Issa Valley (Bonnin et al., 2018). Only 10% of 

the nest grounds were detected from the air. Aerial nest detection was limited by nest-forest colour 

contrast. Researchers are also trying to detect animals directly with thermal cameras mounted on 

drones, exploiting the heat radiated from animals. Although this approach has not been used for 

chimpanzee detection yet, results from a study on Bornean orangutans in Sabah (Burke et al., 

2019) are promising and the method could be extended to chimpanzees. The increasing 

resolutions of both visual spectrum and thermal infrared cameras on the market will likely lead to 

more applications with both these methods in the coming years.  

Occupancy modelling is a statistical method to estimate the probability of a species to be 

present in an area, with detection/non-detection data from multiple visits of a given area 

(MacKenzie et al., 2017). In addition, it is a useful tool to assess population trends (i.e. declining, 

stable or increasing) over time and at large scale. Prior to this thesis, only two studies have used 
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this statistical tool for chimpanzee monitoring and only with PAM and CT (Kalan et al., 2015; 

Crunchant et al., 2017). These studies employed occupancy as a means to validate call or face 

automated detectors. The first one evaluated the potential of a semi-automated buttress drum 

detector to obtain reliable estimates of chimpanzee occurrence from PAM (Kalan et al., 2015). 

The authors showed that this approach provided similar results to point transects and has the 

advantage to require less effort in the field. Similarly, the second one evaluated a face detection 

algorithm to estimate chimpanzee site use from CT (Crunchant et al., 2017). The semi-automated 

method greatly sped up data processing and required only 2-4% of the time required for manual 

analyses. In chapter 3, I compared PAM and CT in terms of chimpanzee detection efficacy, 

defined as the estimated number of sampling days needed to establish chimpanzee absence with 

95% probability the time. Chimpanzee detectability was higher with PAM compared to CT, given 

the larger area covered by the acoustic sensors, following results from another comparative study 

with macaques (Enari et al., 2019). The results indicated that short monitoring surveys of only ten 

days are sufficient to evaluate chimpanzee presence/absence in an area with PAM, which is 

nearly five times faster than with CT. However, this finding must be contextualised. That is, data 

stem from a period of high detectability by PAM and CT, which, at Issa, corresponds to the late 

dry season with high food availability and multiple swollen females. Combined, it is a period when 

chimpanzees are the most vocally active. Care needs to be also taken when conducting surveys 

in areas heavily impacted by human presence, where chimpanzee calling behaviour can be 

affected (Hicks & Roessingh, 2010). Indeed, chimpanzees may remain silent and be undetected 

although present. 

Furthermore, besides just detecting presence/absence, seasonal changes in territory use 

can be evaluated by monitoring methods. For instance, line transects were conducted over a 

period of five months in the Kalinzu Forest in Uganda (Furuichi, Hashimoto & Tashiro, 2001). The 

authors showed that chimpanzees nested in different vegetation types in different fruiting 

seasons. At Issa, PAM and CT show a similar seasonal variation in chimpanzee territory use, with 

some areas exploited only during specific parts of the year, likely due to fruit availability and 

distribution (chapter 3). Because PAM and CT are deployed continuously for long periods of time, 

they can also reveal temporal and spatial patterns of activity at a finer scale. Level of activity 

throughout the day can be quantified with CT data which provides insight on when an animal is 

the most active and thus detectable (Rowcliffe et al., 2014; chapter 5). Chimpanzees have two 

main peaks of moving activity, between 7 and 8am and between 4 and 5pm, and a smaller one 

around 11am (chapter 5). Furthermore, hourly peaks of calling revealed a bimodal temporal 

pattern of chimpanzee calling (chapters three, four, and five). Chimpanzees vocalise mostly early 

morning and late afternoon, similar to what has been reported at Issa in a previous study with 

PAM (Piel, 2018) and elsewhere from other communities (e.g. Wilson, Hauser, & Wrangham, 

2007; Wrangham, 1975). This information is important for conservation managers, who can for 

instance schedule recording at these periods to maximise the likelihood of detecting calls and 

simultaneously limit the number of recording audio files to analyse.  
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Lastly, CT can localise chimpanzees at some extent, but while the accuracy of each 

sighting will be very high the opportunity to cover large areas at high resolution is limited due to 

the limited area coverage of each camera. Drone and line transects allow localising nests but not 

actual chimpanzee locations throughout the day. PAM allows researchers to accurately and with 

high-resolution localise chimpanzees over space and time across a large area. Chimpanzees can 

be localised via their calls with an error under 30m (chapter 6). With the development of an 

individual call recognition detector, it has the potential to track chimpanzees through their territory 

and thus, for instance, allow researchers to study social dynamics and have a more 

comprehensive explanation on how they can coordinate movements through large territories (see 

below).  

 

1.2. Chimpanzee density 

Density is important to evaluate extinction risk and to assess the efficacy of conservation 

interventions, policy and practice. Three approaches are usually used to estimate density: 

capture-recapture (CR; Otis, Burham, White, & Anderson, 1978), distance sampling (DS; 

Buckland et al., 2001) and a spatially capture-recapture framework (SCR; Borchers & Efford, 

2008). These approaches allow imperfect detections and estimate detection probabilities that 

allow practitioners to estimate the density. At present, the aerial images acquired with drones do 

not allow practitioners to estimate chimpanzee density, because of the low nest detection on those 

images.  

Initially, but still mainly used, surveys conducted to estimate chimpanzee density have 

relied on nest counts from line transects. Two methods based on distance sampling have been 

developed: standing-crop nest counts (Tutin & Fernandez, 1984) and marked nest-count 

(Plumptre & Reynolds, 1997). However, accurate and precise estimates are difficult to derive from 

standing crop nest counts, due to the necessity of adding correction factors such as nest decay 

and nest production rates. Nest decay rates depend on external parameters such as vegetation 

and rainfall (e.g. Kamgang et al., 2020), and decay process is not constant over time (Walsh & 

White, 2005). Nest production rates are difficult to estimate. Furthermore, these correction factors 

are site-specific. An additional study must be conducted in parallel to the line transects to estimate 

these factors. 

Genetic sampling is also a widely used method for estimating density. On one hand, it is 

a very costly method to deploy over large areas (see below), labour and time-intensive (for data 

collection and data processing) and requires specialised lab skills (Table 7.1). On the other hand, 

high-resolution data allows researchers to answer specific questions that the other methods 

cannot. It allows not only individual identification but can also inform on relationships between 

individuals. For example, male philopatry has for instance been confirmed via genetic analyses 

in Ugalla, Tanzania (Moore, Langergraber & Vigilant, 2015) and Uganda (McCarthy et al., 2018b). 

Population connectivity can also be studied with genetic sampling; rivers have for instance been 

shown to influence the population structure of bonobos (Eriksson et al., 2004). 

 



Chapter 7: general discussion 

 

99 
 

Table 7.1. Comparison with advantages/disadvantages of non-invasive monitoring methods for chimpanzee distribution and density, and threat evaluations. Grey cases mean that 

the monitoring method is currently not possible for the research topic associated. + means advantages, - means disadvantages. 

Research topic PAM CT Drone Line transects Genetic sampling 

Chimpanzee distribution 

+ 

Low field labour and time 
Low long-term equipment costs 
High detection range 
High localisation precision with 
ALS 

+ 

Low long-term equipment 
costs 
Individual ID possible 
 

+ 

Low long-term equipment 
costs 
Training in a few days 
High detection range 

+ 

Data in hand after 
survey 
Low material costs + 

High data resolution 
Can address other 
questions (e.g. diet, 
parasitism…etc.) 

- 

Initial equipment cost 
Time consuming data 
processing 
individual ID impossible for now 

- 

Initial equipment cost 
Low detection range 

- 

Initial equipment cost 
 

- 

 Field labour intensive 

- 

High analyses time and 
costs 
Require specialised lab 
skills 

Chimpanzee density 

+ 

Low field labour and time 
Low long-term equipment costs 
High detection range + 

Low long-term equipment 
costs 
Individual ID possible 

  

+ 

Data in hand after 
survey 
Low material costs + 

Allow to conduct population 
viability analyses 
High data resolution 
Individual ID, family 
relationship 

- 

Initial equipment cost  
Time consuming data 
processing 
Require call rate 
No individual ID possible for 
now 

- 

Initial equipment cost 
(need e.g. at least 20 CT 
for distance sampling) 
Time consuming data 
processing 
Low detection range 

  

- 

Field labour intensive 
Require estimates of 
sign production and 
decay rates 

- 

High analyses time and 
costs 
Require specialised lab 
skills 

Threats 

Poaching 

+ 

ALS can locate poachers 

+ 

Can locate at some extent 
poachers 
Poachers identification 

+ 

Thermal infrared cameras 
can detect poachers at night 
Detection of fires 

+ 

Detection of gun 
shells/snares 

  

- 

Initial equipment costs 
 

- 

Initial equipment costs 
Risk for the CT to be 
stolen or broken 
Privacy and ethics 

- 

Initial equipment costs 
Vegetation type can limit 
performance 
 

- 

Field labour intensive 

Habitat 
disturbance 

+ 
ALS can locate illegal loggers   

+ 
Landcover classification 
Changes monitoring 

+ 
Habitat change 
detection 

  

- 
Initial equipment costs 

- 
Initial equipment costs 
 

- 
Field labour intensive 

Diseases 

 + Detection of e.g. facial 
lesions in videos 

    

+ 

Health monitoring with 
parasites and viruses found 
in faecal samples 

- Initial equipment costs 

- 

High analyses time and 
costs 
Require specialised lab 
skills 
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The use of CT to infer chimpanzee density is more recent. Only four studies have 

employed CT with SCR or DS (Cappelle, Després-Einspenner, Howe, Boesch, & Kühl, 2019; 

Després-Einspenner, Howe, Drapeau, & Kühl, 2017; Head et al., 2013; Howe, 2019). Després-

Einspenner et al., (2017) evaluated SCR with CTs based on a habituated community at Tai 

Forest, and results showed that density estimate is precise and accurate, and only five CT were 

sufficient to detect nearly all weaned individuals. Similarly, Cappelle et al., (2019) evaluated DS 

with CT revealing that density estimate was accurate and less biased than that calculated from 

line transects. DS has the advantage over SCR that it does not require individual identification (a 

process that is time-intensive and can be prone to errors) and that the random design required 

for the method allows for a multi-species study (Bessone et al., 2020). However, the random 

design with DS is likely the reason for a low precision of the estimated density, with chimpanzees 

detected on a limited number of CT (Cappelle et al., 2019; chapter 5).  

 Lastly, acoustic spatial capture-recapture (aSCR) methods from PAM data have recently 

been developed (e.g. Stevenson et al., 2015). I assessed the possibility of using aSCR and PAM 

for chimpanzees (chapter 5). Although a promising technique, estimated chimpanzee density 

from aSCR and PAM is lower compared to the estimates from distance sampling and spatial 

capture-recapture frameworks with CT data. Estimates can, however, serve as a baseline and 

comparison over time would allow evaluating of population trends, but see below. One hypothesis 

that could explain this result is the chorus calling behaviour. Chimpanzees often vocalise 

simultaneously, and it is complicated to accurately count individuals in a chorus (Torti et al., 2018). 

Counting such bouts as a single call underestimates the number of individual callers, negatively 

biasing individual call density estimate. More work would be required regarding how to address 

the calling behaviour. For instance, one could estimate the number of callers in a chorus through 

spectrograms. A study on wolf choruses showed that estimations of chorus size with visual 

inspection by spectrogram were highly correlated with the number of wolves and it was possible 

to identify up to seven individuals in a chorus of nine wolves (Passilongo et al., 2015). Another 

limit for this method to be widely used by conservation managers is the necessity of knowing the 

call rate to convert calling density into animal density. Similar to the nest decay or nest production 

rates, call rate is likely to vary from site to site and survey-specific studies to evaluate the call rate 

should therefore be conducted in parallel to the PAM deployment. Rate can only be studied in 

habituated chimpanzees, however, as focal follows are necessary. Comparison of call rates 

between field sites with habituated communities will be instrumental to evaluate to what extent 

call rate varies and evaluate how strongly it can affect density estimation. Finally, calling rates 

can decrease due to hunting pressure or other disturbance (e.g. Hicks & Roessingh, 2010). 

Hunting might however not be targeting chimpanzees and thus not impact their density. However, 

if densities estimated with PAM are being compared over time, one could conclude that density 

decreases even though populations are stable. 

 



Chapter 7: general discussion 

 

101 
 

1.3. Evaluation of threat levels 

As mentioned in the general introduction (chapter 1), chimpanzees face three main threats: 

poaching, habitat disturbance and diseases that result in population declines. PAM, drone, 

camera traps, line transects and genetic sampling can be used to evaluate these threats (Table 

7.1). 

 

a)  Poaching 

Poaching is widespread and occurs at a large scale in landscapes that are covered by dense 

vegetation, poacher detection is thus challenging (Wich & Koh, 2018). Thermal infrared cameras 

have been used to detect poachers (Olivares-Mendez et al., 2015); although promising, its 

application is limited by habitat type. Poachers are unlikely to be detected with this method when 

in dense forest, as thermal infrared signals do not carry through this vegetation type (Burke et al., 

2018). However, poachers can be detected indirectly via human-started camp fires (Burke et al., 

2018). Poachers can be detected and identified on CT, but the devices are likely to be stolen or 

destroyed unless carefully hidden. Furthermore, it raises questions about privacy and ethics, as 

do also drone and PAM: legality of photographing or recording people without their permission 

varies across countries but also cultures (e.g. Sandbrook, 2015). Practitioners must ask 

permission of local authorities and be careful about where to deploy the CT. PAM can be used to 

detect gunshot sounds and ALS can help locate poachers with an accuracy of less than 35m for 

gunshot origins from over 1km (e.g. Wijers, Loveridge, Macdonald, & Markham, 2019). A recent 

study comparing CT and PAM found that CT under-detected hunting activity by 939% (Dobbins 

et al., 2020).  

 

b)  Habitat disturbance 

Chimpanzees are highly threatened by habitat loss, fragmentation and degradation (Estrada et 

al., 2017). Similar to poaching, ALS can locate illegal logging by detecting chainsaw sounds (e.g. 

Andrei, 2015). Old smartphones are also being transformed into autonomous solar-powered 

acoustic sensors to record and send in real-time gunshot or chainsaw sounds to a server in the 

cloud via a GSN connection (Rainforest Connection, www.rfcx.org, accessed 28/10/2020). Alerts 

can be sent to patrols via text messages, who can verify the presence of illegal loggers or 

poachers. However, this method would require many sensors to cover a large area and would be 

a limit for scalability. 

 Drones have been used to get detailed data on chimpanzee habitat and detailed 

disturbance can be detected (Koh & Wich, 2012). Orthomosaics can be made and repeated over 

time to get a high-resolution map of an area to detect change. Furthermore, visual spectrum 

images allowed researchers to identify 14 chimpanzee food species in Gabon (van Andel et al., 

2015). Multispectral cameras will allow for a better tree identification and at a larger scale (Wich 

& Koh, 2018). 

Lastly, CT can be used to identify human-wildlife conflicts and help addressing them. For 

instance, Krief et al., (2014) showed that chimpanzees in Kibale, Uganda, crop-raided maize 

http://www.rfcx.org/
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plantation during the night to avoid humans and presented little signs of vigilance. Similarly, 

chimpanzees in Sierra Leone temporally avoid areas when frequented by people (Garriga et al., 

2019). These studies can inform on chimpanzee responses to landscape changes and help 

developing strategies to mitigate human-wildlife conflicts and elaborating conservation actions. 

 

c)  Diseases 

Health monitoring is important for conservation. Because chimpanzees are genetically similar to 

humans, they are vulnerable to many human-borne diseases (e.g. Köndgen et al., 2008; 

Leendertz et al., 2004). Genetic samples can be collected during line transects. As mentioned in 

chapter 6, the ALS could also help locating the chimpanzees at their nesting site, allowing 

researchers to collect fresh faecal samples for further genetic analyses. Portable genomics is a 

new technology that allows for conducting analyses focusing on genomes directly in-situ at field 

sites. This can speed up the analysis process and limit disadvantages by addressing some issues 

of exporting process that is increasingly expensive, political sensitive and risky with entire 

shipments vulnerable to loss or damage when in transit. CT can also be used to identify animals 

who may have a physically visible disease or being injured. For instance, multiple individuals were 

seen with severe lesions on CT in Haut Niger National Park, lesions likely due to a pathogen 

responsible of yawn disease (Mubemba et al., 2020). 

 

 Comparison of costs and time associated to each monitoring method for a 

density study 

When selecting a monitoring method, practitioners must consider different parameters, such as 

data collection and analyses costs, and be aware of the different limitations specific to each 

method. The time needed to conduct a study, from data collection to data analyses is an important 

parameter to consider when selecting a monitoring method. Indeed, surveys need to be regularly 

repeated and interval between two surveys is restricted by the time required to conduct the survey 

and analyse the results. A balance between cost and efficiency must be carefully considered. I 

present here a comparison of costs and time associated to the different monitoring methods for 

chimpanzee density estimation (Table 7.2). I take as example the Issa Valley study area of about 

60km2. Even though chimpanzee density estimation from drone surveys is presently not possible, 

I show this method for comparison with others. 

 

▪ PAM – I consider a 3-month survey because call rate is likely to vary as a function of 

season. Similar to the method explained in chapter 5, I consider 12 audio recorders, 

deployed at top of valleys in three clusters of four sensors spaced by about 500m for a 

2-week period before being rotated to new sites (valleys), for a total of 12 sites. The 4AA 

batteries in each sensor can record up to 215hrs, so would be sufficient to record for 7hr 

a day for two weeks. I estimate that two days of training would be required to learn how 

to set up and schedule the sensors, and how to identify calls on spectrogram and extract 

signal strengths from Raven. Sensors are moved every two weeks, with on day needed 
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to move one cluster (i.e. four sensors), so 18 days would be required in the field to deploy 

and maintain the system for the study period. I estimate that between 5 and 20min per 

30min and per cluster (i.e. four audio files) are required to extract signal strengths of 

chimpanzee calls, depending on how many calls are detected. 

▪ CT – I consider a 9-month survey with a distance sampling framework. I consider 25 CT 

deployed in a systematic design with a random origin (do not require a pre-survey to 

identify e.g. animal paths of fruiting trees). I estimate that two days of training would be 

required to learn how to set up the camera traps and how to estimate observation 

distances from CT videos. I estimate that about two days are required to select videos 

containing chimpanzees from the dataset and about 30min per video to estimate 

distances of chimpanzees (for instance, 9 months of CT deployment yielded 125 videos 

containing chimpanzees, chapter 5). 

▪ Line transects – I consider 16 line transects for marked nest counts. These transects (e.g. 

1km long) are walked by two persons four times at two weeks interval (Kouakou, Boesch 

& Kuehl, 2009). I consider that two transects can be walked per day, so 64 days would 

be required in the field to collect nest count data. 

▪ Drone – I consider 16 1km-long line transects repeated four times at two weeks interval 

with a basic drone (https://hornbillsurveys.wordpress.com/). I consider that four line 

transects can be surveyed per day. I estimate it would require 16 days to collect data. 

Each flight would generate 30 images, so a total of 1920 images. I estimate that data 

processing would take 4 days (1min/image). 

▪ Genetic sampling – I consider that about 400 samples are required for the analyses. 

Indeed Arandjelovic & Vigilant (2018) suggest that as a rule-of-thumb, 3-4 times as many 

samples as the number of expected individuals present in the area should be collected. I 

consider that about 50 samples can be collected in 8 days (e.g. Brand et al., 2016), so 

32 days would be required to collect 400 samples. I consider that one day of training is 

required to learn how to collect and store samples in the field; training does not include 

training for lab analyses that require specified skills. I consider that 30 days are required 

to analyse samples in a lab. I did not include the time needed to export the samples and 

the costs associated to the export permit are for an exportation from Tanzania to 

Germany. 

 

For simplification, I consider labour cost (for data collection and analyses) at $50 per working day. 

Line transect is the least costly method, while genetic sampling is the most prohibitive (three time 

for expensive than line transects and twice more expensive than PAM, CT and drone). Although 

PAM, CT and drone have high initial equipment costs, equipment can be reused for further 

studies, in contrast to genetic sampling where costs are associated to a unique study. The time 

needed for data acquisition and data processing varies greatly depending on the methods. To be 

used to regularly monitor animal populations, data processing needs to be easy and relatively 

fast. PAM is the more time-consuming method because it requires call rate estimation. 

https://hornbillsurveys.wordpress.com/
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Table 7.2. Comparison of costs and time required for data collection and analyses for estimating density with PAM, CT, drone, line transects and genetic sampling for an area of 

about 60km2 in Tanzania. 

 

  PAM CT 

(distance sampling) 

Drone 

 

Line transects 

(marked nest count) 

Genetic sampling 

C
o
s
ts

 

Data 

collection 

- 12 audio recorders - e.g. Song 

Meters mini (Wildlife Acoustics, 

$500/u); 4AA batteries/u (*2 for 

recharge, $10/4batt.), 32GB SD 

card/u (*2, $8/u) 

- Hard drive 2TB (*2 for backup, 

$60/u) 

- Handheld GPS (e.g. Garmin 

eTrex at $200)  

- Compass ($10) 

- Field labour (18d *$50 for 

PAM deployment and 

maintenance + 70d *$50 for call 

rate estimation) 

- 25 camera traps (e.g. Bushnell 

trail HD, $140/u; 8AA 

batteries/u (*2 for recharge, 

$20/8batt.), 16GB SD card/u 

(*2, $6/u) 

- Handheld GPS (e.g. Garmin 

eTrex at $200)  

- Hard drive 1TB (*2 for backup, 

$50/u) 

- Compass ($10) 

- Field labour (72d* $50) 

- Drone ($3500) 

- Handheld GPS (e.g. 

Garmin eTrex at $200) 

- Field labour (16d* $50 

*2) 

- Hard drive 1TB (*2 for 

backup, $50/u) 

- Drone license ($1300) 

- Binoculars (~$100, *2) 

- Handheld GPS (e.g. 

Garmin eTrex at $200)  

- Compass ($10) 

- Measuring tape ($20) 

- Field labour (64d* $50*2) 

- Handheld GPS (e.g. 

Garmin eTrex at $200)  

- Compass ($10) 

- Field labour (32d* $50*2) 

- Sample export permit 

($5/sample) 

- collecting tube 

($0.2/sample) 

- ethanol for sample 

preservation ($0.05/tube) 

 Data 

analyses 

- Modest processing power 

computer (~$500) 

- Software to process audio files 

(e.g. Raven Pro at $400 for 

non-profit) 

- Human labour (70d * $50) 

- Modest processing power 

computer (~$500) 

- Human labour (10d *$50) 

- High processing power 

computer (~$1500) 

- Software to process 

images (~$550) 

- Human labour (4d *$50) 

- Modest processing power 

computer (~$500) 

- Human labour (1d *$50) 

- Modest processing power 

computer (~$500) 

- Lab analyses 

($35/sample) 

- Lab technician (30d *$50) 

 Total ~$12110 $9710 $8950 $7380 $21510  

T
im

e
 

Training 2 days 2 days 10 days 2 days 1 day (genetic analyses 

require lab skills not 

included here) 

Data 

collection 

18 days (PAM deployment and 

maintenance) 

70 days (call rate estimation) 

72 days 16 days 64 days 32 days 

Data 

analyses 

70 days 10 days 

 

4 days 1 day 30 days 

 Total 160 days 84 days 30 days 67 days 63 days 
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 Directions for future research 

3.1. Machine learning and automatization of data processing 

Data processing is the main limitation for PAM and CT data, as analyses are mainly done 

manually which is time intensive (see above). Improvement in pattern recognition with machine 

learning are promising and can speed up data processing and analyses (e.g. Kühl & Burghardt, 

2013). Face or call detectors are, however, generating false detections and a manual verification 

is often required (e.g. Heinicke et al., 2015; Crunchant et al., 2017). A trade-off between these 

false detections and time saving must be considered.  

Because humans and chimpanzees share similar face properties (Loos & Ernst, 2013), 

chimpanzee face detection and recognition algorithms have been adapted from those originally 

developed for humans. At least three chimpanzee face detectors have been developed. An 

application of a first detector (Loos & Ernst, 2013) has shown that the semi-automated method to 

estimate site use with CT data greatly sped up data processing and required only 2-4% of the 

time required for manual analyses (Crunchant et al., 2017). Chimpanzees were mostly detected 

on videos containing frontal face views. With a deep convolutional neural network (CNN) and a 

14-year dataset including 10 million face images from 23 individuals, Schofield et al., (2019) 

developed an individual face recognition and detector. It allows for identity recognition with a 

92.5% accuracy and sex recognition with 96.2% accuracy. These results are promising, and a 

larger dataset would increase accuracy and applicability. Lastly, another face detector 

(ChimpFace, https://conservationx.com/project/id/8 - accessed 28/10/2020) is being developed 

to identify photos on social media and e-commerce websites that are likely linked to trafficking-

related activities. 

For PAM to become widely used by conservationists, the development of a chimpanzee 

automated call detector is necessary. Recent studies on other ape species are promising. For 

instance, a study examining the coding of individual signatures through the vocal repertoire of 

bonobos (Pan paniscus), has shown that the high hoots – the bonobo loud calls (Hohmann & 

Fruth, 1994) - strongly encode caller identity (Keenan et al., 2020). This study involved 1850 

individuals calls from 21 individuals. Another study evaluated a caller recognition procedure in 

male orangutan (Pongo pygmaeus wurmbii) long calls, and a 72.2% correct identification rate 

was obtained with recordings from an ALS (Spillmann et al., 2016). The authors also showed that 

automatic individual identification was reliable for calls recorded from orangutans placed at 

distances up to 420m from the ALS. Lastly, Clink et al. (2018) have applied a semi-automated 

vocal fingerprinting approach to Bornean gibbon (H. mulleri) females monitoring and analysed 

376 calls from 33 females. Caller identity was predicted with 99.5% accuracy. By combining focal 

follows and the ALS, we could record calls with the ALS and match them with the caller identity 

obtained from focal follows, but also record high quality calls with a shotgun microphone. Without 

the essential development of an automated call detector, the methods presented in this thesis are 

likely to remain in the realm of academics and not of conservation managers and small NGOs for 

example, due to the highly time-consuming data extraction process, currently done manually. 

https://conservationx.com/project/id/8
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However, with the recent improvements in machine learning and the successful examples with 

other species, there is still the hope of developing a chimpanzee (individual) call recognition 

detector in the (near) future. 

 

3.2. Real-time bioacoustic monitoring 

As mentioned in chapter six, adding a (real-time) remote data transmission component to the ALS 

would help many applications, such as accelerating chimpanzee habituation process. In practice, 

no post-deployment visits would be needed to retrieve data, making the system fully autonomous. 

A system relying on long-distance radio frequency has been deployed at Issa Valley, Tanzania 

for chimpanzee monitoring and chimpanzee spatiotemporal vocalisation patterns (Piel, 2014). An 

open source and low-cost system has also recently been develop for real-time acoustic monitoring 

(Sethi et al., 2018). It relies on a local mobile network and can operate even under harsh climatic 

conditions but requires direct sunlight for the solar power system. 

In this dissertation, I attempted to develop a real-time transmission system with a radio 

network. Each acoustic unit was composed of the unit as previously described in chapter 6, along 

with a radio (Ubiquiti Networks PICOM2-HP PicoStation M2 HP Indoor/Outdoor AirMAX 

BaseStation). Data from each sensor were transmitted directly to the camp through a relay system 

supported by a solar panel with battery, a PoE injector (Ubiquiti Thoughswitch TS-8-PRO) and 

two antennas (Ubiquiti LiteBeam ac 5GHz, one directed to the sensors and one directed to the 

camp). It has however not been successful, mainly due to a battery issue, and audio files were 

only sparsely transmitted to the camp. A potential solution would be to add machine learning on 

the units to record and store only chimpanzee calls to reduce the volume of data to be transmitted 

(Deniz et al., 2017). However, this would mean that we would not be able to re-analyse the data 

with new methods (e.g. new call detector) and data would be species-specific. Given the Issa 

landscape – a mountainous and open habitat - there is, however, a high potential to successfully 

develop such a system. 

 

3.3. Combination of monitoring methods 

Because each monitoring method has its own advantages/disadvantages (Table 7.1) and can 

offer different information, pairing different methods could help monitoring. Complementary data 

could be collected on biotic interactions and provide a more accurate image of animal presence 

and movement (Buxton et al., 2018a). For instance, detection probabilities could be improved 

when using both PAM and CT for chimpanzee monitoring. In turn, this could potentially improve 

the accuracy of the density estimate. 

 

3.4. Behavioural studies 

Although the aim of the work was to demonstrate PAM as a tool for chimpanzee conservation, 

acoustically monitoring chimpanzee can also help our understanding of chimpanzee behaviour, 
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and more specifically their social dynamics. PAM and more specifically ALS will allow for 

simultaneously following multiple individuals in space and time and might reveal how they 

coordinate. High data resolution will also help to quantify the socio-ecological drivers of group 

cohesion.  

 

 Conclusion 

The work presented here demonstrates that PAM is a promising non-invasive method for 

chimpanzee monitoring, allowing for presence detection, density estimation and localisation. It 

allows for the study of chimpanzees without disturbing them. Results can also be transposed to 

any loud calling terrestrial species, such as wolves, gibbons, orangutans and elephants. With 

recent technological advances, devices are increasingly robust and affordable. Open-source 

devices allow for customisation of e.g. recording schedule and parameters. Some challenges to 

automate data analysis exist, a limitation similar to CT and drone for instance. However, 

improvements of automatic call detection are promising, and I anticipate that PAM will become 

more common in the conservationist’s toolbox for loud calling species monitoring. 
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