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Abstract 

Gait analysis is typically conducted using an optoelectronic system which is known as 

the standard method for motion analysis. Despite advance development of 

instruments related to the optoelectronic approach, there are still a few limitations 

of the traditional gait analysis which limit the accessibility for individuals who would 

benefit from the investigation. A newly developed three-dimension motion capture 

system, known as Inertial Measurement Units (IMU) was introduced as an option for 

gait analysis. The IMU system is a transportable camera-free motion capture system. 

This also motivated the principle of out-of-the lab gait analysis. To broaden the use 

of the new system, this PhD project was conducted to examine whether the system 

should be used confidently for clinical gait analysis.  

The main purpose of this PhD project was to examine the feasibility of incorporating 

a machine learning method to estimate the kinetics of gait using the kinematics data 

obtained from an IMU system. Firstly, as pilot studies, an artificial neural network 

(ANN) was trained using gait data derived from the potential input signals which were 

signals of marker coordinates and joint angles obtained from an IMU system (Xsens) 

to predict joint moments of lower extremities. Promising findings were found as the 

ANN could reasonably predict the target joint moments. The results also showed the 

generalisation ability of the ANN to estimate the joint moment that it has not seen 

before, for instance, the ANN could fairly predict joint moments of the contralateral 

limb.  

The Xsens system was validated against the standard motion capture system before 

the main estimation study of the joint moment in gait began. The results revealed 

that joint angles obtained from the Xsens were comparable with the optoelectronic 

system in the sagittal plane and less comparable in the frontal plane according to the 

coefficient of multiple correlation and the linear fit methods. The results from the 

transverse plane were non-real numbers.  

The ANN was then trained using the joint angles derived from the Xsens system of 

three different walking speeds to predict the knee abduction moment (KAM). Gait 

data of 15 healthy volunteers were used to train the network. The ANN performed 

well, shown by small values of average normalised root mean square errors. Several 

methods were used to enhance the ANN performance. Due to the limited number of 

gait data used to train the network the randomisation of the input-target output data 

was performed. The results showed a remarkable improvement of the ANN 

performance. The best KAM estimation was found when the data of marker 

coordinates were used to train the ANN instead of joint angles. As few as three 

marker coordinates could provide sufficient information for the ANN to be trained 

and predict the KAM accurately. Principal component analysis was also used as input 

data manipulation and provided a reasonable KAM prediction. 
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Overall, the kinematic gait data obtained from the Xsens could be used to train the 

ANN to predict the KAM in healthy gait. There is a possibility to combine machine 

learning methods with IMU data to produce a clinical gait analysis without the 

restriction of the traditional motion laboratory.   
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For almost 40 years gait analysis has played an important role supporting, amongst 

others (Baker, 2007), clinicians in providing appropriate treatments for gait problems 

to individuals suffering from, potentially, several conditions for instance, cerebral 

palsy, stroke, and Parkinsonism (Wren et al., 2013; Wren et al., 2020). Three-

dimensional gait analysis (3DGA) objectively quantifies gait, the most basic but 

effective form of human locomotion, and provides a more accurate quantification of 

human gait than traditional methods such as observational gait analysis or two-

dimensional gait analysis.  

The instruments for 3DGA have been invented and developed to help understand the 

fundamentals of human locomotion and give information that determines normal or 

abnormal walking. Baker et al. (2016) modified from Brand and Crowninshield (1981) 

stated four main reasons of clinically applied use of gait analysis: 1. For differential 

diagnosis between diseases 2. To assess the severity, extent or nature of a disease or 

injury 3. To monitor progression of a condition without or following intervention 4. 

To predict the outcome of the treatment or intervention.  

In general, gait analysis typically comprises two mandatory components to indicate 

individual gait abnormality. First, kinematics, the study of joint movement which 

includes the translation and acceleration of body segments (joint angles) regardless 

of the forces that cause the movement. Secondly, kinetics, the study of forces (joint 

loading) that create the movements (Winter, 1990) which include ground reaction 

forces (GRFs), joint moments and joint power. Deviations of the joint movement and 

joint reaction force from the norm can direct gait analysts to uncover the underlying 

gait problems (King, Barton and Ranganath, 2017). Some joint movements are more 

readily recognised when one is observing abnormal gait pathology, without a need 
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for exact measurements (e.g. crouch gait in children with cerebral palsy). The joint 

loadings which cause the abnormal movement, on the other hand, are difficult to 

identify due to the requirement of the calculation of the resultant force between 

agonist and antagonist muscles acting about the particular joint (Winkelstein, 2013).  

In most gait laboratories, at present, the standard GA is typically performed as 3DGA 

by using an optoelectronic motion capture system. After anthropometric 

measurements are taken, retroreflective markers are attached at particular 

anatomical landmarks on a subject according to a biomechanical gait model (Ferrari 

et al., 2008) for example the Helen Hayes (HH), six degrees of freedom (6DOF) or 

Human Body Model (HBM). Several charge-coupled-device (CCD) cameras arranged 

around the walkway capture reflections from the markers inside a calibrated three-

dimensional volume, transformed to electrical signals which are processed by a 

software to reconstruct a model that represents the human body and are used to 

produce gait kinematics using anthropometric data. At the same time, the GRFs are 

collected via force transducers by a force plate embedded in the walkway then 

correspondingly transferred to the software, where joint reaction forces and joint 

moments are calculated. The joint moments are generally indirectly derived by 

inverse dynamics based on Newton’s laws of motion using kinematics data, the GRFs 

obtained from the force transducers and the anthropometrics of the participant.  

However, the standard 3DGA requires costly instruments, high levels of expertise and 

is typically limited to be conducted in a gait or movement centre (Cappozzo et al., 

2005; Chiari et al., 2005; Leardini et al., 2005). As a result, there are some patients 

who cannot access such a specialist facility and miss the opportunity to receive such 

investigation, subsequently being deprived of the appropriate treatments for their 



21 

 

gait problems. Additionally, being observed during the investigation could affect 

spatiotemporal and kinematics of individual’s gait known as observational awareness 

or the “Hawthorne effect”(Parsons, 1974). Therefore, the gait analysis performed 

under such unfamiliar conditions may not represent the genuine walk of the 

individual (Ardestani and Hornby, 2020). 

In the past decades, alternative motion capture systems have been developed thanks 

to rapid advances of technology in several forms. Inertial measurement units (IMUs) 

have emerged as newly invented motion capture systems (Picerno, 2017). To be able 

to measure the movement, IMUs employ accelerometers, gyroscopes and 

magnetometers. They are regularly built as wearable, small size sensors which can 

record motion by calculating the displacement of segment orientation without 

requiring cameras thus providing a great potential to conduct the out-of-lab gait 

analysis (Washabaugh et al., 2017). Subsequently, such an unrestricted system would 

benefit those patients who have mobility difficulties getting to a motion laboratory. 

Moreover, the genuine walk can be recorded and analysed by this alternative system 

with no limitation of the laboratory environment.  

As mentioned herein, both kinematics (joint angles) and kinetics of gait (joint 

moments and power) are crucial for interpreting abnormal gait patterns. While the 

IMU system instantly provides kinematics of gait by recording the orientation of body 

segments, obtaining the kinetics data outside the gait laboratory has been an issue 

of interest. Commercial companies and many researchers are still continuously 

working on how to acquire a complete gait analysis including both kinematics and 

kinetics when using IMUs. Forces could be collected by several methods in 

combination with the IMU system in order to complete gait data, for instance, by 



22 

 

using portable foot pressure sensors, wearable load cells or by estimating the GRFs 

by means of machine learning (Ancillao et al., 2018). Despite reasonable results were 

reported from the stated methods, none of these could be practically applied as an 

effective kinetic quantification for gait analysis. An estimation of the kinetics data 

using a machine learning algorithm, artificial neural network for instance, dominates 

the others due to its potential to produce the kinetic data without a need of another 

force recording instrument or further laboratory set up.   

Amongst off-the-shelf IMU systems, Xsens Awinda has been developed as a wireless 

full body motion capture system that is composed of a 3D accelerometer, a 3D 

gyroscope and a 3D magnetometer contained within a small casing of 47 mm x 30 

mm x 13 mm and only 16 g mass (Xsens, 2020). The motion trackers, therefore, fit 

well with the concept of out-of-lab motion analysis. The IMU system has recently 

been used more regularly in gait analysis (Loose and Orlowski, 2015; Al-Amri et al., 

2018; Pauli et al., 2019) since the shortcomings, for example, the data drifting 

phenomenon of the angular motion recorded by the gyroscope which affects the 

accuracy of joint angle calculation and the disturbance from ferromagnetic objects 

around the motion tracking area affects accuracy were improved (Roetenberg, Baten 

and Veltink, 2007).   

Artificial neural networks (ANNs) are computer algorithms that can mathematically 

model a complex relationship between a set of inputs and the expected outcomes 

(target outputs). They were created to imitate biological neural systems in order to 

estimate or forecast a result (Zurada, 1992). In general, an ANN is trained by the 

presented input to predict the target output. Backpropagation feed forward neural 

networks are commonly used for predicting gait data. Such systems have effectively 
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been used to predict GRFs form various inputs, for example, electromyography signal 

(EMG) (Oh, Choi and Mun, 2013; Johnson et al., 2018). There is a relationship in gait 

data as kinetics and kinematics are mathematically related by means of inverse 

dynamic equation and are biophysically connected as the kinetics are the causes to 

produce the movements. Theoretically, kinetics particularly joint moments should be 

able to be estimated by an ANN trained by component of kinematics data.  

There were successful studies that predicted joint moments from an ANN trained by 

a variety of gait parameters (Hahn and O'Keefe, 2008; Favre et al., 2012; Mundt et 

al., 2019), however, to current knowledge, the prediction of joint moment in gait by 

using an ANN trained by joint angles obtained directly from an IMU system has not 

been explored.  

The aim of this PhD project was to extend the usefulness of IMU systems to be 

practically used for out-of-lab gait analysis by complementing the kinematics from 

IMU system with predictive kinetics obtained by an ANN that was trained by the joint 

angles derived by a set of Xsens sensors.  

1. The first objective of the study was to examine the feasibility of using an ANN 

trained by a variety of the input variables including marker coordinates 

obtained from a typical optoelectronic system and joint angles obtained from 

an IMU system (Xsens Awinda) to predict joint moments of gait.  

2. The second objective was to predict knee abduction moment using the ANN 

trained by the joint angles obtained from the IMU system.  

3. The third objective was to affirm the capability of using the inertial motion 

capture system in practice by validating the IMU system against the standard 

motion capture system.   



24 

 

4. The fourth objective was to determine which input variables based on the 

IMU data and which data pre-processing methods could provide the most 

effective KAM prediction.  

 

Thesis outline 
 

The PhD project was conducted as a series of seven studies. Chapter 1 is the 

introduction to overall concepts of the PhD project. A literature review follows in 

chapter 2 that brings up the motivation of the out-of-the lab gait analysis, the 

development of the inertial motion capture system including its evolution and the 

addition of an extended Kalman filter in order to improve the accuracy of orientation 

and position. The pilot studies are then reported in chapter 3 representing the very 

first step attempts to train the ANN to predict joint moment of gait as described in 

the objective one. The ability of the feedforward ANN is shown and the promising 

findings for this chapter were then further investigated in the later chapters. Chapter 

4 is the beginning of the main study where the Xsens system was validated against 

an optoelectronics system to examine the accuracy of the inertial motion capture 

when being used in gait analysis stated as objective three which was an important 

part to accomplish the next study in chapter 5. The results from this study were also 

compared with the similarly conducted previous studies. In chapter 5, following the 

objective two, the joint angles obtained from the Xsens system were used as input to 

train the ANN. Gait data from 15 healthy volunteers were recorded and used to train 

the neural network. Generalisation ability of the ANN in order to predict unseen knee 

abduction moment was also examined. Chapter 6,7,8 and 9 contained the positive 

results of using different strategies to improve the ANN performance including a 

variety of inputs used, data pre-processing by principal component analysis and 
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discovering appropriate hidden neuron ratios. These chapters achieved the objective 

four of the study. The results from chapter 6,7,8, and 9 were integrated and discussed 

for the potential improvement of the generalisation ability of the FFANN model in 

chapter 10. Lastly, in chapter 11, general discussion and conclusion highlighted the 

research findings that could be, in the future, adopted to conduct out-of-the lab gait 

analysis which will clinically and economically be beneficial to people in need.     
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2.1 Clinical Gait Analysis  
 

To be able to understand how humans walk has been acknowledged as a topic of 

interest since Ancient Greek era (Baker, 2007). About two millennia later, during the 

last decade, the number of published studies involving gait analysis has increased for 

almost ten times (Wren et al., 2020). Being part of human movement study, the 

majority of the interests involve two groups of people, firstly physicians and 

physiotherapists whose work is to identify abnormal movement, for example, 

neuromuscular disorders such as Cerebral Palsy (CP) or stroke while the other group 

focuses on maximising individual performance of athletes (Davis, 1988). Nowadays, 

it has been accepted that three-dimensional gait analysis is the gold standard to 

measure the fundamental way of transport and to produce quantitative data to 

document an individual’s walking performance (Vastola et al., 2016)(Jacquelin Perry, 

2010). Typically, two sets of gait data are collected and recorded: 1. Kinematics, the 

study that describes the body segment motion, joint angles in particular and 2. 

Kinetics, to describe ground reaction forces, joint reaction forces, joint moments and 

powers (Mayich et al., 2014). Clinically, both types of data play important roles to 

diagnose gait abnormality, to assess the severity of a particular gait problem, to 

monitor the progression of a disease and, finally, to predict prognosis of the outcome 

of a treatment method (Baker, 2006). Kinematics data are vital parameters for 

clinicians to decide appropriate treatment modality (Wren et al., 2011; Khouri and 

Desailly, 2017; Davids et al., 2019), similarly, kinetics data also provide crucial piece 

of information of how a pathology is created (Amin et al., 2004; Favre and Jolles, 

2016), recommending treatment options (Barrios, Crossley and Davis, 2010; 
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Shepherd et al., 2020)  and monitoring of the treatment outcomes (Foucher and 

Wimmer, 2012; Whatling et al., 2020).   

 

 

Figure 2.1 The diagram illustrates the conventional method for gait analysis 

compared with the method used for this PhD project. Normally, the two main 

components of gait (kinematics and kinetics) are obtained from the optoelectronic 

system incorporate with force transducers and processed with inverse dynamics. The 

kinematics data, however, can be derived from an IMU system and the data will be 

used to train an ANN to predict the joint moments. 

 

2.2 The contribution of gait kinetics in clinical practice 
 

During the stance phase of gait, the body weight is lowered and being transferred 

across the support foot thus generating GRFs in all vertical, horizontal and 

mediolateral directions (Jacquelin Perry, 2010). These forces can be quantified via a 
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floor mounted force platform before further calculated, based on Newton’s laws of 

motion, in combination with the segment mass and its centre of gravity. As a result, 

joint torques (joint moments) can be computed with the method known as inverse 

dynamics to end up with turning moments acting about joint axes, ultimately causing 

rotational joint movements. Information of the joint moments in gait has been useful 

in clinical contexts especially the health issues related with a weight bearing joint. 

Abnormal knee abduction moment is considered as an etiology related to knee 

osteoarthritis (KOA) (Vincent et al., 2012), one of the most common degenerative 

diseases that affects more than 250 million people around the world (Vos et al., 2012) 

and costed over $330 billion in 2003 in the USA only (Yelin et al., 2007). Amin et al.  

(2004) reported that new chronic knee pain is related to a higher baseline KAM in the 

elderly. Moreover, as the medial tibiofemoral joint is the most commonly affected 

anatomical site in this disease, a factor related to an alteration of the KAM in KOA is 

the varus malalignment of the knee (van Tunen et al., 2018). The deformity creates a 

larger distance between the vertical GRF and the joint centre thus increasing the 

KAM. An excessive loading that occurs in the medial compartment of the knee could 

alter the biological environment and biomechanical properties of the articular 

cartilage, meniscus and subchondral bone leading to joint destruction, narrowing of 

the joint space and creating more varus deformity (Chen et al., 2020), these 

eventually turn into a vicious cycle. Many people who suffer from KOA, consequently 

modify their gait to help walking more comfortably with less pain by means of 

naturally reducing the KAM at stance phase. Several gait modification techniques 

were reported including: trunk sway, medialising the knee, walking with a wider base 

of gait, out toeing, and reducing the walking speed (Vincent et al., 2012). These 

findings have encouraged gait researchers to apply gait retraining in order to 
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maintain the KAM to its normal range and prevent gait deterioration of individuals 

(Barrios, Crossley and Davis, 2010).  

In an established motion laboratory, three-dimensional gait analysis is typically 

conducted using an optoelectronic system. The movements are recorded from 

reflective markers attached to anatomical landmarks and detected by infrared 

cameras, and GRFs registered simultaneously from floor mounted force plates. 

Kinematics and kinetics of gait will then be processed by a highly trained specialist.  

The limitations of the method such as providing access in only movement analysis 

centres, costly maintenance and the Hawthorne effect have recently inspired the 

concept of out-of-the lab gait analysis. The attention is currently focused on the 

feasibility of using a portable motion capture system to measure gait outside the 

traditional motion laboratory.   

 

2.3 Inertial measurement units 

 
Alternative methods for movement analysis, inertial measurement units, two-

dimensional markerless motion capture system or motion sensing input devices such 

as Microsoft Kinect, have been developed in the past decade to overcome the 

limitations of traditional optical motion capture (Sandau et al., 2014; Müller et al., 

2017). Inertial motion capture has become an outstanding system to offer a 

transportable motion analysis laboratory. The system comprises of a combination of 

multiple Inertial measurement units (IMUs) that can provide reliable joint angles 

computed from data obtained from its main components: 3D accelerometer, 3D 

gyroscope and 3D magnetometer (Poitras et al., 2019). As a result, no cameras nor 
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dedicated laboratory space are required for setting up such an alternative motion 

capture system. Such motion capture systems were firstly reported for 2D human 

motion analysis in the early 1990s when the sagittal knee joint angle was calculated 

from gait data obtained from eight uniaxial accelerometers that were attached on a 

PVC bracket comparing with angles obtained from a flexible goniometer that was also 

attached to the knee brace. Based on Newton’s laws of motion and, as a 2D motion, 

the assumption that the distances between the joint and the sensors were constant, 

the knee angle in sagittal plane was calculated with standard deviation ranging 

between 0.04-0.09 radians compared to  the angle measured by the goniometer 

(Willemsen, van Alsté and Boom, 1990).  

The term “inertial” refers to the function of the sensor units that measure the 

sensor’s movement or the movement of a rigid body that the sensor is attached to 

when the movement is accelerated by external translation forces (accelerometer) or 

rotational forces (gyroscope) (Picerno, 2017). Initially, IMU devices comprised of a 3D 

accelerometer and a 3D gyroscope (Luinge and Veltink, 2005). After the sensor-to-

segment calibration, data signals from the two sensors, are integrated to compute a 

body segment orientation compared with the proximal body segment when an IMU 

is placed on each segment (Luinge and Veltink, 2005). Although the body segment 

orientation could be estimated from data of a gyroscope, it was proved that there 

was integration drift when the data were recorded for a long period of time (Luinge, 

Veltink and Baten, 1999). When the gravitational vector component from an 

accelerometer were combined to the angular velocity obtained from the gyroscope 

and a Kalman filter, the resultant estimated orientation showed a remarkable 

improvement (Luinge, Veltink and Baten, 1999). However, tracking a movement by 
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using data from these two sensors still inherited some integration drift by the nature 

of integrating data from the gyroscope (Roetenberg, Slycke and Veltink, 2007). To this 

extent, many developers have incorporated a 3D magnetometer in the IMU in order 

to help directing the sensor by following the magnetic north as the heading direction 

(de Vries et al., 2009). Generally, in an IMU used for motion capture, the 

magnetometer works as a compass needle for the system and the accelerometer 

works similarly to a spirit level following the gravitational acceleration. If there is no 

movement the linear acceleration equals to zero, and the acceleration is then equal 

to the gravitational acceleration. The gravitational vector is therefore used to identify 

pitch and roll of the body segments (Paulich et al., 2018). The system that includes a 

magnetometer, therefore, can be called as inertial magnetic measurement units 

(IMMUs). Nowadays, the inertial sensors are more likely to include all three 

components rather than containing only gyroscope and accelerometer (Picerno, 

2017).   

The combination of cumulative drifting of the data from the integration drift by the 

gyroscope and the disturbance of the magnetometer signals due to the effects of 

ferromagnetic materials has been highlighted and investigated in depth as these 

factors have lessened the use of the IMMUs when the accuracy and precision of the 

measurement is expected, for instance, in clinical practice (Picerno, 2017). 

Considering that ferromagnetic materials possibly exist, for example, construction 

iron in a building, hardware instruments and electrical appliances, the homogeneity 

of the magnetic field can be disturbed. In a typical indoor environment, there could 

be a constant magnetic interference that could cause local magnetic field deflection 

ranged from 12.6° (a heater/ a computer monitor) to 16.1° (a large metal shelf). 



33 

 

Keeping at least about 60 cm (two feet) from the sources of magnetic interference 

was recommended (Bachmann, Xiaoping and Peterson, 2004). De Vries et al. (2009) 

showed the strongest disturbance of the magnetic field at five cm above a motion 

laboratory floor but decreasing at the 100 cm height. However, the study showed 

that a Kalman filter could reduce the magnetic field distortion and the motion capture 

with and IMMU system was recommended at least 40 cm above the laboratory floor 

(de Vries et al., 2009).     

Mathematical algorithms have also been adopted to overcome these two error 

factors in order to improve the performances of the IMMUs. The strap down 

integration (SDI) algorithm has been included in the data processing to solve the 

integration drift and improve the accuracy of the accelerometer and the gyroscope 

(Paulich et al., 2018). The Kalman filter is a fusion algorithm that works recursively to 

estimate an outcome from time series measurements that has been commonly used 

in navigation technologies (Sabatini, 2011). For human motion tracking, a 

complementary Kalman filter (figure 2.2) is adopted to estimate body segments’ 

orientation by means of IMMUs (Foxlin, 1996; Roetenberg et al., 2005). The filter 

estimates the body segment orientation based on a model of errors, the estimation 

process is computed through four components of the sensor including the ‘a priori’ 

model prediction of the state where the signals of the three components are 

integrated (the orientation changes are calculated from the angular velocity via the 

SDI algorithm, the error model, the Kalman filter and the state correction yielding the 

a posteriori state estimate (Roetenberg et al., 2005)).  
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The Kalman filter showed the ability to estimate the IMMU signals when it was placed 

close to a 3.75 kg iron cylinder at root means square of 1.4° for static condition and 

2.6° for dynamic condition when compared with an optical reference system 

(Roetenberg et al., 2005).  

2.4 Validity and reliability of inertial measurement units in gait 

analysis 

 
The validity and reliability of using IMUs in gait analysis are now in the focus of 

interest for motion analysts following the improvement of data estimation from the 

three main sensors of the IMUs by incorporating the SDI algorithm and the 

complementary Kalman filter. Gait data obtained from the IMUs system have been 

Figure 2.2 An example of a Kalman filter structure used for IMMUs (the figure was adapted 

from Roetenberg et al. (2005)), the first part of the filter is the state model where the models 

of the signal of the gyroscope, accelerometer (yG,t, yA,t , yMt, respectively) at a specific time are 

integrated with the estimated orientation state model (x) from before. The error model is 

then created and presented to the filter an error state vector (xƐ), the correlations between 

the previous and the current error state (A), the correlation between the error state and the 

real measurement, the covariances of the system (Qw,t) and the measurement noise (Qv,t), 

the error inputs from the signal generation system: the inclination and the magnetic (ZƐt). The 

filter then estimates the orientation with the Kalman filter covariance (P). A hat on the top 

indicates estimated vector, a minus superscript is the a priori state and a plus superscript is 

the estimation made after being corrected by the filter.  
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reviewed against the data obtained from a standard optoelectronic system in two 

main categories: spatiotemporal parameters and 3D joint kinematics. A recent 

systematic review and meta-analysis of studies reported the validity and reliability of 

using the IMUs system in order to quantify gait from healthy participants. Eighty-two 

studies were included for the analysis, and the researchers found that only a few 

were categorised as high-quality studies. Subsequently, there were insufficient 

number of the included studies to be pooled and analysed to conclude about the 

validity of the 3D joint kinematics of the IMUs. Good to excellent correlation between 

the two systems were found with the range of the spatiotemporal parameters 

(Kobsar et al., 2020).  

Zhang et al. (2013) validated 3D joint kinematics calculated from a commercial IMUs 

system (Xsens) in three daily activities: level walking, stair ascent and stair descent in 

10 healthy subjects. Focusing on level walking, the sagittal plane joint angles of the 

lower limbs including hip, knee and ankle joint presented the best correlation when 

compared with gait data collected from an optoelectronic system and derived in a 

standard gait model. They reported a range of the grand mean joint angle estimation 

errors of angles derived from the IMUs system at 1.38°-6.69°. On average, amongst 

all joint angles, the coefficient of multiple correlation (CMC) was 0.96 or higher for 

flexion and extension. In contrast, the CMC values of the frontal and transverse plane 

of motion ranged from 0.50-0.85. The authors yet suggested that the differences may 

be mainly due to the difference in the anatomical reference frame description of the 

compared motion capture systems which affects more the frontal and transverse 

planes. They concluded that caution should be taken when 3D joint kinematics, 

specifically in the frontal and transverse planes, are used with the Xsens system 
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Frontal plane data, however, are essential information for clinical gait analysis 

application. 

Similarly, Al-Amri et al. (2018) studied the concurrent validity of 3D joint kinematics 

from Xsens sensors compared with those of an optoelectronic system. Gait data were 

collected from 27 healthy participants in three activities of level walking, squatting 

and vertical jumping. In terms of kinematics in level walking, the results showed 

excellent CMC at > 0.9 in the sagittal plane from all hip, knee and ankle joints and also 

excellent for the frontal plane of the hip joint. However, the results were not shown 

in the other planes of motion of the rest because they were not real numbers. The 

correlations according to Linear fit method (LFM) illustrated the relevant outcomes 

with the CMC. Average R² of the sagittal plane motion in all joints was > 0.8, while 

fair to good similarity were found for transverse and frontal plane with R² at 0.4 – 0.8. 

Poor similarity or the two systems were found in the frontal plane and transverse 

plane joint angles and in the transverse plane of hip joints. Excellent correlations 

were found in the sagittal plane of movement which generally has a wider range of 

motion. The poor relationships were, by contrast, shown in joints that have a small 

range of motion suggesting that the motions were difficult to be accurately 

computed, most likely from marker misplacement. Moreover, the difference of 

biomechanical model of the two motion capture systems could also contribute to the 

poor kinematics waveform similarity.  

The experiment was carried out by two researchers who never used an IMU system: 

an experienced musculoskeletal physiotherapist and an experienced clinical 

movement scientist in order to examine the reliability of joint kinematics using an 

IMU motion capture system. Classified by interclass correlation (ICC), the reliability 
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of overall joint kinematics in walking analysis by the different researchers were 

acceptable at ICC > 0.6° with standard error of measurement at < 5°. They 

summarised that the IMUs system can be conducted independently without the 

requirement of a high expertise technician. The system provides reliable 3D joint 

kinematics to experimenters at any level of research experience. As can be seen, the 

IMUs can provide a reasonable 3D joint kinematics for gait analysis. The lack of 

kinetics is still an area of interest. Kinetics can be produced using wearable force 

devices such as force sensor insoles or pressure mats (van den Noort et al., 2013; 

Shahabpoor and Pavic, 2017). Estimating gait kinetics by means of machine learning 

has also become an appealing method recently (Ancillao et al., 2018).  

 

2.5 Artificial neural network 
 

The artificial neural network, a machine learning method, was inspired by  biological 

neural system by its learning process which memorises and recognises patterns and 

relationships of data from previous knowledge and congregates from the experiences 

to predict a particular incident (Agatonovic-Kustrin and Beresford, 2000). Physically, 

biological neurons get input information or stimuli from the surrounding 

environment via sensory receptors delivered by sensory neurons through an 

interconnected network  which eventually transfer the signal to the central nervous 

system to process and analyse before sending the response reaction back via output 

or efferent neurons to react with those input stimuli (Agatonovic-Kustrin and 

Beresford, 2000). A common and yet complex example is when temperature drops 

and muscles around the body start shivering. A higher level function of ANNs is that 

they are able to learn from (be trained by) a set of input information, as a 
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mathematical model, that is aiming to create a set of output information. Such ANN 

models have been utilised in many branches of sciences including engineering, 

medicine, pharmacy, and biomechanics, where typically the ANNs are used for 

pattern recognition, forecasting of events or data classification (figure 2.3) (Pedersen, 

Jorgensen and Pedersen, 1996; Agatonovic-Kustrin and Beresford, 2000; Favre et al., 

2012). 

 

Figure 2.3 The inspiration of biological nervous system to the artificial neural 

network. A. a biological neuron receives some stimuli from another neuron (input) 

through its dendrites and transmits the impulses to the next neuron via axons at the 

synaptic junction (output). B. an ANN node receives some inputs (x) and process by a 

non-linear function (f(wtx)) using weights (bias) to express and output (the figure was 

adapted from Zurada. (1992)). 

There are two main approaches for training an ANN, supervised and unsupervised. In 

supervised training, an ANN aims for predicting target output form input variables by 

using various algorithms depending on the example input-output pair that are 

introduced to the ANN. This type of ANN then has to be constructed with fully 

interconnected neurons and comprises of at least three layers: input layer, hidden 
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layer and output layer (Svozil, Kvasnicka and Pospichal, 1997). The feedforward 

neural network (FFANN), is one of the most efficient ANN algorithms for time series 

data prediction (Favre et al., 2012). The difference between the input and weights, 

known as an error is  propagated back to change the weights in order to reduce the 

error during the prediction to determine the most accurate predicted output 

(Farizawani et al., 2020). Levenberg-Marquardt algorithm is the most efficient batch 

mode back propagation learning. It has shown the most accurate prediction due to 

its ability to obtain lower mean square error than any other algorithms and also 

subsequently requires lower amount of computation (Zayani, Bouallegue and 

Roviras, 2008; Sapna, Tamilarasi and Kumar, 2012). On the other hand, the 

unsupervised ANN employs a different training method since the ANN requires only 

input variables to be presented to the network (Svozil, Kvasnicka and Pospichal, 

1997). The system then organises similar patterns of the inputs and groups them 

together before making the decision of what specific feature can be extracted from 

the input variables. This type of ANN, therefore, is known to be good at data 

clustering and visualisation. The example of the unsupervised ANN is the Self 

Organising Map (SOM) (Du, 2010).  

The backpropagation learning can be conducted in two different modes, pattern 

mode and batch mode. The former is suitable for the pattern classification as the 

error adjustment is accomplished after each pattern is presented to the network 

while the latter, the average weight is calculated only when the entire set of data are 

presented to the network, this mode suits nonlinear regression equation and requires 

less weight update which is then resulting in a faster training (Rafiq, Bugmann and 

Easterbrook, 2001).  
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Given that IMUs cannot provide gait kinetics such as GRFs or joint moments, ANNs 

have been one preferred method for gait analysts to be able to achieve kinetics data 

for a gait analysis obtained by IMUs which will benefit for the outside laboratory 

motion capture system. To highlight the capacity of an ANN to estimate GRFs during 

walking, Oh, Choi and Mun (2013) utilised an FFANN trained from 14 variables for 

estimating GRFs and moments in all three axes from normal gait data collected from 

48 healthy participants by using an optoelectronic motion capture system. The 14 

input variables were extracted by using an SOM to determine the most independent, 

less correlated and less similar parameters. Their FFANN architecture had three 

layers: one input layer with 14 input variables, one hidden layer with three hidden 

neurons and one output layer with six output variables. 

High correlation between the predicted GRFs and the actual GRFs were shown with 

correlation coefficients of 0.918, 0.985 and 0.991 for the medial-lateral, anterior-

posterior and vertical axis respectively. Correspondingly, the R values for ground 

moments were at 0.987, 0.841 and 0.898 for the sagittal, frontal and transverse plane 

respectively. The authors concluded that the proposed FFANN algorithm may be used 

instead of raw GRF data and the more complicated inverse dynamics method for 

calculating joint dynamics in gait analysis. Also, using an unsupervised ANN such as 

the SOM to reduce the dimensionality of input data showed the advantage in terms 

of reducing the redundant unnecessary input data which could consequently cause 

longer calculation time and potentially create more error (Oh, Choi and Mun, 2013). 

Aljaaf et al. (2016) reported the feasibility of an ANN to predict joint moments in gait 

analysis directly after being trained by related input variables. They evaluated the 

capacity of four types of machine learning algorithms: Decision tree, Random forest, 
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Linear Regression and Multilayer Perceptron neural network (MLP) in order to predict 

knee abduction moment from gait data obtained from a group of 31 alkaptonuria 

patients. The gait analysis was conducted using an optoelectronic motion capture 

system. Joint angles of pelvis, hip, knee and ankle were normalised to 100 values in a 

gait cycle and used as the input variables. Initially, 12 input variables: ankle X Y Z, 

knee X Y Z, hip X Y Z and pelvis X Y Z, therefore from 31 participants there were 3,131 

instances to be presented to the machine learning algorithms. The number of input 

variables were reduced in sub-experiments based on correlation analysis between 

inputs and the target outputs. The Decision tree and Linear regression showed higher 

performances compared to the others while the MLP showed the lowest 

performance with R2 at 0.00009 and only 0.54 of area under the recall curve. In the 

second experiment, the correlation coefficients between the input and the target 

were calculated to determine the most correlated input-output variation. Five input 

variables comprised of X ankle, X knee, Z knee, X hip and Y hip showed the best 

correlation and were presented to the four algorithms for training again. The 

performance of the MLP significantly improved in the second experiment with R2 at 

0.8616 and the area under the recall curve at 0.874. The authors concluded that MLP 

was a reasonably good algorithm to predict the knee abduction moment in gait 

analysis. 

A wavelet neural network (WNN), a three-layer FFANN where neurons are activated 

by wavelets activation functions was used by Ardestani et al. (2014) in order to 

predict lower extremity joint moments in post total knee arthroplasty gait. Gait data 

were collected from four patients with three different gait patterns: normal gait, 

medial thrust and walk with a walking pole, under a standard motion capture system. 
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The WNN was claimed to potentially have higher performance because it overcomes 

the disadvantage of the original FFANN such as the slowness of the system due to 

randomly adjusting of the initial weight at the beginning of the training algorithm. 

Both WNN and FFANN were trained using eight EMG signals and two GRF 

components as inputs to predict the following six joint moments: hip abduction-

adduction, hip flexion-extension, hip external rotation, knee flexion-extension, ankle 

plantar flexion and subtalar eversion moment. The FFAAN could predict joint 

moments reasonably accurately with average normalised root mean square error 

(NRMSE) of only 7.70%, 8.67% and 8.25% for normal gait, medial thrust and walking 

pole respectively. The similarity of the prediction ability of both algorithms was 

shown by cross correlation values, ranged from ρ = 0.86 – 0.98. As expected, the WNN 

showed a slightly better performance than the FFANN with average NRMSE at 5.00%, 

5.10% and 5.98% for normal gait, medial thrust and walking pole respectively and 

average cross correlation values was at 0.96.  

Recently, the idea of predicting joint moments from an array of IMUs data is one step 

closer. Mundt et al. (2020) reported a good result of the lower limb joint angles and 

moments prediction from a long short-term memory neural network (LSTM) using 

simulated IMUs data compared with an FFANN. The results from the FFANN were 

more accurate than the LSTM in all planes of motion. Interestingly, adding some 

anthropometric data augmentation did not improve performances of the FFANNs. 

From this study, the FFANN outperformed the LSTM neural network, however both 

machine learning algorithms still showed that they were able to predict joint 

moments in gait with a reasonable outcome compared to the standard motion 

capture system. This highlights the potential of conducting gait analysis outside the 
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motion laboratory by using the combination of kinematics data obtained from 

(simulated) inertial sensors and kinetics computed from an ANN, particularly the 

simple FFANN. 
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Chapter 3: Pilot studies for feasibility of predicting 

knee abduction moment by an artificial neural 

network 
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Background 
 

Standard procedures exist for calculating joint angles and joint moments of gait from 

positional information collected by an optoelectronic system and GRFs from force 

platforms. Gait analysis, therefore, is typically accomplished in a movement 

laboratory. An alternative system, for instance, IMMUs can also be used to quantify 

joint angles anywhere, however, the alternative techniques to measure GRFs or joint 

moments outside a laboratory are not well established.  

An advantage of using IMMUs for gait analysis over the optoelectronic system is that 

it allows researchers to collect gait data outside a gait laboratory, providing a better 

opportunity for some groups of people to access such investigations (Picerno, 

Cereatti and Cappozzo, 2008). Concurrently, to incorporate a force measurement 

system for examining the causes of the movements obtained by the IMMUs is a 

challenge. Several methods were proposed in order to estimate GRFs thus leading to 

the calculation of joint moments. At first, instrumented force shoes were used to 

record the forces during walking (Veltink et al., 2005). The instruments combined 

with an IMMU system could be used for the estimation of external knee adduction 

moment in osteoarthritis patients (van den Noort et al., 2013). However, wearing 

those shoes was impractical and could interfere with natural gait due to the 

cumbersome electromechanical equipment (Shahabpoor and Pavic, 2017) and the 

shoe height (3.2 cm) and weight (1.1 kg mass each) (Koch et al., 2016). Another 

proposed method is using an insole pressure measurement device which is wearable 

therefore, serves the out of the lab gait analysis principle, however the device is less 

accurate compared to the former method (Abdul Razak et al., 2012).   
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Artificial neural networks have been introduced to predict GRFs and joint moments 

in both normal and pathological gait with reasonable outcomes (Hahn and O'Keefe, 

2008; Favre et al., 2012; Aljaaf et al., 2016). The machine learning algorithm models 

a non-linear relationship between input-output pairs to predict the measured output 

(target) thereafter (Oh, Choi and Mun, 2013). Generally, an ANN is trained with a set 

of input-output pairs with parallel validation and lastly the ANN prediction ability is 

evaluated at the testing part by being presented with a small set of previously not 

seen inputs. The prediction from this testing part represents how well the ANN can 

predict outputs from the new input data. Several kinds of input data, for instance, 

marker trajectory, acceleration, and electromyographic signals were used to train an 

ANN to predict GRFs and joint moments in gait as well as a number of ANN 

architectures such as a backpropagation ANN, a wavelet ANN and a long short-term 

memory ANN (Oh, Choi and Mun, 2013; Ardestani et al., 2014; Mundt et al., 2019; 

Aljaaf et al., 2016).  

 

 

 

 

 

 

 

 



47 

 

3.1 Pilot study 1. Prediction of joint moment in gait using marker 

trajectories as input 
 

Materials and methods  
 

The study took place in the Movement Function Research Laboratory (MFRL) at Tom 

Reilly Building, Liverpool John Moors University (LJMU).  

Participant preparation 
 

A female participant, 31 years of age (body height and body mass were 1.56 metres 

and 50 kg) was informed with the experimental protocol and a verbal consent was 

given. The volunteer was contacted and given the detail of the pilot study protocol to 

make her decision to participate the study one week before the study was conducted. 

The department risk assessment protocol (appendix 1.) was strictly followed 

throughout the study. The participant was asked to wear a tightfitting t-shirt, a pair 

of tight shorts and bare feet. The knee and ankle width were measured to be used 

with the Plug-in Gait model (PIG) (Davis et al., 1991). Thereafter, 16 reflective markers 

were placed on bony landmarks including both sides of the anterior superior iliac 

spines (ASI), posterior superior iliac spines (PSI), knee lateral epicondyles (KNE), 

lateral malleoli of ankles (ANK), lateral side of both thighs (THI), lateral sides of both 

shanks (TIB), the dorsum of the foot between second and third metatarsal heads 

(TOE) and both heels (HEE) according to the PiG model, using medical grade double 

sided adhesive tape (figure 3.1).  
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Data collection, processing and analysis 
 

The participant was then asked to walk at self-selected comforatable speed over an 

eight-meter walkway with two 0.6 x 0.4 m floor mounted force plates (Kistler 

Instrument Ltd, Winterthur, Switzerland). Five gait trials with a good contact with the 

centre of the force plate were recorded. Eight cameras were used for an 

optoelectronic motion capture system (Vicon MX T160, Oxford Metrics Ltd, Oxford, 

UK). The gait data were then processed with Vicon Nexus 2.5 software using the Plug-

in Gait model, kinematics and kinetics data were derived and normalised to 100% gait 

cycle by Visual3D software (C-Motion, Inc. Maryland, USA). Input data were extracted 

from y coordinates of the following seven markers from the left side: LASI, LKNE, 

LANK, LTHI, LTIB, LTOE and LHEE creating seven input variables. Measured outputs 

Figure 3.1 Plug-in Gait (PIG) model used in the study 
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were sagittal plane hip, knee, and ankle moments (three output variables) from the 

same leg. A custom Matlab script (appendix 2.) was written for training a three layers 

FFANN with five hidden neurons using the Levenberg-Marquardt algorithm 

(Matlab2017, The MathWorks Inc, Massachusetts, USA).  Data splitting was applied 

in the ANN training in order to evaluate the capability of the ANN model to predict 

the joint moments and to prevent overfitting. The recommended percentage of 

training data is maximally 70% of the whole data while the test set ranged from 10% 

to 50% (Korjus, Hebart and Vicente, 2016). In this pilot study the data were divided 

into 70% for training the network, 15% for validation and 15% for testing the 

performance of the FFANN.  Thereafter, the FFANN was trained again using the same 

input variables and the opposite side hip, knee and ankle sagittal plane joint moments 

as targets (or expected outputs). Root mean square error (RMSE) was calculated to 

compare the measured and the predicted joint moments. 

Results 
 

The FFANN trained by data from the marker coordinates of the left side could predict 

sagittal plane hip, knee and ankle joint moments of the same side, with an accuracy 

shown by RMSE of 0.034, 0.064 and 0.046 Nm/Kg respectively (figure 3.2). In 

addition, the FFANN trained by the left side marker coordinates also showed the 

capability of predicting sagittal plane joint moments of the right hip, knee and ankle 

with RMSEs (calculated at the training, validation and testing part) of 0.121, 0.073 

and 0.076 Nm/Kg respectively.    
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Figure 3.2 The prediction ability of the FFANN trained by data extracted 

from marker trajectories in unimpaired gait, with RMSEs of 0.046, 0.064 

and 0.034 Nm/Kg for ankle, knee and hip sagittal plane moment. The 

predicted joint moments (red) of gait were comparable to joint moments 

of the participant calculated by inverse dynamic method (blue). A good 

prediction of stance phase is shown especially at hip and ankle joint. 



51 

 

3.2 Pilot study 2. Prediction of joint moment of gait by an FFANN 

trained with joint angles obtained by an IMMU system (Xsens) 
 

Participant preparation 
 

Two healthy participants (P1: a 27 year old male, body height 1.85 metres, body mass 

102.25 kg and P2: a 26 years old female, body height 1.56 metres, body mass 53.25 

kg.) volunteered to join the pilot study. Informed consent was obtained verbally after 

the study protocol was explained.  The volunteers were contacted and given the 

detail of the pilot study protocol to make their decision to participate the study one 

week before the study was conducted. The department risk assessment protocol 

(appendix 1.) was strictly followed throughout the study.  Both participants were 

asked to wear a tight fitting t-shirt, a pair of tight shorts and their own comfortable 

trainers. The following body dimensions: shoulder height, shoulder width, hip height, 

hip width, knee height, knee width, ankle height, ankle width and foot length were 

measured in accordance with the Xsens sensor instructions (Xsens Technologies B.V., 

Enschede, The Netherlands). 

Data collection, processing and analysis    
 

The gait data of each participant were collected separately on different days of the 

same week. Firstly, seven MTw2 wireless data trackers (Xsens Awinda, Xsens 

Technologies B.V., The Netherlands) were securely placed, using the elastic Velcro 

straps, on sacrum, lateral aspect of both thighs, anterior surface of both shins and 

the dorsal side of both feet over the shoe tongue. Thereafter, 26 reflective markers 

were placed on bony landmarks according to the HBM (lower body and trunk) (van 

den Bogert et al., 2013) using medical grade doubled-sided adhesive tape (figure 3.3).  
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Since the gait data were going to be collected on an instrumented treadmill 

(Motekforce Link, The Netherlands) the Xsens sensor calibration process was 

recommended to be carried out on a short distance walk. The calibration was, 

therefore, conducted in an unoccupied area of the laboratory close by the treadmill. 

The participant was then brought up to the treadmill and was fitted with a safety 

harness which was securely attached to the ceiling mounted cable as part of the 

laboratory hazards prevention protocol. The participant started to walk on the 

treadmill at comfortable self-selected speed using the self-paced mode of the 

treadmill for a short period in order to become familiar with the treadmill walk. A 

one-minute long gait data were then collected from each participant. 

The reflective marker signals were streamed in real time from Vicon Nexus 2.5 

(Oxford Metrices Ltd, Oxford, UK) to D-Flow software (Motekforce Link, The 

Netherlands) and were instantly processed for kinematics and kinetics of gait and 

Figure 3.3 A. An illustration of the Human Body Model (HBM). B. The demonstration of the 

participant preparation with both motion capture systems: Xsens Awinda sensors (orange square 

boxes) and the HBM reflective markers.    
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saved as text files. Similarly, joint angles were also recorded from the Xsens sensors 

by Xsens MVN studio software (Xsens Technologies B.V., Enschede, The Netherlands). 

The joint angles were estimated using the relation of a proximal and distal segment 

obtained from the anatomical segment frame (data from each IMMU sensor) which 

was compared with a priori frame of the same segments. The anatomical frame was 

originally calculated in a relation with the global magnetic north as its reference. As 

time dependent data, an appropriate beginning data point of gait data recorded by 

the two system was identified by the curve registration technique for identifying an 

event in gait described by Sadeghi et al. (2000). A mean registered curve was 

calculated from five consecutive gait cycles of the gait data obtained from both 

systems. The mean stance phase was calculated. The data from the two motion 

capture systems were aligned with the mean registered curve and the peak angle 

matching was then identified as a cut off for the identical data point and time 

recorded by both systems.  

The recorded gait data of each participant were then extracted in Matlab 2017 

software (The MathWorks Inc, Massachusetts, USA) beginning with 1,000 

consecutive data points of eighteen input variables from hip, knee and ankle joint 

angles (all three planes of motion from both legs, i.e. 2 legs x 3 angles x 3 planes = 18 

variables) derived from the Xsens system, followed by the corresponding 1,000 data 

points of left hip abduction moment (normalised by body mass) derived from HBM in 

D-Flow software as measured output. The FFANN was trained using input data from 

P2 to predict the hip abduction moment of the same participant with the Levenberg-

Marquardt algorithm (Matlab2017, The MathWorks Inc, Massachusetts, USA), and 10 

hidden neurons. The data were divided into 70% for training the network, 15% for 
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validation and 15% for testing the performance of the FFANN. Thereafter, the trained 

FFANN was used to predict the hip abduction moment of the other participant (P1). 

The prediction ability of the FFANN was quantified by the RMSE between the 

measured and the predicted output. 

Results  
 

The FFANN showed the accurate prediction of P2 hip abduction moment when it was 

trained by the joint angles obtained by the Xsens sensor with the RMSE of 0.17 Nm/Kg 

at the validation and testing part which were the gait data that the FFANN did not 

see during training (the unseen data) shown in figure 3.4. However, poor 

performance was found when the FFANN trained by data from P2 was used to predict 

the hip abduction moment of the other participant (P1) with an RMSE of the unseen 

part of 0.67 Nm/Kg (figure 3.5). The results suggested that the FFANN could not 

predict an unseen set of data unless it was trained by the data of that particular 

participant.    
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Figure 3.4 The FFANN trained by joint angles of P2 obtained by Xsens system could 

accurately predict hip abduction moment of the same participant. The figure also shows 

the generalisation ability of the FFANN to predict the unseen gait data used for validation 

and testing (red box) with RMSE 0.17 Nm/Kg. 

Figure 3.5 The FFANN trained by joint angles of P2 obtained by Xsens system was not able 

to predict hip abduction moment of the other participant (P1), thus reflecting poor 

generalisation ability to predict unseen gait data.  
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3.3 Pilot study 3. Prediction of joint moment of another participant by 

an FFANN trained with gait data of a different person 

 

Data collection, processing and analysis 
 

The data used in this pilot study were the gait data of P1 and P2 from pilot study 2, 

in combination with gait data obtained from a third 32 year old male volunteer (P3, 

1.78 metres and 65.75 Kg). Gait data of P3 were recorded, processed and extracted 

in the same fashion with P1 and P2 as described in pilot study 2. Hip, knee and ankle 

angles from both sides of the three participants were used as input to train the 

network while the sagittal plane moments (normalised by body mass) of both sides 

hip, knee and ankle were used as target.  

The pilot study was divided into two steps. First, the FFANN was trained with the gait 

data split into 80% for training, 10% for validation and 10% for testing the 

performance, with 10 hidden neurons. Data from two participant (P1 and P2) were 

used for training the FFANN while the gait data of P3 were used for validation and 

testing the FFANN performance. Therefore, the FFANN was never trained with the 

data of P3 before, thus making these data unseen by the FFANN. On the other hand, 

in step two, the FFANN was trained by gait data from all three participants with a 

smaller proportion of the data from P3 compared to P1 and P2 (demonstrated by a 

smaller and fader letter in the right block diagram (figure 3.6). The FFANN was 

validated and tested by the data from P3 only. At this step, the gait data of P3 were 

presented to the FFANN before which might affect the performance of the FFANN.       

Normalised root mean square error (NRMSE) to 100% was calculated to examine the 

performance of the FFANN. 
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Results  
 

The FFANN was able to predict unseen data of P3 when it was trained by the input-

output pairs of P1 and P2 shown by the NRMSEs at 12%, 19% and 24% for the right 

hip, knee and ankle sagittal moment respectively and 11%, 40% and 20% for the left 

hip, knee and ankle sagittal moment (figure 3.7). Moreover, the FFANN showed a 

better performance when approximately 17% of P3 input-output pairs were included 

in training, compared to the FFANN trained only by data from P1 and P2. The NRMSEs 

were 6%, 10% and 11% for the right hip, knee and ankle sagittal plane moment and 

7%, 13% and 11% for the left side hip, knee and ankle sagittal plane moment 

respectively (figure 3.8). 

Figure 3.6 Pilot study 3 method illustrated by a block diagram. The generalisation ability of the FFANN 

was examined from the two steps of the training process. Step 1, the FFANN was trained by gait data 

of P1 an P2 and tested by gait data of P3. Step 2, some gait data of P3 were included in training, 

followed by testing with all gait data of P3.  
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Figure 3.7 The poor performances of the FFANN in the prediction of sagittal plane joint moments 

of an unseen individual are shown in the testing part (red box). This indicates that the FFANN 

trained by data of P1 and P2 was not sufficient to cover the gait pattern of P3 and as a result the 

FFANN could not provide an accurate prediction of joint moments.  

Figure 3.8 Better performance of the FFANN was shown when some data of P3 were included in 

training. Subsequently, the FFANN could predict more accurately the joint moments during 

testing with unseen data, shown by lower NRMSEs.  
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Discussion 
 

The pilot studies show that the FFANN trained with Levenberg-Marquardt algorithm 

was capable of predicting joint moments during gait whether the input data were 

obtained from marker coordinates or the joint angles obtained from Xsens sensors 

were used as inputs. This demonstrated the relationship between the inputs 

(kinematics) and outputs (kinetics) well and can possibly imply that the relationship 

would come from the classic: the movements (joint angles) are created by the forces 

(joint moments) (Winter, 2009).  

The FFANN trained by marker coordinates – joint moments pairs obtained from one 

lower extremity could predict joint moments of the same side fairly accurately, 

shown in pilot study 1. More importantly, the FFANN could also predict the joint 

moments of the contralateral limb when it was presented with input variables 

obtained from the opposite leg. Thus, indicating that the FFANN had generalisation 

ability to predict the output that was not directly related with the input data. Also, 

the data obtained from marker coordinates appeared to be a reasonable input to 

train an ANN to predict joint moment of gait, as they represent the original gait data 

that expressing the exact position of a particular body segments without much data 

processing for gait analysis (Federolf, 2013; Federolf, 2016). From the promising 

results of the pilot studies, later in this research, the marker coordinates will be used 

as input to train the FFANN and compared with training the FFANN by joint angles.    

Similarly, the FFANN trained by the Xsens joint angles as inputs showed a good 

prediction of joint moments in both frontal plane and sagittal plane. The FFANN did 

not generalise well in pilot study 2 as the trained FFANN from P2 gait data provided 

a poor prediction of P1 hip abduction moment even though the joint moments were 
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normalised to body mass. This could be explained by the extreme difference of 

anthropometric parameters including the body height and body mass between P1 

and P2 which could cause large differences in their individual gait patterns due to the 

differently developed gait habits thus creating the distinctive joint reaction forces.  

The generalisation ability of the FFANN was explained better with the results from 

pilot study 3 when gait data of a third person were used to test the network. Similar 

to pilot study 2, the FFANN trained by data of P1 and P2 could not generalise well to 

predict the joint moments of P3 as seen by a high NRMSEs of the testing part of the 

FFANN. In contrast, the FFANN showed better performance when a small part of P3 

gait data were presented to the network during training, shown by lower NRMSEs.     

The success of using joint angles obtained from the Xsens sensors to predict joint 

moments in pilot study 2 and pilot study 3 supported the principle of conducting gait 

analysis outside a gait laboratory. The results were promising for the clinical 

application in the future which will consequently provide opportunities for firstly, the 

people who needed the investigation but being restricted by any reason such as 

independent ambulation.  

Secondly, the researchers could be able to collect a genuine gait in real life that 

represents the typical walk of an individual. Nevertheless, more gait data obtained 

from a variety of gait patterns and walking speeds are required to train the FFANN to 

increase chances for the network to be able to recognise a wider range of possible 

gait patterns of the general population.  

Moreover, gait data from either healthy and pathologic gait with different physical 

configurations should also be included to train the FFANN to provide a better chance 
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for the FFANN to generalise to an unseen gait pattern of a new individual resulting in 

the effective prediction and the achievement of conducting an ideal gait analysis 

outside of the gait laboratory (Stetter et al., 2020).   
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Chapter 4: Validity of Inertial Measurement Units 

for lower extremity joint kinematics in gait 

analysis 
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Background 
 

There are several advantages of using an IMU system in order to quantify gait 

compared with the optoelectronic motion capture that is typically used in a standard 

gait laboratory, especially the possibility of using the inertial system to conduct a gait 

analysis outside the lab. Additionally, in situations where the real time gait kinematics 

are required, as the gait data collected using the traditional method needs processing 

which takes longer time for the data to be readily used (Picerno, 2017). The IMU 

system, was therefore validated against the optoelectronics system to test the 

capability of the alternative motion capture for practically use.    

The performance of Xsens sensors, a commercial IMU system, (Xsens Technologies 

B.V., Netherlands) for CGA has been validated against standard motion capture. Cutti 

et al. (2010) applied the ‘OUTWALK’ protocol with the Xsens system to compare 

against the Calibrated Anatomical System Technique (‘CAST’) gait model recorded by 

an optoelectronic motion capture system in order to measure gait kinematics. They 

found that both pairs of the protocols and motion captures could be used 

interchangeably with very good coefficient of multiple correlation (CMC) at > 0.88 for 

sagittal plane movement of hip, knee and ankle joints and the frontal plane 

movement of the hip (CMC: 0.65-0.75 = moderate, 0.75-0.85 = good, 0.85-0.95 = very 

good and 0.95-1 = excellent) (Ferrari et al., 2010). 

Similar results were published by Zhang et al. (2013) and Al-Amri et al. (2018), without 

using the ‘OUTWALK’ protocol, the latter groups showed that Xsens accurately 

provided hip, knee and ankle flexion/extension angles at CMC 0.98, however, the 

CMCs were lower in the frontal and transverse planes (ranged from 0.5-0.85). 
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It is difficult to compare the results of those hallmark studies because the 

experiments were conducted using different equipment, gait models and movement 

activities. Since joint angles obtained from Xsens Awinda were used entirely in our 

study, it was necessary to validate the kinematics obtained from the system against 

the conventional gait model (CGM) (Kadaba, Ramakrishnan and Wootten, 1990; 

Davis et al., 1991) with an optoelectronic motion capture system (Vicon Motion 

Systems, Oxford Metrics Group Ltd.) which are normally used in our gait laboratory. 

This study highlighted the validity of using Xsens Awinda system in order to measure 

kinematics of lower extremity in gait analysis compared to the standard 

optoelectronic motion capture system. 

 

Materials and Methods 
 

The study took place in the Movement Function Research Laboratory (MFRL) at the 

Tom Reilly Building of Liverpool John Moores University (LJMU). 

Research participants 
 

Participants were recruited from staff and students in the Faculty of Science, LJMU. 

The study was approved by the university research ethics committee (reference 

number 18/SPS/005). Ten volunteers participated in this study (six females and four 

males, age: 27.9±5.32 years, body height 1.69±0.11 m, body mass 63.95±10.8 kg). 

Written informed consent was obtained prior to data collection.  
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Participant preparation 
 

At the beginning, body mass and body height were recorded. The following 

anthropometric data were measured from both sides using a tape measure and an 

anthropometer: hip height, hip width, ankle height, knee height, foot length, shoe 

thickness, shoulder height, shoulder width and arm span from each participant 

according to the instructions by Xsens (Xsens, 2020). Ankle width and knee width 

were also recorded for joint centre calculations in the PiG model. 

 

Figure 4.1 An Xsens MTw-2 tracker, dimensions 47 x 30 x 13 mm. 

 

Firstly, seven MTw-2 data trackers (figure 4.1) (Xsens Technologies B.V., Netherlands) 

were attached to a participant at the sacrum, lateral aspect of both thighs, the medial 

surface of lower legs using elastic Velcro straps following the Xsens Awinda user 

manual (Xsens, 2020). The feet trackers were placed at the dorsum side over the shoe 

tongue and were secured by self-adhesive elastic bandage. Thereafter, 16 reflective 

markers were placed on bony landmarks according to the PiG lower body model 

(Davis et al., 1991) shown in figure 3.1. The reflective markers were placed after the 

Xsens sensors to prevent them from being knocked and dropped off from their 

positions when the MTw-2 and Velcro straps were applied.  
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Data collection 
 

Kinematics data were recorded at 120 Hz by 12 Vero cameras and Vicon Nexus 2.5 

software (Vicon, Oxford Metrics Group Ltd.) and at 100 Hz by Xsens MVN analyse 

2018 (Xsens Technologies B.V., Netherlands). Both motion capture systems were 

synchronised using a trigger start signal sent from Xsens MVN Analyze 2018 via two 

BNC cables (appendix 3).  

The gait data was collected while a participant was walking on a split belt treadmill 

(M-Gait, Motekforce Link, Netherlands). Therefore, the Xsens sensors were 

calibrated in an unoccupied area of the MFRL to allow the participant to have a small 

walk following the Xsens calibration protocol. This short walk is crucial for the 

software to examine and stabilise ferromagnetic signals around the experimental 

area, however, due to the limited space on the treadmill the volunteers were asked 

to walk on the level floor close by following the recommendations from Xsens. 

Thereafter, the participant was then brought up to stand in the centre of the 

treadmill, ready to start a walking trial. A safety harness was fitted to the participant 

which was securely connected to a safety hook and attached to the laboratory ceiling 

mounted cable according to the risk assessment scheme of the MFRL. The treadmill 

was operated via D-Flow software (Motekforce Link, Netherlands). 

Once the safety harness was securely put on the participant and attached firmly to 

the hook, the calibration for the PiG model was performed whilst the participant was 

in a T-pose: the position where the participant was asked to stand still with both feet 

close together and both arms horizontally outstretched. The position was chosen as 

it was suitable with the treadmill environment to allow the Vicon system to visualise 
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the reflective markers thoroughly, avoiding markers getting obscured by the 

handrails.    

Thereafter, the participant was asked to walk on the treadmill at their self-selected 

speed for a few minutes to get familiar with the treadmill gait. A few walking speeds 

were adjusted by the researcher for the participant to individually identify the most 

comfortable speed similar to their usual walk in daily living.  Once the normal (self-

selected) speed was determined, gait data were collected at three different speeds 

for replicating the heterogeneity of gait: normal, fast (40% faster than normal speed) 

and slow (40% slower than normal speed) (Orendurff et al., 2004; Fukuchi, Fukuchi 

and Duarte, 2018). The treadmill was stopped only when the speed needed changing 

or a marker fell off. 

At each walking speed, the participant was asked to walk continuously on the 

treadmill, however, sets of gait data (45 seconds long) were recorded by the Xsens 

and Vicon systems simultaneously without stopping the treadmill. During data 

collection, the participant was regularly asked if there was a loosening of the sensor 

or marker detachment. 

Data collected by the Vicon system were automatically labelled and reconstructed 

using the PiG model, the gait data were then exported as a c3d file for further 

processing with Visual3D v6 (C-Motion, MD, USA). The data were filtered with a 6 Hz 

low pass second order Butterworth filter. Five continuous gait cycles were identified 

using the GRF signal at the initial contact of a gait cycle thereafter following five 

consecutive gait cycles were included. The selected gait data were normalised to 

100% for all three walking speeds. Kinematics data of each gait cycle were computed 

and recorded for the validation.  
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For Xsens, the segment orientations were determined firstly, relative to the initial 

calibration pose. The change of body segment postures was then subsequently 

calculated to determine joint angles from the orientation of the body segment (Al-

Amri et al., 2018). In this study, joint angles processed by the Xsens MVN Analyze 

2018 were exported in .mvnx files. The data were upsampled to 120 Hz using the 

spline function in Matlab (Matlab 2018b, The Mathworks Inc., MA, USA) to match the 

sampling rate of the gait data recorded by the Vicon system. Subsequently the 

relevant gait cycles of each set of gait data from the Xsens (the corresponding gait 

cycles with the gait data obtained from Vicon system) were extracted and also 

normalised to 100% of the gait cycle using a custom Matlab script. 

Hip, knee and ankle joint angles of both legs from each gait cycle derived from the 

Xsens and the Vicon system were compared to validate the gait kinematics from the 

Xsens biomechanics model against the PiG model. The new formulation of CMCs 

(Ferrari, Cutti and Cappello, 2010) were calculated in another Matlab script (appendix 

4). 

 Coefficient of multiple correlation 
 

The computational method to examine the similarity of waveforms was originally 

described by Kadaba et al. (1990). In this recent study, a Matlab script for CMC 

calculation based on the original Matlab script from Ferrari, A., Cutti, A.G. and Cappello, 

A. (2010) was written to evaluate the validity of the Xsens system compared to PiG 

model. The formula was adapted from the original to be used for waveform similarity 

determination between different gait protocols when the effect of the protocol on 

the waveform similarity is the only interest. The kinematics data were collected 

continuously and synchronously between P methods (protocols), G gait cycles at F 
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frames were included for analysis. Following are the steps to describe how the CMC 

were calculated in this study (Ferrari, Cutti and Cappello, 2010). 

1. Find variability between data at a particular frame of a gait cycle in a protocol 

(𝑌𝑔𝑝𝑓 ) and the mean value of the data at exactly the same frame of all 

protocols (�̅�𝑔𝑓). Sum the variability for all protocols and all gait cycles together 

and normalise by the degree of freedom due to the change of F from one gait 

cycle to the next. 

2. Find the variability between 𝑌𝑔𝑝𝑓  and the grand mean ( �̅�𝑔 ), where 

�̅�𝑔represents the average value of the gait data of all protocols of a gait cycle. 

Sum the variability and normalise by the degree of freedom. 

3. Take the square root of 1 minus the ratio of step 1 over step 2. 

4. The similarity of the waveforms was quantified as CMC value between 0.65-

0.74 = moderate, 0.75-0.84 = good, 0.85-0.94 = very good and 0.95-1 = 

excellent (Ferrari et al., 2010; Zhang et al., 2013). 
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The Linear fit method 
 

Despite the CMC being one of the extensively used indicators to quantify gait 

waveform similarity, researchers have been made aware of its varied reliability which 

depends on related factors such as marker misplacement and the range of motion 

(ROM) of interested joints where the CMC provides more accurate waveform 

similarity for a joint with larger ROM (McGinley et al., 2009; Røislien et al., 2012). The 

linear fit method (LFM), with its rather simplified calculation steps, provides more 

reliable gait waveform comparison by finding a linear relationship (Ya) between two 

different gait curves (kinematics) e.g. a joint angle derived from two different gait 

protocols (Iosa, Cereatti and Cappozzo, 2009; Iosa et al., 2014). Three parameters 

from the LFM equation explain the similarity of the two waveforms as followed.   

Ya = a1·Pref + a0 

Ya is the linear function which approximates Pa values (gait data from the new 

measure protocol at a time point) by means of a linear transformation of Pref (gait 

data from the standard protocol at the corresponding time point). 

According to the linear function, the slope a1 is the angular coefficient (amplitude 

scalar factor) which indicates the mean difference between each data point from 

both protocols. It expresses the quantity that is required to be multiplied to match 

Pref to Pa. On the other hand, a0 is the intercept of the fitting line to add on to the 

equation for the value of Pa when Pref is zero. Also, coefficient of determination (R2) is 

the goodness of fit that determines the strength of the linear relationship between 

Pa and Pref by quantifying the proportion of variance in Pa that can be matched with 

Pref. It is a parameter for the shape similarity of the waveform. The value coincides 
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with the square of the Pearson’s correlation coefficient of the waveforms (Iosa et al., 

2014). The goodness of fit was classified as excellent if R2> 0.75, fair to high if R2> 0.4-

0.74 and poor if R2< 0.39. 

Results  
 

The average walking speeds were 1.1±0.23 m/s, 1.54±0.32 m/s and 0.66±0.14 m/s 

for normal, fast and slow respectively. The CMCs were similar for the right and left 

side of the body. Sagittal plane angles show the best similarity of waveforms between 

both motion capture methods compared to frontal and transverse plane. This pattern 

is consistent amongst data from all participants and all speeds. Walking at fast speed 

shows the highest correlations between waveforms followed by normal and slow 

speed. Poor to moderate agreement of the waveforms were found in the frontal 

plane joint angles from all joints at all speeds.  Shown in figure 4.2, the mean CMC of 

the sagittal angle of the knee joint was ‘excellent’ at 0.96 (ranged between 0.86-0.99), 

followed by the hip joint at 0.88 (ranged between 0.55-0.99) and the ankle joint at 

0.77 (ranged between 0.04-0.96). The mean CMCs of the joint angles in the frontal 

plane were lower than the sagittal plane angles with the highest mean CMC at 0.62 

(ranged between 0.09-0.94) for the ankle joint followed by the hip joint at 0.58 

(ranged between 0.05-0.93) and the knee joint at 0.51 (ranged between 0.007-0.72). 

The CMC values of the waveform similarity in transverse plane could not be reported 

since they were non-real numbers. Example waveform similarity of the three walking 

speeds from a participant are shown in figure 4.3 and 4.4 for the sagittal and frontal 

plane respectively. 
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Figure 4.2 The average coefficient of multiple correlation of all walking speeds 

are generally higher for the sagittal plane joint angles (A) compared to the frontal 

plane (B). Overall, the similarity of the waveforms in sagittal plane obtained from 

Xsens and Vicon system vary from good to excellent, however, there is poor 

similarity of the waveforms in frontal plane. There is a remarkably wide range of 

the CMCs in the frontal plane joint angles which varied from poor to excellent. 
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Figure 4.3 Waveform similarity and CMC of joint angles (sagittal plane) of a participant obtained from Vicon system (blue) and the joint 

angles obtained from the Xsens sensors (red) at fast (left column), normal (middle column) and slow speed (right column) of walking.  
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Figure 4.4 Waveform similarity and CMC of joint angles (frontal plane) of a participant obtained from Vicon system (blue) and the 

joint angles obtained from the Xsens sensors (red) at fast, normal and slow sped of walking.  
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Correspondingly, the LFM demonstrated that the joint angles obtained by the Xsens 

Awinda were comparable with the conventional method in sagittal plane motion 

followed by frontal and transverse plane. Average R² values were higher in angles of 

larger joints. Data recorded from slow walking speed showed poorer results than the 

others (table 4.1).  

There was excellent similarity of sagittal plane joint angles in most of the joints at 

normal and fast speed according to the R² (0.71-0.98). However, it was generally fair 

to high at the slow speed walks. The R² values of frontal plane joint angles ranged 

from poor to fair to high. Poor similarity was observed in the transverse plane motion. 

The angular coefficient (a1) of the linear regression of joint angles shown in table 4.2 

represents a constant number that is needed for Pref (a data point obtained from 

Vicon system) to be equivalent with Pa (data point obtained from Xsens).  

Additionally, table 4.3 reveals the offsets (a0) that are required to add on and make 

equivalent joint values with the Vicon system.
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Table 4.1 Average R² +-SD of the linear regression model of kinematics data obtained 
from the Xsens Awinda compared with PiG model and Vicon system. 

Average R² ±SD of sagittal plane motion at 

Joint 

angle 

Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle 0.88±0.06 0.77±0.11 0.83±0.08 0.71±0.13 0.64±0.36 0.56±0.30 
Knee 0.95±0.02 0.96±0.01 0.93±0.03 0.94±0.03 0.71±0.43 0.71±0.04 
Hip 0.98±0.02 0.98±0.02 0.98±0.01 0.96±0.04 0.74±0.04 0.72±0.43 
       

Average R² ±SD of frontal plane motion at 

Joint 

angle 

Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle 0.67±0.25 0.49±0.29 0.61±0.21 0.40±0.29 0.48±0.32 0.41±0.29 
Knee 0.27±0.20 0.40±0.28 0.33±0.27 0.36±0.26 0.28±0.23 0.36±0.28 
Hip 0.48±0.32 0.27±0.30 0.49±0.31 0.36±0.34 0.45±0.34 0.39±0.34 
       

Average R² ±SD of transverse plane motion at 

Joint 

angle 

Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle 0.10±0.10 0.18±0.19 0.18±0.18 0.22±0.22 0.18±0.16 0.23±0.21 
Knee 0.17±0.24 0.23±0.23 0.28±0.27 0.27±0.21 0.30±0.28 0.27±0.23 
Hip 0.23±0.20 0.16±0.20 0.24±0.22 0.14±0.19 0.28±0.26 0.21±0.20 
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Table 4.2 The angular coefficient (a1) of the linear regression model 

Average a1±SD of sagittal plane motion at 

Joint 

angle 

Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle 1.23±0.21 1.08±0.18 1.24±0.23 0.99±0.16 1.05±0.57 0.82±0.44 
Knee 1.05±0.04 1.06±0.08 1.03±0.05 1.04±0.07 0.79±0.46 0.80±0.46 
Hip 0.86±0.09 0.83±0.10 0.87±0.09 0.85±0.12 0.67±0.37 0.64±0.35 

       

Average a1±SD of frontal plane motion at 

Joint 

angle 

Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle 0.70±0.32 0.55±0.33 0.59±0.28 0.41±0.28 0.66±0.43 0.43±0.38 
Knee 0.41±0.64 0.58±1.12 0.31±0.75 0.53±0.88 0.49±0.76 0.40±0.28 
Hip 0.94±0.37 0.75±0.68 0.97±0.34 0.81±0.72 0.77±0.53 0.71±0.81 

       

Average a1±SD of transverse plane motion at 

Joint 

angle 

Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle -0.08±0.37 0.19±0.28 -0.22±0.41 0.22±0.27 -0.09±0.24 0.18±0.24 
Knee 0.26±0.39 0.00±0.60 0.36±0.44 0.13±0.60 0.40±0.64 0.11±0.77 
Hip -0.04±0.27 -0.09±0.19 -0.03±0.31 -0.04±0.17 0.01±0.20 -0.16±0.33 
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Table 4.3 The offsets (a0) to make equivalent joint angle between gait data that obtained 
from Xsens and PiG and Vicon system. 

Average a0±SD of sagittal plane motion at 

Joint angle Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle  -7±4.60  -4.26±4.06  -7.07±4.69  -4.52±3.53  -5±8.50  -2.32±5.52 

Knee  -2.84±5.47 0.39±6.15  -0.54±6.40  0.55±5.91  -0.13±7.74  1.57±7.86 

Hip  -5.47±3.55  -4.39±5.59  -4.33±2.88  -4.73±5.28  -2.84±5.26  -2.08±7.50 

       

Average a0±SD of frontal plane motion at 

Joint angle Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle 6.90±5.46  2.03±2.80 4.58±5.70 0.82±3.21  7.71±7.60  2.26±3.59 

Knee  2.07±3.35 0.22±7.50 0.57±4.13  -0.26±5.86  1.33±4.28  -0.92±9.45 

Hip 0.41±4.39  1.06±4.66 1.49±3.62 3.36±5.25 1.68±4.48  3.47±6.02 

       

Average a0±SD of transverse plane motion at 

Joint angle Normal speed Fast speed Slow speed 

 Left Right Left Right Left Right 

Ankle 
 

-4.72±6.22 3.22±04.56 -5.29±6.63 1.83±6.12 -3.51±3.80 1.09±5.45 

 

-1.27±5.19 -5.02±8.05 0.82±6.59 -2.41±11.63 0.96±9.22 -0.01±13.34 

Hip 3.80±7.40 -3.03±8.24 6.13±9.14 -5.44±8.14 4.00±4.66 -3.27±7.31 

       

Knee 
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Discussion 
 

The findings from this chapter showed good to excellent waveform similarity at the 

sagittal plane motion of ankle, hip and knee respectively, also corresponded with the 

correlation coefficient values. However, the waveform similarity at the frontal planes 

of the two motion capture systems were less identical. The results were similar with 

some previous studies.     

Ferrari et al. (2010) reported excellent accuracy of using Xsens in all planes of motion 

in the thoraco-pelvic, hip, knee and ankle joints for gait analysis compared to the 

standard motion capture system using the ‘Outwalk’ protocol. The hallmark study has 

encouraged the possibility of using an IMU system in gait analysis to provide a 

clinically accessible motion laboratory toward the needs as it is portable and less 

expensive than the conventional motion capture system. 

Similar to Ferrari et al. (2010), high CMC values from our results suggested the 

capability of Xsens for the estimation of gait kinematics, particularly, in joints with a 

wide range of motion (ROM) during gait. Excellent correlation between knee sagittal 

angles was found at all different walking speeds. Similarly, the sagittal movement of 

the hip and ankle joints obtained from the Xsens system were comparable with the 

Vicon system confirmed by good to very good CMC values. Poor to moderate 

correlations were observed in the frontal plane and the CMCs of transverse plane 

motion could not be reported due to their non-real number results which are similar 

to the studies from Zhang et al. (2013) and Al-Amri et al. (2018) The studies that 

validated Xsens against the conventional motion capture system without using the 

‘Outwalk’ protocol demonstrated poor correlation of the kinematics in the frontal 
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and transverse plane. One possible explanation would be the non-reliable marker 

placement at a smaller joint and skin movement artefact.  

More importantly, there is a difference between the biomechanical models of the 

two motion capture systems compared. Ferrari et al. (2010), in particular, used the 

“Outwalk” protocol as a functional calibration for the Xsens system and showed the 

superior results. Ideallly, joint angles derived from the Xsens system should be 

identical with the joint angles derived from the Vicon system, however, there could 

be some discrepancy of data influenced by marker placement error (Al-Amri et al., 

2018) between the two systems (the virtual markers of the Xsens are developed from 

the biomechanical model and data obtained from a sensor unit). In addition, errors 

can be accumulated during data collection due to the potential magnetic 

disturbances in the motion laboratory and in integration drift despite the good 

calibration was shown at the beginning (Roetenberg, Slycke and Veltink, 2007). Skin 

artefact can also be a factor to interfere data recording accuracy (Mundt et al., 2019). 

Therefore, Xsens was not recommended to use interchangeably with the standard 

motion capture for motion analysis (Al-Amri et al., 2018). The Xsens Awinda’s ability 

to capture a movement has been improved remarkably in terms of the accuracy and 

the magnetic immunity by utilising the Strap-Down Integration algorithm 

combination with Kalman filter (the sensor fusion algorithm). None of the Xsens 

calibration failed due to magnetic disturbance during the course of the study 

although the trackers were used on a treadmill (on average, at least 6 cm from the 

foot sensor to the treadmill belt) which is a magnetically challenging environment  

(Schepers, Giuberti and Bellusci, 2018).  
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In this study the accuracy of the Xsens was validated in order to examine the 

suitability of using this motion capture system when compared with the standard 

method and also addressing the possibility of using such system outside laboratory. 

Coefficient of multiple correlation was used as it is one of the recognised techniques 

to represent waveform similarity between different data collection methods of gait 

analysis. Iosa et al. (2014) and Røislien et al. (2012) recommended to avoid using CMC 

due to its non-reliable values. In contrast, they rather suggested using another 

method such as LFM to overcome issues considered to affect the interpretation of 

waveform similarity calculated by CMC for example, inadequate number of the 

participants, the data recorded with high sampling rate and the consistency of marker 

placement between raters. In this study, we did not find an obvious difference 

between CMC and LFM. Both methods showed similar results with good to excellent 

correlation in sagittal plane of movement especially in normal and fast speed. The 

other parameters of the LFM also showed the corresponding results with the R2. In 

particular, if a1 is equal to 1, it could be stated that joint angles obtained from the 

two motion capture systems were perfectly matched. It can be seen that a1 values in 

sagittal plane angles were approximately between 0.8-1.2 whereas the a1 values in 

frontal plane and transverse plane angles were at a wider range between 0.3-0.9 and 

-0.2-0.4 respectively.  

In our study, we aimed to examine the ability of Xsens to estimate gait kinematics 

which will be the inputs to train an artificial neural network. Therefore, we conducted 

only a single experiment with no different day testing or different raters involved. 

Since the study’s results are comparable with results from Zhang et al. (2013) and Al-

Amri et al. (2018) gait kinematics derived from Xsens system are not completely 
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equivalent with the standard motion capture system, instead, Xsens describes gait 

characteristics that were processed using a different biomechanical model. 

Subsequently, an individual’s gait obtained from the two motion capture system are 

not recommended to be used interchangeably. The feasibility of using the Xsens 

system in clinical gait will be further discussed in the next chapter when the joint 

angles obtained from the system were used as input to train an ANN.  
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Chapter 5: Estimation of the knee abduction 

moment during gait using an artificial neural 

network from joint angles obtained by inertial 

magnetic measurement units 
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Background 
 

Gait analysis is an objective measurement of human walking that also includes a study 

of movement or joint angles (kinematics) and a study of forces as joint loading or joint 

moment (kinetics) and power (Mayich et al., 2014). The kinetics of gait are the 

measurement of forces that cause the movement. The abnormality of the forces that 

repetitively act on the joint can ultimately initiate musculoskeletal problems. A 

common health condition of the long-term effect of altered joint loading is knee 

osteoarthritis mostly affecting the elderly population (Maly, 2008).  

Conducting gait analysis using IMUs can be combined with additional instruments 

such as instrumented shoes, portable pressure sensors and a transportable force 

plate in order to acquire gait kinetics (Koch et al., 2016). A pressure measurement 

insole provides a thin and less bulky option for a mobile kinetic measurement in 

however, the major drawback is that it provides only vertical GRF and the centre of 

pressure (CoP) is defined as the centre of the pressure distribution over its surface 

(Liedtke et al., 2007). Low validity, high sensitivity and especially poor durability were 

also reported as its shortcomings by several studies (Abdul Razak et al., 2012; Koch 

et al., 2016; Shahabpoor and Pavic, 2017). Joint moments and GRFs could also be 

estimated by the calculation from data of an accelerometer and mass of a body 

segment following Newton-Euler dynamic algorithms, based on the recursive 

formulation of force, moment balance equations and the open kinematic chains of 

the Newton-Euler dynamic algorithm (Ohtaki, Sagawa and Inooka, 2001). Despite 

providing a promising result of the estimated joint moments in gait, the technique 

lacked accuracy due to the inaccuracies in kinematic calculation (Ancillao et al., 2018).  
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Using an ANN to estimate joint moments has also become an area of interest 

(Ancillao et al., 2018). Hahn and O'Keefe, 2008b estimated sagittal plane moments of 

hip, knee and ankle joint from EMG signals and anthropometric data of 19 healthy 

volunteers using a three layers ANN. They demonstrated great performance of the 

ANN by coefficient of determination (r2) at 0.90 for hip and knee moments and 0.95 

for the ankle moment.  

Ardestani et al. (2014) used GRFs and EMG signals as inputs to train two types of 

ANNs: FFANN and a wavelet neural network (WNN) and compared their ability to 

predict lower extremity joint moments. All planes of hip moment, knee sagittal 

moments and ankle sagittal and transverse plane moments were estimated by the 

two ANNs. The result showed a better performance of WNN than the FFANN at 

normalised RMSE < 10% and cross correlation coefficient > 0.94. Likewise, Mundt et 

al. (2018) firstly, predicted hip, knee, and ankle joint moments in normal gait from a 

trained long-short term memory based recurrent ANN using hip, knee and ankle joint 

angles obtained from an optoelectronic motion capture system, gait velocity and 

anthropometric data as inputs. They showed comparable results with the study from 

Ardestani et al. (2014).  

Aiming to use IMUs for gait analysis outside the laboratory, Mundt et al. (2019) later 

investigated the ability of using LSTM to estimate normal gait kinematics and kinetics 

from simulated IMU data. The simulated linear acceleration and angular velocity 

were computed from gait data obtained from a standard motion capture system and 

used as inputs to train the LSTM compared with a FFANN. The simulated IMU data 

were claimed to be better from the data originally derived IMU because there was 

no skin movement artefact. Although the FFANN was generally superior, both 
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networks addressed high correlation coefficient at 0.98 in the sagittal plane moment 

and 0.80 in the other planes (Mundt et al., 2019).           

Including the results from pilot studies in chapter 3, it has been shown that ANNs are 

able to predict joint moments in gait from various types of input that are related, 

mathematically, to the target joint moments such as joint angles obtained from the 

optoelectronic method, simulated IMU data, EMG signals and the individual’s 

anthropometric parameters.  

In this study, the internal KAM was estimated by using a FFANN, from an array of gait 

kinematics obtained from an Xsens Awinda IMU motion tracking system.  

 

Materials and methods 
 

Research participants 
 

Fifteen healthy volunteers were recruited from staff and students in the Faculty of 

Sciences, LJMU (the same group of participants in chapter 4). The study was approved 

by the university research ethics committee (reference number 18/SPS/005). Written 

informed consent was obtained prior to data collection.  

Participant preparation 
 

In a tight T-shirt, tight cycling style shorts and their own comfortable training shoes 

the participants anthrometric data were measured and seven MTw2 data trackers 

(Xsens Technologies B.V., The Netherlands) were attached on body segments in the 

same fashion as described previously in chapter 4. Followed by the reflective marker 

placement according to the HBM model as shown in figure 3.3. To prevent the 
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reflective markers from being knocked off the participant during the placement of 

the MTw sensors using Velcro straps, the markers were placed on the anatomical 

landmarks after all MTw sensors were completely in place. A safety harness, 

thereafter, was fitted on the participant’s body and was attached to the participant’s 

clothes by using tape where necessary to prevent its movement which could 

potentially obscure some reflective markers during the test. 

Data collection 
 

The Xsens sensors were calibrated in an unoccupied area before the walking was 

performed at three different speeds on the treadmill followed the process described 

in chapter 4. Markers signals were then fed through Vicon Nexus to D-Flow ready for 

data collection.  

Kinematics data and GRFs were recorded by the combination of Mocap and Treadmill 

module via a custom D-Flow application (D-Flow, Motekforce Link, the Netherlands) 

saved into two files of different formats (.mox and .txt). The kinematics data were 

captured by Vicon Nexus 2.5 at 120 Hz through 12 Vero cameras (Vicon, Oxford 

Metrics Group Ltd.) and streamed in real time to D-Flow. Kinematics data were 

recorded simultaneously at 100 Hz by Xsens MVN analyse 2018 (Xsens Technologies 

B.V., Netherlands) as .mvnx files. Both systems were synchronised by the technique 

described in appendix 3. 

The participant was asked to walk on the treadmill at three different speeds: normal 

(self-selected), fast (40% faster than normal speed) and slow (40% slower than 

normal speed). Data collection began after the self-selected speed was determined 

and recorded as described in the validation study (Chapter 4).  
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Data processing and analysis 
 

Joint movement from frontal (abduction/adduction), sagittal (flexion/extension) and 

transverse (internal/external) plane of motion of the right hip, right knee and right 

ankle were directly extracted from the saved Xsens files. The data obtained from D-

Flow were computed for gait kinematics and kinetics using the HBM model in Gait 

Offline Analysis Tool (GOAT, Motekforce Link, the Netherlands) smoothed with low-

pass filter at 10 Hz and were saved as .mox files. Right KAM was then extracted from 

the data at the starting time point indicated by the rising edge generated by the Xsens 

system which was seen in the added analogue channel. One set of gait data contained 

1000 data points, to assure the sufficient data for the FFANN training process, was 

selected for each walking speed from the beginning of each set of data (defined by 

the rising edge) were saved as .xls files to be used in the next step of data analysis.  

The Levenberg-Marquard backpropagation neural network, a three layers FFANN, 

was chosen to estimate joint moment in this study. A modified Matlab script 

(appendix 5) was created with the Neural Network Toolbox in Matlab 2019b (The 

MathWorks Inc., MA, USA). The ANN was trained using kinematics (right hip, knee, 

and ankle angles in frontal, transverse and sagittal planes) as inputs and right KAM 

obtained from inverse dynamics by GOAT as target outputs. Therefore, there were 9 

variables X 1000 data points of inputs and 1 variable X 1000 data points of target 

outputs for each set of gait data included in the neural network training and 

prediction process. 

Two sub-studies were conducted according to walking speed. Firstly, data from all 

three walking speeds were presented to the ANN at the same time. This was to see 

the performance of the ANN when it was trained by data, which included gait 
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variability due to different gait speeds of an individual’s gait pattern. Secondly, the 

ANN was trained with data captured at each gait speed separately to examine the 

ability of the ANN to predict joint moment at a particular walking speed. 

In order to cover all available data to train neural network models without bias, a k-

fold validation was applied to this study (k=15) (Fushiki, 2011). To estimate the joint 

moment, the data of 13 participants were allocated to train the ANN, data from the 

14th participant were used for validating and data from the 15th (last) participant were 

used for testing the performance of the ANN which is the set of unseen data that the 

FFANN never sees during training (this made 6.67% of data for testing the FFANN 

performance) (figure 5.1).  

 

Figure 5.1 The block diagram shows the order of FFANN training process, the inputs 

were right hip, knee, ankle angles in three planes of motion. The FFANN was trained 

by data from 13 people, validated by data of one person and tested by data of one 

person. Data from each participant were used to test the ANN one at a time in 15 

sets of training-validation-test data. Right knee abduction moment was the target 

output. 
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Data from each participant were used to test the performance of the FFANN, one at 

a time, consequently there were 15 ANN architectures for the first sub-study where 

the data of all walking speeds were trained together in one ANN and 45 ANN 

architectures for the second sub-study where the data of each walking speed were 

trained separately (3 speeds x 15 sets). Root mean square error and normalised root 

mean square error were calculated to examine the difference between the FFANN 

outputs and target output. The NRMSE was used in this study to compare with 

previous studies reported in the literature.  

The mean differences between the target and the predicted KAM of all walking 

speeds and sub studies were analysed using a one way analysis of variance test 

(ANOVA) with the null hypothesis that there was no significant difference within and 

between the groups, at the significance level of 0.05. The normal distribution 

assumption and the homogeneity of the variances were performed using Shapiro-

Wilk and Levene’s test. Welsh’s test would be used for data analysis if the data 

violated the normal distribution and homogeneity of the variances. The data were 

analysed by a statistical package for the social sciences (SPSS) for Windows software 

version 26 (SPSS Chicago, IL, USA). 

Results 
 

Fifteen volunteers participated in the study, average age of 27.6±4.39 (22-35) year, 

height 1.7±0.10 (1.51-1.87) metres and body mass 66.62±11.89 (41.55-89.25) kg. The 

average walking speeds were 1.14±0.21 (0.6-1.4), 1.60±0.30 (0.84-1.96) and 

0.68±0.13 (0.36-1.84) m/s for normal, fast and slow speed respectively. 

The results showed that the FFANN was capable to predict the right knee abduction 

moment when it was trained by either kinematic-kinetic pairs from all walking speeds 
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at the same time (the first sub-study) or when the FFANN was trained by data from 

each walking speed separately (the second sub-study).     

Firstly, when data from all speeds were used for training the FFANN, the highest 

performance was found for predicting KAM at normal speed, followed by slow and 

fast speed respectively. Average RMSE of the training part in the first sub-study was 

0.129±0.013 (0.104-0.170) Nm/Kg and the average RMSE of the testing part (where 

the FFANN did not see the data before) were at 0.132±0.074 (0.047-0.313), 

0.171±0.105 (0.069-0.496) and 0.135±0.070 (0.063-0.290) Nm/Kg for normal, fast 

and slow speed respectively. 

Similar results were found when the ANNs of each gait speed were trained 

separately, the average RMSEs of the testing parts of the FFANN training were 

0.141±0.059 (0.092-0.302), 0.174±0.106 (0.087-0.497) and 0.131±0.059 (0.038-

0.239) Nm/Kg for normal, fast and slow speed (figure 5.2). The RMSEs of training 

parts also corresponded to the results in the testing parts (figure 5.3).  

In addition, there were wide ranges of NRMSE at the testing parts at 13%-92%, 10%-

79% and 2%-62% for normal, fast and slow walk of the first sub-study. In the second 

sub-study the ranges were at 6%-70%,14%-80% and 3%-68% for normal, fast and 

slow speed (figure 5.4).  

Due to the non-homogeneity of the variances, Welch test with Game-Howell post 

hoc test were used for statistical analysis within and between the studies and 

walking speeds. There were significant differences between the KAMs predicted by 

sub-study 1 compared to sub-study 2 at normal (F(1,1998) = 48.54, p = 0.00) and 

slow speed F(1,1998) = 328.87, p = 0.00), the effect sizes were 0.02 and 0.14 

respectively,  however there was no significant difference between the KAMs from 

fast speed that were predicted by both sub-studies ( F(1,1998) = 3.24, p = 0.07) 
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(table 5.1). There were significant differences between the KAMs from each speed 

that were predicted when data from all speeds were used to train the FFANN in the 

first sub-study (F(2,2997) = 469.23, p = 0.00). The Games-Howell post hoc analysis 

showed the predicted KAMs from fast speed was significantly different from the 

other walking speeds when the FFANN was trained using gait data from each speed 

separately (p = 0.00).    

 

 

 

 

 

 

 

 

 

Figure 5.2 The average RMSEs between the target output and the predicted output at the 

testing part of the FFANN prediction. The comparable results were found when the FFANN 

was trained by data of all speeds together (sub-study1) (blue) and when it was trained by 

data of each walking speed separately (sub-study 2) (red). There was a wide range of the 

RMSE amongst the individuals seen by the minimum and maximum RMSE values.  



93 

 

 

 

 

Figure 5.3 The bar charts show RMSEs between target outputs and predicted outputs. 5.3 A shows the general trend of FFANN prediction when FFANNs were trained 

using data from all walking speeds (the first sub-study) of participant 1-15 respectively. RMSEs of the training part are similar but the variation amongst RMSEs at the 

testing part was observed at all walking speeds. That implies a lack of generalisation ability of the FFANN. 5.3B-D illustrate the KAM predictions at the testing part 

between the first sub-study and the second sub-study where the data of each walking speed were separately trained.  The variation of the RMSEs of the KAM at the 

testing part could be seen by both FFANN training methods.    
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Figure 5.4 NRMSEs of the KAM of an individual predicted by the first sub study (dark) and the 

second sub-study (light shade) of normal speed (blue), fast speed (green) and slow speed 

(yellow). The ranges of NRMSE were 13%-92%, 10%-79% and 2%-62% for normal, fast and slow 

walk of the first sub-study and 6%-70%,14%-80% and 3%-68% for normal, fast and slow speed in 

the second sub-study. Asterisks denote the best performance of the FFANN. 

 

Figure 5.5 Box and whisker plots demonstrate ranges of the NRMSEs of the KAM 

prediction at the testing part of the FFANN comparing between the first sub-study (blue) 

when all walking speeds were trained together and the second sub-study (orange) when 

the three walking speeds were trained separately. The FFANN performances were 

significantly different between the two sub-studies when predicting the KAM at normal 

and slow speed (p < 0.05), A = normal speed, B = fast speed and C = slow speed. 
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 Figure 5.6 Example of good and poor KAM prediction in five consecutive gait cycles from the testing part of the first sub-study (all speeds were trained 

together). At good prediction (left column), the amplitude and shape of the predicted KAMs are similar to the target KAMs (dotted line).   
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Figure 5.7 Example of good and poor KAM prediction in five consecutive gait cycles from the testing part of the second sub-study (each speed was 

trained separately). At good prediction (left column), the amplitude and shape of the predicted KAMs are similar to the target KAMs (dotted line). 
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Table 5.1 The differences between the KAM from normal, fast and slow speeds that were predicted by two sub-studies at p value < 0.05 

(speed 1 = fast, speed 2 = normal, speed 3 = slow). 

ANOVA 

    Sum of Squares df Mean Square F Sig. 

Fast Between Groups 0.003 1 0.003 3.248 0.072 

  Within Groups 1.671 1998 0.001     

  Total 1.674 1999       

Normal Between Groups 0.030 1 0.030 48.547 0.000 

  Within Groups 1.253 1998 0.001     

  Total 1.283 1999       

Slow Between Groups 0.207 1 0.207 328.879 0.000 

  Within Groups 1.260 1998 0.001     

  Total 1.467 1999       

 

Multiple Comparisons 

Games-Howell                

Dependent Variable (I) Speed (J) Speed Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval 

            Lower Bound Upper Bound 

The 1st sub-study 1.000 2.000 -.006* 0.001 0.000 -0.009 -0.003 

    3.000 -.035* 0.001 0.000 -0.038 -0.032 

  2.000 1.000 .006* 0.001 0.000 0.003 0.009 

    3.000 -.0293* 0.001 0.000 -0.032 -0.026 

  3.000 1.000 .035* 0.001 0.000 0.032 0.038 

    2.000 .0293* 0.001 0.000 0.026 0.032 

The 2nd sub-study 1.000 2.000 -.011* 0.001 0.000 -0.014 -0.008 

    3.000 -.012* 0.001 0.000 -0.015 -0.010 

  2.000 1.000 .011* 0.001 0.000 0.008 0.014 

    3.000 -0.001 0.001 0.519 -0.004 0.001 

  3.000 1.000 .0124* 0.001 0.000 0.010 0.015 

    2.000 0.001 0.001 0.519 -0.001 0.004 

* The mean difference is significant at the 0.05 level.      
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Discussion 
 

The evolution of inertial motion capture has matured to a level where the concept of 

out of the lab gait analysis has become a real possibility. In this chapter, the feasibility 

of estimating the kinetics of gait, knee abduction moment in particular, was 

investigated using the FFANN trained by joint angles provided by the IMU system. 

Low RMSEs between the target KAM and the predicted KAM were shown in both 

training and testing part, especially at the testing part of the slow walk. Thus 

reflecting good generalisation ability of the FFANN model used in terms of estimation 

the KAM that the FFANN did not see during training.  The FFANN could practically be 

used to complement the joint angles obtained from an IMU system, bringing the 

possibility of portable gait analysis closer. 

At normal and slow speed, significant differences of the predicted KAMs were found 

when the FFANNs were trained by the data of all walking speeds together (first sub-

study) and when the data of each speed were separately used to train the FFANN 

(second sub-study). However, no significant difference of the predicted KAM was 

found at fast speed when the FFANN was trained by either method. One reason why 

the FFANN predicted the KAM from normal and slow speed differently could be the 

fact that in the first sub-study, there was a variety of KAM from the 15 participants 

from the three walking speeds which were presented to the FFANN at the same time. 

Therefore, the FFANNs were able to recognise from different patterns to predict the 

unseen KAM at the testing part while in the second sub-study the FFANN could only 

recognise a particular pattern from each walking speed. However, for fast speed, 

there was more noise obtained when collecting data which could affect the overall 
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pattern of gait for the FFANN to see the distinctive pattern when training in both 

methods.        

Our results, in general, show that the FFANN performed better to predict the KAM of 

slower speed walk with a small average RMSE, ranged from 0.131-0.135 Nm/Kg 

(minimum 0.038 Nm/Kg) at slow speed of both sub-studies and 0.132-0.141 Nm/Kg 

(minimum 0.047 Nm/Kg) at normal speed. In spite of showing a good KAM prediction 

at the lowest NRMSE of 2% for the first sub-study and 3% for the second sub-study 

at slow speed, there was still a wide variation of results in this study in order to 

predict the KAM where the largest NRMSEs, at the same speed, were shown at 62% 

and 68% for the first and the second sub study respectively. Comparing with a 

previous study, Aljaff et al. (2016) trained an FFANN by using joint angles as inputs to 

predict the KAM in AKU gait, our result is slightly better in terms of RMSE as their best 

performance was shown with RMSE at 0.074 Nm/Kg. The walking speed was not 

mentioned in their study therefore it is difficult to directly compare with our RMSE 

from each walking speed, presumably that the AKU patients could not walk too fast 

due to their nature of disease. Correspondingly, the FFANN architecture used in our 

study should be able to predict KAM in clinical practice for abnormal gait especially 

in some population e.g. osteoarthritis and elderly who typically walk slower than 

normal. 

Average NRMSEs amongst all walking speeds when the FFANN was trained by data of 

all speeds at the same time (the first sub-study) is at 35.66% (2%-92%) which is higher 

than the study from Mundt et al. (2018) that predicted joint moments of gait by 

training a long short-term memory based recurrent ANN (LSTM) using joint angles 

obtained from an optoelectronic system, walking speeds and anthropometric 
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parameters including height, weight, foot length, shank length and thigh length as 

inputs. They reported the average NRMSE of the knee adduction moment at 11.35% 

of the testing part where the joint moments of unseen data were predicted. The 

obvious difference of the NRMSE between the two studies could be due to a few 

reasons. Firstly, the anthropometric data were included as inputs so the data can 

provide extra characteristics of gait for the ANN to learn while training. Most 

importantly, the inputs were shuffled (randomized) before training which would have 

less bias and then become more generalised when the ANN is predicting a new set of 

data that are unseen. Moreover, it would be difficult to directly compare the 

performance of the two ANNs that were used in these studies due to the difference 

of the ANN architectures used.  

The performance of FFANN and LSTM in order to predict joint moment in gait were 

later compared in a previous study by Mundt et al. (2019). They concluded that the 

FFANN provided better results than the LSTM. The group simulated IMU data from 

the gait data obtained from a standard motion capture system and used them as 

inputs to train the two ANNs. Their overall results were better than this chapter with 

the average NRMSE of the frontal plane knee joint moment was at 10.58%. However, 

on closer examination, a similar pattern was found from the FFANN’s performances 

as there was a wide variation of the prediction demonstrated by a wide range of the 

NRMSEs between 6%-80%. More reliable prediction was found in the sagittal plane 

joint moment with a high correlation coefficient at 0.98 from both types of the ANN. 

With simulated IMU data, the researchers strongly claimed that the data were better 

than using the data obtained from actual IMU system because there was no soft 

tissue movement artefact that could affect data processing as well as avoiding the 
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ferromagnetic disturbance when the IMU data are collected. They concluded that 

there was a high relation between the predicted and the actual moment regarding 

the figures reported. Therefore, an FFANN seems to be a suitable tool for joint 

moment estimation in gait analysis.     

In comparison to pilot study (chapter 3), we recruited more participants to this study 

which made a remarkable impact to the performance of the FFANN according to the 

recent results. We have found from chapter 3 that the FFANN performed better when 

some of the expected targets were introduced to the FFANN at the training part. So, 

if the ANN is trained with more instances of inputs-outputs, it should be able to 

estimate outputs that the ANN did not see before when training which is presented 

as the testing part. This is to demonstrate the generalisation of the ANN in predicting 

the joint moments of a new participant that has never been seen. 

Walking speeds has known to affect knee joint loading in gait, in general, the sagittal 

and frontal plane joint moment increase when an individual walks at a high speed 

(learner 2014).   Walking speed also affected the results. The FFANN provided best 

results for the slow speed but less accurate predictions in the fast speed walk in both 

sub-studies. This can be explained by the gait pattern being more consistent with a 

longer double support phase duration, stride length and shorter step width (Lee 2017 

age related) when people walk slowly thus having less effect to joint moments due 

to the smaller impact on GRFs. In contrast, a fast speed walk could affect the GRFs 

especially on the treadmill gait compared to a slow walk (Nilsson and Thorstensson, 

1989). Moreover, more noise on force data can be created while the instrumented 

treadmill was on fast speed due to the combination of more produced electrical noise 

and mechanical noise in the system (Sinitski, Lemaire and Baddour, 2015) thus 
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disturbing the calculation of the actual joint moments which were used as target 

outputs. The pattern of noise in joint moment could interfere with the ANN’s ability 

to model the true kinematics-kinetics relationship while training. 

There were many previous studies which proposed various machine learning or ANN 

algorithms to predict joint moments in gait from a variety of inputs e.g. EMG signals, 

GRFs and kinematics obtained from the standard optical motion capture system and 

revealed good results from their research strategies. This suggests the capability of 

the ANN approach in general to be able to model a complex relationship between a 

range of inputs captured by different methods as long as the inputs relate to the 

target outputs. In our study, we considered that kinematics data directly related to 

joint moments, so we decided not to incorporate another type of signals to train the 

ANN. However, from the variability of the predicted KAMs, there is a crucial area to 

improve the performance of the FFANN to give more reliable prediction. 

Importantly, the results from this chapter confirmed that joint angles obtained from 

the Xsens provided sufficient information content to describe an individual’s gait, 

despite the suboptimal match between the joint angles obtained by the Xsens and 

the Vicon system shown by the low CMC values in chapter 4. The recognition of 

biomechanical and mathematical relationship between joint angles obtained from 

the Xsens and the corresponding target KAMs by the FFANN indicated a legitimate 

expression of the joint movements of gait by the IMU system which should 

theoretically be created by the forces that reacted to the joints. Therefore, the Xsens 

system could be considered as a motion capture system that has its own 

biomechanical description to quantify human walking.  
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Chapter 6: Enhancing the FFANN performance for 

knee abduction moment estimation by leave-one-

out cross validation and data randomisation   

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 



104 

 

Background 
 

The ability to generalise is an indicator of a successful artificial neural network (ANN) 

model (Halilaj et al., 2018). It means that the network can interpolate the new input 

patterns to predict an accurate output (Zurada, 1992). In other words, the ANN works 

successfully to estimate the output that has never been seen by the ANN during 

training. In the early studies of this project, the FFANN showed its efficiency in 

generalisation by being able to predict the unseen knee abduction moment when it 

was trained by using joint angles obtained from an inertial measurement unit as input 

during gait. Step by step, new sets of gait data were introduced to the FFANN to 

examine the prediction ability of the model. Some evidence was found that the 

FFANN could generalise well if input-target pairs similar to the ones used in testing 

were included in the training process. 

Data splitting is a technique to balance and minimise the variance and bias amongst 

data that are used to train the ANN. It, therefore, improves the generalisation ability 

for an ANN model (Reitermanová, 2010). Moreover, with the data that were split by 

an appropriate method, the generalisation can be assessed by the testing part of the 

ANN training process where the unseen data are used to evaluate the ANN 

performance. One of the most well-known methods of reducing bias, K-fold cross 

validation, is a technique where the data are divided equally to k parts and then k-1 

folds of the data are used for training the ANN and the remaining fold is used for 

testing the ANN’s performance (Ghojogh and Crowley, 2019). Each part of the data 

then will be used for testing by assigning another slice of the data for testing, in k 

steps. The advantage of this method is that the training and testing set of data are 

systematically rotated in every kth training process which should minimise bias and 
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variance because overall all data are used both for training and testing in a balanced 

way. 

For a small group of data, leave-one-out cross validation can be applied. The method 

is similar to K-fold validation, only one set of the sample is reserved for testing (Myles 

et al., 1997). According to the prior results (chapter 5) when the leave-one-out cross 

validation was utilised, poor performance of the FFANN was observed. The 

explanation could be that each fold comprised of gait data collected from a particular 

participant who had different body mass, height and body anthropometrics, for 

example the leg length that can provide a different kinematics and kinetics of gait. 

Consequently, the FFANN was expected to generalise to a set of unseen data beyond 

the scope that the FFANN was trained on. Apparently, bias and variance amongst 

data need to be minimised to enhance the usage of K-fold cross validation. One of 

the efficient methods of data splitting is simple random sampling (SRS). This most 

common sample selecting technique provides an equal and uniform distribution of 

the dataset leading to the minimum bias in data selection. However, it is suitable only 

with less complex data rather than the high complexity (non-uniformly distributed) 

type (Reitermanová, 2010). 

In the previous chapter, the FFANN was capable of prediction the KAM when joint 

angles were used as inputs to train the network and data of each participant were 

left out to test the performance. However, there was a lack of consistency of the 

results which indicated some restriction of the performance of this particular FFANN 

to generalise to new gait data. The differences of predicted KAMs obtained from the 

FFANN compared to the target KAM amongst data from each participant at three 

walking speeds, subsequently, were the essential issue to be improved. The main 
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focus of the study was to evaluate the effect of randomising the input-target pairs of 

data using the simple random sampling technique. In addition, more participants 

were included and gait data of each participant were left out during training to 

evaluate the performance of the FFANN in order to estimate the KAM from 

randomised joint angles at the testing part of the data (leave-one-out K-fold cross 

validation).  

Materials and Methods 
 

The study took place in the Movement Function Research Laboratory (MFRL) at Tom 

Reilly Building, Liverpool John Moors University (LJMU). 

Research participants 
Healthy volunteers aged between 18-35 year who have no known gait problems, 

were recruited from staff and students in the Faculty of Science, LJMU. The study was 

approved by the university research ethics committee (reference number 

18/SPS/005). Gait data were collected from 19 participants. Written informed 

consent was obtained prior to data collection. 

Participant preparation 
The participants were prepared in the same fashion as described in chapter 5, the 

anthropometric data were measured and recorded following the instruction by 

Xsens. Seven MTw2 data trackers (Xsens Technologies B.V., Netherlands) were 

attached to the participant at sacrum, the lower third of lateral aspect of both thighs, 

proximal third of medial surface of the lower legs using elastic Velcro straps. The foot 

trackers were placed at the dorsal side over the shoe tongue and were secured by a 

self-adhesive elastic bandage. Followed by the attachment of 26 reflective markers 

for the HBM model  (van den Bogert et al., 2013) (figure 3.3). 
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Data collection 
 

After Xsens sensors calibration was completed at an unoccupied area, the participant 

was moved to the instrumented split belt treadmill. Then the HBM model was 

calibrated and streamed through Vicon Nexus 2.5 (receiving the reflective signals 

from 12 Vero cameras, Vicon, Oxford Metrics Group Ltd, UK) into a custom D-Flow 

application (D-Flow software, Motekforce Link, the Netherlands) for being further 

processed by Gait offline analysis tools (GOAT, Motekforce Link, the Netherlands). 

Both systems were synchronised following the technique described in appendix 3. 

With the same process described in chapter 5, the participants were asked to walk at 

three different walking speeds which started with the self-selected comfortable 

speed followed by fast and slow speed respectively.  

Data processing and analysis 
 

Data extraction from the original data files 
The first 2000 data points of the instantly processed kinematics data composed of 

the three orthogonal components of right hip, knee and ankle angles which were 

directly extracted from saved files in the Xsens MVN Analyze software. One set of gait 

data from each speed was included from each participant. The extracted kinematics 

data were, thereafter, up-sampled through a Matlab script to 120 Hz using the spline 

function (appendix 6) to be equivalent with the corresponding kinetics data (KAMs) 

sampled at 120 Hz in D-Flow.  Data recorded from D-Flow were transferred to GOAT 

where both kinematics and kinetics data were computed for all participants. Knee 

abduction moment of each set of gait data that corresponded to the extracted Xsens 

joint angles were selected and filtered using a second order Butterworth filter at 6 Hz 

cut off frequency. Individually, there were 10 gait variables created including nine 
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variables of joint angles: the right side hip, knee, and ankle in all planes of movement 

that were obtained from Xsens sensors (flexion/extension, abduction/adduction, and 

internal/external rotation) and one variable of right KAM obtained from GOAT, at 

each walking speed. All variables of gait data of an individual were gathered to a file 

arranged as normal, fast and slow speed respectively thus making 30 variables for 

one participant. 

Leave-one-out cross validation to prepare input and output pair for each 

FFANN architecture 
 

A custom Matlab (Mathworks Inc., MA, USA) script was created for leave-one-out 

cross validation to generate an individual set of gait data a chance to test the FFANN 

performance (appendix 7). Table 6.1 demonstrates the leave one out cross validation 

and the data randomisation technique applied in this study. The variables were 

arranged from joint angles of normal speed, KAM of normal speed, joint angles of 

fast speed, KAM of fast speed, joint angles of slow speed and KAM of slow speed 

respectively. Then data from each participant at a walking speed were concatenated 

beginning with the data of participant 1 and continuously to participant 19 The data 

of the last participant of the set were used for testing the FFANN. Similar to chapter 

5, nineteen folds of data were created. Overall, there were 19 sets of data created 

with each set comprising of 30 rows (10 rows per walking speed: nine rows for angles 

and rotations of hip, knee and ankle joint, one for the target KAM) with the different 

order of participant to make the leave-one-out cross validation for the FFANN 

performance evaluation. The data were then systemically randomised in a separate 

Matlab script described below, thus making each set of data in each fold include gait 

data (as a data point) obtained from any participant. Therefore, the FFANN was being 
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trained by variation of the healthy gait as well as being tested by a variety gait data. 

This aimed to reduce variance and bias of the gait data obtained from such small 

group of participants in order to improve the FFANN’s performance.     
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Table 6.1 The demonstration of the leave-one-out cross validation with 19 folds (F1-19) that was applied to the FFANN training.  

(A.) First, gait data of 17 participants (F1-17) were used to train the FFANN (Tro), one for validation (F18, Vo) and one for testing the FFANN performance (F19, To). 

Data of each participant were used to test the network. (B.) Second, the gait data were randomised and then divided into 19 folds to be used as training (F1-17), 

validation (F18) and testing (F19). Each fold contained gait data from every single participant due to randomisation (P1-19 n where n = 1-19). 

(Subscript o represents original gait data and rm represents randomised data) 
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B. 

Figure 6.1 A. The original gait data of each participant were prepared for the FFANN training (chapter 5). Joint angle obtained from Xsens were used as 

input data: P (top) to predict the target KAM: T (bottom). Data of 17 people were used to train the FFANN, one for validation and one for testing the 

performance, according to leave-one out cross validation data of each participant were used to test the performance (unseen data). Randomised data are 

shown in B. Both inputs and output were systematically randomised. Each input-output pair was reordered form the original position (A.), the random data 

were also divided into 19 sets which possibly contained data pairs of all 19 participants. Similarly, the first 17 sets were used to train the FFANN, one for 

validation and the last set for testing the FFANN thus the unseen data from an individual was still used to test the network. The figures demonstrate the 

data preparation of one speed, the same method was also used for the other two speeds.     

 

A. 
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Training the FFANN 
 

Another custom Matlab script (appendix 8.) was created for FFANN training when 

each fold contained data of one of the 19 participants. Before the training began, the 

SRS method was implemented to the script using the random permutation 

(randperm) function (figure 6.1). The data points in the 19 folds of the gait data were 

randomised to a new order which applied to all 30 rows (10 rows for each walking 

speed). The script was written to randomise the data using the first seed of random 

generator number (rng) function to secure the same order of the new rearranged 

data set for each individual fold. The Levenberg-Marquard algorithm was used for 

this FFANN training with one hidden layer of 18 hidden neurons. The nine variables 

of joint angle and rotation were presented to the ANN as input and the actual KAM 

obtained from GOAT were the target output. The data of each walking speed were 

separately used to train the FFANN. 

In the training process, each FFANN architecture (of each left out fold) was run 20 

times (20 different seeds for randomisation of initial weights) in order to identify the 

best performance of that particular FFANN which was indicated by the lowest mean 

square error (MSE). The FFANN model at each speed was run separately, taking rows 

1-10, 11-20 and 21-30, within the same Matlab script. Next, the three FFANNs (for 

normal, slow and fast speed) were carried out with the best seed number obtained 

previously. The predicted KAMs were obtained however they were still in the random 

order and while this would allow a numerical analysis, the visualisation of the KAM 

would not be possible. Subsequently, the predicted KAMs at all walking speeds 

needed reversing to their original position and represented as usual KAM pattern 

(Peralta, Gutierrez and Sanchis de Miguel, 2009) for comparison with the measured 
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KAM. Normalised root mean square error, root mean square error and SMAPE were 

calculated to quantify the difference between target KAM and predicted KAM. 

Pearson’s correlation coefficient was used to determine the relationship between the 

target and the predicted KAM. The stopwatch function of Matlab (tic and toc) was 

operated in the FFANN training to measure the operation time. In general, nineteen 

Matlab scripts were written to carry out the KAM prediction of each left out fold while 

the data of three different walking speeds were trained separately in the same 

Matlab script.   
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Results 
 

The average time of KAM prediction at all walking speeds together was 38.63 ± 11.01 

(range 26.25-72.12) seconds (ASUS laptop X455L series, Intel Core i3 4030U, 1.9 GHz, 

4 installed RAM with Windows 10 Pro 20H2 version). The average RMSEs of the 

training part were 0.068 ± 0.002 Nm/Kg, 0.064±0.002 Nm/Kg and 0.083 ± 0.004 

Nm/Kg for normal, fast and slow speed respectively. At the testing part where the 

FFANN did not see the gait data before, the average RMSEs were 0.063 ± 0.025 

Nm/Kg, 0.061 ± 0.017 Nm/Kg and 0.072 ± 0.040 Nm/Kg for normal, fast and slow 

speed. The average NRMSEs at the testing part were 11.65 ± 3.861% at normal speed 

followed by 10.71 ± 2.759% for fast speed and 13.82 ± 6.127% for slow speed (figure 

6.2). The average SMAPEs were at 35.95± 6.888 %, 32.02 ± 5.780 % and 36.39 ± 6.431 

% for normal, fast and slow respectively.  

There was a strong positive correlation between the average measured KAM and the 

average predicted KAM amongst all walking speeds with the r values between 0.86-

0.9. The average correlation coefficients (r) were 0.86 ± 0.176, 0.90 ± 0.068 and 0.87± 

0.141 for normal, fast and slow speed respectively.  The r values were approximately 

0.99 when they were calculated over the normalised gait cycles and stance phases 

(table 6.2).  

The Bland-Altman plots visualise the distribution of the difference as a function of the 

average KAMs of all participants are shown in figure 6.3. The plots were relevant to 

the r values demonstrated by a very small bias (mean of the differences) between the 

measured and the predicted KAM at -0.0002, 0.014 and 0.001 Nm/kg for normal, fast 

and slow speed respectively. There were good agreements between the measured 

and predicted KAM in all speeds, as shown in the scatter plots, suggesting that the 
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majority of the differences between measured and predicted KAM were within the 

limit of agreement, especially in the gait cycle and stance phase data. However, the 

predicted KAM of the fast speed showed the best results compared with the other 

two speeds seen by the narrowest of the limits of agreement.  

The paired t-test showed a non-significant difference between the predicted KAM 

and the target KAM at fast speed walk when the FFANN was trained with the 

randomised data (p=0.475). There were significant differences between the 

predicted KAM and the target KAM in the other walking speeds (p<0.05).  
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Figure 6.2 The comparison between the target KAM (blue) and the predicted KAM (black) during stance phase (60% of the gait cycle). Less 

similarity is shown at the top row as the KAMs were predicted using the non-randomised gait data. A better match of the KAMs is observed 

at the bottom row which shows the results when training the FFANN by randomised gait data.  
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Table 6.2 Correlation coefficient (r), slope of line of best fit and bias and standard 

deviation (SD) between measured and predicted KAM using randomised data for 

training. 

Values r Slope of line of best fit Bias 
(mean of the differences ± SD, 
Nm/kg) 

Normal speed 
(2000 data 
points) 

0.85 
 

0.74 0.0014 (±0.0153) 
 

Normal speed 
(Gait cycles) 

0.99 0.89 0.0018 (±0.0160) 

Normal speed 
(Stance phases) 

0.99 
 

0.86 0.0075 (±0.0178) 

Fast speed 
(2000 data 
points) 

0.90 0.84 0.0002 (±0.0134) 

Fast speed 
(Gait cycles) 

0.99 0.97 -0.0005 (±0.0104) 

Fast speed 
(Stance phases) 

0.99 0.93 -0.0002 (±0.0119) 

Slow speed 
(2000 data 
points) 

0.84 0.64 -0.0010 (±0.0192) 

Slow speed 
(Gait cycles) 

0.99 0.84 -0.0020 (±0.0238) 

Slow speed 
(Stance phases) 

0.99 0.82 0.0117 (±0.0210) 
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Figure 6.3 Bland-Altman plots (top) demonstrate good agreement between the target KAM (measured) and the predicted KAM by the 

FFANN trained with the randomised joint angles. The bottom row shows strong relationship between the target and the predicted KAM.      

Bland-Altman plots (Randomised angles) 
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Discussion 
 

Training the FFANN with systematically randomised gait data showed superior results 

compared to when the FFANN was trained by gait data of individuals without 

randomising (chapter 5), even though the method required longer training time 

(averagely, 38.6 seconds compared to 6.29 seconds). At the same speed, the NRMSE 

values calculated in this chapter were approximately 50% smaller than the NRMSEs 

shown in the previous chapter. Superior results were found with the r values and 

SMAPEs as well. The strong relationship was observed with average r values at the 

testing part from all walking speeds. Moreover, even stronger relationship was found 

when focusing on the normalised gait cycle and especially when the r was calculated 

at stance phase. These are likely to be explained by using the mean of all the 

normalised gait cycles as this removes the cycle-to-cycle variability of gait. A further 

reduction of the amount of data to the stance phase only resulted in even better 

performance as the ANN had to fit its multivariate solution to less variable data. 

Reducing training data dimension has been reported to be beneficial in order to 

improve the model accuracy (Sivakumar et al., 2016). 

The results exhibited the ability of the FFANN to generalise to the unseen set of gait 

data when the FFANN was trained by the randomised data. Good predictive results 

were reported in a previous study using a long short-term memory based recurrent 

ANN trained with the randomised kinematics, gait velocity and anthropometric data 

to predict joint moments. For the unseen participant, the average NRMSE of all joint 

moments was 11.33% with a strong correlation between the actual joint moments 

and the predicted joint moment at r > 0.9. In particular, the NRMSE of the KAM was 

comparable to this recent study at 14.96% (Mundt et al., 2018).  
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However, in practice, the FFANN would be expected to be able to predict KAM of a 

new participant that the FFANN has never seen before which referred to the ability 

to generalise to a new individual (Halilaj et al., 2018). From chapter 5, the FFANN was 

used to predict the KAM of 15 participants. The FFANN was trained with hip, knee 

and ankle joint angles in all three planes of motion to predict the KAM. The leave-

one-out cross validation was used and data of each individual were used to estimate 

the model’s performance (at the testing part of the training process). Even though 

the results from the previous chapter showed that the FFANN was able to predict 

individual unseen KAM, the NRMSEs of the testing part varied from low to notably 

high NRMSE from a prediction of some individuals. The NRMSEs of the testing part at 

normal speed walk ranged between 14.69%-55.71%, between 16.40%-35.00% for 

fast speed and between 14.32%-41.86% for slow speed. This reflects that the gait 

pattern of a new person can be much different from the 13 others that were used to 

train the ANN.  

The question still presents whether the FFANN can generalise well when it is used in 

real life. The answer would be that the FFANN should be able to predict the unseen 

KAM of an unknown participant if the FFANN was trained by the gait data from a large 

number of participants, as many as to present all kinds of gait patterns of the world 

population to the FFANN. The FFANN will then be able to recognise the new gait 

pattern and will provide more accurate prediction of unseen KAM. However, when 

there were only 13 gait patterns to train the FFANN, it was inevitable to evidence a 

poor generalisaton due to the variances amongst each gait pattern. To reduce those 

variances, in case of having a limited number of gait patterns, randomising the gait 

data could effectively even the variability of the gait data thus balancing the data in 
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each fold to be more comparable with less bias (individuals’ difference) 

(Reitermanová, 2010). 

A better performance of the FFANN observed from the results in this chapter 

compared to the former chapter could be due to the FFANN was trained by a more 

uniform gait patterns, therefore it could predict more precise KAMs.  Also, the 

participants’ gait patterns were not violated by the method and the principle of 

testing the performance with the unseen gait data was still preserved as each fold of 

the data equally had potential to contain data of every single participant therefore 

the gait data from all participants were used to test the FFANN performance in a 

balanced way. The advantages of randomising data before training the FFANN were 

firstly, to eliminate the issue of having a small number of data or participants that 

reflect less variety. Secondly, it was proven that the FFANN can be used to predict 

the KAM of gait if the input-output pairs were formulated properly. The FFANN 

worked quite well in order to predict the KAM if the individual difference was 

removed. The drawback of the randomisation of the data in this present study was 

that the technique might not yet be practically used as in the gait laboratory the 

participant visits the laboratory in person presented as an unseen gait data. Ideally, 

the FFANN will be expected to predict such unseen gait data instantaneously. 

Therefore, the FFANN needs to be trained with data of more participants, perhaps up 

until the point where the FFANN trained by gait data of individuals and the FFANN 

trained by the randomised data can provide equivalent results. Furthermore, the two 

studies were conducted using data from unimpaired gait to train the FFANN, however 

there are pathological gait patterns that need to be introduced to the FFANN, 
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especially when the method is applied in practice in the future. Therefore, obviously, 

more participants are required to maximise the FFANN performance.      
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Chapter 7: Enhancing the FFANN performance for 

knee abduction moment estimation using marker 

coordinate data as input and the effective number 

of hidden neuron and input variables 
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Background 

 
The previous results have shown that joint angles obtained from Xsens sensors alone 

can be used to successfully train the FFANN to predict KAM during gait. The 

randomisation technique and appropriate data splitting were proven to increase 

prediction ability and generalise to the unseen set of data. Joint angles were used as 

input to train the FFANN in this project since they are a crucial parameter in gait 

analysis that can be obtained instantly from the IMU system which offers flexibility 

for gait analysts to analyse an individual’s gait without the requirement of laboratory-

based motion capture equipment (Sivakumar et al., 2016). However, from the 

previous part of the study, there was a possibility to improve the FFANN performance 

since only predicted KAM at fast speed were comparable with the target KAM. Some 

other methods, for instance using a different set of inputs to train the network should 

be considered.      

In practice, when gait analysis is produced, the joint angles are reconstructed in a 

three-dimensional (3D) space using signals from reflective markers that were 

attached on a participants’ body according to a particular 3D gait model that had 

been chosen. Body segments, thereafter, are created from the model and joint angles 

of rotation are calculated from the orientation of a lower body segment relative to 

the adjacent proximal segment specifically described for each gait model. To identify 

3D joint angles (relative orientation of neighbouring segments), the order of segment 

rotations about axes needs to be determined in the 3D space beginning with an axis 

then the following axes which depend on the first axis, therefore, the possible 

sequence of axes could be any of XYZ, XZY, YXZ, YZX, ZXY, or ZYX. The axes’ sequences 
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are known as the Cardan rotation sequences, as a result there is a variety of 

possibilities to define joint angles (Lees, Barton and Robinson, 2010). 

Generally, the sequence is arbitrarily chosen or is chosen following the clinical 

conventional description (Baker, 2001). Although, all of the rotational sequences 

provide mathematically equivalent joint angles: an evidence from a previous study in 

football motion analysis has shown that movement data collected from those 

potential rotational sequences, one that has flexion-extension plane at the second 

order showed the greatest divergences from the other data set (Lees, Barton and 

Robinson, 2010).  

Despite a commonly used rotational sequence to quantify joint angles of gait, a 

choice has to be made which rotational sequence to use but the reasons for this 

choice vary, leading to different angular representations of the same movement. 

Therefore, it might be difficult to rationalise selection of one of the possible joint 

angles that were processed from the typical gait analysis as the best information to 

train the FFANN due to the possibility of being calculated from various Cardan 

rotation sequences. Alternatively, the signals from marker coordinates could 

perhaps, represent more unambiguous gait information since they are the original 

signals that are directly measured from a participant’s gait without the need for 

further choices about the calculation process of angles. The marker coordinates were 

reported to be able to represent gait data for healthy and pathological gait analysis 

(Federolf, Roos and Nigg, 2013). A previous study showed an advantage over using 

joint angles for validating the Movement Deviation Profile (MDP) to indicate gait 

deviations in the progressive condition of alkaptonuria (Barton et al., 2015).   
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One important factor of a successful output prediction by an artificial neural network 

is to choose an appropriate set of input variables. In FFANN training, it is necessary 

that to some extent, both input and target output variables should relate to each 

other for the FFANN to be able to capture the non-linear relationship between the 

input-target pairs (Fernando, Maier and Dandy, 2009). Using marker coordinates as 

input to train the network could give the network another chance to predict KAM 

better as the marker coordinates are the most fundamental raw pieces of 

information obtained from a motion capture system. Besides having a relevant set of 

input variables, the quantity of the input is also vital to enhance the FFANN 

performance. An excessive number of inputs will cause the model unnecessary work, 

for instance, the size and complexity of the model will require more memory to 

operate the task and also disturb the model calibration and weight adjustment.  

Another factor that influences the FFANN performance is the number of hidden 

neurons. It has been known that one hidden layer is sufficient for the neural network 

to accomplish a prediction task (Sivakumar et al., 2016). However, too few or too 

many hidden neurons could significantly affect the FFANN performance; the former 

would slow down the learning process and the latter would limit the performance 

through overtraining (Agatonovic-Kustrin and Beresford, 2000).  This study will focus 

on the feasibility of using marker coordinates as inputs to train the FFANN and to find 

an appropriate ratio of hidden neurons for efficient FFANN training to predict knee 

abduction moment during gait.  
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7.1 Minimum number of input variables and the suitable number of 

hidden neurons 

 

Data processing and analysis 
 

Data extraction and pre-processing 
 

The gait data obtained from the Xsens sensors were exported as a .c3d file, containing 

virtual markers generated by the Xsens software. The data of virtual marker 

coordinates in X, Y and Z axes were selected from the virtual markers of the right leg 

including ASIS, PSIS, greater trochanter, lateral knee epicondyle, tibial tuberosity, 

heel and toe using Visual3D V.6 software (C-Motion, MD, USA); they were then 

exported as a .txt file to be another set of input for the FFANN training. The marker 

coordinate data were up sampled from 100 Hz to 120 Hz using the spline function in 

Matlab as in the prior chapter, to be equivalent with the KAM output data. Similarly, 

the marker coordinate data were divided in 19 folds in accordance with data from 

each participant the dataset would be systematically randomised in the next step. As 

well as the former chater, the marker coordinate data of all walking speeds were 

included in the set of input-target output data.   

The FFANN training strategy 
 

In order to identify the appropriate number of the input variables and hidden 

neurons, an experiment has been conducted in this study. Firstly, to investigate how 

efficient the FFANN was in predicting the KAM when the FFANN was trained by input 

data selected from a specific number of the markers. Secondly, with a specific 

number of inputs, to find what the suitable number of hidden neurons that would 

provide the most efficient performance of the FFANN was to be. Therefore, in this 
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study, gait data were extracted from all 19 participants and only data from one 

participant (28 years old female, body height 1.67 metres and body mass 65 kg) was 

chosen to test the FFANN’s performance (with unseen data) for the experiment. The 

maximum number of the marker coordinates was limited at seven to be equivalent 

to the conventional gait model.  

The following strategy was applied (figure 7.1) 

1. Trained the FFANN with data from all seven markers (ASIS, PSIS, greater 

trochanter, lateral knee epicondyle, tibial tuberosity, heel and toe) as they 

were markers that represented each segment of one lower extremity (pelvis, 

thigh, leg and foot) and resemble the conventional gait model’s markers. 

There were 21 input variables to train the FFANN (X, Y and Z coordinates of 

the seven markers). 

2. Trained the FFANN with data from five markers (ASIS, greater trochanter, 

lateral knee epicondyle, heel and toe) to examine the effect of reducing the 

number of input variables when the direct gait data from marker coordinates 

were used. There were 15 input variables to train the FFANN (X, Y and Z 

coordinates of the five markers). 

3. Different ratios of hidden neurons were used to train the FFANN model of the 

seven markers and the five markers. 

3.1 An FFANN trained with the number of hidden neurons at a half of input 

variables and target output (11 for the seven markers (21+1)/2 and 8 for 

the five markers (15+1)/2). 
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3.2 An FFANN trained with the number of hidden neurons at two third of 

input variables doubled (28 for the seven markers (2/3 of 42) and 20 for 

the five markers (2/3 of 30). 

3.3  An FFANN trained with the number of hidden neurons at double of input 

variables (42 for the seven markers and 30 for the five markers). 

3.4 An FFANN trained with a high number of hidden neurons at 56 for the 

seven markers and 40 for the five markers (doubled input (42 and 30) plus 

a third of itself (plus 13 for seven marker and plus 10 for five markers). 

4. At this stage, the most effective ratio of hidden neurons could be identified 

and followed thereafter in the next steps of the study. 

5. Trained the FFANN with data from four markers (ASIS, greater trochanter, 

lateral knee epicondyle and toe) to examine the effect of reducing input 

number when the direct gait data from marker coordinates were used. There 

were 12 input variables to train the FFANN (X, Y and Z coordinates of the four 

markers). 

6. Finally, trained the FFANN with data from three markers (greater trochanter, 

lateral knee epicondyle and toe) to examine the effect of reducing input 

number when the direct gait data from marker coordinates were used. There 

were 9 input variables to train the FFANN (X, Y and Z coordinates of the three 

markers). 

A new Matlab script (appendix 9) was customised to train the FFANN described in this 

strategy. All variables were randomised by the randperm function and to maintain 

the identical randomised order of each FFANN the first randomised order was chosen 

for the data preparation. Gait data of three walking speeds were used to train the 

FFANN separately. The temporal order of the predicted KAM was reversed back for 
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visualisation of the usual KAM pattern and FFANN performances were computed and 

recorded as NRMSE, RMSE and SMAPE values. 

 

Figure 7.1 The flow chart illustrates the order of data preparation and the strategies 

that were used to train the FFANN with the virtual marker coordinates obtained 

from the Xsens sensors. Gait data of one volunteer (28 years old female) were used 

for testing in this study. 
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7.2 The effectiveness of using a minimum number of input variables in 

FFANN training for knee abduction moment prediction 

 

Data processing and analysis 

Input variables selected from the marker coordinates 
 

For further examination of the FFANN performance, minimum number of input 

variables were used to train the FFANN. The number of the variables were selected 

from the previous part of the study, therefore coordinate data from four (ASIS, 

greater trochanter, lateral knee epicondyle and toe) and three (greater trochanter, 

lateral knee epicondyle and toe) markers were used as input to train the FFANN. 

A Matlab script (appendix 10.) was created in order to gather gait data from marker 

coordinates and to create 19 folds cross validation where each fold was the data from 

each participant. The data from four and three marker coordinates were prepared 

separately. The data up sampling and randomisation were performed similarly to the 

previous part of the study. Overall, 19 FFANN architectures were created to predict 

KAM of each participant. The predicted KAM were then reversed to the original KAM 

pattern at the end of the training process. The Levenberg-Marquard algorithm was 

used for the FFANN training with one hidden layer of 24 and 18 hidden neurons 

(double of the input variables for four and three marker coordinates respectively). 

The FFANN were trained for 20 times to identify the best performance and then the 

KAM prediction was carried out following the chosen best performance. The FFANN 

training process described in part 7.1 was applied in this part of the study for four 

and three marker coordinates input.   
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Results 
 

7.1 Minimum number of input variables and the suitable number of hidden neurons 

Training the FFANN with data extracted from seven marker coordinates required 

minimally five times longer operation time compared to smaller number of markers. 

Similarly, more operation time was required in the FFANN models having more 

hidden neurons. At seven markers, the operation times were 348, 575, 2,529 and 

4,124 seconds for 11, 28, 42 and 56 hidden neurons respectively. On average it took 

5 times less when the FFANNs were trained by data from coordinates of five markers 

at 38, 261, 559 and 659 seconds for 8, 20, 30 and 40 hidden neurons respectively 

(ASUS laptop X455L series, Intel Core i3 4030U, 1.9 GHz, 4 installed RAM with 

Windows 10 Pro 20H2 version).  

Overall, the FFANN generalised to the unseen gait data better when the model was 

trained by more hidden neurons (table 7.1). At normal walking speed, using 

coordinate of seven markers, RMSEs were 0.026, 0.015, 0.014 and 0.013 Nm/Kg for 

11, 28, 42 and 56 hidden neurons respectively. The same trend was observed for 

NRMSE values at 6.33%, 3.61%, 3.35% and 3.12% and the SMAPEs at 26.97%, 20.88%, 

19.59% and 18.83% for 11, 28, 42 and 56 hidden neurons respectively. A strong 

relationship between the target and the predicted KAM was found with correlation 

coefficients between 0.95-0.99 amongst the prediction from the FFANN with 

different number of hidden neurons. Similar results were shown at the other walking 

speeds. 
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Table 7.1 The FFANN’s performances when they were trained by X, Y and Z coordinates of seven and five markers with various numbers of 

hidden neurons (Asterix indicates the appropriate ratio applied in the next step of the study). 

 Normal speed Fast speed Slow speed Training 

time  

(second) 

7 markers (21 inputs) 
with different number 
of hidden neurons 
(rounded) 

RMSE 
(Nm/kg) 

NRMSE 
(%) 

SMAPE 
(%) 

r RMSE 
(Nm/kg) 

NRMSE 
(%) 

SMAPE 
(%) 

r RMSE 
(Nm/kg) 

NRMSE 
(%) 

SMAPE 
(%) 

r 

11 (input+output)/2 0.03 6.33 26.98 0.95 0.03 5.75 21.95 0.96 0.02 5.73 23.00 0.97 348 

28 (2input - 1/3input) 0.02 3.61 20.88 0.98 0.01 3.35 16.13 0.99 0.02 4.68 20.45 0.98 576 

42 (2input)* 0.01 3.36 19.60 0.99 0.01 2.99 14.80 0.99 0.02 4.16 19.09 0.99 2530 

56 (2input + 1/3input) 0.01 3.12 18.84 0.99 0.01 2.87 14.74 0.99 0.02 3.73 16.59 0.99 4124 
5 markers (15 inputs) 
with different number 
of hidden neurons 
(rounded) 

             

8 (input+output)/2 0.03 7.35 27.52 0.94 0.04 9.77 32.29 0.90 0.03 7.99 26.82 0.94 38 

20 (2input - 1/3input) 0.02 4.62 23.28 0.97 0.02 5.23 20.55 0.97 0.02 5.39 21.89 0.98 262 

30 (2input)* 0.01 3.58 21.50 0.98 0.02 3.95 18.67 0.98 0.02 5.13 20.25 0.98 560 

40 (2input + 1/3input) 0.02 5.10 23.46 0.97 0.02 3.83 17.60 0.98 0.02 4.46 18.25 0.98 659 
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The FFANN model that was trained by data from coordinates of five markers with 

different number of hidden neurons generalised well for all walking speeds, although 

the error values were slightly higher than the results from seven marker coordinates. 

At normal speed, RMSEs were 0.03, 0.02, 0.01 and 0.02 Nm/Kg for 8, 20, 30 and 40 

hidden neurons respectively. The NRMSEs were 7.35%, 4.62%, 3.58% and 5.1% and 

the SMAPEs were 27.52, 23.28, 21.49 and 23.46 for 8, 20, 30 and 40 hidden neurons 

respectively. Strong relationship between the target and the predicted KAM was 

shown with correlation coefficients between 0.93-0.98 at all number of hidden 

neurons used. Similar results were shown at fast and slow speed.  

Overall, the results showed that the prediction ability of the FFANN improved when 

it was trained using more hidden neurons. However, the improvement of the 

prediction did not clearly improve at the hidden neurons at more than twice the 

number of input variables while a considerably increased operation time was 

required to accomplish the training task.  Therefore, in the following steps of the 

experiment the FFANNs were trained by input variables extracted from 12 

coordinates of four and 9 coordinates of three markers using the hidden neurons at 

double number of the inputs (24 and 18 hidden neurons respectively).  A one-way 

analysis of variance test (ANOVA) was performed to examine the difference between 

the performance of the FFANNs predicting KAM compared to the actual measured 

KAM. No statistically significant difference was found between the actual KAM and 

the KAM predicted by FFANNs trained by data of seven and five marker coordinates 

with all hidden neurons number ratios (p < 0.05) at all walking speeds. There was no 

statistically significant difference between the KAM predicted by the FFANNs trained 
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with data from three, four, five and seven coordinates with hidden neurons at twice 

number of the input variables (p<0.05).    

The FFANN trained by inputs from four marker coordinates exhibited good 

generalisation to this particular gait pattern at RMSE 0.02 Nm/Kg, NRMSE 4.84%, 

SMAPE 22.93 and r=0.97 for normal speed, RMSE 0.02 Nm/Kg, NRMSE 4.98%, SMAPE 

19.25 and r=0.97 for fast speed and RMSE 0.03 Nm/Kg, NRMSE 6.51%, SMAPE 23.52 

and r=0.96 for slow speed. The results found when the FFANN was trained by inputs 

from three marker coordinates also showed good generalisation at RMSE 0.04 

Nm/Kg, NRMSE 8.56%, SMAPE 35.99 and r=0.92 for normal speed, RMSE 0.03 Nm/Kg, 

NRMSE 7.59%, SMAPE 28.47 and r=0.93 for fast speed and RMSE 0.03 Nm/Kg, NRMSE 

7.31%, SMAPE 27.92 and r=0.96 for slow speed (figure 7.2).   
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Figure 7.2 The FFANN’s performance to predict unseen KAM using a variety of number 

of input variables extracted from X, Y and Z coordinates of seven, five, four and three 

markers with the same ratio of hidden neurons (double number of input variables): 

NRMSEs (A.) and the correlation coefficient (r) (B.). Note that prediction of the KAM 

with data from four markers provides close results to the seven and five markers. 

A. 

B. 
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7.2 The effectiveness of using a minimum number of input variables in FFANN training 

for knee abduction moment prediction 

The networks trained by input variables extracted from X, Y and Z coordinates of 

three markers (greater trochanter, lateral knee epicondyle and toe) and X, Y and Z 

coordinates of four markers (ASIS, greater trochanter, lateral knee epicondyle and 

toe) could predict the KAM of gait. The results from four markers were slightly 

superior to using three markers, also both sets of input variables exhibited good 

generalisation ability towards the unseen set of data (figure 7.3). At three markers, 

the average time to operate the KAM prediction task was 52.58±10.65 s (the KAM of 

all three walking speeds were predicted by one Matlab script in a sequence). Average 

RMSEs at the testing part were 0.053±0.025, 0.049±0.015 and 0.059±0.041 Nm/Kg 

for normal, fast and slow speed respectively. The average NRMSEs were 9.76±3.30%, 

8.69±2.80% and 11.27±6.58%, the average SMAPEs were 33.66±7.16, 30.31±6.37 and 

34.38±6.21 for normal, fast and slow speed. Amongst the 19 participants, the 

generalisation of the FFANN predicting individual KAM as unseen data was varied. 

There was a wide range of correlation coefficient values (r) computed between the 

target and predicted output, especially in normal and slow speed walk, ranged at 

0.14-0.98 and 0.20-0.98 respectively and 0.69-0.98 for fast speed (figure 7.4).  
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Figure 7.3 The comparison between the target KAM (blue) and the predicted KAM (black) extracting from the testing part of the FFANN at stance 

phase when the FFANNs were trained by data from three (top row) and four (bottom row) marker coordinates. The gait graphs demonstrate good 

generalisation of the model to predict the unseen data, lower NRMSEs were observed when the FFANN was trained by data of four markers compared 

to three markers.  
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Bland-Altman plots (three markers) 

Figure 7.4 Bland-Altman plots (top) demonstrated good agreement between the target KAM (measured) and the predicted KAM when the 

FFANNs were trained by inputs from X, Y and Z coordinates of three markers. The prediction of the KAM at fast speed walk was the best 

amongst all walking speeds. The bottom row shows good correlation relationship between the target and the predicted KAM.     
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Figure 7.5 Bland-Altman plots (top) demonstrate good agreement between the target KAM (measured) and the predicted KAM when 

the FFANNs were trained by inputs from four markers. The better results were shown when compared with the KAM predicted by the 

FFANNs that trained with three markers (figure 6.7).  The prediction of the KAM at fast speed walk was the best amongst all walking 

speeds. The bottom row shows good correlation relationship between the target and the predicted KAM.     

Bland-Altman plots (four markers) 
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For four markers, the average operation time was 36.42±7.77 s that was faster than 

the former result (with three markers). Average RMSEs at the testing part were 

0.037±0.025, 0.032±0.011 and 0.045±0.032 Nm/Kg for normal, fast and slow speed 

respectively.  

The average NRMSEs were 6.61±2.86%, 5.67±1.09% and 8.63±5.11%, the average 

SMAPEs were 26.21±7.22, 22.69±4.05 and 30.29±5.28 for normal, fast and slow 

speed. The correlation coefficient showed a better relationship between the target 

and the predicted output than the prediction with three markers, with average values 

of 0.94 (0.45-0.99), 0.97 (0.92-0.99) and 0.94 (0.69-0.99) for normal, fast and slow 

walk respectively (figure 7.5). 

The FFANN architecture of the three marker coordinate data was identical to the 

FFANN architecture used in chapter 6 where the randomised joint angles were used 

as input: nine input variables, one hidden layer with eighteen hidden neurons and 

one output variable. Using the marker coordinates showed slightly better results 

according to the smaller average NRMSE values and higher correlation coefficients. 

However, training the FFANN using the three marker coordinates required longer 

operation time than the randomised joint angle.  
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Discussion 
 

The results showed that gait data directly obtained from the marker coordinates can 

be used efficiently as input variables in order to train the FFANN to predict the KAM. 

The results corresponded to the preliminary finding from pilot study1 in chapter 3 

where the y marker coordinate data were used to train the FFANN and showed the 

ability to predict ipsilateral and contralateral hip, knee and ankle joint moments of 

the overground gait. Superior KAM prediction was observed in the study compared 

to the KAM predicted by the FFANN trained by randomised joint angles shown in 

chapter 6. Comparing with an identical FFANN architecture (nine input variables, one 

hidden layer, and 18 hidden neurons), FFANNs trained by data of three markers 

performed better than the FFANNs trained by joint angles obtained by the Xsens 

system (when the FFANN was trained by the randomised joint angles) regarding to 

the NRMSEs by 16%, 19% and 18% for normal, fast and slow speed respectively. 

It has been shown that, when marker coordinates were used to train the FFANN, 

more inputs provided better KAM prediction and better generalisation to the unseen 

set of data compared to the FFANN trained by joint angles in chapter 5 and 6. In the 

same direction, a higher number of hidden neurons in the FFANN model provides a 

better prediction and generalisation ability. However, using a large amount of inputs 

or hidden neurons created a complex model, as a result, it came with higher 

computational cost resulting in a considerably higher operational time to finish the 

prediction task when the FFANNs were trained by inputs from seven marker 

coordinates. Another potentially negative effect of using more input data is the risk 

of overfitting (Mundt et al., 2019), but the results from training the FFANN by data of 
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seven marker coordinates were not significantly different from the results obtained 

from the model trained by data of the three or four marker coordinates.  

Nevertheless, it required more than 60 minutes to complete the prediction task when 

data from seven marker coordinates were used, compared to 29.34 seconds for the 

four marker coordinates (training with the same hidden neuron ratio). For this 

reason, using a large number of inputs to train the network is less likely to benefit 

gait analysis in practice. It has been debated how many hidden neurons would be 

appropriate for training an ANN model and still inconclusive as this depends on what 

is the desired output (Hirose, Yamashita and Hijiya, 1991; Pasini, 2015): trial and error 

is one of the techniques. From the findings in this study, double of the input variables 

was the most effective ratio according to operation time required and the capability 

of generalisation. 

Using an appropriate number of input variables is one of the important factors for 

effective prediction. Either superfluous or too few inputs can affect the prediction 

ability of the FFANN (Ardestani et al., 2014). In previous studies, techniques were 

chosen to help reducing the number of the input variables in order to enhance neural 

network performance (Hahn and O'Keefe, 2008; Aljaaf et al., 2016; Mundt et al., 

2019). It has been confirmed that smaller number of input variables worked more 

effectively to predict the KAM.  The best performances in terms of providing a 

comparable generalisation to unseen data and reasonable prediction time were 

found when the FFANN was trained by data from the coordinates of four markers. 

The prediction ability of the FFANN was slightly lower when the network was trained 

by input extracted from three markers than four markers when the same ratio of 

hidden neurons was applied to the model. This finding provides a great potential to 
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adopt this technique and conduct a gait analysis outside the gait laboratory hence it 

is less complex, does not require long prediction time and most importantly the 

network can generalise well to new data.  

There were similar studies that successfully predicted knee frontal plane moment in 

gait by an ANN using different types of input data. Overall, the results from this study 

are 50% superior when compared to those reports. Average NRMSEs between the 

target and the predicted outputs obtained from the FFANN trained by data of four 

marker coordinates were 6.61%, 5.67% and 8.63% at normal, fast and slow speed 

respectively while the correlation coefficients showed strong relationships between 

the two at 0.94, 0.97 and 0.94 for normal, fast and slow walk. These are better results 

than those by Mundt et al. (2018) who reported NRMSE of 14.96% and correlation 

coefficient at 0.95 for the unseen data of a healthy volunteer when the frontal knee 

joint moment was predicted by a long short-term memory (LSTM)-based recurrent 

ANN. Smaller NRMSE was also shown when the KAM was predicted by an FFANN 

model using simulated inertial measurement unit gait data as input at 10.58% and 

correlation coefficient at 0.98 (Mundt et al., 2019). Similarly, Favre et al. (2012) 

reported strong relationships between the measured KAM and the predicted KAM of 

asymptomatic osteoarthritis volunteers when it was predicted by the same FFANN 

algorithm as in this study, using 11 inputs, although deriving from the ground reaction 

force and the mechanical axis alignment at 0.97, 0.97 and 0.96 for normal, fast and 

slow speed walk and also showed a slightly better prediction of the fast speed over 

the other two walking speeds.  
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Chapter 8: Enhancing the FFANN performance for 

knee abduction moment estimation using 

simulated two-dimensional gait kinematics as 

inputs to train the FFANN for knee abduction 

moment prediction 
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Background 
 

Three-dimensional gait analysis (3DGA) has been accepted as a standard method to 

quantify gait in order to identify the underlying gait pathology. However, to be 

practically used, 3DGA is limited to be conducted in a well-established motion 

laboratory under complex instruments, at high cost and requires a specialist to 

operate (Simon, 2004; Ugbolue et al., 2013; Zult et al., 2019). Two-dimensional gait 

analysis (2DGA), in contrast, requires less resources and can be carried out more 

comfortably with uncomplicated setting. For a century, the 2DGA has been used to 

measure joint angles in gait, the joint angles obtained from the 2DGA were highly 

correlated with the 3DGA, particularly knee and ankle joint angles (Michelini, 

Eshraghi and Andrysek, 2020). In areas where the 3DGA is not applicable, the low cost 

2DGA can be the investigation of choice to help researchers to identify the 

abnormality of gait (Zult et al., 2019). It has been shown in previous studies that the 

reliability and validity of using 2DGA are varied when compared to the standard. Joint 

angles quantification of knees and ankles were reliably measured by the 2DGA while 

the hip and pelvic joint were less reliable (Michelini, Eshraghi and Andrysek, 2020).    

It has been shown in the former chapters that reducing the input quantity can 

improve the FFANN performance. Processing 2D gait analysis requires fewer markers 

compared to 3DGA, therefore the gait data could be suitable to use for the FFANN 

training. Moreover, in a situation where 3DGA is not readily available, 2DGA can play 

a major role for gait analysis. Therefore, it is worth examining if the data obtained 

from 2DGA can be used to train the FFANN in order to predict the knee abduction 

moment and its performance compared with using the 3DGA data as inputs. This 

study aimed to investigate the possibility of using two-dimensional gait data derived 
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from marker coordinates of the virtual markers produced by the Xsens sensors to 

train the FFANN and then predict knee KAM during gait.      

Data processing and analysis 

 

Data extraction from the original data files 
 

Data used in this study were originally from the data set in chapter 7. The gait data 

obtained from the Xsens sensors were exported as a .c3d file, containing virtual 

markers generated by the Xsens software. The data of four virtual marker coordinates 

in the laboratory’s global coordinate system in the X, Y and Z directions were selected 

from the virtual markers of the right leg, according to the previous finding that data 

of four marker coordinates was the most efficient to predict the KAM, including ASIS, 

greater trochanter, lateral knee epicondyle and toe using Visual3D V.6 software (C-

Motion, MD, USA). The extracted data were then up sampled from 100 Hz to 120 Hz 

using the spline function. The KAM of the right leg was obtained from GOAT. 

Data from the four markers were then arranged to create a new set of data that is 

equivalent to the 2DGA data in the sagittal, frontal or transverse planes. From the 

basic movement analysis theory, a movement of gait is recorded and referenced by 

a spatial reference system depending on the processing software. Generally, X axis 

represents the direction of progression (anterior-posterior), Y axis represents the 

vertical direction and Z is represents the sideways direction (medial-lateral). Each 

plane of movement is described by two axes as followed, movements between the X 

and Y axes towards X direction depicts the sagittal plane motion, movements 

between Y and Z axes towards Y direction depicts the frontal plane motion and lastly, 

movements created between X and Z towards Z direction depicts the transverse 
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plane motion (Winter, 2009). However, in this chapter, the data were extracted from 

the Xsens system, therefore the 2D planes were adapted corresponding to the Xsens 

axes as the movement about the Z axis is the sagittal plane, the movement about the 

X axis is the frontal plane and the movement about Y axis is the transverse plane 

(Schepers, Giuberti and Bellusci, 2018). The 2D gait data of the four markers were 

created in the frontal plane, sagittal plane and transverse plane, thus creating a two 

variable data set for each plane of motion.  

Similar to chapter 7, data of all walking speeds were separately used to train the 

FFANN using the same Matlab script after data preparation to create 19 left out folds. 

Fifty-seven Matlab scripts were written for KAM prediction using inputs from three 

set of data (19 left out folds of frontal, sagittal and transverse planes (19 x 3)) as input 

and data of the three walking speeds were trained in the same Matlab script). The 

data from the two axes of four markers were used, the FFANNs were then trained 

with one hidden layer and 16 hidden neurons. The data were also systematically 

randomised as described in chapter 6 and the randomised KAM series were reversed 

back to the normal order at the end of the process.   

Results 
 

The FFANNs performed well compared to the former part of the study, average 

operation time was 40.55 ± 8.31 seconds. They could generalise well to an unseen 

set of gait data shown by small NRMSEs, especially when the sagittal plane data were 

used as inputs at 9.59%, 9.28% and 11.60 % for normal, fast and slow speed 

respectively. In accordance with the NRMSEs, a strong relationship was found 

between the predicted KAM and the measured KAM with correlation coefficients at 

0.88, 0.91 and 0.90 for normal, fast and slow speed. The FFANNs trained by frontal 
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plane data could also generalise to unseen gait data with average NRMSEs at 11.36%, 

10.03% and 13.21% for normal, fast and slow speed, strong relationships were 

observed with correlation coefficients at 0.85, 0.91 and 0.88 for normal, fast and slow 

speed respectively. Similarly, the FFANNs trained by transverse plane data could 

generalise to an unseen set of gait data with average NRMSEs at 11.56%, 10.65% and 

12.94% (figure 8.1). Strong relationships between the predicted KAMs and the 

measured KAMs were also shown by average correlation coefficients at 0.84, 0.88 

and 0.88 for normal, fast and slow speed respectively (figure 8.2).  

 

 

 

 

Figure 8.1 The bar charts show the generalisation ability of the FFANN trained by 

simulated 2D data in the frontal, sagittal and transverse planes. The average NRMSEs of 

the testing part of the network at all walking speeds range from 9.28% to 13.21% with 

the best performance obtained from the prediction using simulated sagittal plane data 

at fast speed.  
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Figure 8.2 Strong relationships between the predicted KAM and the measured KAM are 

depicted corresponding with the FFANN performance (NRMSE) in figure 8.1. The FFANN 

trained by data from the 2D sagittal plane generally performed better than the other two 

motion planes. 
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Discussion 
 

The results from this study have shown the feasibility of using 2D marker coordinates 

as inputs to train the FFANN. The results also suggested that using smaller size of 

input variables could improve the FFANN performance. Prediction of the KAM by an 

FFANN trained by 2D data as input required slightly longer operation time when 

compared with using randomised 3D marker coordinate data. Average NRMSEs 

between the measured and the predicted KAM obtained from the 2D data at all 

walking speeds were approximately 5% larger than the NRMSEs of the 3D data thus 

indicating that the FFANN performed better when the 3D data were used as inputs. 

Amongst the three planes of movement, using data of the frontal plane was expected 

to show the best prediction. In general, the KAM is calculated from inverse dynamic 

method using joint reaction force by the distance between the force and the joint 

centre (Winter, 2009). Therefore, mathematically, there should be a relationship 

between the frontal plane motion and the KAM that the FFANN can recognise by 

arriving at a suitable set of weights during training, in order to predict the output 

(Hodas and Stinis, 2018). However, from this study, using 2D sagittal plane motion 

provided a slightly better prediction than the frontal and the transverse plane. This 

could be due to the pattern of motion in sagittal plane which has a large range of 

motion and can be captured more accurately and reliably than in the other planes. 

As a result, the FFANN could perform better in this sagittal plane. Moreover, 

randomisation of the input data before training the FFANN could potentially help 

eliminating biases and variances of the input data for the FFANN to perform better 

(Peralta, Gutierrez and Sanchis de Miguel, 2009) as the results shown in chapter 6.   
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Based on the results from the study, it can be stated that the 2DGA marker 

coordinates in sagittal plane can be used as inputs to train the FFANN to predict the 

KAM. This can benefit reserchers where the 3DGA is not readily available as well as 

in clinical practice where gait analysis is required but has a limited laboratory space 

for all 3DGA instruments or without sufficient training 
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Chapter 9: The effectiveness of reducing the input 

dimensions using Principal Component Analysis 

to train the FFANN for knee abduction moment 

prediction 
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Background     
 

The performance of the FFANN could be improved when a suitable number of inputs 

were used to train the network. The results from the previous chapters showed a 

more effective prediction when data from fewer markers (four markers compared 

with five and seven markers) were used as inputs for the FFANN training in terms of 

the accuracy and computational cost (time to operate the task). Besides reduction of 

input number whilst a particular set of inputs is used to train the FFANN, for instance 

the joint angles and marker coordinates as inputs, there is another method that could 

be used to remove the redundant information in the data (Daffertshofer et al., 2004). 

Principal component analysis (PCA) is an established mathematical algorithm that has 

been used to perform orthogonal linear transformation of multidimensional data to 

new dimensions based on the covariance matrix computed from the original data 

(Hui et al., 2005; Bisele et al., 2017). Generally, the essential features of the data are 

transformed in order, from the most relevant to the least relevant data variables to 

the original data. In other words, the first principal component has the largest 

associated variance while the last principal component has the smallest variance 

(Jones, Holt and Beynon, 2008). However, depending on the research question, each 

orthogonal dimensionality component of the PCA space can be a representative of 

important characters of the data (Bisele et al., 2017).  

The PCA algorithm has been utilised to reduce the number of input features and 

optimise the artificial neural network performance to predict kinematics and kinetics 

of gait. There are several studies using a PCA to classify gait features and help with 

developing a machine learning algorithm in gait analysis (Eskofier et al., 2013; 

Federolf, Boyer and Andriacchi, 2013; Bisele et al., 2017). Mundt et al. (2020) applied 
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a PCA to extract input data obtained from simulated IMU sensors and hypothesised 

that reduction of the input data by feature extraction computing by a PCA would 

provide a better performance of the long short-term memory neural network. The 

conclusion could not be drawn since such result was not observed, in addition, an 

increased variance in the accuracy of the prediction over all joint motion planes was 

found (Mundt et al., 2020). However, the PCA has not been used to optimise the 

FFANN in order to predict joint moment of gait before. This study focused at the 

possibility of improving the FFANN performance by using the input data feature 

extraction with PCA and compare with the results from chapter 6 where the FFANN 

was trained by the randomised joint angles.  

Data processing and analysis 

 

Data extraction from the original data files and data preparation  
 

The same set of data from chapter 6 were used in this study. The input variables 

comprised of consecutive 2,000 data points of each of the nine joint angles and 

rotation: hip, knee and ankle in flexion/extension, abduction/adduction, and 

internal/external rotation obtained from Xsens sensors. The data were up sampled 

using the spline function in a custom Matlab script to match with the target output’s 

sampling rate. The target output variable was the KAM obtained from GOAT. All input 

and output variables were from the right leg. Input and target output data of each 

participant were then concatenated from normal, fast and slow speed respectively. 

Therefore, a data matrix of 10 (9 inputs, 1 target) x 38,000 was created for each 

walking speed. The data were prepared separately for the leave-one-out cross 

validation as stated in chapter 6.  
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The data pre-processing by a PCA was conducted using the PCA function in Matlab 

(appendix 11.). The scores were named as score 1 for input data of normal speed, 

score 2 for fast speed and score 3 for slow speed. Each score expressed the nine new 

data dimensions (PC1, PC2, PC3, …, PC9) of the input variables of each walking speed. 

The first PC represented the majority of variance (the most relevant according to the 

covariance matrix) of the input data and the last PC represented the least relevant 

data. The transformed data were consequently selected to be inputs to train the 

FFANN. 

Principal component analysis algorithm can be further explained in the following 

paragraph (modified and adapted to this task from (Eskofier et al., 2013)). The 

principle of using a PCA to pre-process a set of data aims to extract features and 

retain the essential characteristics of the data and change it into a new set of 

variables of principal components (PCs). It can be carried out in steps beginning with 

a data matrix M ∈ ℜ38000×9 where 2,000 data points of joint angles obtained by Xsens 

sensors at all planes of motion of hip, knee and ankle of the 19 participants were 

concatenated. Eigenvalues were decomposed from the original matrix and a new 

correlation matrix was created as Mt M (∈  ℜ9×9), followed by creating eigenvectors 

𝑒𝑘  (∈  ℜ9×1  k = 1, …, 9) of this matrix. The eigenvectors expressed characteristic 

vectors of a linear transformation of the original input data. The matrix M was then 

multiplied by the eigenvectors thus creating the principal component vector 𝑝𝑘(∈

ℜ38000×1) which would later be ordered corresponding to the magnitudes of the 

eigenvalues formerly calculated. As a result, the first few principal components 

describe the major variations of the input variables.   
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Thereafter, the input data were systematically randomised in the same method 

described in chapter 6, then an FFANN architecture was created using the Levenberg-

Marquard algorithm with one hidden layer and the hidden neurons ratio (double of 

input variables) was used following the result from chapter 7. The FFANNS were 

trained using three different sizes of input data from 1.  PC1 only, 2. PC1 and PC2, 3. 

PC1-PC3 in separate architectures (two, four and six hidden neurons respectively). 

Therefore, 19 FFANNs were created to predict the KAM for each set of the input thus 

making overall 57 FFANNs in this study (19 folds times three FFANN architectures).  

Results 
 

Amongst the nine principal components, the first three PCs, altogether, represented 

on average 84.57% of the variance (85.97%, 83.05%, 84.67% for normal, fast and slow 

speed respectively) and there was approximately 15.44% for the combination of the 

remaining PCs (figure 9.1). The first PC (PC1) depicted on average 56.88% of the input 

data. 

Using inputs of the PCs to train the FFANN to predict KAM of all three walking speeds 

required a short operative time of 2.64 ± 0.75, 3.51 ± 0.48 and 6.48 ± 1.49 seconds 

from PC1, PC1 and PC2, and PC1-PC3 respectively (ASUS laptop X455L series, Intel 

Core i3 4030U, 1.9 GHz, 4 installed RAM with Windows 10 Pro 20H2 version). Good 

performances of the FFANN in order to predict unseen KAM of the left-out participant 

were shown at average NRMSEs 18.60%, 16.48% and 18.13% for normal, fast and 

slow speed for the FFANN trained by PC1-PC3 (84.57%) (figure 9.2). Additionally, the 

correlation coefficients were 0.67, 0.77 and 0.73 for normal, fast and slow speed 

respectively (figure 9.3). 
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Similar results were shown in the prediction of the unseen KAM from FFANNs trained 

by PC1 and PC2 (77.35%) with the average NMRSEs 19.19%, 17.17% and 18.78% and 

correction coefficients 0.66, 0.75 and 0.73 for normal, fast and slow speed 

respectively. The FFANN trained by PC1 alone showed less accurate predictions with 

average NRMSEs at 22.20%, 20.25% and 23.67% and correlation coefficients at 0.56, 

0.63 and 0.59 for normal, fast and slow speed respectively. The predicted KAM of 

normal and slow speed by the FFANN trained using PCA showed significant 

differences to the result in chapter 6 where the joint angles (randomised) were used 

as inputs. However, there was no significant difference (p > 0.05) of the predicted 

KAM at fast speed.  

 

 

Figure 9.1 The first three principal components represented over 80% variance of the 

data, the PC1 (green) describes the largest variability between 52-59%, the PC2 (blue) 

describes between 18-23% and PC3 (yellow) describes approximately 7% of the data. 

The rest of PCs (grey), altogether, illustrate approximately 15% variance of the data. 

Similar distribution is seen in the input data of all walking speeds.    
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 Figure 9.3 Moderate correlations were found between the predicted KAM and the 

measured KAM at all walking speeds. The FFANNs trained by randomised joint angles 

provide a better KAM prediction than the FFANNs trained by PCA data.  

Figure 9.2 The better performances of the FFANNs trained by randomised joint angles are 

demonstrated by the lower NRMSEs.  
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Discussion 
 

The gait data obtained from the data dimensionality reduction or data feature 

extraction by a PCA can be used to train the FFANNs to predict the KAM. This training 

procedure required less operation time than prior methods conducted in chapter 6. 

This is the straightforward  advantage of using PCA in terms of reducing 

computational cost considering that the original data were transformed in new 

dimensions computed from the variance of the data. However, to achieve the 

comparable prediction with using randomised joint angles to predict the KAM 

(chapter 6), more than 80% of input data representation was required (PC1-PC3). 

Using only PC1 to train the FFANN was not sufficient to introduce gait patterns to the 

network to predict KAM accurately compared to previous technique used in this 

study. Compared with the results from chapter 6, the FFANN trained by the 

randomised joint angles performed better than the FFANN trained by the PCA data. 

The NRMSE values were 10% -15% different between the two methods. The average 

operation time was six times faster in the PCA method than the randomised joint 

angle which was most likely due to the smaller number of input variables and the 

uncorrelated nature of the PCA data. Also shown by NRMSEs, the best prediction of 

this part was from the FFANNs trained with PC1-PC3. The NRMSEs were larger than 

the results from the randomisation technique at all walking speeds. However, there 

was no significant difference between the two methods at the KAM prediction of fast 

walk. The results also showed the moderate correlation between the predicted KAM 

and the measured KAM at all walking speeds; the best relationships were shown in 

the results obtained from the FFANN trained by PC1-PC3 especially at fast speed. This 

suggested that more data were required to predict the KAM from joint angles 
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obtained from the Xsens sensors. In contrast, inputs obtained by data dimensionality 

reduction were not suitable for this task. One could try to add more PCs to gain more 

gait characteristics to train the FFANN and receive better KAM prediction, however, 

it would simply indicate, by doing so, that more data were needed and feature 

extraction is no longer necessary. A previous study reported the use of 95% data 

representation to predict gait kinematics (hip, knee and ankle joint angle) using 

simulated IMU data to train a long short-term memory neural network. They showed 

the strong relationships between the predicted and the actual joint angles with 

NRMSE ranged between 2-5% (Mundt et al., 2020). It is worth noting that in PC1 and 

PC2, the major contribution of the coefficient were derived from hip and knee sagittal 

plane respectively. This could be due to the joints with larger range of motion will 

have a better signal-to-noise ratio than the ones with a small range of motion once 

they are normalised.    
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Chapter 10: Enhancing the FFANN performance 

Discussion and Conclusion 
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The results obtained from chapter 5 have exhibited the ability of the FFANN model 

to predict the KAM of gait in healthy individual. However, due to a wide range of 

generalisation capacity when the FFANN was trained by joint angles derived from 

Xsens system with the NRMSE of 13%-92% for normal speed, 10%-79% for fast speed 

and 2%-62% for slow speed. This indicates the necessity of improving the FFANN 

performance to achieve the aim of this project. The FFANN performance could be 

improved by means of data manipulations in chapter6-9 : randomised joint angles, 

marker coordinates,2D marker coordinates and PCA data (when the input were from 

PCs represented more than 75% of the joint angles) compared with the results of 

chapter 5 that the FFANN was trained by the joint angles obtained directly from the 

Xsens system. Moreover, the results from this study suggested that appropiate 

number of hidden neurons that provided the efficient KAM prediction was double 

number of the input variables. The operation time for the FFANN to perform the 

prediction varied from 2.65 seconds when only the PC1 was used as input to 52.58 

seconds when data of three marker coordinates were used as input (figure 10.1). 

Number of the input variables and hidden neurons were the main factors 

determining the operation time. Comparing between the inputs that used to train 

the FFANN, using marker coordinates showed the best KAM prediction whereas using 

joint angles obtained directly from the Xsens (chapter 5) showed the poorest 

performance (figure 10.2). 
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Figure 10.1 The time required to finish the KAM prediction task when different sets of 

input variables were used to train the FFANN ranged from slow to fast operation time. 

Using PCA data required remarkably less time than the other inputs. 

Figure 10.2 The generalisation ability of the FFANN to predict an unseen set of KAM shown by 

NRMSEs, comparing between different inputs. At all walking speeds using data of four marker 

trajectories to train the FFANN provides the best prediction amongst the others while using 

joint angle obtained from Xsens sensors without randomisation provided the highest NRMSEs. 
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Data from four marker coordinates were the best input variable to train the FFANN 

to predict KAM of all three walking speeds that could possibly be due to the marker 

coordinate data presented a pattern of gait that the FFANN could recognise with an 

appropiate amount of noise which will help the FFANN in order to learn the pattern 

of data and predict the KAM, especially, at the testing part where the FFANN 

predicted the KAM from the unseen data. Moreover, the marker position data could 

contain more information than any 3D angles as the data carry full information that 

were recorded from a movement before being selectively processed to as joint 

angles.   Although the prediction using data from more marker coordinates (five and 

seven) provided lower NRMSE than the four markers, it was not practical to apply in 

clinical gait analysis since the considerably long operation time was required and also 

possibly required a high performance computer to conduct the KAM prediction task 

Figure 10.3 Strong relationships between the predicted KAM and the measured KAM are 

shown when the FFANNs were trained using randomised joint angles, marker coordinates 

and simulated 2D data of all planes of movement. 
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(this study was conducted using an ASUS laptop X455L series, Intel Core i3 4030U, 1.9 

GHz, 4 installed RAM with Windows 10 Pro 20H2 version).  

Similarly, the correlation coefficients showed the same trend as NRMSEs. The 

predicted KAM was less correlated to the measured KAM when it was trained using 

the joint angles as inputs without randomisation. Good to excellent correlations were 

exhibited when the KAM was predicted using randomised joint angles, marker 

trajectories, 2D marker coordinates and PCA data (figure 10.3).  

Training the FFANNs by using the 2D gait data required reasonable operational time 

when compared with the prediction using joint angles or marker coordinates as input. 

The strong relationship between the predicted and the measured KAM in this study 

were shown to be comparable with the results when the FFANNs were trained using 

randomised joint angle and marker coordinates as inputs. The comparison of the 

FFANN performance using the different sets of input data showed the capability of 

the FFANNs trained by any plane of 2D data in order to predict KAM of the unseen 

person when compared to the FFANNs trained by joint angle alone or PCA data.   The 

FFANN performed better at fast speed gait data compared to normal and slow speed 

and the KAM prediction results were comparable amongst the majority of inputs 

(table 10.1). No significant differences were shown between the KAM predicted by 

the FFANN trained by randomised joint angles and the majority of input variables 

including three and four marker coordinates, 2D frontal and sagittal plane marker 

coordinates.   
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Table 10.1 The illustration of the differences amongst predicted KAMs from the 

different input data used to train the FFANNs. Asterisks indicate the significant 

differences between the KAM predicted by the FFANN trained by randomised joint 

angles and the particular set of inputs (p<0.05).   

 

 

 

From the findings in these chapters, marker coordinates appear to be the best 

prediction  input variables to train the FFANN to predict the KAM in gait. Some 

limitations in this study are, firstly, the marker coordinates were extracted from the 

Xsens virtual makers, therefore it might be difficult to imply that the similar outcome 

would be received if the data from real reflective markers were used to train the 

network. In addition, there should be some differences between skin movement 

artefact when the Xsens sensors were applied on a body segment and the virtual 

marker coordinates which could affect the input data pattern when they were 

presented to the FFANN. However, the purpose of the study was to extend the use 

of an IMU system for out-of-the gait laboratory, therefore, this virtual marker 
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coordinates can still be an input variable of choice to train the FFANN to predict joint 

moment of gait. Secondly, the number of the markers to be used as input needs 

further study as there could be a better combination of the markers that could 

provide more accurate prediction. Also, the studies were conducted using data of 

unimpaired individuals without the report of gait problems, the FFANN, therefore, 

should be futher trained using the data from people with gait problems to examine 

the FFANN performance (generalisation ability).     

In conclusion, there were strategies to improve the performance of the FFANN used 

in this research project in order to predict the knee abduction moment. Using data 

from marker coordinates would be recommended to be an effective input for the 

FFANN. The 2DGA sets of input which were derived from the marker coordinates also 

illustrated prediction and generalisation ability of the FFANN. Randomisation of the 

input was proved to help more efficient KAM prediction in the study with small 

number of the inputs to reduce the bias and variance between data of individuals. In 

addition, using appropriate size of input variables, in other words the number of the 

inputs, was proved to enhance the FFANN performance, however this was not 

applicable when the PCA data were used to train the FFANN. One hidden layer was 

sufficient for the FFANN to predict the KAM, however, the recommended number of 

the hidden neurons that provided an accurate prediction and computational cost-

efficient would be double the number of input variables.   
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Chapter 11: General discussion 
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11.1 Overview 

 
The inertial motion capture system has been developed and used for several kind of 

motion analyses (Iosa et al., 2016; van der Kruk and Reijne, 2018). The system offers 

a freedom in recording a movement and produces joint angles (kinematics) while 

offering independence from a camera set up which allows the motion capture to be 

conducted outside the restrictions of the typical optoelectronics method used in a 

traditional motion laboratory. The main purpose of this study was to further extend 

the practicality of the IMU system, especially in gait analysis. To complete a gait 

analysis by using an IMU system, several methods have been introduced to quantify 

the forces that cause the movement in combination with the kinematics obtained 

from the IMU system. The frontal plane knee joint moment was focused due to this 

biomechanical parameter’s central role as it is an important risk factor for the 

common degenerative disease of the knee (knee osteoarthritis or OA knee) (Teng et 

al., 2015). Despite good outcomes were reported when machine learning such as an 

artificial neural network is used to predict joint moments in gait (Hahn and O'Keefe, 

2008; Favre et al., 2012; Ardestani et al., 2014), there was a gap in knowledge on 

using joint angles directly obtained from an IMU system as inputs to train an ANN for 

predicting a joint moment during gait.  

 

 11.2 Summary of the experimental findings 

 
The results found in pilot studies shaded light on the feasibility of using the FFANN to 

predict joint moments of gait. Either marker coordinates or joint angles could be 

selected as input to train the network shown by pilot study 1 and 2 respectively. The 
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FFANN could learn an individual gait pattern and predict the unseen KAM of the same 

participant, thus reflecting the generalisation ability of the FFANN used in this study. 

However, due to too few number of participants in the pilot studies, the FFANN was 

not able to generalise to estimate the KAM of a different individual shown in pilot 

study 2. The FFANN needed to be trained by part of a new set of data to be able to 

predict KAM of the rest of the data, reported in pilot study 3. This finding was 

important to indicate the necessity of presenting as many input-output patterns as 

possible to FFANN, for it to be able to recognise and predict the most accurate 

output. Therefore, a larger number of the participants was required to train the 

FFANN.  

The results from chapter 5 where the FFANN was trained using gait data of 13 

participants to predict the KAM of the unseen participant, at the testing part of the 

data, were very encouraging confirmed by a low NRMSE and high correlation 

coefficient. However, a wide range of the two values was found which highlighted a 

lack of uniform gait pattern between the gait patterns of those 13 individuals that 

were used in training. As a result, it was difficult for the FFANN to recognise and 

provide the accurate prediction to the unseen data of some individuals. From the 

findings, several strategies were experimented to improve the FFANN performance 

in chapter 6-9. The bias and variance in gait data obtained form different individuals 

were reduced using systematic randomisation which was applied to indiscriminate 

the input-output pairs to create a more uniform set of data (Reitermanová, 2010). 

The remarkable improvement of the FFANN performances was shown by halved 

NRMSEs in the randomised method compared to using joint angle as input to train 

the network. Moreover, the marker coordinate data were also used as input to train 
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the FFANN further unwrapping the promising initial results of pilot study 1. The ability 

to predict the unseen KAM was best when marker coordinates were used to train the 

network compared to the joint angles. This might be explained by the different 

characteristics of the marker coordinate data and the joint angles. Generally, data of 

the marker coordinates are less processed which could represent the primary data 

for individuals’ gait as opposed to using joint angles, which although based on the 

marker coordinate signals, are complicated by using an Euler rotation sequence 

which involves compulsory decisions inevitably leading to loss of information 

content. The better performance of ANN training and testing confirmed that the 

relationship between the inputs and the target KAM was easier to establish for the 

FFANN.  The better prediction of the KAM were also found when the FFANNs were 

trained using 2D markers and principal components derived from the original data as 

input compared with the KAM predicted by the FFANN trained by joint angles. The 

findings, therefore, supported the adequacy of information content obtained from 

the marker coordinates since the FFANN did not require input data of too many 

markers to train yet giving more accurate prediction than using joint angles as input. 

Data from only two to three markers were sufficient to train the network as shown 

in chapter 7 and 8.  Another possible explanation would be down to the 

randomisation method (Reitermanová, 2010) that was integrated to the data 

preparation before training the FFANN from chapter 6 onward.         
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11.3 Clinical implications of the study 
 

11.3.1 Accuracy and reliabilty of the Xsens system 
 

Inspite of being developed for decades, the IMU system has lagged behind 

optoelectronic motion capture to use clinically. One of the reasons is the accuracy of 

the motion capture system compared to the standard that affects the potential use 

of the IMUs in clinics in order to help making vital decisions to provide appropiate 

management to patients who suffer from gait abnormality (Poitras et al., 2019). The 

system has been validated against the standard motion capture system, and the 

findings showed that the IMU system provides comparable joint angles with the 

standard motion capture in the sagittal plane which has larger range of motion than 

in the frontal and transverse planes during gait (Zhang et al., 2013; Al-Amri et al., 

2018). This was explained by the effect of differences in the underlying biomechanical 

model used by the two motion capture systems (Poitras et al., 2019).  A similar finding 

was observed in chapter 4 where the Xsens Awinda was validated against the Vicon 

system. However, the result from a previous study showed that the between-rater 

and  within-rater reliability when using the Xsens system were better than using the 

standard motion capture system, even though one of the rater never had an 

experience of using the Xsens sensors before (Al-Amri et al., 2018).  It was suggested 

that the IMU system could be appropiately used for clinical gait analysis but it cannot 

be interchangeably used with the standard system. The similar suggestion would be 

implied from the results in chapter 5-8 where the FFANN could predict the 

corresponding KAM from the joint angles and marker coordinate data derived from 

Xsens system. Thus indicating that the Xsens system provided rich information 

content which could be linked mathematically to a dynamic joint moment by a 
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complex ANN model, in spite of the suboptimal match between the joint angles 

derived from the standard motion capture system. 

11.3.2 Possibility of the out-of-the lab concept  
 

The results from chapter 5 and 6 have shown that the FFANN was able to predict KAM 

of gait when it was trained by input variables derived from the IMU system. The 

marker coordinate data appeared to be the most efficient input to train the FFANN. 

Therefore, it is a logically possible concept for the combination of IMU system and 

the machine learning algorithm to be applied to conduct gait analysis outside the 

typical gait laboratory. The combination  could be superior to using another method 

to record kinetics of gait such as using a wearable plantar pressure device or the 

instrumented shoes due to their known poor accuracy and cumbersome practical 

limitation due to the added size and weight of equipment which affect the 

individual’s gait (Shahabpoor and Pavic, 2017). To succesfully use the FFANN to 

predict the KAM, however, requires acquisition of a lot more gait data to present to 

the network during training in order to completely cover normal and abnormal gait 

patterns of human gait. In this study, training the FFANN by the different walking 

speeds was one way to extend the variability of gait in this small group of participants. 

More gait patterns are still needed to improve the generalisation ability of the 

FFANN. Also due to the small number of participants, randomisation of the data were 

adopted in order to create more uniform and even gait pattern to train the network. 

Randomisation was probably the most effective data manipulation confirmed by 

substantially increase generalisation performance. The lower generalisation 

performance when using non-randomised data could be explained by having only 13 

gait patterns for the FFANN to learn while training, so there was a high chance of the 
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FFANN to be unable to interpolate the knowledge from the training process to predict 

unseen gait pattern (at the testing part ) especially if the 15th gait pattern differed 

substantially from the others used for training. To be perfectly generalised to predict 

the joint moment of an unforeseen individual, the FFANN, therefore, has to be 

trained by more gait patterns. In addition, to be more applicable to clinical practice, 

healthy and pathologic gait of different age groups will be necessary to train an ANN 

for a superior performance. As the FFANN used in this study is suitable to train a small 

group of data, another type of FFANN could be considered to appropiately and 

efficiently predict joint moment of gait when it was trained by substantial amount of 

gait data in a clinic.     

11.4 Limitations and future directions   

   
The small number of the participants was the first limitation of the study. The FFANN 

should perform better with more participants and more gait variations. The results 

could not be implied to abnormal gait because the study was conducted using data 

from healthy volunteers. Moreover, it might also be difficult to totally imply the 

results from the study with overgound gait due to the gait data were recorded using 

the instrumented treadmill that alters the kinetics of gait (van der Krogt et al., 2015). 

The marker coordinates that were used to train the network throughout the study 

were not the actual data collected form reflective markers, in fact they were the 

virtual markers extracted from the Xsens data and this may result in subtle 

differences due to skin movement artefacts affecting the IMU sensors and markers 

differently. Thus indicating that the results from chapter 7 should be carefully 

interpreted under its conditions and might not be comparable with a result in case 

the actual markers were used.  
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There might be some effect of the difference in the gait curve from the time delayed 

for the signals recorded by the Xsens and the Vicon system due to the synchronisation 

technique in pilot study 2 and 3 (Sadeghi et al., 2000). Therefore the results from 

those pilot studies might not be perfectly accurate. Only knee frontal plane moment 

was the main predictive outcome of this study, it was chosen due to the importance 

in terms of the association with the most common degenerative joint disease of the 

knee joint. However, it would be important to be able to predict all of the joint 

moments of gait such as the frontal hip moment and the sagittal ankle moment to 

broaden the use of the IMU combined with the FFANN prediction to be able to 

evaluate causes of abnormal gait in different gait deteriorative diseases such as hip 

diseases and cerebral palsy. 

11.5 Conclusion 
 

The practicality of using an IMU system can be broadened when the FFANN is used 

to estimate the kinetics of gait from the IMU data. The results of this study have 

shown that marker coordinates could be the input variable of choice to use in the 

FFANN training process, followed by the randomised joint angle that obtained from 

the IMU system. The 2D and PCA data can be used to train the artificial neural 

network with acceptable results when a 3D system or fast processing power are not 

available. The most efficient ratio of the hidden neurons used would be two times of 

the input variables. 
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 Appendix 1. Risk assessment protocol of the Movement Function Research Laboratory 
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Appendix 2. A Matlab script used for the prediction hip, knee and 

ankle joint moment from marker coordinates data  

% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by Neural Fitting app 
% Created 25-Apr-2017 18:38:05 
% 
% This script assumes these variables are defined: 
% 
%   walk3leftinput - input data. 
%   walk3rightankhipkneemoment - target data. 

  
x = walk3leftinput'; 
t = walk3rightankhipkneemoment'; 

  

% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 

  
% Train the Network 
[net,tr] = train(net,x,t); 

  
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 

  
% View the Network 
view(net) 

  
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
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Appendix 3. The synchronization method used in this PhD project 

 

The Xsens and Vicon system were synchronised using a trigger start and stop signal 

sent from the Xsens Awinda station via two BNC cables (figure 12.1). An extra 

analogue channel was wired to the force signal receiver that sends the analogue force 

data from the treadmill to the Vicon system. Subsequently when the data were 

recorded, the start signal of each set of gait was sent from the Xsens Awinda station 

towards Vicon. The same signals were then streamed through D-Flow where the 

signal of the extra analogue channel could be seen as a unique spike in the analogue 

signals (figure 12.2.2) that would later be saved as a .txt file in D-Flow. 
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Figure 12.1 The block diagram illustrates the synchronisation of the two motion 

capture systems (Xsens and HBM via Vicon Nexus 2.5). An extra analogue channel 

was wired to the force analogue box which was connected from the instrumented 

treadmill to Vicon Nexus. Once the Xsens data collection started, the data were 

collected by both systems, including the extra analogue channel. Finally, all the data 

were streamed through D-Flow where the gait data for the HBM model were saved 

in two formats (.mox and .txt). The common starting point for the Xsens and Vicon 

data was the rising edge of the extra channel in the saved .txt file.   
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Figure 12.2 The spike of the extra analogue signal, channel 1 (red), triggered by 

the Xsens system when the data recording was begun (black circle). The signal 

was saved as a .txt file as channel 1. The gait data, for instant, the KAM (blue) 

was saved as a .mox file from GOAT. Both channel 1 and KAM had been recorded 

via the Vicon system and streamed through D-Flow a few seconds before the 

Xsens system. The peak of the spike (black arrow) indicates the first frame that 

the data were recorded by the Xsens and was used as the first data point to align 

data from Xsens and D-Flow by the captured frame for synchronisation.     

 



196 

 

Appendix 4. A Matlab script used to calculate coefficient of 

correlation (CMC) for gait data of a participant 

% this script is to calculate the mean joint angle estimation error 

and 
% the coefficient of multiple correlation for p8 normal001 
% there are 5 gait cycles for each trial 
% there are 3 trials for each speed 
% there are 3 speeds for a participant (fast, normal, slow) 
% there are 2 sides to study (right,left) 
% there are 3 joints to study (ankle,hip,knee) 
% there are 3 axes for each joint (ab,fl,in) 
% ? is an angle at a particular captured frame 
% ?vf is an angle from vicon at a particular frame 
% ?xf is an angle from xsens at a particular frame 
% f = a captured frame 
% F = 101 (the total captured frames per cycle) 
% P = 2 (number of motion capturing methods/ 1= vicon, 1= xsens) 
% G = 5 (number of gait cycles) 

  
p8vileftanklenormal001in_f = p8vileftanklenormal001in_f *-1; 

  
%%%the mean joint estimation error (MJEANKLE or ?e) 
% Left ankle 
MJEANKLEG1ab = Np8vileftanklenormal001ab(:,1) - 

Np8xsleftanklenormal001ab(:,1); 
MJEANKLEG1ab = abs(MJEANKLEG1ab); 
MJEANKLEG1ab = sum(MJEANKLEG1ab); 
MJEANKLEG1ab = MJEANKLEG1ab *1/101; 
MJEANKLEG2ab = Np8vileftanklenormal001ab(:,2) - 

Np8xsleftanklenormal001ab(:,2); 
MJEANKLEG2ab = abs(MJEANKLEG2ab); 
MJEANKLEG2ab = sum(MJEANKLEG2ab); 
MJEANKLEG2ab = MJEANKLEG2ab *1/101; 
MJEANKLEG3ab = Np8vileftanklenormal001ab(:,3) - 

Np8xsleftanklenormal001ab(:,3); 
MJEANKLEG3ab = abs(MJEANKLEG3ab); 
MJEANKLEG3ab = sum(MJEANKLEG3ab); 
MJEANKLEG3ab = MJEANKLEG3ab *1/101; 
MJEANKLEG4ab = Np8vileftanklenormal001ab(:,4) - 

Np8xsleftanklenormal001ab(:,4); 
MJEANKLEG4ab = abs(MJEANKLEG4ab); 
MJEANKLEG4ab = sum(MJEANKLEG4ab); 
MJEANKLEG4ab = MJEANKLEG4ab *1/101; 
MJEANKLEG5ab = Np8vileftanklenormal001ab(:,5) - 

Np8xsleftanklenormal001ab(:,5); 
MJEANKLEG5ab = abs(MJEANKLEG5ab); 
MJEANKLEG5ab = sum(MJEANKLEG5ab); 
MJEANKLEG5ab = MJEANKLEG5ab *1/101; 
MJEANKLEG1fl = Np8vileftanklenormal001fl(:,1) - 

Np8xsleftanklenormal001fl(:,1); 
MJEANKLEG1fl = abs(MJEANKLEG1fl); 
MJEANKLEG1fl = sum(MJEANKLEG1fl); 
MJEANKLEG1fl = MJEANKLEG1fl *1/101; 
MJEANKLEG2fl = Np8vileftanklenormal001fl(:,2) - 

Np8xsleftanklenormal001fl(:,2); 
MJEANKLEG2fl = abs(MJEANKLEG2fl); 
MJEANKLEG2fl = sum(MJEANKLEG2fl); 
MJEANKLEG2fl = MJEANKLEG2fl *1/101; 
MJEANKLEG3fl = Np8vileftanklenormal001fl(:,3) - 

Np8xsleftanklenormal001fl(:,3); 



197 

 

MJEANKLEG3fl = abs(MJEANKLEG3fl); 
MJEANKLEG3fl = sum(MJEANKLEG3fl); 
MJEANKLEG3fl = MJEANKLEG3fl *1/101; 
MJEANKLEG4fl = Np8vileftanklenormal001fl(:,4) - 

Np8xsleftanklenormal001fl(:,4); 
MJEANKLEG4fl = abs(MJEANKLEG4fl); 
MJEANKLEG4fl = sum(MJEANKLEG4fl); 
MJEANKLEG4fl = MJEANKLEG4fl *1/101; 
MJEANKLEG5fl = Np8vileftanklenormal001fl(:,5) - 

Np8xsleftanklenormal001fl(:,5); 
MJEANKLEG5fl = abs(MJEANKLEG5fl); 
MJEANKLEG5fl = sum(MJEANKLEG5fl); 
MJEANKLEG5fl = MJEANKLEG5fl *1/101; 
MJEANKLEG1in = Np8vileftanklenormal001in(:,1) - 

Np8xsleftanklenormal001in(:,1); 
MJEANKLEG1in = abs(MJEANKLEG1in); 
MJEANKLEG1in = sum(MJEANKLEG1in); 
MJEANKLEG1in = MJEANKLEG1in *1/101; 
MJEANKLEG2in = Np8vileftanklenormal001in(:,2) - 

Np8xsleftanklenormal001in(:,2); 
MJEANKLEG2in = abs(MJEANKLEG2in); 
MJEANKLEG2in = sum(MJEANKLEG2in); 
MJEANKLEG2in = MJEANKLEG2in *1/101; 
MJEANKLEG3in = Np8vileftanklenormal001in(:,3) - 

Np8xsleftanklenormal001in(:,3); 
MJEANKLEG3in = abs(MJEANKLEG3in); 
MJEANKLEG3in = sum(MJEANKLEG3in); 
MJEANKLEG3in = MJEANKLEG3in *1/101; 
MJEANKLEG4in = Np8vileftanklenormal001in(:,4) - 

Np8xsleftanklenormal001in(:,4); 
MJEANKLEG4in = abs(MJEANKLEG4in); 
MJEANKLEG4in = sum(MJEANKLEG4in); 
MJEANKLEG4in = MJEANKLEG4in *1/101; 
MJEANKLEG5in = Np8vileftanklenormal001in(:,5) - 

Np8xsleftanklenormal001in(:,5); 
MJEANKLEG5in = abs(MJEANKLEG5in); 
MJEANKLEG5in = sum(MJEANKLEG5in); 
MJEANKLEG5in = MJEANKLEG5in *1/101; 

  
%%CMC 
% ? is an angle at a particular captured frame 
% ?vf is an angle from vicon at a particular frame 
% ?xf is an angle from xsens at a particular frame 
% f = a captured frame 
% F = 101 (the total captured frames per cycle) 
% P = 2 (number of motion capturing methods/ 1= vicon, 1= xsens) 
% G = 5 (number of gait cycles) 

  
%GFg(P-1) =   5*101(2-1) = 505 
%GFg(P-1) =   4*101(2-1) = 404  %% p17 slow speed only 
%G(PFg-1) = 5(2*101-1) = 1005 
%G(PFg-1) = 4(2*101-1) = 804%% p17 slow speed only 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
%%%%leftanklefl 
MfANKLEG1FL = Np8vileftanklenormal001fl(:,1) + 

Np8xsleftanklenormal001fl(:,1); 
MfANKLEG1FL = MfANKLEG1FL/2; 
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MfANKLEG2FL = Np8vileftanklenormal001fl(:,2) + 

Np8xsleftanklenormal001fl(:,2); 
MfANKLEG2FL = MfANKLEG2FL/2; 
MfANKLEG3FL = Np8vileftanklenormal001fl(:,3) + 

Np8xsleftanklenormal001fl(:,3); 
MfANKLEG3FL = MfANKLEG3FL/2; 
MfANKLEG4FL = Np8vileftanklenormal001fl(:,4) + 

Np8xsleftanklenormal001fl(:,4); 
MfANKLEG4FL = MfANKLEG4FL/2; 
MfANKLEG5FL = Np8vileftanklenormal001fl(:,5) + 

Np8xsleftanklenormal001fl(:,5); 
MfANKLEG5FL = MfANKLEG5FL/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MgankleFLnormal001 = sum(Np8vileftanklenormal001fl)+ 

sum(Np8xsleftanklenormal001fl); 
MgankleFLnormal001 = MgankleFLnormal001/202; % devided by 1/2F; 

  
CMCLeftankleviFLG1 = Np8vileftanklenormal001fl(:,1)- MfANKLEG1FL; 
CMCLeftankleviFLG1 = CMCLeftankleviFLG1.^2; 
CMCLeftankleviFLG1 = sum(CMCLeftankleviFLG1); 
CMCLeftankleviFLG1 = CMCLeftankleviFLG1/505; 
CMCLeftanklexsFLG1 = Np8xsleftanklenormal001fl(:,1)- MfANKLEG1FL; 
CMCLeftanklexsFLG1 = CMCLeftanklexsFLG1.^2; 
CMCLeftanklexsFLG1 = sum(CMCLeftanklexsFLG1); 
CMCLeftanklexsFLG1 = CMCLeftanklexsFLG1/505; 
CMCLeftankleviFLG2 = Np8vileftanklenormal001fl(:,2)- MfANKLEG2FL; 
CMCLeftankleviFLG2 = CMCLeftankleviFLG2.^2; 
CMCLeftankleviFLG2 = sum(CMCLeftankleviFLG2); 
CMCLeftankleviFLG2 = CMCLeftankleviFLG2/505; 
CMCLeftanklexsFLG2 = Np8xsleftanklenormal001fl(:,2)- MfANKLEG2FL; 
CMCLeftanklexsFLG2 = CMCLeftanklexsFLG2.^2; 
CMCLeftanklexsFLG2 = sum(CMCLeftanklexsFLG2); 
CMCLeftanklexsFLG2 = CMCLeftanklexsFLG2/505; 
CMCLeftankleviFLG3 = Np8vileftanklenormal001fl(:,3)- MfANKLEG3FL; 
CMCLeftankleviFLG3 = CMCLeftankleviFLG3.^2; 
CMCLeftankleviFLG3 = sum(CMCLeftankleviFLG3); 
CMCLeftankleviFLG3 = CMCLeftankleviFLG3/505; 
CMCLeftanklexsFLG3 = Np8xsleftanklenormal001fl(:,3)- MfANKLEG3FL; 
CMCLeftanklexsFLG3 = CMCLeftanklexsFLG3.^2; 
CMCLeftanklexsFLG3 = sum(CMCLeftanklexsFLG3); 
CMCLeftanklexsFLG3 = CMCLeftanklexsFLG3/505; 
CMCLeftankleviFLG4 = Np8vileftanklenormal001fl(:,4)- MfANKLEG4FL; 
CMCLeftankleviFLG4 = CMCLeftankleviFLG4.^2; 
CMCLeftankleviFLG4 = sum(CMCLeftankleviFLG4); 
CMCLeftankleviFLG4 = CMCLeftankleviFLG4/505; 
CMCLeftanklexsFLG4 = Np8xsleftanklenormal001fl(:,4)- MfANKLEG4FL; 
CMCLeftanklexsFLG4 = CMCLeftanklexsFLG4.^2; 
CMCLeftanklexsFLG4 = sum(CMCLeftanklexsFLG4); 
CMCLeftanklexsFLG4 = CMCLeftanklexsFLG4/505; 
CMCLeftankleviFLG5 = Np8vileftanklenormal001fl(:,5)- MfANKLEG5FL; 
CMCLeftankleviFLG5 = CMCLeftankleviFLG5.^2; 
CMCLeftankleviFLG5 = sum(CMCLeftankleviFLG5); 
CMCLeftankleviFLG5 = CMCLeftankleviFLG5/505; 
CMCLeftanklexsFLG5 = Np8xsleftanklenormal001fl(:,5)- MfANKLEG5FL; 
CMCLeftanklexsFLG5 = CMCLeftanklexsFLG5.^2; 
CMCLeftanklexsFLG5 = sum(CMCLeftanklexsFLG5); 
CMCLeftanklexsFLG5 = CMCLeftanklexsFLG5/505; 

  
CMCLeftankleFLG1 = CMCLeftankleviFLG1 + CMCLeftanklexsFLG1; 
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CMCLeftankleFLG2 = CMCLeftankleviFLG2 + CMCLeftanklexsFLG2; 
CMCLeftankleFLG3 = CMCLeftankleviFLG3 + CMCLeftanklexsFLG3; 
CMCLeftankleFLG4 = CMCLeftankleviFLG4 + CMCLeftanklexsFLG4; 
CMCLeftankleFLG5 = CMCLeftankleviFLG5 + CMCLeftanklexsFLG5; 

  
CMCLeftankleFL1 = CMCLeftankleFLG1 + CMCLeftankleFLG2 + 

CMCLeftankleFLG3 + CMCLeftankleFLG4 + CMCLeftankleFLG5; 

  
CMC2LeftankleviFLG1 = Np8vileftanklenormal001fl(:,1)- 

MgankleFLnormal001(1,1); 
CMC2LeftankleviFLG1 = CMC2LeftankleviFLG1.^2; 
CMC2LeftankleviFLG1 = sum(CMC2LeftankleviFLG1); 
CMC2LeftankleviFLG1 = CMC2LeftankleviFLG1/1005; 
CMC2LeftanklexsFLG1 = Np8xsleftanklenormal001fl(:,1)- 

MgankleFLnormal001(1,1); 
CMC2LeftanklexsFLG1 = CMC2LeftanklexsFLG1.^2; 
CMC2LeftanklexsFLG1 = sum(CMC2LeftanklexsFLG1); 
CMC2LeftanklexsFLG1 = CMC2LeftanklexsFLG1/1005; 
CMC2LeftankleviFLG2 = Np8vileftanklenormal001fl(:,2)- 

MgankleFLnormal001(1,2); 
CMC2LeftankleviFLG2 = CMC2LeftankleviFLG2.^2; 
CMC2LeftankleviFLG2 = sum(CMC2LeftankleviFLG2); 
CMC2LeftankleviFLG2 = CMC2LeftankleviFLG2/1005; 
CMC2LeftanklexsFLG2 = Np8xsleftanklenormal001fl(:,2)- 

MgankleFLnormal001(1,2); 
CMC2LeftanklexsFLG2 = CMC2LeftanklexsFLG2.^2; 
CMC2LeftanklexsFLG2 = sum(CMC2LeftanklexsFLG2); 
CMC2LeftanklexsFLG2 = CMC2LeftanklexsFLG2/1005; 
CMC2LeftankleviFLG3 = Np8vileftanklenormal001fl(:,3)- 

MgankleFLnormal001(1,3); 
CMC2LeftankleviFLG3 = CMC2LeftankleviFLG3.^2; 
CMC2LeftankleviFLG3 = sum(CMC2LeftankleviFLG3); 
CMC2LeftankleviFLG3 = CMC2LeftankleviFLG3/1005; 
CMC2LeftanklexsFLG3 = Np8xsleftanklenormal001fl(:,3)- 

MgankleFLnormal001(1,3); 
CMC2LeftanklexsFLG3 = CMC2LeftanklexsFLG3.^2; 
CMC2LeftanklexsFLG3 = sum(CMC2LeftanklexsFLG3); 
CMC2LeftanklexsFLG3 = CMC2LeftanklexsFLG3/1005; 
CMC2LeftankleviFLG4 = Np8vileftanklenormal001fl(:,4)- 

MgankleFLnormal001(1,4); 
CMC2LeftankleviFLG4 = CMC2LeftankleviFLG4.^2; 
CMC2LeftankleviFLG4 = sum(CMC2LeftankleviFLG4); 
CMC2LeftankleviFLG4 = CMC2LeftankleviFLG4/1005; 
CMC2LeftanklexsFLG4 = Np8xsleftanklenormal001fl(:,4)- 

MgankleFLnormal001(1,4); 
CMC2LeftanklexsFLG4 = CMC2LeftanklexsFLG4.^2; 
CMC2LeftanklexsFLG4 = sum(CMC2LeftanklexsFLG4); 
CMC2LeftanklexsFLG4 = CMC2LeftanklexsFLG4/1005; 
CMC2LeftankleviFLG5 = Np8vileftanklenormal001fl(:,5)- 

MgankleFLnormal001(1,5); 
CMC2LeftankleviFLG5 = CMC2LeftankleviFLG5.^2; 
CMC2LeftankleviFLG5 = sum(CMC2LeftankleviFLG5); 
CMC2LeftankleviFLG5 = CMC2LeftankleviFLG5/1005; 
CMC2LeftanklexsFLG5 = Np8xsleftanklenormal001fl(:,5)- 

MgankleFLnormal001(1,5); 
CMC2LeftanklexsFLG5 = CMC2LeftanklexsFLG5.^2; 
CMC2LeftanklexsFLG5 = sum(CMC2LeftanklexsFLG5); 
CMC2LeftanklexsFLG5 = CMC2LeftanklexsFLG5/1005; 

  
CMC2LeftankleFLG1 = CMC2LeftankleviFLG1 + CMC2LeftanklexsFLG1; 
CMC2LeftankleFLG2 = CMC2LeftankleviFLG2 + CMC2LeftanklexsFLG2; 
CMC2LeftankleFLG3 = CMC2LeftankleviFLG3 + CMC2LeftanklexsFLG3; 
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CMC2LeftankleFLG4 = CMC2LeftankleviFLG4 + CMC2LeftanklexsFLG4; 
CMC2LeftankleFLG5 = CMC2LeftankleviFLG5 + CMC2LeftanklexsFLG5; 

  

  
CMC2LeftankleFL1 = CMC2LeftankleFLG1 + CMC2LeftankleFLG2 + 

CMC2LeftankleFLG3 + CMC2LeftankleFLG4 + CMC2LeftankleFLG5; 

  
CMCleftankleflp8normal001 = CMCLeftankleFL1/ CMC2LeftankleFL1; 
CMCleftankleflp8normal001 = 1- CMCleftankleflp8normal001; 
CMCleftankleflp8normal001 = sqrt(CMCleftankleflp8normal001) 

  

  
%%%%leftankleab 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
MfANKLEG1AB = Np8vileftanklenormal001ab(:,1) + 

Np8xsleftanklenormal001ab(:,1); 
MfANKLEG1AB = MfANKLEG1AB/2; 
MfANKLEG2AB = Np8vileftanklenormal001ab(:,2) + 

Np8xsleftanklenormal001ab(:,2); 
MfANKLEG2AB = MfANKLEG2AB/2; 
MfANKLEG3AB = Np8vileftanklenormal001ab(:,3) + 

Np8xsleftanklenormal001ab(:,3); 
MfANKLEG3AB = MfANKLEG3AB/2; 
MfANKLEG4AB = Np8vileftanklenormal001ab(:,4) + 

Np8xsleftanklenormal001ab(:,4); 
MfANKLEG4AB = MfANKLEG4AB/2; 
MfANKLEG5AB = Np8vileftanklenormal001ab(:,5) + 

Np8xsleftanklenormal001ab(:,5); 
MfANKLEG5AB = MfANKLEG5AB/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MgankleABnormal001 = sum(Np8vileftanklenormal001ab)+ 

sum(Np8xsleftanklenormal001ab); 
MgankleABnormal001 = MgankleABnormal001/202; % devided by 1/2F; 

  
CMCLeftankleviABG1 = Np8vileftanklenormal001ab(:,1)- MfANKLEG1AB; 
CMCLeftankleviABG1 = CMCLeftankleviABG1.^2; 
CMCLeftankleviABG1 = sum(CMCLeftankleviABG1); 
CMCLeftankleviABG1 = CMCLeftankleviABG1/505; 
CMCLeftanklexsABG1 = Np8xsleftanklenormal001ab(:,1)- MfANKLEG1AB; 
CMCLeftanklexsABG1 = CMCLeftanklexsABG1.^2; 
CMCLeftanklexsABG1 = sum(CMCLeftanklexsABG1); 
CMCLeftanklexsABG1 = CMCLeftanklexsABG1/505; 
CMCLeftankleviABG2 = Np8vileftanklenormal001ab(:,2)- MfANKLEG2AB; 
CMCLeftankleviABG2 = CMCLeftankleviABG2.^2; 
CMCLeftankleviABG2 = sum(CMCLeftankleviABG2); 
CMCLeftankleviABG2 = CMCLeftankleviABG2/505; 
CMCLeftanklexsABG2 = Np8xsleftanklenormal001ab(:,2)- MfANKLEG2AB; 
CMCLeftanklexsABG2 = CMCLeftanklexsABG2.^2; 
CMCLeftanklexsABG2 = sum(CMCLeftanklexsABG2); 
CMCLeftanklexsABG2 = CMCLeftanklexsABG2/505; 
CMCLeftankleviABG3 = Np8vileftanklenormal001ab(:,3)- MfANKLEG3AB; 
CMCLeftankleviABG3 = CMCLeftankleviABG3.^2; 
CMCLeftankleviABG3 = sum(CMCLeftankleviABG3); 
CMCLeftankleviABG3 = CMCLeftankleviABG3/505; 
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CMCLeftanklexsABG3 = Np8xsleftanklenormal001ab(:,3)- MfANKLEG3AB; 
CMCLeftanklexsABG3 = CMCLeftanklexsABG3.^2; 
CMCLeftanklexsABG3 = sum(CMCLeftanklexsABG3); 
CMCLeftanklexsABG3 = CMCLeftanklexsABG3/505; 
CMCLeftankleviABG4 = Np8vileftanklenormal001ab(:,4)- MfANKLEG4AB; 
CMCLeftankleviABG4 = CMCLeftankleviABG4.^2; 
CMCLeftankleviABG4 = sum(CMCLeftankleviABG4); 
CMCLeftankleviABG4 = CMCLeftankleviABG4/505; 
CMCLeftanklexsABG4 = Np8xsleftanklenormal001ab(:,4)- MfANKLEG4AB; 
CMCLeftanklexsABG4 = CMCLeftanklexsABG4.^2; 
CMCLeftanklexsABG4 = sum(CMCLeftanklexsABG4); 
CMCLeftanklexsABG4 = CMCLeftanklexsABG4/505; 
CMCLeftankleviABG5 = Np8vileftanklenormal001ab(:,5)- MfANKLEG5AB; 
CMCLeftankleviABG5 = CMCLeftankleviABG5.^2; 
CMCLeftankleviABG5 = sum(CMCLeftankleviABG5); 
CMCLeftankleviABG5 = CMCLeftankleviABG5/505; 
CMCLeftanklexsABG5 = Np8xsleftanklenormal001ab(:,5)- MfANKLEG5AB; 
CMCLeftanklexsABG5 = CMCLeftanklexsABG5.^2; 
CMCLeftanklexsABG5 = sum(CMCLeftanklexsABG5); 
CMCLeftanklexsABG5 = CMCLeftanklexsABG5/505; 

  
CMCLeftankleABG1 = CMCLeftankleviABG1 + CMCLeftanklexsABG1; 
CMCLeftankleABG2 = CMCLeftankleviABG2 + CMCLeftanklexsABG2; 
CMCLeftankleABG3 = CMCLeftankleviABG3 + CMCLeftanklexsABG3; 
CMCLeftankleABG4 = CMCLeftankleviABG4 + CMCLeftanklexsABG4; 
CMCLeftankleABG5 = CMCLeftankleviABG5 + CMCLeftanklexsABG5; 

  
CMCLeftankleAB1 = CMCLeftankleABG1 + CMCLeftankleABG2 + 

CMCLeftankleABG3 + CMCLeftankleABG4 + CMCLeftankleABG5; 

  
CMC2LeftankleviABG1 = Np8vileftanklenormal001ab(:,1)- 

MgankleABnormal001(1,1); 
CMC2LeftankleviABG1 = CMC2LeftankleviABG1.^2; 
CMC2LeftankleviABG1 = sum(CMC2LeftankleviABG1); 
CMC2LeftankleviABG1 = CMC2LeftankleviABG1/1005; 
CMC2LeftanklexsABG1 = Np8xsleftanklenormal001ab(:,1)- 

MgankleABnormal001(1,1); 
CMC2LeftanklexsABG1 = CMC2LeftanklexsABG1.^2; 
CMC2LeftanklexsABG1 = sum(CMC2LeftanklexsABG1); 
CMC2LeftanklexsABG1 = CMC2LeftanklexsABG1/1005; 
CMC2LeftankleviABG2 = Np8vileftanklenormal001ab(:,2)- 

MgankleABnormal001(1,2); 
CMC2LeftankleviABG2 = CMC2LeftankleviABG2.^2; 
CMC2LeftankleviABG2 = sum(CMC2LeftankleviABG2); 
CMC2LeftankleviABG2 = CMC2LeftankleviABG2/1005; 
CMC2LeftanklexsABG2 = Np8xsleftanklenormal001ab(:,2)- 

MgankleABnormal001(1,2); 
CMC2LeftanklexsABG2 = CMC2LeftanklexsABG2.^2; 
CMC2LeftanklexsABG2 = sum(CMC2LeftanklexsABG2); 
CMC2LeftanklexsABG2 = CMC2LeftanklexsABG2/1005; 
CMC2LeftankleviABG3 = Np8vileftanklenormal001ab(:,3)- 

MgankleABnormal001(1,3); 
CMC2LeftankleviABG3 = CMC2LeftankleviABG3.^2; 
CMC2LeftankleviABG3 = sum(CMC2LeftankleviABG3); 
CMC2LeftankleviABG3 = CMC2LeftankleviABG3/1005; 
CMC2LeftanklexsABG3 = Np8xsleftanklenormal001ab(:,3)- 

MgankleABnormal001(1,3); 
CMC2LeftanklexsABG3 = CMC2LeftanklexsABG3.^2; 
CMC2LeftanklexsABG3 = sum(CMC2LeftanklexsABG3); 
CMC2LeftanklexsABG3 = CMC2LeftanklexsABG3/1005; 
CMC2LeftankleviABG4 = Np8vileftanklenormal001ab(:,4)- 

MgankleABnormal001(1,4); 
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CMC2LeftankleviABG4 = CMC2LeftankleviABG4.^2; 
CMC2LeftankleviABG4 = sum(CMC2LeftankleviABG4); 
CMC2LeftankleviABG4 = CMC2LeftankleviABG4/1005; 
CMC2LeftanklexsABG4 = Np8xsleftanklenormal001ab(:,4)- 

MgankleABnormal001(1,4); 
CMC2LeftanklexsABG4 = CMC2LeftanklexsABG4.^2; 
CMC2LeftanklexsABG4 = sum(CMC2LeftanklexsABG4); 
CMC2LeftanklexsABG4 = CMC2LeftanklexsABG4/1005; 
CMC2LeftankleviABG5 = Np8vileftanklenormal001ab(:,5)- 

MgankleABnormal001(1,5); 
CMC2LeftankleviABG5 = CMC2LeftankleviABG5.^2; 
CMC2LeftankleviABG5 = sum(CMC2LeftankleviABG5); 
CMC2LeftankleviABG5 = CMC2LeftankleviABG5/1005; 
CMC2LeftanklexsABG5 = Np8xsleftanklenormal001ab(:,5)- 

MgankleABnormal001(1,5); 
CMC2LeftanklexsABG5 = CMC2LeftanklexsABG5.^2; 
CMC2LeftanklexsABG5 = sum(CMC2LeftanklexsABG5); 
CMC2LeftanklexsABG5 = CMC2LeftanklexsABG5/1005; 

  
CMC2LeftankleABG1 = CMC2LeftankleviABG1 + CMC2LeftanklexsABG1; 
CMC2LeftankleABG2 = CMC2LeftankleviABG2 + CMC2LeftanklexsABG2; 
CMC2LeftankleABG3 = CMC2LeftankleviABG3 + CMC2LeftanklexsABG3; 
CMC2LeftankleABG4 = CMC2LeftankleviABG4 + CMC2LeftanklexsABG4; 
CMC2LeftankleABG5 = CMC2LeftankleviABG5 + CMC2LeftanklexsABG5; 

  

  
CMC2LeftankleAB1 = CMC2LeftankleABG1 + CMC2LeftankleABG2 + 

CMC2LeftankleABG3 + CMC2LeftankleABG4 + CMC2LeftankleABG5; 

  
CMCleftankleabp8normal001 = CMCLeftankleAB1/ CMC2LeftankleAB1; 
CMCleftankleabp8normal001 = 1- CMCleftankleabp8normal001; 
CMCleftankleabp8normal001 = sqrt(CMCleftankleabp8normal001) 

  
%%%%leftanklein 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
MfANKLEG1IN = Np8vileftanklenormal001in(:,1) + 

Np8xsleftanklenormal001in(:,1); 
MfANKLEG1IN = MfANKLEG1IN/2; 
MfANKLEG2IN = Np8vileftanklenormal001in(:,2) + 

Np8xsleftanklenormal001in(:,2); 
MfANKLEG2IN = MfANKLEG2IN/2; 
MfANKLEG3IN = Np8vileftanklenormal001in(:,3) + 

Np8xsleftanklenormal001in(:,3); 
MfANKLEG3IN = MfANKLEG3IN/2; 
MfANKLEG4IN = Np8vileftanklenormal001in(:,4) + 

Np8xsleftanklenormal001in(:,4); 
MfANKLEG4IN = MfANKLEG4IN/2; 
MfANKLEG5IN = Np8vileftanklenormal001in(:,5) + 

Np8xsleftanklenormal001in(:,5); 
MfANKLEG5IN = MfANKLEG5IN/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MgankleINnormal001 = sum(Np8vileftanklenormal001in)+ 

sum(Np8xsleftanklenormal001in); 
MgankleINnormal001 = MgankleINnormal001/202; % devided by 1/2F; 
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CMCLeftankleviING1 = Np8vileftanklenormal001in(:,1)- MfANKLEG1IN; 
CMCLeftankleviING1 = CMCLeftankleviING1.^2; 
CMCLeftankleviING1 = sum(CMCLeftankleviING1); 
CMCLeftankleviING1 = CMCLeftankleviING1/505; 
CMCLeftanklexsING1 = Np8xsleftanklenormal001in(:,1)- MfANKLEG1IN; 
CMCLeftanklexsING1 = CMCLeftanklexsING1.^2; 
CMCLeftanklexsING1 = sum(CMCLeftanklexsING1); 
CMCLeftanklexsING1 = CMCLeftanklexsING1/505; 
CMCLeftankleviING2 = Np8vileftanklenormal001in(:,2)- MfANKLEG2IN; 
CMCLeftankleviING2 = CMCLeftankleviING2.^2; 
CMCLeftankleviING2 = sum(CMCLeftankleviING2); 
CMCLeftankleviING2 = CMCLeftankleviING2/505; 
CMCLeftanklexsING2 = Np8xsleftanklenormal001in(:,2)- MfANKLEG2IN; 
CMCLeftanklexsING2 = CMCLeftanklexsING2.^2; 
CMCLeftanklexsING2 = sum(CMCLeftanklexsING2); 
CMCLeftanklexsING2 = CMCLeftanklexsING2/505; 
CMCLeftankleviING3 = Np8vileftanklenormal001in(:,3)- MfANKLEG3IN; 
CMCLeftankleviING3 = CMCLeftankleviING3.^2; 
CMCLeftankleviING3 = sum(CMCLeftankleviING3); 
CMCLeftankleviING3 = CMCLeftankleviING3/505; 
CMCLeftanklexsING3 = Np8xsleftanklenormal001in(:,3)- MfANKLEG3IN; 
CMCLeftanklexsING3 = CMCLeftanklexsING3.^2; 
CMCLeftanklexsING3 = sum(CMCLeftanklexsING3); 
CMCLeftanklexsING3 = CMCLeftanklexsING3/505; 
CMCLeftankleviING4 = Np8vileftanklenormal001in(:,4)- MfANKLEG4IN; 
CMCLeftankleviING4 = CMCLeftankleviING4.^2; 
CMCLeftankleviING4 = sum(CMCLeftankleviING4); 
CMCLeftankleviING4 = CMCLeftankleviING4/505; 
CMCLeftanklexsING4 = Np8xsleftanklenormal001in(:,4)- MfANKLEG4IN; 
CMCLeftanklexsING4 = CMCLeftanklexsING4.^2; 
CMCLeftanklexsING4 = sum(CMCLeftanklexsING4); 
CMCLeftanklexsING4 = CMCLeftanklexsING4/505; 
CMCLeftankleviING5 = Np8vileftanklenormal001in(:,5)- MfANKLEG5IN; 
CMCLeftankleviING5 = CMCLeftankleviING5.^2; 
CMCLeftankleviING5 = sum(CMCLeftankleviING5); 
CMCLeftankleviING5 = CMCLeftankleviING5/505; 
CMCLeftanklexsING5 = Np8xsleftanklenormal001in(:,5)- MfANKLEG5IN; 
CMCLeftanklexsING5 = CMCLeftanklexsING5.^2; 
CMCLeftanklexsING5 = sum(CMCLeftanklexsING5); 
CMCLeftanklexsING5 = CMCLeftanklexsING5/505; 

  
CMCLeftankleING1 = CMCLeftankleviING1 + CMCLeftanklexsING1; 
CMCLeftankleING2 = CMCLeftankleviING2 + CMCLeftanklexsING2; 
CMCLeftankleING3 = CMCLeftankleviING3 + CMCLeftanklexsING3; 
CMCLeftankleING4 = CMCLeftankleviING4 + CMCLeftanklexsING4; 
CMCLeftankleING5 = CMCLeftankleviING5 + CMCLeftanklexsING5; 

  
CMCLeftankleIN1 = CMCLeftankleING1 + CMCLeftankleING2 + 

CMCLeftankleING3 + CMCLeftankleING4 + CMCLeftankleING5; 

  
CMC2LeftankleviING1 = Np8vileftanklenormal001in(:,1)- 

MgankleINnormal001(1,1); 
CMC2LeftankleviING1 = CMC2LeftankleviING1.^2; 
CMC2LeftankleviING1 = sum(CMC2LeftankleviING1); 
CMC2LeftankleviING1 = CMC2LeftankleviING1/1005; 
CMC2LeftanklexsING1 = Np8xsleftanklenormal001in(:,1)- 

MgankleINnormal001(1,1); 
CMC2LeftanklexsING1 = CMC2LeftanklexsING1.^2; 
CMC2LeftanklexsING1 = sum(CMC2LeftanklexsING1); 
CMC2LeftanklexsING1 = CMC2LeftanklexsING1/1005; 
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CMC2LeftankleviING2 = Np8vileftanklenormal001in(:,2)- 

MgankleINnormal001(1,2); 
CMC2LeftankleviING2 = CMC2LeftankleviING2.^2; 
CMC2LeftankleviING2 = sum(CMC2LeftankleviING2); 
CMC2LeftankleviING2 = CMC2LeftankleviING2/1005; 
CMC2LeftanklexsING2 = Np8xsleftanklenormal001in(:,2)- 

MgankleINnormal001(1,2); 
CMC2LeftanklexsING2 = CMC2LeftanklexsING2.^2; 
CMC2LeftanklexsING2 = sum(CMC2LeftanklexsING2); 
CMC2LeftanklexsING2 = CMC2LeftanklexsING2/1005; 
CMC2LeftankleviING3 = Np8vileftanklenormal001in(:,3)- 

MgankleINnormal001(1,3); 
CMC2LeftankleviING3 = CMC2LeftankleviING3.^2; 
CMC2LeftankleviING3 = sum(CMC2LeftankleviING3); 
CMC2LeftankleviING3 = CMC2LeftankleviING3/1005; 
CMC2LeftanklexsING3 = Np8xsleftanklenormal001in(:,3)- 

MgankleINnormal001(1,3); 
CMC2LeftanklexsING3 = CMC2LeftanklexsING3.^2; 
CMC2LeftanklexsING3 = sum(CMC2LeftanklexsING3); 
CMC2LeftanklexsING3 = CMC2LeftanklexsING3/1005; 
CMC2LeftankleviING4 = Np8vileftanklenormal001in(:,4)- 

MgankleINnormal001(1,4); 
CMC2LeftankleviING4 = CMC2LeftankleviING4.^2; 
CMC2LeftankleviING4 = sum(CMC2LeftankleviING4); 
CMC2LeftankleviING4 = CMC2LeftankleviING4/1005; 
CMC2LeftanklexsING4 = Np8xsleftanklenormal001in(:,4)- 

MgankleINnormal001(1,4); 
CMC2LeftanklexsING4 = CMC2LeftanklexsING4.^2; 
CMC2LeftanklexsING4 = sum(CMC2LeftanklexsING4); 
CMC2LeftanklexsING4 = CMC2LeftanklexsING4/1005; 
CMC2LeftankleviING5 = Np8vileftanklenormal001in(:,5)- 

MgankleINnormal001(1,5); 
CMC2LeftankleviING5 = CMC2LeftankleviING5.^2; 
CMC2LeftankleviING5 = sum(CMC2LeftankleviING5); 
CMC2LeftankleviING5 = CMC2LeftankleviING5/1005; 
CMC2LeftanklexsING5 = Np8xsleftanklenormal001in(:,5)- 

MgankleINnormal001(1,5); 
CMC2LeftanklexsING5 = CMC2LeftanklexsING5.^2; 
CMC2LeftanklexsING5 = sum(CMC2LeftanklexsING5); 
CMC2LeftanklexsING5 = CMC2LeftanklexsING5/1005; 

  
CMC2LeftankleING1 = CMC2LeftankleviING1 + CMC2LeftanklexsING1; 
CMC2LeftankleING2 = CMC2LeftankleviING2 + CMC2LeftanklexsING2; 
CMC2LeftankleING3 = CMC2LeftankleviING3 + CMC2LeftanklexsING3; 
CMC2LeftankleING4 = CMC2LeftankleviING4 + CMC2LeftanklexsING4; 
CMC2LeftankleING5 = CMC2LeftankleviING5 + CMC2LeftanklexsING5; 

  

  
CMC2LeftankleIN1 = CMC2LeftankleING1 + CMC2LeftankleING2 + 

CMC2LeftankleING3 + CMC2LeftankleING4 + CMC2LeftankleING5; 

  
CMCleftankleinp8normal001 = CMCLeftankleIN1/ CMC2LeftankleIN1; 
CMCleftankleinp8normal001 = 1- CMCleftankleinp8normal001; 
CMCleftankleinp8normal001 = sqrt(CMCleftankleinp8normal001) 

  
%%%%end of the calculation  

  
%%%hip 
p8vilefthipnormal001in_f = p8vilefthipnormal001in_f *-1; 

  
%%%the mean joint estimation error (MJEHIP or ?e) 
% Left hip 
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MJEHIPG1ab = Np8vilefthipnormal001ab(:,1) - 

Np8xslefthipnormal001ab(:,1); 
MJEHIPG1ab = abs(MJEHIPG1ab); 
MJEHIPG1ab = sum(MJEHIPG1ab); 
MJEHIPG1ab = MJEHIPG1ab *1/101; 
MJEHIPG2ab = Np8vilefthipnormal001ab(:,2) - 

Np8xslefthipnormal001ab(:,2); 
MJEHIPG2ab = abs(MJEHIPG2ab); 
MJEHIPG2ab = sum(MJEHIPG2ab); 
MJEHIPG2ab = MJEHIPG2ab *1/101; 
MJEHIPG3ab = Np8vilefthipnormal001ab(:,3) - 

Np8xslefthipnormal001ab(:,3); 
MJEHIPG3ab = abs(MJEHIPG3ab); 
MJEHIPG3ab = sum(MJEHIPG3ab); 
MJEHIPG3ab = MJEHIPG3ab *1/101; 
MJEHIPG4ab = Np8vilefthipnormal001ab(:,4) - 

Np8xslefthipnormal001ab(:,4); 
MJEHIPG4ab = abs(MJEHIPG4ab); 
MJEHIPG4ab = sum(MJEHIPG4ab); 
MJEHIPG4ab = MJEHIPG4ab *1/101; 
MJEHIPG5ab = Np8vilefthipnormal001ab(:,5) - 

Np8xslefthipnormal001ab(:,5); 
MJEHIPG5ab = abs(MJEHIPG5ab); 
MJEHIPG5ab = sum(MJEHIPG5ab); 
MJEHIPG5ab = MJEHIPG5ab *1/101; 
MJEHIPG1fl = Np8vilefthipnormal001fl(:,1) - 

Np8xslefthipnormal001fl(:,1); 
MJEHIPG1fl = abs(MJEHIPG1fl); 
MJEHIPG1fl = sum(MJEHIPG1fl); 
MJEHIPG1fl = MJEHIPG1fl *1/101; 
MJEHIPG2fl = Np8vilefthipnormal001fl(:,2) - 

Np8xslefthipnormal001fl(:,2); 
MJEHIPG2fl = abs(MJEHIPG2fl); 
MJEHIPG2fl = sum(MJEHIPG2fl); 
MJEHIPG2fl = MJEHIPG2fl *1/101; 
MJEHIPG3fl = Np8vilefthipnormal001fl(:,3) - 

Np8xslefthipnormal001fl(:,3); 
MJEHIPG3fl = abs(MJEHIPG3fl); 
MJEHIPG3fl = sum(MJEHIPG3fl); 
MJEHIPG3fl = MJEHIPG3fl *1/101; 
MJEHIPG4fl = Np8vilefthipnormal001fl(:,4) - 

Np8xslefthipnormal001fl(:,4); 
MJEHIPG4fl = abs(MJEHIPG4fl); 
MJEHIPG4fl = sum(MJEHIPG4fl); 
MJEHIPG4fl = MJEHIPG4fl *1/101; 
MJEHIPG5fl = Np8vilefthipnormal001fl(:,5) - 

Np8xslefthipnormal001fl(:,5); 
MJEHIPG5fl = abs(MJEHIPG5fl); 
MJEHIPG5fl = sum(MJEHIPG5fl); 
MJEHIPG5fl = MJEHIPG5fl *1/101; 
MJEHIPG1in = Np8vilefthipnormal001in(:,1) - 

Np8xslefthipnormal001in(:,1); 
MJEHIPG1in = abs(MJEHIPG1in); 
MJEHIPG1in = sum(MJEHIPG1in); 
MJEHIPG1in = MJEHIPG1in *1/101; 
MJEHIPG2in = Np8vilefthipnormal001in(:,2) - 

Np8xslefthipnormal001in(:,2); 
MJEHIPG2in = abs(MJEHIPG2in); 
MJEHIPG2in = sum(MJEHIPG2in); 
MJEHIPG2in = MJEHIPG2in *1/101; 
MJEHIPG3in = Np8vilefthipnormal001in(:,3) - 

Np8xslefthipnormal001in(:,3); 
MJEHIPG3in = abs(MJEHIPG3in); 
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MJEHIPG3in = sum(MJEHIPG3in); 
MJEHIPG3in = MJEHIPG3in *1/101; 
MJEHIPG4in = Np8vilefthipnormal001in(:,4) - 

Np8xslefthipnormal001in(:,4); 
MJEHIPG4in = abs(MJEHIPG4in); 
MJEHIPG4in = sum(MJEHIPG4in); 
MJEHIPG4in = MJEHIPG4in *1/101; 
MJEHIPG5in = Np8vilefthipnormal001in(:,5) - 

Np8xslefthipnormal001in(:,5); 
MJEHIPG5in = abs(MJEHIPG5in); 
MJEHIPG5in = sum(MJEHIPG5in); 
MJEHIPG5in = MJEHIPG5in *1/101; 

  
%%CMC 
% ? is an angle at a particular captured frame 
% ?vf is an angle from vicon at a particular frame 
% ?xf is an angle from xsens at a particular frame 
% f = a captured frame 
% F = 101 (the total captured frames per cycle) 
% P = 2 (number of motion capturing methods/ 1= vicon, 1= xsens) 
% G = 5 (number of gait cycles) 

  
%GFg(P-1) =   5*101(2-1) = 505 
%GFg(P-1) =   4*101(2-1) = 404  %% p17 slow speed only 
%G(PFg-1) = 5(2*101-1) = 1005 
%G(PFg-1) = 4(2*101-1) = 804%% p17 slow speed only 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
%%%%lefthipfl 
MfHIPG1FL = Np8vilefthipnormal001fl(:,1) + 

Np8xslefthipnormal001fl(:,1); 
MfHIPG1FL = MfHIPG1FL/2; 
MfHIPG2FL = Np8vilefthipnormal001fl(:,2) + 

Np8xslefthipnormal001fl(:,2); 
MfHIPG2FL = MfHIPG2FL/2; 
MfHIPG3FL = Np8vilefthipnormal001fl(:,3) + 

Np8xslefthipnormal001fl(:,3); 
MfHIPG3FL = MfHIPG3FL/2; 
MfHIPG4FL = Np8vilefthipnormal001fl(:,4) + 

Np8xslefthipnormal001fl(:,4); 
MfHIPG4FL = MfHIPG4FL/2; 
MfHIPG5FL = Np8vilefthipnormal001fl(:,5) + 

Np8xslefthipnormal001fl(:,5); 
MfHIPG5FL = MfHIPG5FL/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MghipFLnormal001 = sum(Np8vilefthipnormal001fl)+ 

sum(Np8xslefthipnormal001fl); 
MghipFLnormal001 = MghipFLnormal001/202; % devided by 1/2F; 

  
CMCLefthipviFLG1 = Np8vilefthipnormal001fl(:,1)- MfHIPG1FL; 
CMCLefthipviFLG1 = CMCLefthipviFLG1.^2; 
CMCLefthipviFLG1 = sum(CMCLefthipviFLG1); 
CMCLefthipviFLG1 = CMCLefthipviFLG1/505; 
CMCLefthipxsFLG1 = Np8xslefthipnormal001fl(:,1)- MfHIPG1FL; 
CMCLefthipxsFLG1 = CMCLefthipxsFLG1.^2; 
CMCLefthipxsFLG1 = sum(CMCLefthipxsFLG1); 
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CMCLefthipxsFLG1 = CMCLefthipxsFLG1/505; 
CMCLefthipviFLG2 = Np8vilefthipnormal001fl(:,2)- MfHIPG2FL; 
CMCLefthipviFLG2 = CMCLefthipviFLG2.^2; 
CMCLefthipviFLG2 = sum(CMCLefthipviFLG2); 
CMCLefthipviFLG2 = CMCLefthipviFLG2/505; 
CMCLefthipxsFLG2 = Np8xslefthipnormal001fl(:,2)- MfHIPG2FL; 
CMCLefthipxsFLG2 = CMCLefthipxsFLG2.^2; 
CMCLefthipxsFLG2 = sum(CMCLefthipxsFLG2); 
CMCLefthipxsFLG2 = CMCLefthipxsFLG2/505; 
CMCLefthipviFLG3 = Np8vilefthipnormal001fl(:,3)- MfHIPG3FL; 
CMCLefthipviFLG3 = CMCLefthipviFLG3.^2; 
CMCLefthipviFLG3 = sum(CMCLefthipviFLG3); 
CMCLefthipviFLG3 = CMCLefthipviFLG3/505; 
CMCLefthipxsFLG3 = Np8xslefthipnormal001fl(:,3)- MfHIPG3FL; 
CMCLefthipxsFLG3 = CMCLefthipxsFLG3.^2; 
CMCLefthipxsFLG3 = sum(CMCLefthipxsFLG3); 
CMCLefthipxsFLG3 = CMCLefthipxsFLG3/505; 
CMCLefthipviFLG4 = Np8vilefthipnormal001fl(:,4)- MfHIPG4FL; 
CMCLefthipviFLG4 = CMCLefthipviFLG4.^2; 
CMCLefthipviFLG4 = sum(CMCLefthipviFLG4); 
CMCLefthipviFLG4 = CMCLefthipviFLG4/505; 
CMCLefthipxsFLG4 = Np8xslefthipnormal001fl(:,4)- MfHIPG4FL; 
CMCLefthipxsFLG4 = CMCLefthipxsFLG4.^2; 
CMCLefthipxsFLG4 = sum(CMCLefthipxsFLG4); 
CMCLefthipxsFLG4 = CMCLefthipxsFLG4/505; 
CMCLefthipviFLG5 = Np8vilefthipnormal001fl(:,5)- MfHIPG5FL; 
CMCLefthipviFLG5 = CMCLefthipviFLG5.^2; 
CMCLefthipviFLG5 = sum(CMCLefthipviFLG5); 
CMCLefthipviFLG5 = CMCLefthipviFLG5/505; 
CMCLefthipxsFLG5 = Np8xslefthipnormal001fl(:,5)- MfHIPG5FL; 
CMCLefthipxsFLG5 = CMCLefthipxsFLG5.^2; 
CMCLefthipxsFLG5 = sum(CMCLefthipxsFLG5); 
CMCLefthipxsFLG5 = CMCLefthipxsFLG5/505; 

  
CMCLefthipFLG1 = CMCLefthipviFLG1 + CMCLefthipxsFLG1; 
CMCLefthipFLG2 = CMCLefthipviFLG2 + CMCLefthipxsFLG2; 
CMCLefthipFLG3 = CMCLefthipviFLG3 + CMCLefthipxsFLG3; 
CMCLefthipFLG4 = CMCLefthipviFLG4 + CMCLefthipxsFLG4; 
CMCLefthipFLG5 = CMCLefthipviFLG5 + CMCLefthipxsFLG5; 

  
CMCLefthipFL1 = CMCLefthipFLG1 + CMCLefthipFLG2 + CMCLefthipFLG3 + 

CMCLefthipFLG4 + CMCLefthipFLG5; 

  
CMC2LefthipviFLG1 = Np8vilefthipnormal001fl(:,1)- 

MghipFLnormal001(1,1); 
CMC2LefthipviFLG1 = CMC2LefthipviFLG1.^2; 
CMC2LefthipviFLG1 = sum(CMC2LefthipviFLG1); 
CMC2LefthipviFLG1 = CMC2LefthipviFLG1/1005; 
CMC2LefthipxsFLG1 = Np8xslefthipnormal001fl(:,1)- 

MghipFLnormal001(1,1); 
CMC2LefthipxsFLG1 = CMC2LefthipxsFLG1.^2; 
CMC2LefthipxsFLG1 = sum(CMC2LefthipxsFLG1); 
CMC2LefthipxsFLG1 = CMC2LefthipxsFLG1/1005; 
CMC2LefthipviFLG2 = Np8vilefthipnormal001fl(:,2)- 

MghipFLnormal001(1,2); 
CMC2LefthipviFLG2 = CMC2LefthipviFLG2.^2; 
CMC2LefthipviFLG2 = sum(CMC2LefthipviFLG2); 
CMC2LefthipviFLG2 = CMC2LefthipviFLG2/1005; 
CMC2LefthipxsFLG2 = Np8xslefthipnormal001fl(:,2)- 

MghipFLnormal001(1,2); 
CMC2LefthipxsFLG2 = CMC2LefthipxsFLG2.^2; 
CMC2LefthipxsFLG2 = sum(CMC2LefthipxsFLG2); 
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CMC2LefthipxsFLG2 = CMC2LefthipxsFLG2/1005; 
CMC2LefthipviFLG3 = Np8vilefthipnormal001fl(:,3)- 

MghipFLnormal001(1,3); 
CMC2LefthipviFLG3 = CMC2LefthipviFLG3.^2; 
CMC2LefthipviFLG3 = sum(CMC2LefthipviFLG3); 
CMC2LefthipviFLG3 = CMC2LefthipviFLG3/1005; 
CMC2LefthipxsFLG3 = Np8xslefthipnormal001fl(:,3)- 

MghipFLnormal001(1,3); 
CMC2LefthipxsFLG3 = CMC2LefthipxsFLG3.^2; 
CMC2LefthipxsFLG3 = sum(CMC2LefthipxsFLG3); 
CMC2LefthipxsFLG3 = CMC2LefthipxsFLG3/1005; 
CMC2LefthipviFLG4 = Np8vilefthipnormal001fl(:,4)- 

MghipFLnormal001(1,4); 
CMC2LefthipviFLG4 = CMC2LefthipviFLG4.^2; 
CMC2LefthipviFLG4 = sum(CMC2LefthipviFLG4); 
CMC2LefthipviFLG4 = CMC2LefthipviFLG4/1005; 
CMC2LefthipxsFLG4 = Np8xslefthipnormal001fl(:,4)- 

MghipFLnormal001(1,4); 
CMC2LefthipxsFLG4 = CMC2LefthipxsFLG4.^2; 
CMC2LefthipxsFLG4 = sum(CMC2LefthipxsFLG4); 
CMC2LefthipxsFLG4 = CMC2LefthipxsFLG4/1005; 
CMC2LefthipviFLG5 = Np8vilefthipnormal001fl(:,5)- 

MghipFLnormal001(1,5); 
CMC2LefthipviFLG5 = CMC2LefthipviFLG5.^2; 
CMC2LefthipviFLG5 = sum(CMC2LefthipviFLG5); 
CMC2LefthipviFLG5 = CMC2LefthipviFLG5/1005; 
CMC2LefthipxsFLG5 = Np8xslefthipnormal001fl(:,5)- 

MghipFLnormal001(1,5); 
CMC2LefthipxsFLG5 = CMC2LefthipxsFLG5.^2; 
CMC2LefthipxsFLG5 = sum(CMC2LefthipxsFLG5); 
CMC2LefthipxsFLG5 = CMC2LefthipxsFLG5/1005; 

  
CMC2LefthipFLG1 = CMC2LefthipviFLG1 + CMC2LefthipxsFLG1; 
CMC2LefthipFLG2 = CMC2LefthipviFLG2 + CMC2LefthipxsFLG2; 
CMC2LefthipFLG3 = CMC2LefthipviFLG3 + CMC2LefthipxsFLG3; 
CMC2LefthipFLG4 = CMC2LefthipviFLG4 + CMC2LefthipxsFLG4; 
CMC2LefthipFLG5 = CMC2LefthipviFLG5 + CMC2LefthipxsFLG5; 

  

  
CMC2LefthipFL1 = CMC2LefthipFLG1 + CMC2LefthipFLG2 + CMC2LefthipFLG3 

+ CMC2LefthipFLG4 + CMC2LefthipFLG5; 

  
CMClefthipflp8normal001 = CMCLefthipFL1/ CMC2LefthipFL1; 
CMClefthipflp8normal001 = 1- CMClefthipflp8normal001; 
CMClefthipflp8normal001 = sqrt(CMClefthipflp8normal001) 

  

  
%%%%lefthipab 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
MfHIPG1AB = Np8vilefthipnormal001ab(:,1) + 

Np8xslefthipnormal001ab(:,1); 
MfHIPG1AB = MfHIPG1AB/2; 
MfHIPG2AB = Np8vilefthipnormal001ab(:,2) + 

Np8xslefthipnormal001ab(:,2); 
MfHIPG2AB = MfHIPG2AB/2; 
MfHIPG3AB = Np8vilefthipnormal001ab(:,3) + 

Np8xslefthipnormal001ab(:,3); 
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MfHIPG3AB = MfHIPG3AB/2; 
MfHIPG4AB = Np8vilefthipnormal001ab(:,4) + 

Np8xslefthipnormal001ab(:,4); 
MfHIPG4AB = MfHIPG4AB/2; 
MfHIPG5AB = Np8vilefthipnormal001ab(:,5) + 

Np8xslefthipnormal001ab(:,5); 
MfHIPG5AB = MfHIPG5AB/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MghipABnormal001 = sum(Np8vilefthipnormal001ab)+ 

sum(Np8xslefthipnormal001ab); 
MghipABnormal001 = MghipABnormal001/202; % devided by 1/2F; 

  
CMCLefthipviABG1 = Np8vilefthipnormal001ab(:,1)- MfHIPG1AB; 
CMCLefthipviABG1 = CMCLefthipviABG1.^2; 
CMCLefthipviABG1 = sum(CMCLefthipviABG1); 
CMCLefthipviABG1 = CMCLefthipviABG1/505; 
CMCLefthipxsABG1 = Np8xslefthipnormal001ab(:,1)- MfHIPG1AB; 
CMCLefthipxsABG1 = CMCLefthipxsABG1.^2; 
CMCLefthipxsABG1 = sum(CMCLefthipxsABG1); 
CMCLefthipxsABG1 = CMCLefthipxsABG1/505; 
CMCLefthipviABG2 = Np8vilefthipnormal001ab(:,2)- MfHIPG2AB; 
CMCLefthipviABG2 = CMCLefthipviABG2.^2; 
CMCLefthipviABG2 = sum(CMCLefthipviABG2); 
CMCLefthipviABG2 = CMCLefthipviABG2/505; 
CMCLefthipxsABG2 = Np8xslefthipnormal001ab(:,2)- MfHIPG2AB; 
CMCLefthipxsABG2 = CMCLefthipxsABG2.^2; 
CMCLefthipxsABG2 = sum(CMCLefthipxsABG2); 
CMCLefthipxsABG2 = CMCLefthipxsABG2/505; 
CMCLefthipviABG3 = Np8vilefthipnormal001ab(:,3)- MfHIPG3AB; 
CMCLefthipviABG3 = CMCLefthipviABG3.^2; 
CMCLefthipviABG3 = sum(CMCLefthipviABG3); 
CMCLefthipviABG3 = CMCLefthipviABG3/505; 
CMCLefthipxsABG3 = Np8xslefthipnormal001ab(:,3)- MfHIPG3AB; 
CMCLefthipxsABG3 = CMCLefthipxsABG3.^2; 
CMCLefthipxsABG3 = sum(CMCLefthipxsABG3); 
CMCLefthipxsABG3 = CMCLefthipxsABG3/505; 
CMCLefthipviABG4 = Np8vilefthipnormal001ab(:,4)- MfHIPG4AB; 
CMCLefthipviABG4 = CMCLefthipviABG4.^2; 
CMCLefthipviABG4 = sum(CMCLefthipviABG4); 
CMCLefthipviABG4 = CMCLefthipviABG4/505; 
CMCLefthipxsABG4 = Np8xslefthipnormal001ab(:,4)- MfHIPG4AB; 
CMCLefthipxsABG4 = CMCLefthipxsABG4.^2; 
CMCLefthipxsABG4 = sum(CMCLefthipxsABG4); 
CMCLefthipxsABG4 = CMCLefthipxsABG4/505; 
CMCLefthipviABG5 = Np8vilefthipnormal001ab(:,5)- MfHIPG5AB; 
CMCLefthipviABG5 = CMCLefthipviABG5.^2; 
CMCLefthipviABG5 = sum(CMCLefthipviABG5); 
CMCLefthipviABG5 = CMCLefthipviABG5/505; 
CMCLefthipxsABG5 = Np8xslefthipnormal001ab(:,5)- MfHIPG5AB; 
CMCLefthipxsABG5 = CMCLefthipxsABG5.^2; 
CMCLefthipxsABG5 = sum(CMCLefthipxsABG5); 
CMCLefthipxsABG5 = CMCLefthipxsABG5/505; 

  
CMCLefthipABG1 = CMCLefthipviABG1 + CMCLefthipxsABG1; 
CMCLefthipABG2 = CMCLefthipviABG2 + CMCLefthipxsABG2; 
CMCLefthipABG3 = CMCLefthipviABG3 + CMCLefthipxsABG3; 
CMCLefthipABG4 = CMCLefthipviABG4 + CMCLefthipxsABG4; 
CMCLefthipABG5 = CMCLefthipviABG5 + CMCLefthipxsABG5; 
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CMCLefthipAB1 = CMCLefthipABG1 + CMCLefthipABG2 + CMCLefthipABG3 + 

CMCLefthipABG4 + CMCLefthipABG5; 

  

CMC2LefthipviABG1 = Np8vilefthipnormal001ab(:,1)- 

MghipABnormal001(1,1); 
CMC2LefthipviABG1 = CMC2LefthipviABG1.^2; 
CMC2LefthipviABG1 = sum(CMC2LefthipviABG1); 
CMC2LefthipviABG1 = CMC2LefthipviABG1/1005; 
CMC2LefthipxsABG1 = Np8xslefthipnormal001ab(:,1)- 

MghipABnormal001(1,1); 
CMC2LefthipxsABG1 = CMC2LefthipxsABG1.^2; 
CMC2LefthipxsABG1 = sum(CMC2LefthipxsABG1); 
CMC2LefthipxsABG1 = CMC2LefthipxsABG1/1005; 
CMC2LefthipviABG2 = Np8vilefthipnormal001ab(:,2)- 

MghipABnormal001(1,2); 
CMC2LefthipviABG2 = CMC2LefthipviABG2.^2; 
CMC2LefthipviABG2 = sum(CMC2LefthipviABG2); 
CMC2LefthipviABG2 = CMC2LefthipviABG2/1005; 
CMC2LefthipxsABG2 = Np8xslefthipnormal001ab(:,2)- 

MghipABnormal001(1,2); 
CMC2LefthipxsABG2 = CMC2LefthipxsABG2.^2; 
CMC2LefthipxsABG2 = sum(CMC2LefthipxsABG2); 
CMC2LefthipxsABG2 = CMC2LefthipxsABG2/1005; 
CMC2LefthipviABG3 = Np8vilefthipnormal001ab(:,3)- 

MghipABnormal001(1,3); 
CMC2LefthipviABG3 = CMC2LefthipviABG3.^2; 
CMC2LefthipviABG3 = sum(CMC2LefthipviABG3); 
CMC2LefthipviABG3 = CMC2LefthipviABG3/1005; 
CMC2LefthipxsABG3 = Np8xslefthipnormal001ab(:,3)- 

MghipABnormal001(1,3); 
CMC2LefthipxsABG3 = CMC2LefthipxsABG3.^2; 
CMC2LefthipxsABG3 = sum(CMC2LefthipxsABG3); 
CMC2LefthipxsABG3 = CMC2LefthipxsABG3/1005; 
CMC2LefthipviABG4 = Np8vilefthipnormal001ab(:,4)- 

MghipABnormal001(1,4); 
CMC2LefthipviABG4 = CMC2LefthipviABG4.^2; 
CMC2LefthipviABG4 = sum(CMC2LefthipviABG4); 
CMC2LefthipviABG4 = CMC2LefthipviABG4/1005; 
CMC2LefthipxsABG4 = Np8xslefthipnormal001ab(:,4)- 

MghipABnormal001(1,4); 
CMC2LefthipxsABG4 = CMC2LefthipxsABG4.^2; 
CMC2LefthipxsABG4 = sum(CMC2LefthipxsABG4); 
CMC2LefthipxsABG4 = CMC2LefthipxsABG4/1005; 
CMC2LefthipviABG5 = Np8vilefthipnormal001ab(:,5)- 

MghipABnormal001(1,5); 
CMC2LefthipviABG5 = CMC2LefthipviABG5.^2; 
CMC2LefthipviABG5 = sum(CMC2LefthipviABG5); 
CMC2LefthipviABG5 = CMC2LefthipviABG5/1005; 
CMC2LefthipxsABG5 = Np8xslefthipnormal001ab(:,5)- 

MghipABnormal001(1,5); 
CMC2LefthipxsABG5 = CMC2LefthipxsABG5.^2; 
CMC2LefthipxsABG5 = sum(CMC2LefthipxsABG5); 
CMC2LefthipxsABG5 = CMC2LefthipxsABG5/1005; 

  
CMC2LefthipABG1 = CMC2LefthipviABG1 + CMC2LefthipxsABG1; 
CMC2LefthipABG2 = CMC2LefthipviABG2 + CMC2LefthipxsABG2; 
CMC2LefthipABG3 = CMC2LefthipviABG3 + CMC2LefthipxsABG3; 
CMC2LefthipABG4 = CMC2LefthipviABG4 + CMC2LefthipxsABG4; 
CMC2LefthipABG5 = CMC2LefthipviABG5 + CMC2LefthipxsABG5; 
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CMC2LefthipAB1 = CMC2LefthipABG1 + CMC2LefthipABG2 + CMC2LefthipABG3 

+ CMC2LefthipABG4 + CMC2LefthipABG5; 

  

CMClefthipabp8normal001 = CMCLefthipAB1/ CMC2LefthipAB1; 
CMClefthipabp8normal001 = 1- CMClefthipabp8normal001; 
CMClefthipabp8normal001 = sqrt(CMClefthipabp8normal001) 

  
%%%%lefthipin 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
MfHIPG1IN = Np8vilefthipnormal001in(:,1) + 

Np8xslefthipnormal001in(:,1); 
MfHIPG1IN = MfHIPG1IN/2; 
MfHIPG2IN = Np8vilefthipnormal001in(:,2) + 

Np8xslefthipnormal001in(:,2); 
MfHIPG2IN = MfHIPG2IN/2; 
MfHIPG3IN = Np8vilefthipnormal001in(:,3) + 

Np8xslefthipnormal001in(:,3); 
MfHIPG3IN = MfHIPG3IN/2; 
MfHIPG4IN = Np8vilefthipnormal001in(:,4) + 

Np8xslefthipnormal001in(:,4); 
MfHIPG4IN = MfHIPG4IN/2; 
MfHIPG5IN = Np8vilefthipnormal001in(:,5) + 

Np8xslefthipnormal001in(:,5); 
MfHIPG5IN = MfHIPG5IN/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MghipINnormal001 = sum(Np8vilefthipnormal001in)+ 

sum(Np8xslefthipnormal001in); 
MghipINnormal001 = MghipINnormal001/202; % devided by 1/2F; 

  
CMCLefthipviING1 = Np8vilefthipnormal001in(:,1)- MfHIPG1IN; 
CMCLefthipviING1 = CMCLefthipviING1.^2; 
CMCLefthipviING1 = sum(CMCLefthipviING1); 
CMCLefthipviING1 = CMCLefthipviING1/505; 
CMCLefthipxsING1 = Np8xslefthipnormal001in(:,1)- MfHIPG1IN; 
CMCLefthipxsING1 = CMCLefthipxsING1.^2; 
CMCLefthipxsING1 = sum(CMCLefthipxsING1); 
CMCLefthipxsING1 = CMCLefthipxsING1/505; 
CMCLefthipviING2 = Np8vilefthipnormal001in(:,2)- MfHIPG2IN; 
CMCLefthipviING2 = CMCLefthipviING2.^2; 
CMCLefthipviING2 = sum(CMCLefthipviING2); 
CMCLefthipviING2 = CMCLefthipviING2/505; 
CMCLefthipxsING2 = Np8xslefthipnormal001in(:,2)- MfHIPG2IN; 
CMCLefthipxsING2 = CMCLefthipxsING2.^2; 
CMCLefthipxsING2 = sum(CMCLefthipxsING2); 
CMCLefthipxsING2 = CMCLefthipxsING2/505; 
CMCLefthipviING3 = Np8vilefthipnormal001in(:,3)- MfHIPG3IN; 
CMCLefthipviING3 = CMCLefthipviING3.^2; 
CMCLefthipviING3 = sum(CMCLefthipviING3); 
CMCLefthipviING3 = CMCLefthipviING3/505; 
CMCLefthipxsING3 = Np8xslefthipnormal001in(:,3)- MfHIPG3IN; 
CMCLefthipxsING3 = CMCLefthipxsING3.^2; 
CMCLefthipxsING3 = sum(CMCLefthipxsING3); 
CMCLefthipxsING3 = CMCLefthipxsING3/505; 
CMCLefthipviING4 = Np8vilefthipnormal001in(:,4)- MfHIPG4IN; 
CMCLefthipviING4 = CMCLefthipviING4.^2; 
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CMCLefthipviING4 = sum(CMCLefthipviING4); 
CMCLefthipviING4 = CMCLefthipviING4/505; 
CMCLefthipxsING4 = Np8xslefthipnormal001in(:,4)- MfHIPG4IN; 
CMCLefthipxsING4 = CMCLefthipxsING4.^2; 
CMCLefthipxsING4 = sum(CMCLefthipxsING4); 
CMCLefthipxsING4 = CMCLefthipxsING4/505; 
CMCLefthipviING5 = Np8vilefthipnormal001in(:,5)- MfHIPG5IN; 
CMCLefthipviING5 = CMCLefthipviING5.^2; 
CMCLefthipviING5 = sum(CMCLefthipviING5); 
CMCLefthipviING5 = CMCLefthipviING5/505; 
CMCLefthipxsING5 = Np8xslefthipnormal001in(:,5)- MfHIPG5IN; 
CMCLefthipxsING5 = CMCLefthipxsING5.^2; 
CMCLefthipxsING5 = sum(CMCLefthipxsING5); 
CMCLefthipxsING5 = CMCLefthipxsING5/505; 

  
CMCLefthipING1 = CMCLefthipviING1 + CMCLefthipxsING1; 
CMCLefthipING2 = CMCLefthipviING2 + CMCLefthipxsING2; 
CMCLefthipING3 = CMCLefthipviING3 + CMCLefthipxsING3; 
CMCLefthipING4 = CMCLefthipviING4 + CMCLefthipxsING4; 
CMCLefthipING5 = CMCLefthipviING5 + CMCLefthipxsING5; 

  
CMCLefthipIN1 = CMCLefthipING1 + CMCLefthipING2 + CMCLefthipING3 + 

CMCLefthipING4 + CMCLefthipING5; 

  
CMC2LefthipviING1 = Np8vilefthipnormal001in(:,1)- 

MghipINnormal001(1,1); 
CMC2LefthipviING1 = CMC2LefthipviING1.^2; 
CMC2LefthipviING1 = sum(CMC2LefthipviING1); 
CMC2LefthipviING1 = CMC2LefthipviING1/1005; 
CMC2LefthipxsING1 = Np8xslefthipnormal001in(:,1)- 

MghipINnormal001(1,1); 
CMC2LefthipxsING1 = CMC2LefthipxsING1.^2; 
CMC2LefthipxsING1 = sum(CMC2LefthipxsING1); 
CMC2LefthipxsING1 = CMC2LefthipxsING1/1005; 
CMC2LefthipviING2 = Np8vilefthipnormal001in(:,2)- 

MghipINnormal001(1,2); 
CMC2LefthipviING2 = CMC2LefthipviING2.^2; 
CMC2LefthipviING2 = sum(CMC2LefthipviING2); 
CMC2LefthipviING2 = CMC2LefthipviING2/1005; 
CMC2LefthipxsING2 = Np8xslefthipnormal001in(:,2)- 

MghipINnormal001(1,2); 
CMC2LefthipxsING2 = CMC2LefthipxsING2.^2; 
CMC2LefthipxsING2 = sum(CMC2LefthipxsING2); 
CMC2LefthipxsING2 = CMC2LefthipxsING2/1005; 
CMC2LefthipviING3 = Np8vilefthipnormal001in(:,3)- 

MghipINnormal001(1,3); 
CMC2LefthipviING3 = CMC2LefthipviING3.^2; 
CMC2LefthipviING3 = sum(CMC2LefthipviING3); 
CMC2LefthipviING3 = CMC2LefthipviING3/1005; 
CMC2LefthipxsING3 = Np8xslefthipnormal001in(:,3)- 

MghipINnormal001(1,3); 
CMC2LefthipxsING3 = CMC2LefthipxsING3.^2; 
CMC2LefthipxsING3 = sum(CMC2LefthipxsING3); 
CMC2LefthipxsING3 = CMC2LefthipxsING3/1005; 
CMC2LefthipviING4 = Np8vilefthipnormal001in(:,4)- 

MghipINnormal001(1,4); 
CMC2LefthipviING4 = CMC2LefthipviING4.^2; 
CMC2LefthipviING4 = sum(CMC2LefthipviING4); 
CMC2LefthipviING4 = CMC2LefthipviING4/1005; 
CMC2LefthipxsING4 = Np8xslefthipnormal001in(:,4)- 

MghipINnormal001(1,4); 
CMC2LefthipxsING4 = CMC2LefthipxsING4.^2; 
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CMC2LefthipxsING4 = sum(CMC2LefthipxsING4); 
CMC2LefthipxsING4 = CMC2LefthipxsING4/1005; 
CMC2LefthipviING5 = Np8vilefthipnormal001in(:,5)- 

MghipINnormal001(1,5); 
CMC2LefthipviING5 = CMC2LefthipviING5.^2; 
CMC2LefthipviING5 = sum(CMC2LefthipviING5); 
CMC2LefthipviING5 = CMC2LefthipviING5/1005; 
CMC2LefthipxsING5 = Np8xslefthipnormal001in(:,5)- 

MghipINnormal001(1,5); 
CMC2LefthipxsING5 = CMC2LefthipxsING5.^2; 
CMC2LefthipxsING5 = sum(CMC2LefthipxsING5); 
CMC2LefthipxsING5 = CMC2LefthipxsING5/1005; 

  
CMC2LefthipING1 = CMC2LefthipviING1 + CMC2LefthipxsING1; 
CMC2LefthipING2 = CMC2LefthipviING2 + CMC2LefthipxsING2; 
CMC2LefthipING3 = CMC2LefthipviING3 + CMC2LefthipxsING3; 
CMC2LefthipING4 = CMC2LefthipviING4 + CMC2LefthipxsING4; 
CMC2LefthipING5 = CMC2LefthipviING5 + CMC2LefthipxsING5; 

  

  
CMC2LefthipIN1 = CMC2LefthipING1 + CMC2LefthipING2 + CMC2LefthipING3 

+ CMC2LefthipING4 + CMC2LefthipING5; 

  
CMClefthipinp8normal001 = CMCLefthipIN1/ CMC2LefthipIN1; 
CMClefthipinp8normal001 = 1- CMClefthipinp8normal001; 
CMClefthipinp8normal001 = sqrt(CMClefthipinp8normal001) 

  
%%%%end of the calculation  

  
%%%knee 

  
p8vileftkneenormal001in_f = p8vileftkneenormal001in_f *-1; 

  
%%%the mean joint estimation error (MJEKNEE or ?e) 
% Left knee 
MJEKNEEG1ab = Np8vileftkneenormal001ab(:,1) - 

Np8xsleftkneenormal001ab(:,1); 
MJEKNEEG1ab = abs(MJEKNEEG1ab); 
MJEKNEEG1ab = sum(MJEKNEEG1ab); 
MJEKNEEG1ab = MJEKNEEG1ab *1/101; 
MJEKNEEG2ab = Np8vileftkneenormal001ab(:,2) - 

Np8xsleftkneenormal001ab(:,2); 
MJEKNEEG2ab = abs(MJEKNEEG2ab); 
MJEKNEEG2ab = sum(MJEKNEEG2ab); 
MJEKNEEG2ab = MJEKNEEG2ab *1/101; 
MJEKNEEG3ab = Np8vileftkneenormal001ab(:,3) - 

Np8xsleftkneenormal001ab(:,3); 
MJEKNEEG3ab = abs(MJEKNEEG3ab); 
MJEKNEEG3ab = sum(MJEKNEEG3ab); 
MJEKNEEG3ab = MJEKNEEG3ab *1/101; 
MJEKNEEG4ab = Np8vileftkneenormal001ab(:,4) - 

Np8xsleftkneenormal001ab(:,4); 
MJEKNEEG4ab = abs(MJEKNEEG4ab); 
MJEKNEEG4ab = sum(MJEKNEEG4ab); 
MJEKNEEG4ab = MJEKNEEG4ab *1/101; 
MJEKNEEG5ab = Np8vileftkneenormal001ab(:,5) - 

Np8xsleftkneenormal001ab(:,5); 
MJEKNEEG5ab = abs(MJEKNEEG5ab); 
MJEKNEEG5ab = sum(MJEKNEEG5ab); 
MJEKNEEG5ab = MJEKNEEG5ab *1/101; 
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MJEKNEEG1fl = Np8vileftkneenormal001fl(:,1) - 

Np8xsleftkneenormal001fl(:,1); 
MJEKNEEG1fl = abs(MJEKNEEG1fl); 
MJEKNEEG1fl = sum(MJEKNEEG1fl); 
MJEKNEEG1fl = MJEKNEEG1fl *1/101; 
MJEKNEEG2fl = Np8vileftkneenormal001fl(:,2) - 

Np8xsleftkneenormal001fl(:,2); 
MJEKNEEG2fl = abs(MJEKNEEG2fl); 
MJEKNEEG2fl = sum(MJEKNEEG2fl); 
MJEKNEEG2fl = MJEKNEEG2fl *1/101; 
MJEKNEEG3fl = Np8vileftkneenormal001fl(:,3) - 

Np8xsleftkneenormal001fl(:,3); 
MJEKNEEG3fl = abs(MJEKNEEG3fl); 
MJEKNEEG3fl = sum(MJEKNEEG3fl); 
MJEKNEEG3fl = MJEKNEEG3fl *1/101; 
MJEKNEEG4fl = Np8vileftkneenormal001fl(:,4) - 

Np8xsleftkneenormal001fl(:,4); 
MJEKNEEG4fl = abs(MJEKNEEG4fl); 
MJEKNEEG4fl = sum(MJEKNEEG4fl); 
MJEKNEEG4fl = MJEKNEEG4fl *1/101; 
MJEKNEEG5fl = Np8vileftkneenormal001fl(:,5) - 

Np8xsleftkneenormal001fl(:,5); 
MJEKNEEG5fl = abs(MJEKNEEG5fl); 
MJEKNEEG5fl = sum(MJEKNEEG5fl); 
MJEKNEEG5fl = MJEKNEEG5fl *1/101; 
MJEKNEEG1in = Np8vileftkneenormal001in(:,1) - 

Np8xsleftkneenormal001in(:,1); 
MJEKNEEG1in = abs(MJEKNEEG1in); 
MJEKNEEG1in = sum(MJEKNEEG1in); 
MJEKNEEG1in = MJEKNEEG1in *1/101; 
MJEKNEEG2in = Np8vileftkneenormal001in(:,2) - 

Np8xsleftkneenormal001in(:,2); 
MJEKNEEG2in = abs(MJEKNEEG2in); 
MJEKNEEG2in = sum(MJEKNEEG2in); 
MJEKNEEG2in = MJEKNEEG2in *1/101; 
MJEKNEEG3in = Np8vileftkneenormal001in(:,3) - 

Np8xsleftkneenormal001in(:,3); 
MJEKNEEG3in = abs(MJEKNEEG3in); 
MJEKNEEG3in = sum(MJEKNEEG3in); 
MJEKNEEG3in = MJEKNEEG3in *1/101; 
MJEKNEEG4in = Np8vileftkneenormal001in(:,4) - 

Np8xsleftkneenormal001in(:,4); 
MJEKNEEG4in = abs(MJEKNEEG4in); 
MJEKNEEG4in = sum(MJEKNEEG4in); 
MJEKNEEG4in = MJEKNEEG4in *1/101; 
MJEKNEEG5in = Np8vileftkneenormal001in(:,5) - 

Np8xsleftkneenormal001in(:,5); 
MJEKNEEG5in = abs(MJEKNEEG5in); 
MJEKNEEG5in = sum(MJEKNEEG5in); 
MJEKNEEG5in = MJEKNEEG5in *1/101; 

  
%%CMC 
% ? is an angle at a particular captured frame 
% ?vf is an angle from vicon at a particular frame 
% ?xf is an angle from xsens at a particular frame 
% f = a captured frame 
% F = 101 (the total captured frames per cycle) 
% P = 2 (number of motion capturing methods/ 1= vicon, 1= xsens) 
% G = 5 (number of gait cycles) 

  
%GFg(P-1) =   5*101(2-1) = 505 
%GFg(P-1) =   4*101(2-1) = 404  %% p17 slow speed only 
%G(PFg-1) = 5(2*101-1) = 1005 
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%G(PFg-1) = 4(2*101-1) = 804%% p17 slow speed only 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
%%%%leftkneefl 
MfKNEEG1FL = Np8vileftkneenormal001fl(:,1) + 

Np8xsleftkneenormal001fl(:,1); 
MfKNEEG1FL = MfKNEEG1FL/2; 
MfKNEEG2FL = Np8vileftkneenormal001fl(:,2) + 

Np8xsleftkneenormal001fl(:,2); 
MfKNEEG2FL = MfKNEEG2FL/2; 
MfKNEEG3FL = Np8vileftkneenormal001fl(:,3) + 

Np8xsleftkneenormal001fl(:,3); 
MfKNEEG3FL = MfKNEEG3FL/2; 
MfKNEEG4FL = Np8vileftkneenormal001fl(:,4) + 

Np8xsleftkneenormal001fl(:,4); 
MfKNEEG4FL = MfKNEEG4FL/2; 
MfKNEEG5FL = Np8vileftkneenormal001fl(:,5) + 

Np8xsleftkneenormal001fl(:,5); 
MfKNEEG5FL = MfKNEEG5FL/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MgkneeFLnormal001 = sum(Np8vileftkneenormal001fl)+ 

sum(Np8xsleftkneenormal001fl); 
MgkneeFLnormal001 = MgkneeFLnormal001/202; % devided by 1/2F; 

  
CMCLeftkneeviFLG1 = Np8vileftkneenormal001fl(:,1)- MfKNEEG1FL; 
CMCLeftkneeviFLG1 = CMCLeftkneeviFLG1.^2; 
CMCLeftkneeviFLG1 = sum(CMCLeftkneeviFLG1); 
CMCLeftkneeviFLG1 = CMCLeftkneeviFLG1/505; 
CMCLeftkneexsFLG1 = Np8xsleftkneenormal001fl(:,1)- MfKNEEG1FL; 
CMCLeftkneexsFLG1 = CMCLeftkneexsFLG1.^2; 
CMCLeftkneexsFLG1 = sum(CMCLeftkneexsFLG1); 
CMCLeftkneexsFLG1 = CMCLeftkneexsFLG1/505; 
CMCLeftkneeviFLG2 = Np8vileftkneenormal001fl(:,2)- MfKNEEG2FL; 
CMCLeftkneeviFLG2 = CMCLeftkneeviFLG2.^2; 
CMCLeftkneeviFLG2 = sum(CMCLeftkneeviFLG2); 
CMCLeftkneeviFLG2 = CMCLeftkneeviFLG2/505; 
CMCLeftkneexsFLG2 = Np8xsleftkneenormal001fl(:,2)- MfKNEEG2FL; 
CMCLeftkneexsFLG2 = CMCLeftkneexsFLG2.^2; 
CMCLeftkneexsFLG2 = sum(CMCLeftkneexsFLG2); 
CMCLeftkneexsFLG2 = CMCLeftkneexsFLG2/505; 
CMCLeftkneeviFLG3 = Np8vileftkneenormal001fl(:,3)- MfKNEEG3FL; 
CMCLeftkneeviFLG3 = CMCLeftkneeviFLG3.^2; 
CMCLeftkneeviFLG3 = sum(CMCLeftkneeviFLG3); 
CMCLeftkneeviFLG3 = CMCLeftkneeviFLG3/505; 
CMCLeftkneexsFLG3 = Np8xsleftkneenormal001fl(:,3)- MfKNEEG3FL; 
CMCLeftkneexsFLG3 = CMCLeftkneexsFLG3.^2; 
CMCLeftkneexsFLG3 = sum(CMCLeftkneexsFLG3); 
CMCLeftkneexsFLG3 = CMCLeftkneexsFLG3/505; 
CMCLeftkneeviFLG4 = Np8vileftkneenormal001fl(:,4)- MfKNEEG4FL; 
CMCLeftkneeviFLG4 = CMCLeftkneeviFLG4.^2; 
CMCLeftkneeviFLG4 = sum(CMCLeftkneeviFLG4); 
CMCLeftkneeviFLG4 = CMCLeftkneeviFLG4/505; 
CMCLeftkneexsFLG4 = Np8xsleftkneenormal001fl(:,4)- MfKNEEG4FL; 
CMCLeftkneexsFLG4 = CMCLeftkneexsFLG4.^2; 
CMCLeftkneexsFLG4 = sum(CMCLeftkneexsFLG4); 
CMCLeftkneexsFLG4 = CMCLeftkneexsFLG4/505; 
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CMCLeftkneeviFLG5 = Np8vileftkneenormal001fl(:,5)- MfKNEEG5FL; 
CMCLeftkneeviFLG5 = CMCLeftkneeviFLG5.^2; 
CMCLeftkneeviFLG5 = sum(CMCLeftkneeviFLG5); 
CMCLeftkneeviFLG5 = CMCLeftkneeviFLG5/505; 
CMCLeftkneexsFLG5 = Np8xsleftkneenormal001fl(:,5)- MfKNEEG5FL; 
CMCLeftkneexsFLG5 = CMCLeftkneexsFLG5.^2; 
CMCLeftkneexsFLG5 = sum(CMCLeftkneexsFLG5); 
CMCLeftkneexsFLG5 = CMCLeftkneexsFLG5/505; 

  
CMCLeftkneeFLG1 = CMCLeftkneeviFLG1 + CMCLeftkneexsFLG1; 
CMCLeftkneeFLG2 = CMCLeftkneeviFLG2 + CMCLeftkneexsFLG2; 
CMCLeftkneeFLG3 = CMCLeftkneeviFLG3 + CMCLeftkneexsFLG3; 
CMCLeftkneeFLG4 = CMCLeftkneeviFLG4 + CMCLeftkneexsFLG4; 
CMCLeftkneeFLG5 = CMCLeftkneeviFLG5 + CMCLeftkneexsFLG5; 

  
CMCLeftkneeFL1 = CMCLeftkneeFLG1 + CMCLeftkneeFLG2 + CMCLeftkneeFLG3 

+ CMCLeftkneeFLG4 + CMCLeftkneeFLG5; 

  
CMC2LeftkneeviFLG1 = Np8vileftkneenormal001fl(:,1)- 

MgkneeFLnormal001(1,1); 
CMC2LeftkneeviFLG1 = CMC2LeftkneeviFLG1.^2; 
CMC2LeftkneeviFLG1 = sum(CMC2LeftkneeviFLG1); 
CMC2LeftkneeviFLG1 = CMC2LeftkneeviFLG1/1005; 
CMC2LeftkneexsFLG1 = Np8xsleftkneenormal001fl(:,1)- 

MgkneeFLnormal001(1,1); 
CMC2LeftkneexsFLG1 = CMC2LeftkneexsFLG1.^2; 
CMC2LeftkneexsFLG1 = sum(CMC2LeftkneexsFLG1); 
CMC2LeftkneexsFLG1 = CMC2LeftkneexsFLG1/1005; 
CMC2LeftkneeviFLG2 = Np8vileftkneenormal001fl(:,2)- 

MgkneeFLnormal001(1,2); 
CMC2LeftkneeviFLG2 = CMC2LeftkneeviFLG2.^2; 
CMC2LeftkneeviFLG2 = sum(CMC2LeftkneeviFLG2); 
CMC2LeftkneeviFLG2 = CMC2LeftkneeviFLG2/1005; 
CMC2LeftkneexsFLG2 = Np8xsleftkneenormal001fl(:,2)- 

MgkneeFLnormal001(1,2); 
CMC2LeftkneexsFLG2 = CMC2LeftkneexsFLG2.^2; 
CMC2LeftkneexsFLG2 = sum(CMC2LeftkneexsFLG2); 
CMC2LeftkneexsFLG2 = CMC2LeftkneexsFLG2/1005; 
CMC2LeftkneeviFLG3 = Np8vileftkneenormal001fl(:,3)- 

MgkneeFLnormal001(1,3); 
CMC2LeftkneeviFLG3 = CMC2LeftkneeviFLG3.^2; 
CMC2LeftkneeviFLG3 = sum(CMC2LeftkneeviFLG3); 
CMC2LeftkneeviFLG3 = CMC2LeftkneeviFLG3/1005; 
CMC2LeftkneexsFLG3 = Np8xsleftkneenormal001fl(:,3)- 

MgkneeFLnormal001(1,3); 
CMC2LeftkneexsFLG3 = CMC2LeftkneexsFLG3.^2; 
CMC2LeftkneexsFLG3 = sum(CMC2LeftkneexsFLG3); 
CMC2LeftkneexsFLG3 = CMC2LeftkneexsFLG3/1005; 
CMC2LeftkneeviFLG4 = Np8vileftkneenormal001fl(:,4)- 

MgkneeFLnormal001(1,4); 
CMC2LeftkneeviFLG4 = CMC2LeftkneeviFLG4.^2; 
CMC2LeftkneeviFLG4 = sum(CMC2LeftkneeviFLG4); 
CMC2LeftkneeviFLG4 = CMC2LeftkneeviFLG4/1005; 
CMC2LeftkneexsFLG4 = Np8xsleftkneenormal001fl(:,4)- 

MgkneeFLnormal001(1,4); 
CMC2LeftkneexsFLG4 = CMC2LeftkneexsFLG4.^2; 
CMC2LeftkneexsFLG4 = sum(CMC2LeftkneexsFLG4); 
CMC2LeftkneexsFLG4 = CMC2LeftkneexsFLG4/1005; 
CMC2LeftkneeviFLG5 = Np8vileftkneenormal001fl(:,5)- 

MgkneeFLnormal001(1,5); 
CMC2LeftkneeviFLG5 = CMC2LeftkneeviFLG5.^2; 
CMC2LeftkneeviFLG5 = sum(CMC2LeftkneeviFLG5); 
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CMC2LeftkneeviFLG5 = CMC2LeftkneeviFLG5/1005; 
CMC2LeftkneexsFLG5 = Np8xsleftkneenormal001fl(:,5)- 

MgkneeFLnormal001(1,5); 
CMC2LeftkneexsFLG5 = CMC2LeftkneexsFLG5.^2; 
CMC2LeftkneexsFLG5 = sum(CMC2LeftkneexsFLG5); 
CMC2LeftkneexsFLG5 = CMC2LeftkneexsFLG5/1005; 

  
CMC2LeftkneeFLG1 = CMC2LeftkneeviFLG1 + CMC2LeftkneexsFLG1; 
CMC2LeftkneeFLG2 = CMC2LeftkneeviFLG2 + CMC2LeftkneexsFLG2; 
CMC2LeftkneeFLG3 = CMC2LeftkneeviFLG3 + CMC2LeftkneexsFLG3; 
CMC2LeftkneeFLG4 = CMC2LeftkneeviFLG4 + CMC2LeftkneexsFLG4; 
CMC2LeftkneeFLG5 = CMC2LeftkneeviFLG5 + CMC2LeftkneexsFLG5; 

  

  
CMC2LeftkneeFL1 = CMC2LeftkneeFLG1 + CMC2LeftkneeFLG2 + 

CMC2LeftkneeFLG3 + CMC2LeftkneeFLG4 + CMC2LeftkneeFLG5; 

  
CMCleftkneeflp8normal001 = CMCLeftkneeFL1/ CMC2LeftkneeFL1; 
CMCleftkneeflp8normal001 = 1- CMCleftkneeflp8normal001; 
CMCleftkneeflp8normal001 = sqrt(CMCleftkneeflp8normal001) 

  

  
%%%%leftkneeab 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
MfKNEEG1AB = Np8vileftkneenormal001ab(:,1) + 

Np8xsleftkneenormal001ab(:,1); 
MfKNEEG1AB = MfKNEEG1AB/2; 
MfKNEEG2AB = Np8vileftkneenormal001ab(:,2) + 

Np8xsleftkneenormal001ab(:,2); 
MfKNEEG2AB = MfKNEEG2AB/2; 
MfKNEEG3AB = Np8vileftkneenormal001ab(:,3) + 

Np8xsleftkneenormal001ab(:,3); 
MfKNEEG3AB = MfKNEEG3AB/2; 
MfKNEEG4AB = Np8vileftkneenormal001ab(:,4) + 

Np8xsleftkneenormal001ab(:,4); 
MfKNEEG4AB = MfKNEEG4AB/2; 
MfKNEEG5AB = Np8vileftkneenormal001ab(:,5) + 

Np8xsleftkneenormal001ab(:,5); 
MfKNEEG5AB = MfKNEEG5AB/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MgkneeABnormal001 = sum(Np8vileftkneenormal001ab)+ 

sum(Np8xsleftkneenormal001ab); 
MgkneeABnormal001 = MgkneeABnormal001/202; % devided by 1/2F; 

  
CMCLeftkneeviABG1 = Np8vileftkneenormal001ab(:,1)- MfKNEEG1AB; 
CMCLeftkneeviABG1 = CMCLeftkneeviABG1.^2; 
CMCLeftkneeviABG1 = sum(CMCLeftkneeviABG1); 
CMCLeftkneeviABG1 = CMCLeftkneeviABG1/505; 
CMCLeftkneexsABG1 = Np8xsleftkneenormal001ab(:,1)- MfKNEEG1AB; 
CMCLeftkneexsABG1 = CMCLeftkneexsABG1.^2; 
CMCLeftkneexsABG1 = sum(CMCLeftkneexsABG1); 
CMCLeftkneexsABG1 = CMCLeftkneexsABG1/505; 
CMCLeftkneeviABG2 = Np8vileftkneenormal001ab(:,2)- MfKNEEG2AB; 
CMCLeftkneeviABG2 = CMCLeftkneeviABG2.^2; 
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CMCLeftkneeviABG2 = sum(CMCLeftkneeviABG2); 
CMCLeftkneeviABG2 = CMCLeftkneeviABG2/505; 
CMCLeftkneexsABG2 = Np8xsleftkneenormal001ab(:,2)- MfKNEEG2AB; 
CMCLeftkneexsABG2 = CMCLeftkneexsABG2.^2; 
CMCLeftkneexsABG2 = sum(CMCLeftkneexsABG2); 
CMCLeftkneexsABG2 = CMCLeftkneexsABG2/505; 
CMCLeftkneeviABG3 = Np8vileftkneenormal001ab(:,3)- MfKNEEG3AB; 
CMCLeftkneeviABG3 = CMCLeftkneeviABG3.^2; 
CMCLeftkneeviABG3 = sum(CMCLeftkneeviABG3); 
CMCLeftkneeviABG3 = CMCLeftkneeviABG3/505; 
CMCLeftkneexsABG3 = Np8xsleftkneenormal001ab(:,3)- MfKNEEG3AB; 
CMCLeftkneexsABG3 = CMCLeftkneexsABG3.^2; 
CMCLeftkneexsABG3 = sum(CMCLeftkneexsABG3); 
CMCLeftkneexsABG3 = CMCLeftkneexsABG3/505; 
CMCLeftkneeviABG4 = Np8vileftkneenormal001ab(:,4)- MfKNEEG4AB; 
CMCLeftkneeviABG4 = CMCLeftkneeviABG4.^2; 
CMCLeftkneeviABG4 = sum(CMCLeftkneeviABG4); 
CMCLeftkneeviABG4 = CMCLeftkneeviABG4/505; 
CMCLeftkneexsABG4 = Np8xsleftkneenormal001ab(:,4)- MfKNEEG4AB; 
CMCLeftkneexsABG4 = CMCLeftkneexsABG4.^2; 
CMCLeftkneexsABG4 = sum(CMCLeftkneexsABG4); 
CMCLeftkneexsABG4 = CMCLeftkneexsABG4/505; 
CMCLeftkneeviABG5 = Np8vileftkneenormal001ab(:,5)- MfKNEEG5AB; 
CMCLeftkneeviABG5 = CMCLeftkneeviABG5.^2; 
CMCLeftkneeviABG5 = sum(CMCLeftkneeviABG5); 
CMCLeftkneeviABG5 = CMCLeftkneeviABG5/505; 
CMCLeftkneexsABG5 = Np8xsleftkneenormal001ab(:,5)- MfKNEEG5AB; 
CMCLeftkneexsABG5 = CMCLeftkneexsABG5.^2; 
CMCLeftkneexsABG5 = sum(CMCLeftkneexsABG5); 
CMCLeftkneexsABG5 = CMCLeftkneexsABG5/505; 

  
CMCLeftkneeABG1 = CMCLeftkneeviABG1 + CMCLeftkneexsABG1; 
CMCLeftkneeABG2 = CMCLeftkneeviABG2 + CMCLeftkneexsABG2; 
CMCLeftkneeABG3 = CMCLeftkneeviABG3 + CMCLeftkneexsABG3; 
CMCLeftkneeABG4 = CMCLeftkneeviABG4 + CMCLeftkneexsABG4; 
CMCLeftkneeABG5 = CMCLeftkneeviABG5 + CMCLeftkneexsABG5; 

  
CMCLeftkneeAB1 = CMCLeftkneeABG1 + CMCLeftkneeABG2 + CMCLeftkneeABG3 

+ CMCLeftkneeABG4 + CMCLeftkneeABG5; 

  
CMC2LeftkneeviABG1 = Np8vileftkneenormal001ab(:,1)- 

MgkneeABnormal001(1,1); 
CMC2LeftkneeviABG1 = CMC2LeftkneeviABG1.^2; 
CMC2LeftkneeviABG1 = sum(CMC2LeftkneeviABG1); 
CMC2LeftkneeviABG1 = CMC2LeftkneeviABG1/1005; 
CMC2LeftkneexsABG1 = Np8xsleftkneenormal001ab(:,1)- 

MgkneeABnormal001(1,1); 
CMC2LeftkneexsABG1 = CMC2LeftkneexsABG1.^2; 
CMC2LeftkneexsABG1 = sum(CMC2LeftkneexsABG1); 
CMC2LeftkneexsABG1 = CMC2LeftkneexsABG1/1005; 
CMC2LeftkneeviABG2 = Np8vileftkneenormal001ab(:,2)- 

MgkneeABnormal001(1,2); 
CMC2LeftkneeviABG2 = CMC2LeftkneeviABG2.^2; 
CMC2LeftkneeviABG2 = sum(CMC2LeftkneeviABG2); 
CMC2LeftkneeviABG2 = CMC2LeftkneeviABG2/1005; 
CMC2LeftkneexsABG2 = Np8xsleftkneenormal001ab(:,2)- 

MgkneeABnormal001(1,2); 
CMC2LeftkneexsABG2 = CMC2LeftkneexsABG2.^2; 
CMC2LeftkneexsABG2 = sum(CMC2LeftkneexsABG2); 
CMC2LeftkneexsABG2 = CMC2LeftkneexsABG2/1005; 
CMC2LeftkneeviABG3 = Np8vileftkneenormal001ab(:,3)- 

MgkneeABnormal001(1,3); 
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CMC2LeftkneeviABG3 = CMC2LeftkneeviABG3.^2; 
CMC2LeftkneeviABG3 = sum(CMC2LeftkneeviABG3); 
CMC2LeftkneeviABG3 = CMC2LeftkneeviABG3/1005; 
CMC2LeftkneexsABG3 = Np8xsleftkneenormal001ab(:,3)- 

MgkneeABnormal001(1,3); 
CMC2LeftkneexsABG3 = CMC2LeftkneexsABG3.^2; 
CMC2LeftkneexsABG3 = sum(CMC2LeftkneexsABG3); 
CMC2LeftkneexsABG3 = CMC2LeftkneexsABG3/1005; 
CMC2LeftkneeviABG4 = Np8vileftkneenormal001ab(:,4)- 

MgkneeABnormal001(1,4); 
CMC2LeftkneeviABG4 = CMC2LeftkneeviABG4.^2; 
CMC2LeftkneeviABG4 = sum(CMC2LeftkneeviABG4); 
CMC2LeftkneeviABG4 = CMC2LeftkneeviABG4/1005; 
CMC2LeftkneexsABG4 = Np8xsleftkneenormal001ab(:,4)- 

MgkneeABnormal001(1,4); 
CMC2LeftkneexsABG4 = CMC2LeftkneexsABG4.^2; 
CMC2LeftkneexsABG4 = sum(CMC2LeftkneexsABG4); 
CMC2LeftkneexsABG4 = CMC2LeftkneexsABG4/1005; 
CMC2LeftkneeviABG5 = Np8vileftkneenormal001ab(:,5)- 

MgkneeABnormal001(1,5); 
CMC2LeftkneeviABG5 = CMC2LeftkneeviABG5.^2; 
CMC2LeftkneeviABG5 = sum(CMC2LeftkneeviABG5); 
CMC2LeftkneeviABG5 = CMC2LeftkneeviABG5/1005; 
CMC2LeftkneexsABG5 = Np8xsleftkneenormal001ab(:,5)- 

MgkneeABnormal001(1,5); 
CMC2LeftkneexsABG5 = CMC2LeftkneexsABG5.^2; 
CMC2LeftkneexsABG5 = sum(CMC2LeftkneexsABG5); 
CMC2LeftkneexsABG5 = CMC2LeftkneexsABG5/1005; 

  
CMC2LeftkneeABG1 = CMC2LeftkneeviABG1 + CMC2LeftkneexsABG1; 
CMC2LeftkneeABG2 = CMC2LeftkneeviABG2 + CMC2LeftkneexsABG2; 
CMC2LeftkneeABG3 = CMC2LeftkneeviABG3 + CMC2LeftkneexsABG3; 
CMC2LeftkneeABG4 = CMC2LeftkneeviABG4 + CMC2LeftkneexsABG4; 
CMC2LeftkneeABG5 = CMC2LeftkneeviABG5 + CMC2LeftkneexsABG5; 

  

  
CMC2LeftkneeAB1 = CMC2LeftkneeABG1 + CMC2LeftkneeABG2 + 

CMC2LeftkneeABG3 + CMC2LeftkneeABG4 + CMC2LeftkneeABG5; 

  
CMCleftkneeabp8normal001 = CMCLeftkneeAB1/ CMC2LeftkneeAB1; 
CMCleftkneeabp8normal001 = 1- CMCleftkneeabp8normal001; 
CMCleftkneeabp8normal001 = sqrt(CMCleftkneeabp8normal001) 

  
%%%%leftkneein 

  
% the mean angle at frame f (Mf) between angles measured by the 2 

systems for the gait cycle g 
%Mf = Mf/2;  (2 is P) 

  
MfKNEEG1IN = Np8vileftkneenormal001in(:,1) + 

Np8xsleftkneenormal001in(:,1); 
MfKNEEG1IN = MfKNEEG1IN/2; 
MfKNEEG2IN = Np8vileftkneenormal001in(:,2) + 

Np8xsleftkneenormal001in(:,2); 
MfKNEEG2IN = MfKNEEG2IN/2; 
MfKNEEG3IN = Np8vileftkneenormal001in(:,3) + 

Np8xsleftkneenormal001in(:,3); 
MfKNEEG3IN = MfKNEEG3IN/2; 
MfKNEEG4IN = Np8vileftkneenormal001in(:,4) + 

Np8xsleftkneenormal001in(:,4); 
MfKNEEG4IN = MfKNEEG4IN/2; 
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MfKNEEG5IN = Np8vileftkneenormal001in(:,5) + 

Np8xsleftkneenormal001in(:,5); 
MfKNEEG5IN = MfKNEEG5IN/2; 

  
%% the grand mean (Mg) for the gait cycle “g” among these two 

methods 

  
MgkneeINnormal001 = sum(Np8vileftkneenormal001in)+ 

sum(Np8xsleftkneenormal001in); 
MgkneeINnormal001 = MgkneeINnormal001/202; % devided by 1/2F; 

  
CMCLeftkneeviING1 = Np8vileftkneenormal001in(:,1)- MfKNEEG1IN; 
CMCLeftkneeviING1 = CMCLeftkneeviING1.^2; 
CMCLeftkneeviING1 = sum(CMCLeftkneeviING1); 
CMCLeftkneeviING1 = CMCLeftkneeviING1/505; 
CMCLeftkneexsING1 = Np8xsleftkneenormal001in(:,1)- MfKNEEG1IN; 
CMCLeftkneexsING1 = CMCLeftkneexsING1.^2; 
CMCLeftkneexsING1 = sum(CMCLeftkneexsING1); 
CMCLeftkneexsING1 = CMCLeftkneexsING1/505; 
CMCLeftkneeviING2 = Np8vileftkneenormal001in(:,2)- MfKNEEG2IN; 
CMCLeftkneeviING2 = CMCLeftkneeviING2.^2; 
CMCLeftkneeviING2 = sum(CMCLeftkneeviING2); 
CMCLeftkneeviING2 = CMCLeftkneeviING2/505; 
CMCLeftkneexsING2 = Np8xsleftkneenormal001in(:,2)- MfKNEEG2IN; 
CMCLeftkneexsING2 = CMCLeftkneexsING2.^2; 
CMCLeftkneexsING2 = sum(CMCLeftkneexsING2); 
CMCLeftkneexsING2 = CMCLeftkneexsING2/505; 
CMCLeftkneeviING3 = Np8vileftkneenormal001in(:,3)- MfKNEEG3IN; 
CMCLeftkneeviING3 = CMCLeftkneeviING3.^2; 
CMCLeftkneeviING3 = sum(CMCLeftkneeviING3); 
CMCLeftkneeviING3 = CMCLeftkneeviING3/505; 
CMCLeftkneexsING3 = Np8xsleftkneenormal001in(:,3)- MfKNEEG3IN; 
CMCLeftkneexsING3 = CMCLeftkneexsING3.^2; 
CMCLeftkneexsING3 = sum(CMCLeftkneexsING3); 
CMCLeftkneexsING3 = CMCLeftkneexsING3/505; 
CMCLeftkneeviING4 = Np8vileftkneenormal001in(:,4)- MfKNEEG4IN; 
CMCLeftkneeviING4 = CMCLeftkneeviING4.^2; 
CMCLeftkneeviING4 = sum(CMCLeftkneeviING4); 
CMCLeftkneeviING4 = CMCLeftkneeviING4/505; 
CMCLeftkneexsING4 = Np8xsleftkneenormal001in(:,4)- MfKNEEG4IN; 
CMCLeftkneexsING4 = CMCLeftkneexsING4.^2; 
CMCLeftkneexsING4 = sum(CMCLeftkneexsING4); 
CMCLeftkneexsING4 = CMCLeftkneexsING4/505; 
CMCLeftkneeviING5 = Np8vileftkneenormal001in(:,5)- MfKNEEG5IN; 
CMCLeftkneeviING5 = CMCLeftkneeviING5.^2; 
CMCLeftkneeviING5 = sum(CMCLeftkneeviING5); 
CMCLeftkneeviING5 = CMCLeftkneeviING5/505; 
CMCLeftkneexsING5 = Np8xsleftkneenormal001in(:,5)- MfKNEEG5IN; 
CMCLeftkneexsING5 = CMCLeftkneexsING5.^2; 
CMCLeftkneexsING5 = sum(CMCLeftkneexsING5); 
CMCLeftkneexsING5 = CMCLeftkneexsING5/505; 

  
CMCLeftkneeING1 = CMCLeftkneeviING1 + CMCLeftkneexsING1; 
CMCLeftkneeING2 = CMCLeftkneeviING2 + CMCLeftkneexsING2; 
CMCLeftkneeING3 = CMCLeftkneeviING3 + CMCLeftkneexsING3; 
CMCLeftkneeING4 = CMCLeftkneeviING4 + CMCLeftkneexsING4; 
CMCLeftkneeING5 = CMCLeftkneeviING5 + CMCLeftkneexsING5; 

  
CMCLeftkneeIN1 = CMCLeftkneeING1 + CMCLeftkneeING2 + CMCLeftkneeING3 

+ CMCLeftkneeING4 + CMCLeftkneeING5; 
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CMC2LeftkneeviING1 = Np8vileftkneenormal001in(:,1)- 

MgkneeINnormal001(1,1); 
CMC2LeftkneeviING1 = CMC2LeftkneeviING1.^2; 
CMC2LeftkneeviING1 = sum(CMC2LeftkneeviING1); 
CMC2LeftkneeviING1 = CMC2LeftkneeviING1/1005; 
CMC2LeftkneexsING1 = Np8xsleftkneenormal001in(:,1)- 

MgkneeINnormal001(1,1); 
CMC2LeftkneexsING1 = CMC2LeftkneexsING1.^2; 
CMC2LeftkneexsING1 = sum(CMC2LeftkneexsING1); 
CMC2LeftkneexsING1 = CMC2LeftkneexsING1/1005; 
CMC2LeftkneeviING2 = Np8vileftkneenormal001in(:,2)- 

MgkneeINnormal001(1,2); 
CMC2LeftkneeviING2 = CMC2LeftkneeviING2.^2; 
CMC2LeftkneeviING2 = sum(CMC2LeftkneeviING2); 
CMC2LeftkneeviING2 = CMC2LeftkneeviING2/1005; 
CMC2LeftkneexsING2 = Np8xsleftkneenormal001in(:,2)- 

MgkneeINnormal001(1,2); 
CMC2LeftkneexsING2 = CMC2LeftkneexsING2.^2; 
CMC2LeftkneexsING2 = sum(CMC2LeftkneexsING2); 
CMC2LeftkneexsING2 = CMC2LeftkneexsING2/1005; 
CMC2LeftkneeviING3 = Np8vileftkneenormal001in(:,3)- 

MgkneeINnormal001(1,3); 
CMC2LeftkneeviING3 = CMC2LeftkneeviING3.^2; 
CMC2LeftkneeviING3 = sum(CMC2LeftkneeviING3); 
CMC2LeftkneeviING3 = CMC2LeftkneeviING3/1005; 
CMC2LeftkneexsING3 = Np8xsleftkneenormal001in(:,3)- 

MgkneeINnormal001(1,3); 
CMC2LeftkneexsING3 = CMC2LeftkneexsING3.^2; 
CMC2LeftkneexsING3 = sum(CMC2LeftkneexsING3); 
CMC2LeftkneexsING3 = CMC2LeftkneexsING3/1005; 
CMC2LeftkneeviING4 = Np8vileftkneenormal001in(:,4)- 

MgkneeINnormal001(1,4); 
CMC2LeftkneeviING4 = CMC2LeftkneeviING4.^2; 
CMC2LeftkneeviING4 = sum(CMC2LeftkneeviING4); 
CMC2LeftkneeviING4 = CMC2LeftkneeviING4/1005; 
CMC2LeftkneexsING4 = Np8xsleftkneenormal001in(:,4)- 

MgkneeINnormal001(1,4); 
CMC2LeftkneexsING4 = CMC2LeftkneexsING4.^2; 
CMC2LeftkneexsING4 = sum(CMC2LeftkneexsING4); 
CMC2LeftkneexsING4 = CMC2LeftkneexsING4/1005; 
CMC2LeftkneeviING5 = Np8vileftkneenormal001in(:,5)- 

MgkneeINnormal001(1,5); 
CMC2LeftkneeviING5 = CMC2LeftkneeviING5.^2; 
CMC2LeftkneeviING5 = sum(CMC2LeftkneeviING5); 
CMC2LeftkneeviING5 = CMC2LeftkneeviING5/1005; 
CMC2LeftkneexsING5 = Np8xsleftkneenormal001in(:,5)- 

MgkneeINnormal001(1,5); 
CMC2LeftkneexsING5 = CMC2LeftkneexsING5.^2; 
CMC2LeftkneexsING5 = sum(CMC2LeftkneexsING5); 
CMC2LeftkneexsING5 = CMC2LeftkneexsING5/1005; 

  
CMC2LeftkneeING1 = CMC2LeftkneeviING1 + CMC2LeftkneexsING1; 
CMC2LeftkneeING2 = CMC2LeftkneeviING2 + CMC2LeftkneexsING2; 
CMC2LeftkneeING3 = CMC2LeftkneeviING3 + CMC2LeftkneexsING3; 
CMC2LeftkneeING4 = CMC2LeftkneeviING4 + CMC2LeftkneexsING4; 
CMC2LeftkneeING5 = CMC2LeftkneeviING5 + CMC2LeftkneexsING5; 

  

  
CMC2LeftkneeIN1 = CMC2LeftkneeING1 + CMC2LeftkneeING2 + 

CMC2LeftkneeING3 + CMC2LeftkneeING4 + CMC2LeftkneeING5; 

  
CMCleftkneeinp8normal001 = CMCLeftkneeIN1/ CMC2LeftkneeIN1; 
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CMCleftkneeinp8normal001 = 1- CMCleftkneeinp8normal001; 
CMCleftkneeinp8normal001 = sqrt(CMCleftkneeinp8normal001) 

  

%%%%end of the calculation  
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Appendix 5. A Matlab script used for KAM prediction (joint angle 

obtained directly from Xsens) 

perf= zeros(30,2); 

  
 seed = 11 % best of 300 with 1000f 
% for seed=1:30 
    %rng(0) % good with 500 
    rng(seed) % good with 1999 
%xnm = input/angle for normalspeed 
%tnm = target/moment for normalspeed 
%xPn_1 = angle for participant n at normal speed  
%xPn_2 = angle for participant n at fast speed 
%xPn_3 = angle for participant n at slow speed 
%a = right side knee abduction moment 
%b = left side knee abduction moment 

  
 xP2_1 = xlsread('Formatlab\P2\normal001rightsideangles')'; 
 xP2_1 = xP2_1(:,1:1000); 
 xP2_2 = xlsread('Formatlab\P2\fast001rightsideangles')'; 
 xP2_2 = xP2_2(:,1:1000); 
 xP2_3 = xlsread('Formatlab\P2\slow001rightsideangles')'; 
 xP2_3 = xP2_3(:,1:1000); 
 xP3_1 = xlsread('Formatlab\P3\normal001rightsideangles')'; 
 xP3_1 = xP3_1(:,1:1000); 
 xP3_2 = xlsread('Formatlab\P3\fast001rightsideangles')'; 
 xP3_2 = xP3_2(:,1:1000); 
 xP3_3 = xlsread('Formatlab\P3\slow001rightsideangles')'; 
 xP3_3 = xP3_3(:,1:1000); 
 xP4_1 = xlsread('Formatlab\P4\normal001rightsideangles')'; 
 xP4_1 = xP4_1(:,1:1000); 
 xP4_2 = xlsread('Formatlab\P4\fast001rightsideangles')'; 
 xP4_2 = xP4_2(:,1:1000); 
 xP4_3 = xlsread('Formatlab\P4\slow001rightsideangles')';  
 xP4_3 = xP4_3(:,1:1000); 
 xP5_1 = xlsread('Formatlab\P5\normal001rightsideangles')'; 
 xP5_1 = xP5_1(:,1:1000); 
 xP5_2 = xlsread('Formatlab\P5\fast001rightsideangles')'; 
 xP5_2 = xP5_2(:,1:1000); 
 xP5_3 = xlsread('Formatlab\P5\slow001rightsideangles')'; 
 xP5_3 = xP5_3(:,1:1000); 
 xP6_1 = xlsread('Formatlab\P6\normal001rightsideangles')'; 
 xP6_1 = xP6_1(:,1:1000); 
 xP6_2 = xlsread('Formatlab\P6\fast001rightsideangles')'; 
 xP6_2 = xP6_2(:,1:1000); 
 xP6_3 = xlsread('Formatlab\P6\slow001rightsideangles')'; 
 xP6_3 = xP6_3(:,1:1000); 
 xP9_1 = xlsread('Formatlab\P9\normal001rightsideangles')'; 
 xP9_1 = xP9_1(:,1:1000); 
 xP9_2 = xlsread('Formatlab\P9\fast001rightsideangles')'; 
 xP9_2 = xP9_2(:,1:1000); 
 xP9_3 = xlsread('Formatlab\P9\slow001rightsideangles')'; 
 xP9_3 = xP9_3(:,1:1000); 
 xP11_1 = xlsread('Formatlab\P11\normal001rightsideangles')'; 
 xP11_1 = xP11_1(:,1:1000); 
 xP11_2 = xlsread('Formatlab\P11\fast001rightsideangles')'; 
 xP11_2 = xP11_2(:,1:1000); 
 xP11_3 = xlsread('Formatlab\P11\slow001rightsideangles')'; 
 xP11_3 = xP11_3(:,1:1000); 
 xP12_1 = xlsread('Formatlab\P12\normal001rightsideangles')'; 
 xP12_1 = xP12_1(:,1:1000); 
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 xP12_2 = xlsread('Formatlab\P12\fast001rightsideangles')'; 
 xP12_2 = xP12_2(:,1:1000); 
 xP12_3 = xlsread('Formatlab\P12\slow001rightsideangles')'; 
 xP12_3 = xP12_3(:,1:1000); 
 xP13_1 = xlsread('Formatlab\P13\normal001rightsideangles')'; 
 xP13_1 = xP13_1(:,1:1000); 
 xP13_2 = xlsread('Formatlab\P13\fast001rightsideangles')'; 
 xP13_2 = xP13_2(:,1:1000); 
 xP13_3 = xlsread('Formatlab\P13\slow001rightsideangles')'; 
 xP13_3 = xP13_3(:,1:1000); 
 xP14_1 = xlsread('Formatlab\P14\normal001rightsideangles')'; 
 xP14_1 = xP14_1(:,1:1000); 
 xP14_2 = xlsread('Formatlab\P14\fast001rightsideangles')'; 
 xP14_2 = xP14_2(:,1:1000); 
 xP14_3 = xlsread('Formatlab\P14\slow001rightsideangles')'; 
 xP14_3 = xP14_3(:,1:1000); 
 xP15_1 = xlsread('Formatlab\P15\normal001rightsideangles')'; 
 xP15_1 = xP15_1(:,1:1000); 
 xP15_2 = xlsread('Formatlab\P15\fast001rightsideangles')'; 
 xP15_2 = xP15_2(:,1:1000); 
 xP15_3 = xlsread('Formatlab\P15\slow001rightsideangles')'; 
 xP15_3 = xP15_3(:,1:1000); 
 xP16_1 = xlsread('Formatlab\P16\normal001rightsideangles')'; 
 xP16_1 = xP16_1(:,1:1000); 
 xP16_2 = xlsread('Formatlab\P16\fast001rightsideangles')'; 
 xP16_2 = xP16_2(:,1:1000); 
 xP16_3 = xlsread('Formatlab\P16\slow001rightsideangles')'; 
 xP16_3 = xP16_3(:,1:1000); 
 xP17_1 = xlsread('Formatlab\P17\normal001rightsideangles')'; 
 xP17_1 = xP17_1(:,1:1000); 
 xP17_2 = xlsread('Formatlab\P17\fast001rightsideangles')'; 
 xP17_2 = xP17_2(:,1:1000); 
 xP17_3 = xlsread('Formatlab\P17\slow001rightsideangles')'; 
 xP17_3 = xP17_3(:,1:1000); 
 xP18_1 = xlsread('Formatlab\P18\normal001rightsideangles')'; 
 xP18_1 = xP18_1(:,1:1000); 
 xP18_2 = xlsread('Formatlab\P18\fast001rightsideangles')'; 
 xP18_2 = xP18_2(:,1:1000); 
 xP18_3 = xlsread('Formatlab\P18\slow001rightsideangles')'; 
 xP18_3 = xP18_3(:,1:1000); 
 xP8_1 = xlsread('Formatlab\P8\normal001rightsideangles')'; 
 xP8_1 = xP8_1(:,1:1000); 
 xP8_2 = xlsread('Formatlab\P8\fast001rightsideangles')'; 
 xP8_2 = xP8_2(:,1:1000); 
 xP8_3 = xlsread('Formatlab\P8\slow001rightsideangles')'; 
 xP8_3 = xP8_3(:,1:1000); 

  

  
 x1 = [xP2_1 xP2_2 xP2_3 xP3_1 xP3_2 xP3_3 xP4_1 xP4_2 xP4_3 xP5_1 

xP5_2 xP5_3 xP6_1 xP6_2 xP6_3 xP9_1 xP9_2 xP9_3 xP11_1 xP11_2 xP11_3 

xP12_1 xP12_2 xP12_3 xP13_1 xP13_2 xP13_3 xP14_1 xP14_2 xP14_3 

xP15_1 xP15_2 xP15_3 xP16_1 xP16_2 xP16_3 xP17_1 xP17_2 xP17_3 

xP18_1 xP18_2 xP18_3 xP8_1 xP8_2 xP8_3]; 
 x2 = x1; 

  

  

  
 tP2_1a = xlsread('Formatlab\P2\normal001rightkneemo')'; 
 tP2_1a = tP2_1a(:,1:1000); 
 tP2_2a = xlsread('Formatlab\P2\fast001rightkneemo')'; 
 tP2_2a = tP2_2a(:,1:1000); 
 tP2_3a = xlsread('Formatlab\P2\slow001rightkneemo')'; 
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 tP2_3a = tP2_3a(:,1:1000); 
 tP3_1a = xlsread('Formatlab\P3\normal001rightkneemo')'; 
 tP3_1a = tP3_1a(:,1:1000); 
 tP3_2a = xlsread('Formatlab\P3\fast001rightkneemo')'; 
 tP3_2a = tP3_2a(:,1:1000); 
 tP3_3a = xlsread('Formatlab\P3\slow001rightkneemo')'; 
 tP3_3a = tP3_3a(:,1:1000); 
 tP4_1a = xlsread('Formatlab\P4\normal001rightkneemo')'; 
 tP4_1a = tP4_1a(:,1:1000); 
 tP4_2a = xlsread('Formatlab\P4\fast001rightkneemo')'; 
 tP4_2a = tP4_2a(:,1:1000); 
 tP4_3a = xlsread('Formatlab\P4\slow001rightkneemo')'; 
 tP4_3a = tP4_3a(:,1:1000); 
 tP5_1a = xlsread('Formatlab\P5\normal001rightkneemo')'; 
 tP5_1a = tP5_1a(:,1:1000); 
 tP5_2a = xlsread('Formatlab\P5\fast001rightkneemo')'; 
 tP5_2a = tP5_2a(:,1:1000); 
 tP5_3a = xlsread('Formatlab\P5\slow001rightkneemo')'; 
 tP5_3a = tP5_3a(:,1:1000); 
 tP6_1a = xlsread('Formatlab\P6\normal001rightkneemo')'; 
 tP6_1a = tP6_1a(:,1:1000); 
 tP6_2a = xlsread('Formatlab\P6\fast001rightkneemo')'; 
 tP6_2a = tP6_2a(:,1:1000); 
 tP6_3a = xlsread('Formatlab\P6\slow001rightkneemo')'; 
 tP6_3a = tP6_3a(:,1:1000); 
 tP9_1a = xlsread('Formatlab\P9\normal001rightkneemo')'; 
 tP9_1a = tP9_1a(:,1:1000); 
 tP9_2a = xlsread('Formatlab\P9\fast001rightkneemo')'; 
 tP9_2a = tP9_2a(:,1:1000); 
 tP9_3a = xlsread('Formatlab\P9\slow001rightkneemo')'; 
 tP9_3a = tP9_3a(:,1:1000); 
 tP11_1a = xlsread('Formatlab\P11\normal001rightkneemo')'; 
 tP11_1a = tP11_1a(:,1:1000); 
 tP11_2a = xlsread('Formatlab\P11\fast001rightkneemo')'; 
 tP11_2a = tP11_2a(:,1:1000); 
 tP11_3a = xlsread('Formatlab\P11\slow001rightkneemo')'; 
 tP11_3a = tP11_3a(:,1:1000); 
 tP12_1a = xlsread('Formatlab\P12\normal001rightkneemo')'; 
 tP12_1a = tP12_1a(:,1:1000); 
 tP12_2a = xlsread('Formatlab\P12\fast001rightkneemo')'; 
 tP12_2a = tP12_2a(:,1:1000); 
 tP12_3a = xlsread('Formatlab\P12\slow001rightkneemo')'; 
 tP12_3a = tP12_3a(:,1:1000); 
 tP13_1a = xlsread('Formatlab\P13\normal001rightkneemo')'; 
 tP13_1a = tP13_1a(:,1:1000); 
 tP13_2a = xlsread('Formatlab\P13\fast001rightkneemo')'; 
 tP13_2a = tP13_2a(:,1:1000); 
 tP13_3a = xlsread('Formatlab\P13\slow001rightkneemo')'; 
 tP13_3a = tP13_3a(:,1:1000); 
 tP14_1a = xlsread('Formatlab\P14\normal001rightkneemo')'; 
 tP14_1a = tP14_1a(:,1:1000); 
 tP14_2a = xlsread('Formatlab\P14\fast001rightkneemo')'; 
 tP14_2a = tP14_2a(:,1:1000); 
 tP14_3a = xlsread('Formatlab\P14\slow001rightkneemo')'; 
 tP14_3a = tP14_3a(:,1:1000); 
 tP15_1a = xlsread('Formatlab\P15\normal001rightkneemo')'; 
 tP15_1a = tP15_1a(:,1:1000); 
 tP15_2a = xlsread('Formatlab\P15\fast001rightkneemo')'; 
 tP15_2a = tP15_2a(:,1:1000); 
 tP15_3a = xlsread('Formatlab\P15\slow001rightkneemo')'; 
 tP15_3a = tP15_3a(:,1:1000); 
 tP16_1a = xlsread('Formatlab\P16\normal001rightkneemo')'; 
 tP16_1a = tP16_1a(:,1:1000); 
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 tP16_2a = xlsread('Formatlab\P16\fast001rightkneemo')'; 
 tP16_2a = tP16_2a(:,1:1000); 
 tP16_3a = xlsread('Formatlab\P16\slow001rightkneemo')'; 
 tP16_3a = tP16_3a(:,1:1000); 
 tP17_1a = xlsread('Formatlab\P17\normal001rightkneemo')'; 
 tP17_1a = tP17_1a(:,1:1000); 
 tP17_2a = xlsread('Formatlab\P17\fast001rightkneemo')'; 
 tP17_2a = tP17_2a(:,1:1000); 
 tP17_3a = xlsread('Formatlab\P17\slow001rightkneemo')'; 
 tP17_3a = tP17_3a(:,1:1000); 
 tP18_1a = xlsread('Formatlab\P18\normal001rightkneemo')'; 
 tP18_1a = tP18_1a(:,1:1000); 
 tP18_2a = xlsread('Formatlab\P18\fast001rightkneemo')'; 
 tP18_2a = tP18_2a(:,1:1000); 
 tP18_3a = xlsread('Formatlab\P18\slow001rightkneemo')'; 
 tP18_3a = tP18_3a(:,1:1000); 
 tP8_1a = xlsread('Formatlab\P8\normal001rightkneemo')'; 
 tP8_1a = tP8_1a(:,1:1000); 
 tP8_2a = xlsread('Formatlab\P8\fast001rightkneemo')'; 
 tP8_2a = tP8_2a(:,1:1000); 
 tP8_3a = xlsread('Formatlab\P8\slow001rightkneemo')'; 
 tP8_3a = tP8_3a(:,1:1000); 

  

  
 t1 = [tP2_1a tP2_2a tP2_3a tP3_1a tP3_2a tP3_3a tP4_1a tP4_2a 

tP4_3a tP5_1a tP5_2a tP5_3a tP6_1a tP6_2a tP6_3a tP9_1a tP9_2a 

tP9_3a tP11_1a tP11_2a tP11_3a tP12_1a tP12_2a tP12_3a tP13_1a 

tP13_2a tP13_3a tP14_1a tP14_2a tP14_3a tP15_1a tP15_2a tP15_3a 

tP16_1a tP16_2a tP16_3a tP17_1a tP17_2a tP17_3a tP18_1a tP18_2a 

tP18_3a tP8_1a tP8_2a tP8_3a]; 
 t2 = t1; 

  
  % Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 5; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm = fitnet(hiddenLayerSize,trainFcn); 

    netnm.input.processFcns = {'removeconstantrows','mapminmax'}; 

    netnm.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnm.divideFcn = 'divideind'; 
    netnm.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 86.6/100; 
%     net.divideParam.valRatio = 6.6/100; 
%     net.divideParam.testRatio = 6.6/100; 
%% 
    netnm.divideParam.trainInd = [1:round(1/15*13*size(x2,2))]; 
    netnm.divideParam.valInd =  [round(1/15*13*size(x2,2))+1 : 

round(1/15*size(x2,2))]; 
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    netnm.divideParam.testInd = [round(1/15*size(x2,2))+1 : 

size(x2,2)]; 
%% 
    netnm.performFcn = 'mse';  % Mean Squared Error 
    netnm.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm,tr] = trainlm(netnm,x2,t2); 

  
% Test the Network 
y2 = netnm(x2); 
enm = gsubtract(t2,y2); 
performance1 = perform(netnm,t2,y2) 

  
% View the Network 
% view(net) 

  

         
    seed 
    testPerformance = perform(netnm,performance1,y2); 

     
    perf(seed,1) = seed; 
    perf(seed,2) = testPerformance; 
    %[seed testPerformance] 

     
t2train = t2(1:round(1/15*13*size(t2,2))); 
y2train = y2(1:round(1/15*13*size(y2,2))); 

  
%%  
%t13test = t13(:,42030:45000); 
t2test = t2(:,14*3000+1:45000); 
y2test = y2(:,14*3000+1:45000); 
RMSE_Normal = sqrt(mean((t2test(1:1000)-y2test(1:1000)).^2)) 
RMSE_Fast =   sqrt(mean((t2test(1001:2000)-y2test(1001:2000)).^2)) 
RMSE_Slow =   sqrt(mean((t2test(2001:3000)-y2test(2001:3000)).^2)) 
RMSE_Train =   sqrt(mean((t2train-y2train).^2)) 
%% 

  
NRMSEnormal = RMSE_Normal/(max(y2test(1:1000))-min(y2test(1:1000))) 
NRMSEfast = RMSE_Fast/(max(y2test(1001:2000))-

min(y2test(1001:2000))) 
NRMSEslow = RMSE_Slow/(max(y2test(2001:3000))-

min(y2test(2001:3000))) 

  

  
%t14val = t14(:,39000:42000); 
%y14val = y14(:,39000:42000); 

  
%t14ns = [t14val t14test]; 
%y14ns = [y14val y14test]; 
  
% Plots 

  
% figure 
% plot (t2test) 
% hold on 
% plot (y2test) 

  
% figure 
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% plot (t16) 
% hold on 
% plot (y16) 
%  
% figure 
% plot (t16ns) 
% hold on 
% plot (y16ns) 

  

  
% end 
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Appendix 6. A Matlab script used for data extraction and up 

sampled 

%%% This script is for extracting Xsens data from the starting point 
%(frame 0)%%%  
% each participant (20 in total), 1900 datapoint per trial (then 

extract 2000 upsampled datapoint)  
% only 1 trial will be extract for each speed 
% some of these trials were not at the same order as in the very 

first data 
% collection, to see the original file the researcher needs to look 

up in 
% the original data sheet 
% to be used in joint moment prediction using an artificial neural 

network 

  
% the first 9 columns are the right side angles and the other 9 

columns are the left side angles 
% the columns are as the following order   
% Right Hip Abduction/Adduction, Hip Internal/External Rotation, Hip 

Flexion/Extension   
% Right Knee Abduction/Adduction, Knee Internal/External Rotation, 

Knee Flexion/Extension    
% Right Ankle Abduction/Adduction, Ankle Internal/External Rotation, 

Ankle Dorsiflexion/Plantarflexion   
% Left Hip Abduction/Adduction, Hip Internal/External Rotation, Hip 

Flexion/Extension    
% Left Knee Abduction/Adduction, Knee Internal/External Rotation, 

Knee Flexion/Extension     
% Left Ankle Abduction/Adduction, Ankle Internal/External Rotation, 

Ankle Dorsiflexion/Plantarflexion 

  
% the second part of the script is to upsample the extracted files 

from 100 Hz to 120 Hz 
% to be equivalent with the HBM files 

  
%%Participant2 

  
p2002xs = xlsread('Participant2\normal-002angle'); 
p2002xsrt = p2002xs(2:1901,1:9); 
p2002xslf = p2002xs(2:1901,10:18); 
p2006xs = xlsread('Participant2\fast-001angle'); 
p2006xsrt = p2006xs(2:1901,1:9); 
p2006xslf = p2006xs(2:1901,10:18); 
p2009xs = xlsread('Participant2\slow-001angle'); 
p2009xsrt = p2009xs(2:1901,1:9); 
p2009xslf = p2009xs(2:1901,10:18); 

  
%Participant3 

  
p3001xs = xlsread('Participant3\normal-001angle'); 
p3001xsrt = p3001xs(2:1901,1:9); 
p3001xslf = p3001xs(2:1901,10:18); 
p3006xs = xlsread('Participant3\fast-001angle'); 
p3006xsrt = p3006xs(2:1901,1:9); 
p3006xslf = p3006xs(2:1901,10:18); 
p3009xs = xlsread('Participant3\slow-001angle'); 
p3009xsrt = p3009xs(2:1901,1:9); 
p3009xslf = p3009xs(2:1901,10:18); 
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%Participant4 

  
p4001xs = xlsread('Participant4\normal-001angle'); 
p4001xsrt = p4001xs(2:1901,1:9); 
p4001xslf = p4001xs(2:1901,10:18); 
p4006xs = xlsread('Participant4\fast-001angle'); 
p4006xsrt = p4006xs(2:1901,1:9); 
p4006xslf = p4006xs(2:1901,10:18); 
p4009xs = xlsread('Participant4\slow-001angle'); 
p4009xsrt = p4009xs(2:1901,1:9); 
p4009xslf = p4009xs(2:1901,10:18); 

  
%Participant5 

  
p5001xs = xlsread('Participant5\normal-001angle'); 
p5001xsrt = p5001xs(2:1901,1:9); 
p5001xslf = p5001xs(2:1901,10:18); 
p5006xs = xlsread('Participant5\fast-001angle'); 
p5006xsrt = p5006xs(2:1901,1:9); 
p5006xslf = p5006xs(2:1901,10:18); 
p5009xs = xlsread('Participant5\slow-001angle'); 
p5009xsrt = p5009xs(2:1901,1:9); 
p5009xslf = p5009xs(2:1901,10:18); 

  
%Participant6 

  
p6001xs = xlsread('Participant6\normal-001angle'); 
p6001xsrt = p6001xs(2:1901,1:9); 
p6001xslf = p6001xs(2:1901,10:18); 
p6006xs = xlsread('Participant6\fast-001angle'); 
p6006xsrt = p6006xs(2:1901,1:9); 
p6006xslf = p6006xs(2:1901,10:18); 
p6009xs = xlsread('Participant6\slow-001angle'); 
p6009xsrt = p6009xs(2:1901,1:9); 
p6009xslf = p6009xs(2:1901,10:18); 

  
%Participant8 

  
p8001xs = xlsread('Participant8\normal-001angle'); 
p8001xsrt = p8001xs(2:1901,1:9); 
p8001xslf = p8001xs(2:1901,10:18); 
p8006xs = xlsread('Participant8\fast-001angle'); 
p8006xsrt = p8006xs(2:1901,1:9); 
p8006xslf = p8006xs(2:1901,10:18); 
p8009xs = xlsread('Participant8\slow-001angle'); 
p8009xsrt = p8009xs(2:1901,1:9); 
p8009xslf = p8009xs(2:1901,10:18); 

  
%Participant9 

  
p9001xs = xlsread('Participant9\normal-001angle'); 
p9001xsrt = p9001xs(2:1901,1:9); 
p9001xslf = p9001xs(2:1901,10:18); 
p9006xs = xlsread('Participant9\fast-001angle'); 
p9006xsrt = p9006xs(2:1901,1:9); 
p9006xslf = p9006xs(2:1901,10:18); 
p9009xs = xlsread('Participant9\slow-001angle'); 
p9009xsrt = p9009xs(2:1901,1:9); 
p9009xslf = p9009xs(2:1901,10:18); 

  
%Participant11 
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p11001xs = xlsread('Participant11\normal-001angle'); 
p11001xsrt = p11001xs(2:1901,1:9); 
p11001xslf = p11001xs(2:1901,10:18); 
p11006xs = xlsread('Participant11\fast-001angle'); 
p11006xsrt = p11006xs(2:1901,1:9); 
p11006xslf = p11006xs(2:1901,10:18); 
p11009xs = xlsread('Participant11\slow-001angle'); 
p11009xsrt = p11009xs(2:1901,1:9); 
p11009xslf = p11009xs(2:1901,10:18); 

  
%Participant12 

  
p12001xs = xlsread('Participant12\normal-001angle'); 
p12001xsrt = p12001xs(2:1901,1:9); 
p12001xslf = p12001xs(2:1901,10:18); 
p12006xs = xlsread('Participant12\fast-001angle'); 
p12006xsrt = p12006xs(2:1901,1:9); 
p12006xslf = p12006xs(2:1901,10:18); 
p12009xs = xlsread('Participant12\slow-001angle'); 
p12009xsrt = p12009xs(2:1901,1:9); 
p12009xslf = p12009xs(2:1901,10:18); 

  
%Participant14 

  
p14001xs = xlsread('Participant14\normal-001angle'); 
p14001xsrt = p14001xs(2:1901,1:9); 
p14001xslf = p14001xs(2:1901,10:18); 
p14006xs = xlsread('Participant14\fast-001angle'); 
p14006xsrt = p14006xs(2:1901,1:9); 
p14006xslf = p14006xs(2:1901,10:18); 
p14009xs = xlsread('Participant14\slow-001angle'); 
p14009xsrt = p14009xs(2:1901,1:9); 
p14009xslf = p14009xs(2:1901,10:18); 

  
%Participant15 

  
p15001xs = xlsread('Participant15\normal-001angle'); 
p15001xsrt = p15001xs(2:1901,1:9); 
p15001xslf = p15001xs(2:1901,10:18); 
p15006xs = xlsread('Participant15\fast-001angle'); 
p15006xsrt = p15006xs(2:1901,1:9); 
p15006xslf = p15006xs(2:1901,10:18); 
p15009xs = xlsread('Participant15\slow-001angle'); 
p15009xsrt = p15009xs(2:1901,1:9); 
p15009xslf = p15009xs(2:1901,10:18); 

  
%Participant16 

  
p16001xs = xlsread('Participant16\normal-001angle'); 
p16001xsrt = p16001xs(2:1901,1:9); 
p16001xslf = p16001xs(2:1901,10:18); 
p16006xs = xlsread('Participant16\fast-001angle'); 
p16006xsrt = p16006xs(2:1901,1:9); 
p16006xslf = p16006xs(2:1901,10:18); 
p16009xs = xlsread('Participant16\slow-001angle'); 
p16009xsrt = p16009xs(2:1901,1:9); 
p16009xslf = p16009xs(2:1901,10:18); 

  
%Participant17 
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p17001xs = xlsread('Participant17\normal-001angle'); 
p17001xsrt = p17001xs(2:1901,1:9); 
p17001xslf = p17001xs(2:1901,10:18); 
p17006xs = xlsread('Participant17\fast-001angle'); 
p17006xsrt = p17006xs(2:1901,1:9); 
p17006xslf = p17006xs(2:1901,10:18); 
p17009xs = xlsread('Participant17\slow-001angle'); 
p17009xsrt = p17009xs(2:1901,1:9); 
p17009xslf = p17009xs(2:1901,10:18); 

  
%Participant18 

  
p18001xs = xlsread('Participant18\normal-001angle'); 
p18001xsrt = p18001xs(2:1901,1:9); 
p18001xslf = p18001xs(2:1901,10:18); 
p18006xs = xlsread('Participant18\fast-001angle'); 
p18006xsrt = p18006xs(2:1901,1:9); 
p18006xslf = p18006xs(2:1901,10:18); 
p18009xs = xlsread('Participant18\slow-001angle'); 
p18009xsrt = p18009xs(2:1901,1:9); 
p18009xslf = p18009xs(2:1901,10:18); 

  
%Participant21 

  
p21001xs = xlsread('Participant21\normal-001angle'); 
p21001xsrt = p21001xs(2:1901,1:9); 
p21001xslf = p21001xs(2:1901,10:18); 
p21006xs = xlsread('Participant21\fast-001angle'); 
p21006xsrt = p21006xs(2:1901,1:9); 
p21006xslf = p21006xs(2:1901,10:18); 
p21009xs = xlsread('Participant21\slow-001angle'); 
p21009xsrt = p21009xs(2:1901,1:9); 
p21009xslf = p21009xs(2:1901,10:18); 

  
%Participant22 

  
p22001xs = xlsread('Participant22\normal-001angle'); 
p22001xsrt = p22001xs(2:1901,1:9); 
p22001xslf = p22001xs(2:1901,10:18); 
p22006xs = xlsread('Participant22\fast-001angle'); 
p22006xsrt = p22006xs(2:1901,1:9); 
p22006xslf = p22006xs(2:1901,10:18); 
p22009xs = xlsread('Participant22\slow-001angle'); 
p22009xsrt = p22009xs(2:1901,1:9); 
p22009xslf = p22009xs(2:1901,10:18); 
p22009xxs = xlsread('Participant22\slow03-001angle'); 
p22009xxsrt = p22009xxs(2:1901,1:9); 
p22009xxslf = p22009xxs(2:1901,10:18); 

  
%Participant23 

  
p23001xs = xlsread('Participant23\normal-001angle'); 
p23001xsrt = p23001xs(2:1901,1:9); 
p23001xslf = p23001xs(2:1901,10:18); 
p23006xs = xlsread('Participant23\fast01-001angle'); 
p23006xsrt = p23006xs(2:1901,1:9); 
p23006xslf = p23006xs(2:1901,10:18); 
p23009xs = xlsread('Participant23\slow01-001angle'); 
p23009xsrt = p23009xs(2:1901,1:9); 
p23009xslf = p23009xs(2:1901,10:18); 
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%Participant24 

  
p24002xs = xlsread('Participant24\normal-002angle'); 
p24002xsrt = p24002xs(2:1901,1:9); 
p24002xslf = p24002xs(2:1901,10:18); 
p24006xs = xlsread('Participant24\fast-001angle'); 
p24006xsrt = p24006xs(2:1901,1:9); 
p24006xslf = p24006xs(2:1901,10:18); 
p24009xs = xlsread('Participant24\slow-001angle'); 
p24009xsrt = p24009xs(2:1901,1:9); 
p24009xslf = p24009xs(2:1901,10:18); 

  
%Participant25 

  
p25002xs = xlsread('Participant25\normal-002angle'); 
p25002xsrt = p25002xs(2:1901,1:9); 
p25002xslf = p25002xs(2:1901,10:18); 
p25006xs = xlsread('Participant25\fast-001angle'); 
p25006xsrt = p25006xs(2:1901,1:9); 
p25006xslf = p25006xs(2:1901,10:18); 
p25009xs = xlsread('Participant25\slow-001angle'); 
p25009xsrt = p25009xs(2:1901,1:9); 
p25009xslf = p25009xs(2:1901,10:18); 

  
%Participant28 

  
p28001xs = xlsread('Participant28\walk001-001angle'); 
p28001xsrt = p28001xs(2:1901,1:9); 
p28001xslf = p28001xs(2:1901,10:18); 
p28006xs = xlsread('Participant28\fast001-001angle'); 
p28006xsrt = p28006xs(2:1901,1:9); 
p28006xslf = p28006xs(2:1901,10:18); 
p28009xs = xlsread('Participant28\slow001-001angle'); 
p28009xsrt = p28009xs(2:1901,1:9); 
p28009xslf = p28009xs(2:1901,10:18); 

  
%% upsampling 

  
t  = 1:1:1900; 
tI = 1:0.833:1900; 

  
% x2 = spline(t,x,tI); 

  
p2002xsrt = spline(t,p2002xsrt',tI); 
p2002xslf = spline(t,p2002xslf',tI); 
p2006xsrt = spline(t,p2006xsrt',tI); 
p2006xslf = spline(t,p2006xslf',tI); 
p2009xsrt = spline(t,p2009xsrt',tI); 
p2009xslf = spline(t,p2009xslf',tI); 

  
p3001xsrt = spline(t,p3001xsrt',tI); 
p3001xslf = spline(t,p3001xslf',tI); 
p3006xsrt = spline(t,p3006xsrt',tI); 
p3006xslf = spline(t,p3006xslf',tI); 
p3009xsrt = spline(t,p3009xsrt',tI); 
p3009xslf = spline(t,p3009xslf',tI); 

  
p4001xsrt = spline(t,p4001xsrt',tI); 
p4001xslf = spline(t,p4001xslf',tI); 
p4006xsrt = spline(t,p4006xsrt',tI); 
p4006xslf = spline(t,p4006xslf',tI); 
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p4009xsrt = spline(t,p4009xsrt',tI); 
p4009xslf = spline(t,p4009xslf',tI); 

  

p5001xsrt = spline(t,p5001xsrt',tI); 
p5001xslf = spline(t,p5001xslf',tI); 
p5006xsrt = spline(t,p5006xsrt',tI); 
p5006xslf = spline(t,p5006xslf',tI); 
p5009xsrt = spline(t,p5009xsrt',tI); 
p5009xslf = spline(t,p5009xslf',tI); 

  
p6001xsrt = spline(t,p6001xsrt',tI); 
p6001xslf = spline(t,p6001xslf',tI); 
p6006xsrt = spline(t,p6006xsrt',tI); 
p6006xslf = spline(t,p6006xslf',tI); 
p6009xsrt = spline(t,p6009xsrt',tI); 
p6009xslf = spline(t,p6009xslf',tI); 

  
p8001xsrt = spline(t,p8001xsrt',tI); 
p8001xslf = spline(t,p8001xslf',tI); 
p8006xsrt = spline(t,p8006xsrt',tI); 
p8006xslf = spline(t,p8006xslf',tI); 
p8009xsrt = spline(t,p8009xsrt',tI); 
p8009xslf = spline(t,p8009xslf',tI); 

  
p9001xsrt = spline(t,p9001xsrt',tI); 
p9001xslf = spline(t,p9001xslf',tI); 
p9006xsrt = spline(t,p9006xsrt',tI); 
p9006xslf = spline(t,p9006xslf',tI); 
p9009xsrt = spline(t,p9009xsrt',tI); 
p9009xslf = spline(t,p9009xslf',tI); 

  
p11001xsrt = spline(t,p11001xsrt',tI); 
p11001xslf = spline(t,p11001xslf',tI); 
p11006xsrt = spline(t,p11006xsrt',tI); 
p11006xslf = spline(t,p11006xslf',tI); 
p11009xsrt = spline(t,p11009xsrt',tI); 
p11009xslf = spline(t,p11009xslf',tI); 

  
p12001xsrt = spline(t,p12001xsrt',tI); 
p12001xslf = spline(t,p12001xslf',tI); 
p12006xsrt = spline(t,p12006xsrt',tI); 
p12006xslf = spline(t,p12006xslf',tI); 
p12009xsrt = spline(t,p12009xsrt',tI); 
p12009xslf = spline(t,p12009xslf',tI); 

  
p14001xsrt = spline(t,p14001xsrt',tI); 
p14001xslf = spline(t,p14001xslf',tI); 
p14006xsrt = spline(t,p14006xsrt',tI); 
p14006xslf = spline(t,p14006xslf',tI); 
p14009xsrt = spline(t,p14009xsrt',tI); 
p14009xslf = spline(t,p14009xslf',tI); 

  
p15001xsrt = spline(t,p15001xsrt',tI); 
p15001xslf = spline(t,p15001xslf',tI); 
p15006xsrt = spline(t,p15006xsrt',tI); 
p15006xslf = spline(t,p15006xslf',tI); 
p15009xsrt = spline(t,p15009xsrt',tI); 
p15009xslf = spline(t,p15009xslf',tI); 

  
p16001xsrt = spline(t,p16001xsrt',tI); 
p16001xslf = spline(t,p16001xslf',tI); 
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p16006xsrt = spline(t,p16006xsrt',tI); 
p16006xslf = spline(t,p16006xslf',tI); 
p16009xsrt = spline(t,p16009xsrt',tI); 
p16009xslf = spline(t,p16009xslf',tI); 

  
p17001xsrt = spline(t,p17001xsrt',tI); 
p17001xslf = spline(t,p17001xslf',tI); 
p17006xsrt = spline(t,p17006xsrt',tI); 
p17006xslf = spline(t,p17006xslf',tI); 
p17009xsrt = spline(t,p17009xsrt',tI); 
p17009xslf = spline(t,p17009xslf',tI); 

  
p18001xsrt = spline(t,p18001xsrt',tI); 
p18001xslf = spline(t,p18001xslf',tI); 
p18006xsrt = spline(t,p18006xsrt',tI); 
p18006xslf = spline(t,p18006xslf',tI); 
p18009xsrt = spline(t,p18009xsrt',tI); 
p18009xslf = spline(t,p18009xslf',tI); 

  
p21001xsrt = spline(t,p21001xsrt',tI); 
p21001xslf = spline(t,p21001xslf',tI); 
p21006xsrt = spline(t,p21006xsrt',tI); 
p21006xslf = spline(t,p21006xslf',tI); 
p21009xsrt = spline(t,p21009xsrt',tI); 
p21009xslf = spline(t,p21009xslf',tI); 

  
p22001xsrt = spline(t,p22001xsrt',tI); 
p22001xslf = spline(t,p22001xslf',tI); 
p22006xsrt = spline(t,p22006xsrt',tI); 
p22006xslf = spline(t,p22006xslf',tI); 
p22009xsrt = spline(t,p22009xsrt',tI); 
p22009xslf = spline(t,p22009xslf',tI); 
p22009xxsrt = spline(t,p22009xxsrt',tI); 
p22009xxslf = spline(t,p22009xxslf',tI); 

  
p23001xsrt = spline(t,p23001xsrt',tI); 
p23001xslf = spline(t,p23001xslf',tI); 
p23006xsrt = spline(t,p23006xsrt',tI); 
p23006xslf = spline(t,p23006xslf',tI); 
p23009xsrt = spline(t,p23009xsrt',tI); 
p23009xslf = spline(t,p23009xslf',tI); 

  
p24002xsrt = spline(t,p24002xsrt',tI); 
p24002xslf = spline(t,p24002xslf',tI); 
p24006xsrt = spline(t,p24006xsrt',tI); 
p24006xslf = spline(t,p24006xslf',tI); 
p24009xsrt = spline(t,p24009xsrt',tI); 
p24009xslf = spline(t,p24009xslf',tI); 

  
p25002xsrt = spline(t,p25002xsrt',tI); 
p25002xslf = spline(t,p25002xslf',tI); 
p25006xsrt = spline(t,p25006xsrt',tI); 
p25006xslf = spline(t,p25006xslf',tI); 
p25009xsrt = spline(t,p25009xsrt',tI); 
p25009xslf = spline(t,p25009xslf',tI); 
p28001xsrt = spline(t,p28001xsrt',tI); 
p28001xslf = spline(t,p28001xslf',tI); 
p28006xsrt = spline(t,p28006xsrt',tI); 
p28006xslf = spline(t,p28006xslf',tI); 
p28009xsrt = spline(t,p28009xsrt',tI); 
p28009xslf = spline(t,p28009xslf',tI); 
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Appendix 7. A Matlab script used for leave-one-out cross validation 

%%creating matrix for shuffle 
%%% from xtp 
%row 1-9 = xnormal, row 10 = tnormal 
%row 11-19 = xfast, row 20 = tfast 
%row 21-29 = xslow, row 30 = tslow 
%saved as 'shuffle_2.mat' 

  
load 'jointmoments_shuffle.mat'; 
load 'xsensdataextraction_shuffle.mat'; 

  
%1 
xnormalp28 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p16001xsrt' p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' 

p23001xsrt' p24002xsrt' p25002xsrt' p28001xsrt']; 

  
xfastp28 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 

p16006xsrt' p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' 

p23006xsrt' p24006xsrt' p25006xsrt' p28006xsrt']; 

  
xslowp28 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 

p16009xsrt' p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' 

p23009xsrt' p24009xsrt' p25009xsrt' p28009xsrt']; 

  
tnormalp28 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p16001' p17001' p18001' p21001' p22001' 

p23001' p24002' p25001' p28001']; 

  
tfastp28 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p16006' p17006' p18006' p21006' p22006' p23006' 

p24006' p25006' p28006']; 

  
tslowp28 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p16009' p17009' p18009' p21009' p22009' p23009' 

p24009' p25009' p28009']; 

  
xtp28 = [xnormalp28; tnormalp28; xfastp28; tfastp28; xslowp28; 

tslowp28]; 

  
%2 
xnormalp25 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p16001xsrt' p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' 

p23001xsrt' p24002xsrt' p28001xsrt' p25002xsrt']; 

  
xfastp25 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 

p16006xsrt' p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' 

p23006xsrt' p24006xsrt' p28006xsrt' p25006xsrt']; 

  
xslowp25 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 

p16009xsrt' p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' 

p23009xsrt' p24009xsrt' p28009xsrt' p25009xsrt']; 
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tnormalp25 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p16001' p17001' p18001' p21001' p22001' 

p23001' p24002' p28001' p25001']; 

  
tfastp25 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p16006' p17006' p18006' p21006' p22006' p23006' 

p24006' p28006' p25006']; 

  
tslowp25 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p16009' p17009' p18009' p21009' p22009' p23009' 

p24009' p28009' p25009']; 

  
xtp25 = [xnormalp25; tnormalp25; xfastp25; tfastp25; xslowp25; 

tslowp25]; 

  
%3 
xnormalp24 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p16001xsrt' p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' 

p23001xsrt' p25002xsrt' p28001xsrt' p24002xsrt']; 

  
xfastp24 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 

p16006xsrt' p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' 

p23006xsrt' p25006xsrt' p28006xsrt' p24006xsrt']; 

  
xslowp24 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 

p16009xsrt' p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' 

p23009xsrt' p25009xsrt' p28009xsrt' p24009xsrt']; 

  
tnormalp24 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p16001' p17001' p18001' p21001' p22001' 

p23001' p25001' p28001' p24002']; 

  
tfastp24 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p16006' p17006' p18006' p21006' p22006' p23006' 

p25006' p28006' p24006']; 

  
tslowp24 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p16009' p17009' p18009' p21009' p22009' p23009' 

p25009' p28009' p24009']; 

  
xtp24 = [xnormalp24; tnormalp24; xfastp24; tfastp24; xslowp24; 

tslowp24]; 

  
%4 
xnormalp23 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p16001xsrt' p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p23001xsrt']; 

  
xfastp23 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 

p16006xsrt' p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p23006xsrt']; 

  
xslowp23 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 



238 

 

p16009xsrt' p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p23009xsrt']; 

  

tnormalp23 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p16001' p17001' p18001' p21001' p22001' 

p24002' p25001' p28001' p23001']; 

  
tfastp23 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p16006' p17006' p18006' p21006' p22006' p24006' 

p25006' p28006' p23006']; 

  
tslowp23 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p16009' p17009' p18009' p21009' p22009' p24009' 

p25009' p28009' p23009']; 

  
xtp23 = [xnormalp23; tnormalp23; xfastp23; tfastp23; xslowp23; 

tslowp23]; 

  
%5 
xnormalp22 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p16001xsrt' p17001xsrt' p18001xsrt' p21001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p22001xsrt']; 

  
xfastp22 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 

p16006xsrt' p17006xsrt' p18006xsrt' p21006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p22006xsrt']; 

  
xslowp22 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 

p16009xsrt' p17009xsrt' p18009xsrt' p21009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p22009xsrt']; 

  
tnormalp22 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p16001' p17001' p18001' p21001' p23001' 

p24002' p25001' p28001' p22001']; 

  
tfastp22 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p16006' p17006' p18006' p21006' p23006' p24006' 

p25006' p28006' p22006']; 

  
tslowp22 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p16009' p17009' p18009' p21009' p23009' p24009' 

p25009' p28009' p22009']; 

  
xtp22 = [xnormalp22; tnormalp22; xfastp22; tfastp22; xslowp22; 

tslowp22]; 

  
%6 
xnormalp21 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p16001xsrt' p17001xsrt' p18001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p21001xsrt']; 

  
xfastp21 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 

p16006xsrt' p17006xsrt' p18006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p21006xsrt']; 

  



239 

 

xslowp21 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 

p16009xsrt' p17009xsrt' p18009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p21009xsrt']; 

  
tnormalp21 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p16001' p17001' p18001' p22001' p23001' 

p24002' p25001' p28001' p21001']; 

  
tfastp21 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p16006' p17006' p18006' p22006' p23006' p24006' 

p25006' p28006' p21006']; 

  
tslowp21 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p16009' p17009' p18009' p22009' p23009' p24009' 

p25009' p28009' p21009']; 

  
xtp21 = [xnormalp21; tnormalp21; xfastp21; tfastp21; xslowp21; 

tslowp21]; 

  
%7 
xnormalp18 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p16001xsrt' p17001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p18001xsrt']; 

  
xfastp18 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 

p16006xsrt' p17006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p18006xsrt']; 

  
xslowp18 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 

p16009xsrt' p17009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p18009xsrt']; 

  
tnormalp18 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p16001' p17001' p21001' p22001' p23001' 

p24002' p25001' p28001' p18001']; 

  
tfastp18 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p16006' p17006' p21006' p22006' p23006' p24006' 

p25006' p28006' p18006']; 

  
tslowp18 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p16009' p17009' p21009' p22009' p23009' p24009' 

p25009' p28009' p18009']; 

  
xtp18 = [xnormalp18; tnormalp18; xfastp18; tfastp18; xslowp18; 

tslowp18]; 

  
%8 
xnormalp17 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p16001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p17001xsrt']; 

  
xfastp17 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 
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p16006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p17006xsrt']; 

  

xslowp17 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 

p16009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p17009xsrt']; 

  
tnormalp17 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p16001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p17001']; 

  
tfastp17 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p16006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p17006']; 

  
tslowp17 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p16009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p17009']; 

  
xtp17 = [xnormalp17; tnormalp17; xfastp17; tfastp17; xslowp17; 

tslowp17]; 

  
%9 
xnormalp16 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p16001xsrt']; 

  
xfastp16 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p16006xsrt']; 

  
xslowp16 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p16009xsrt']; 

  
tnormalp16 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p14001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p16001']; 

  
tfastp16 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p14006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p16006']; 

  
tslowp16 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p14009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p16009']; 

  
xtp16 = [xnormalp16; tnormalp16; xfastp16; tfastp16; xslowp16; 

tslowp16]; 

  
%11 
xnormalp14 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p12001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p14001xsrt']; 
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xfastp14 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p12006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p14006xsrt']; 

  
xslowp14 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p12009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p14009xsrt']; 

  
tnormalp14 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p12001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p14001']; 

  
tfastp14 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p12006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p14006']; 

  
tslowp14 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p12009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p14009']; 

  
xtp14 = [xnormalp14; tnormalp14; xfastp14; tfastp14; xslowp14; 

tslowp14]; 

  
%12 
xnormalp12 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p11001xsrt' p14001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p12001xsrt']; 

  
xfastp12 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p11006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p12006xsrt']; 

  
xslowp12 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p11009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p12009xsrt']; 

  
tnormalp12 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p11001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p12001']; 

  
tfastp12 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p11006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p12006']; 

  
tslowp12 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p11009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p12009']; 

  
xtp12 = [xnormalp12; tnormalp12; xfastp12; tfastp12; xslowp12; 

tslowp12]; 

  
%13 
xnormalp11 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p9001xsrt' p12001xsrt' p14001xsrt' p16001xsrt' 
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p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p11001xsrt']; 

  

xfastp11 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p9006xsrt' p12006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p11006xsrt']; 

  
xslowp11 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p9009xsrt' p12009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p11009xsrt']; 

  
tnormalp11 = [p2001' p3001' p4001' p5001' p6001' p8001' p9001' 

p12001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p11001']; 

  
tfastp11 = [p2006' p3006' p4006' p5006' p6006' p8006' p9006' p12006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p11006']; 

  
tslowp11 = [p2009' p3009' p4009' p5009' p6009' p8009' p9009' p12009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p11009']; 

  
xtp11 = [xnormalp11; tnormalp11; xfastp11; tfastp11; xslowp11; 

tslowp11]; 

  
%14 
xnormalp9 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p8001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p9001xsrt']; 

  
xfastp9 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p8006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p9006xsrt']; 

  
xslowp9 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p8009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p9009xsrt']; 

  
tnormalp9 = [p2001' p3001' p4001' p5001' p6001' p8001' p11001' 

p12001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p9001']; 

  
tfastp9 = [p2006' p3006' p4006' p5006' p6006' p8006' p11006' p12006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p9006']; 

  
tslowp9 = [p2009' p3009' p4009' p5009' p6009' p8009' p11009' p12009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p9009']; 

  
xtp9 = [xnormalp9; tnormalp9; xfastp9; tfastp9; xslowp9; tslowp9]; 

  
%15 
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xnormalp8 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' 

p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p8001xsrt']; 

  
xfastp8 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' 

p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p8006xsrt']; 

  
xslowp8 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' 

p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p8009xsrt']; 

  
tnormalp8 = [p2001' p3001' p4001' p5001' p6001' p9001' p11001' 

p12001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p8001']; 

  
tfastp8 = [p2006' p3006' p4006' p5006' p6006' p9006' p11006' p12006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p8006']; 

  
tslowp8 = [p2009' p3009' p4009' p5009' p6009' p9009' p11009' p12009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p8009']; 

  
xtp8 = [xnormalp8; tnormalp8; xfastp8; tfastp8; xslowp8; tslowp8]; 

  
%16 
xnormalp6 = [p2002xsrt' p3001xsrt' p4001xsrt' p5001xsrt' p8001xsrt' 

p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p6001xsrt']; 

  
xfastp6 = [p2006xsrt' p3006xsrt' p4006xsrt' p5006xsrt' p8006xsrt' 

p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p6006xsrt']; 

  
xslowp6 = [p2009xsrt' p3009xsrt' p4009xsrt' p5009xsrt' p8009xsrt' 

p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p6009xsrt']; 

  
tnormalp6 = [p2001' p3001' p4001' p5001' p8001' p9001' p11001' 

p12001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p6001']; 

  
tfastp6 = [p2006' p3006' p4006' p5006' p8006' p9006' p11006' p12006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p6006']; 

  
tslowp6 = [p2009' p3009' p4009' p5009' p8009' p9009' p11009' p12009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p6009']; 

  
xtp6 = [xnormalp6; tnormalp6; xfastp6; tfastp6; xslowp6; tslowp6]; 

  
%17 
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xnormalp5 = [p2002xsrt' p3001xsrt' p4001xsrt' p6001xsrt' p8001xsrt' 

p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p5001xsrt']; 

  
xfastp5 = [p2006xsrt' p3006xsrt' p4006xsrt' p6006xsrt' p8006xsrt' 

p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p5006xsrt']; 

  
xslowp5 = [p2009xsrt' p3009xsrt' p4009xsrt' p6009xsrt' p8009xsrt' 

p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p5009xsrt']; 

  
tnormalp5 = [p2001' p3001' p4001' p6001' p8001' p9001' p11001' 

p12001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p5001']; 

  
tfastp5 = [p2006' p3006' p4006' p6006' p8006' p9006' p11006' p12006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p5006']; 

  
tslowp5 = [p2009' p3009' p4009' p6009' p8009' p9009' p11009' p12009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p5009']; 

  
xtp5 = [xnormalp5; tnormalp5; xfastp5; tfastp5; xslowp5; tslowp5]; 

  
%18 
xnormalp4 = [p2002xsrt' p3001xsrt' p5001xsrt' p6001xsrt' p8001xsrt' 

p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p4001xsrt']; 

  
xfastp4 = [p2006xsrt' p3006xsrt' p5006xsrt' p6006xsrt' p8006xsrt' 

p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p4006xsrt']; 

  
xslowp4 = [p2009xsrt' p3009xsrt' p5009xsrt' p6009xsrt' p8009xsrt' 

p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p4009xsrt']; 

  
tnormalp4 = [p2001' p3001' p5001' p6001' p8001' p9001' p11001' 

p12001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p4001']; 

  
tfastp4 = [p2006' p3006' p5006' p6006' p8006' p9006' p11006' p12006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p4006']; 

  
tslowp4 = [p2009' p3009' p5009' p6009' p8009' p9009' p11009' p12009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p4009']; 

  
xtp4 = [xnormalp4; tnormalp4; xfastp4; tfastp4; xslowp4; tslowp4]; 

  
%19 
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xnormalp3 = [p2002xsrt' p4001xsrt' p5001xsrt' p6001xsrt' p8001xsrt' 

p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p3001xsrt']; 

  
xfastp3 = [p2006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' p8006xsrt' 

p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p3006xsrt']; 

  
xslowp3 = [p2009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' p8009xsrt' 

p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p3009xsrt']; 

  
tnormalp3 = [p2001' p4001' p5001' p6001' p8001' p9001' p11001' 

p12001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p3001']; 

  
tfastp3 = [p2006' p4006' p5006' p6006' p8006' p9006' p11006' p12006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p3006']; 

  
tslowp3 = [p2009' p4009' p5009' p6009' p8009' p9009' p11009' p12009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p3009']; 

  
xtp3 = [xnormalp3; tnormalp3; xfastp3; tfastp3; xslowp3; tslowp3]; 

  
%20 
xnormalp2 = [p3001xsrt' p4001xsrt' p5001xsrt' p6001xsrt' p8001xsrt' 

p9001xsrt' p11001xsrt' p12001xsrt' p14001xsrt' p16001xsrt' 

p17001xsrt' p18001xsrt' p21001xsrt' p22001xsrt' p23001xsrt' 

p24002xsrt' p25002xsrt' p28001xsrt' p2002xsrt']; 

  
xfastp2 = [p3006xsrt' p4006xsrt' p5006xsrt' p6006xsrt' p8006xsrt' 

p9006xsrt' p11006xsrt' p12006xsrt' p14006xsrt' p16006xsrt' 

p17006xsrt' p18006xsrt' p21006xsrt' p22006xsrt' p23006xsrt' 

p24006xsrt' p25006xsrt' p28006xsrt' p2006xsrt']; 

  
xslowp2 = [p3009xsrt' p4009xsrt' p5009xsrt' p6009xsrt' p8009xsrt' 

p9009xsrt' p11009xsrt' p12009xsrt' p14009xsrt' p16009xsrt' 

p17009xsrt' p18009xsrt' p21009xsrt' p22009xsrt' p23009xsrt' 

p24009xsrt' p25009xsrt' p28009xsrt' p2009xsrt']; 

  
tnormalp2 = [p3001' p4001' p5001' p6001' p8001' p9001' p11001' 

p12001' p14001' p16001' p17001' p18001' p21001' p22001' p23001' 

p24002' p25001' p28001' p2001']; 

  
tfastp2 = [p3006' p4006' p5006' p6006' p8006' p9006' p11006' p12006' 

p14006' p16006' p17006' p18006' p21006' p22006' p23006' p24006' 

p25006' p28006' p2006']; 

  
tslowp2 = [p3009' p4009' p5009' p6009' p8009' p9009' p11009' p12009' 

p14009' p16009' p17009' p18009' p21009' p22009' p23009' p24009' 

p25009' p28009' p2009']; 

  
xtp2 = [xnormalp2; tnormalp2; xfastp2; tfastp2; xslowp2; tslowp2]; 
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Appendix 8. A Matlab script used for KAM prediction (randomised 

joint angle inputs) 

%%% This script is to evaluate the ability of LMtrain (a BPFF ANN) 

to predict %%% shuffled data (randomly arranged data points from the 

original data) 
%%% use data in 'shuffle_2.mat' 
%%% the order of participants to be presented to train, validate and 

test the %%% ANN are as followed (19 in total) 
%%% the second last order is to validate the ANN  
%%% the last order is for testing the ANN  
%%% the rest are for training  

  
%%% p2 p3 p4 p5 p6 p8 p9 p11 p12 p14 p16 p17 p18 p21 p22 p23 p24 p25 

p28 %%% 

  
%%% xtp2 is defined as  
%%% input (xp2) (right hip, knee, and ankle abd/add, int/ext and 

flex/extens)  
%%% angles and target output (tp2) (right knee abduction moment)  
%%% WHEN PARTICIPANT2 is used to test the ANN. 

  
% THERFORE THE ORDER FOR xtp2 is 
% p3 p4 p5 p6 p8 p9 p11 p12 p14 p16 p17 p18 p21 p22 p23 p24 p25 p28 

p2 

  
% As we adopt k-fold validation, so every single participant will be 

left out % for testing the ANN 

  
% THEREFORE, the order for xtp3 is 
% p2 p4 p5 p6 p8 p9 p11 p12 p14 p16 p17 p18 p21 p22 p23 p24 p25 p28 

p3 
% so on and so forth 

  
% FOR xtp28, the order is 
% p2 p3 p4 p5 p6 p8 p9 p11 p12 p14 p16 p17 p18 p21 p22 p23 p24 p25 

p28 

  
%% normal, fast and slow are the walking speed. 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 
%% This part of the script is to shuffle the data points using the 

FIRST  
% random result of randperm function of Matlab 
% According to the number of data points for every participant left 

out  
% (xtp2, xtp3, xtp4...,xtp28) are equal (30 rows x 38000 columns) 
% [M,N] will be the exact same number for each participant,  
% consequently the random order will also be exactly the same for  
% each left out participant   

  
tic %%% to calculate the prediction time for all speeds) 

  
[M,N] = size(xtp8); 

  
rng(1) 
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ind = randperm(N);   

  

k = ind(1,36001:38000); 
%%% as mentioned above ‘ind’ will be the same for every participant 

  
xtp8_rand = xtp8(:,ind); %%% shuffled xtp %%% 

  
xp8normalsf = xtp8_rand(1:9,:); %%% shuffled input (normal speed) 
tp8normalsf = xtp8_rand(10,:);  %%% shuffled target output (normal 

speed) 
tN = xtp8(10,:); %%% the original (preshuffled) target for normal 

speed 

  
xp8fastsf = xtp8_rand(11:19,:); %%% shuffled input (fast speed) 
tp8fastsf = xtp8_rand(20,:); %%% shuffled target output (fast speed) 
tF = xtp8(20,:); %%% the original target for fast speed 

  
xp8slowsf = xtp8_rand(21:29,:); %%% shuffled input (slow speed) 
tp8slowsf = xtp8_rand(30,:); %%% shuffled target output (slow speed) 
tS = xtp8(30,:); %%% the original target for slow speed 

  
%% ANN training using the angles as inputs and the KAM as targets 
% 'trainlm' is usually the fastest (the most efficient).  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
xNormalsf = xp8normalsf; 
tNormalsf = tp8normalsf; 

  
xFastsf = xp8fastsf; 
tFastsf = tp8fastsf; 

  
xSlowsf = xp8slowsf; 
tSlowsf = tp8slowsf; 

  

  
%%NORMAL SPEED%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
perfnormal= zeros(20,2); 

  
 seednormal = 1 % best of 20  

  
% for seednormal=1:20 
    rng(seednormal)  

     

     
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 18; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnormal = fitnet(hiddenLayerSize,trainFcn); 
    netnormal.input.processFcns = 

{'removeconstantrows','mapminmax'}; 
    netnormal.output.processFcns = 

{'removeconstantrows','mapminmax'}; 
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    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnormal.divideFcn = 'divideind'; 
    netnormal.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnormal.divideParam.trainInd = 

[1:round(1/19*17*size(xNormalsf,2))]; 
    netnormal.divideParam.valInd = 

[round(1/19*17*size(xNormalsf,2))+1 : 

round(1/19*18*size(xNormalsf,2))]; 
    netnormal.divideParam.testInd = 

[round(1/19*18*size(xNormalsf,2))+1 : size(xNormalsf,2)]; 
    netnormal.performFcn = 'mse';  % Mean Squared Error 
    netnormal.plotFcns = 

{'plotperform','plottrainstate','ploterrhist', ... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnormal,tr] = trainlm(netnormal,xNormalsf,tNormalsf); 

  
% Test the Network 
yNormalsf = netnormal(xNormalsf); 
enm = gsubtract(tNormalsf,yNormalsf); 
performancenormal = perform(netnormal,tNormalsf,yNormalsf) 

  
%%% Since yNormalsf is the shuffled predicted output 

  
y1 = yNormalsf; %%% rename yNormalsf to y1 then we can reverse the 

shuffled yNormalsf afterward 

  
%%% NOW reversing the shuffled predicted output to original order 

  
yNormalsf(ind) = yNormalsf; 

  
yN = yNormalsf; %%% yN = the reversed yNormalsf to the original gait 

cycle (the original order of the predicted output) 

  
yNormalsf = y1; %%% yNormalsf at this line is the shuffled predicted 

output 

  

  
% view the Network 
% view(net) 

  

         
    seednormal 

  
    testPerformance = 

perform(netnormal,performancenormal,yNormalsf); 

     
    perfnormal(seednormal,1) = seednormal; 
    perfnormal(seednormal,2) = testPerformance; 

  
    %[seed testPerformance] 

     
% end 
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%% IDENTIFY training and testing set of data 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%   SHUFFLED  %%% 

  
% training part of the shuffled target output 

  
tNormalsftrain = tNormalsf(1:round(1/19*17*size(tNormalsf,2)));  

  
% the training part of the shuffled predicted output 

  
yNormalsftrain = yNormalsf(1:round(1/19*17*size(yNormalsf,2)));  

  
% the validation part of the shuffled target output 

  
tNormalsfval = tNormalsf(round(1/19*17*size(tNormalsf,2))+1 : 

round(1/19*18*size(tNormalsf,2))); 

  
% the validation part of the shuffled predicted output 

  
yNormalsfval = yNormalsf(round(1/19*17*size(yNormalsf,2))+1 : 

round(1/19*18*size(yNormalsf,2))); 

  
% the testing part of the shuffled target output 

  
tNormalsftest = tNormalsf(round(1/19*18*size(tNormalsf,2))+1 : 

size(tNormalsf,2));  

  
% the testing part of the shuffled predicted output 

   
yNormalsftest = yNormalsf(round(1/19*18*size(yNormalsf,2))+1 : 

size(yNormalsf,2));  

  
%%% ORIGINAL or REVERSE SHUFFLED %% as this is the original gait 

cycle graph 

  

  
% training part of the original target output 

  
tNtrain = tN(1:round(1/19*17*size(tN,2)));  

  
% the training part of the reverse shuffled predicted output 

  
yNtrain = yN(1:round(1/19*17*size(yN,2)));  

  
% the validation part of the original target output 

  
tNval = tN(round(1/19*17*size(tN,2))+1 : round(1/19*18*size(tN,2))); 

  
% the validation part of the reverse shuffled predicted output 

  
yNval = yN(round(1/19*17*size(yN,2))+1 : round(1/19*18*size(yN,2))); 

  
% the testing part of the original target output 

  
tNtest = tN(round(1/19*18*size(tN,2))+1 : size(tN,2));  
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% the testing part of the reverse shuffled predicted output 

   

yNtest = yN(round(1/19*18*size(yN,2))+1 : size(yN,2));  

  

  
%% RMSE shuffled 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
RMSEtrainNormalsf = sqrt(mean((tNormalsftrain - yNormalsftrain).^2)) 
RMSEtestNormalsf = sqrt(mean((tNormalsftest - yNormalsftest).^2)) 

  
%%% RMSE original or reversed shuffled 
RMSEtrainN = sqrt(mean((tNtrain - yNtrain).^2)) 
RMSEtestN = sqrt(mean((tNtest -yNtest).^2)) 

  

  
%% 

  

  
figure  
plot (tNormalsftrain) 
hold on 
plot (yNormalsftrain) 

  
figure  
plot (tNormalsftest) 
hold on 
plot (yNormalsftest) 

  
figure  
plot (tNtrain) 
hold on 
plot (yNtrain) 

  
figure  
plot (tNtest) 
hold on 
plot (yNtest) 

  

  

  
%%FAST SPEED%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
perffast= zeros(20,2); 

  
 seedfast = 6 % best of 20  

  
% for seedfast=1:20 
    rng(seedfast)  

     

     
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 18; 
net = fitnet(hiddenLayerSize,trainFcn); 
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% Setup Division of Data for Training, Validation, Testing 
 netfast = fitnet(hiddenLayerSize,trainFcn); 
    netfast.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netfast.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netfast.divideFcn = 'divideind'; 
    netfast.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netfast.divideParam.trainInd = 

[1:round(1/19*17*size(xFastsf,2))]; 
    netfast.divideParam.valInd = [round(1/19*17*size(xFastsf,2))+1 : 

round(1/19*18*size(xFastsf,2))]; 
    netfast.divideParam.testInd = [round(1/19*18*size(xFastsf,2))+1 

: size(xFastsf,2)]; 
    netfast.performFcn = 'mse';  % Mean Squared Error 
    netfast.plotFcns = 

{'plotperform','plottrainstate','ploterrhist', ... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netfast,tr] = trainlm(netfast,xFastsf,tFastsf); 

  
% Test the Network 
yFastsf = netfast(xFastsf); 
enm = gsubtract(tFastsf,yFastsf); 
performancefast = perform(netfast,tFastsf,yFastsf) 

  
%%% Since yFastsf is the shuffled predicted output 

  
y2 = yFastsf; %%% rename yFastsf to y2 then we can reverse the 

shuffled yFastsf afterward 

  
%%% NOW reversing the shuffled predicted output to original order 

  
yFastsf(ind) = yFastsf; 

  
yF = yFastsf; %%% yF = the reversed yFastsf to the original gait 

cycle (the original order of the predicted output) 

  
yFastsf = y2; %%% yFastsf at this line is the shuffled predicted 

output 

  

  
% view the Network 
% view(net) 

  

         
    seedfast 

  
    testPerformance = perform(netfast,performancefast,yFastsf); 

     
    perffast(seedfast,1) = seedfast; 
    perffast(seedfast,2) = testPerformance; 

  
    %[seed testPerformance] 

     
% end 
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%% IDENTIFY training and testing set of data 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%   SHUFFLED  %%% 

  
% training part of the shuffled target output 

  
tFastsftrain = tFastsf(1:round(1/19*17*size(tFastsf,2)));  

  
% the training part of the shuffled predicted output 

  
yFastsftrain = yFastsf(1:round(1/19*17*size(yFastsf,2)));  

  
% the validation part of the shuffled target output 

  
tFastsfval = tFastsf(round(1/19*17*size(tFastsf,2))+1 : 

round(1/19*18*size(tFastsf,2))); 

  
% the validation part of the shuffled predicted output 

  
yFastsfval = yFastsf(round(1/19*17*size(yFastsf,2))+1 : 

round(1/19*18*size(yFastsf,2))); 

  
% the testing part of the shuffled target output 

  
tFastsftest = tFastsf(round(1/19*18*size(tFastsf,2))+1 : 

size(tFastsf,2));  

  
% the testing part of the shuffled predicted output 

   
yFastsftest = yFastsf(round(1/19*18*size(yFastsf,2))+1 : 

size(yFastsf,2));  

  

  
%%% ORIGINAL or REVERSE SHUFFLED %% as this is the original gait 

cycle graph 

  

  
% training part of the original target output 

  
tFtrain = tF(1:round(1/19*17*size(tF,2)));  

  
% the training part of the reverse shuffled predicted output 

  
yFtrain = yF(1:round(1/19*17*size(yF,2)));  

  
% the validation part of the original target output 

  
tFval = tF(round(1/19*17*size(tF,2))+1 : round(1/19*18*size(tF,2))); 

  
% the validation part of the reverse shuffled predicted output 

  
yFval = yF(round(1/19*17*size(yF,2))+1 : round(1/19*18*size(yF,2))); 
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% the testing part of the original target output 

  
tFtest = tF(round(1/19*18*size(tF,2))+1 : size(tF,2));  

  
% the testing part of the reverse shuffled predicted output 

   
yFtest = yF(round(1/19*18*size(yF,2))+1 : size(yF,2));  

  

  
%% RMSE shuffled 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
RMSEtrainFastsf = sqrt(mean((tFastsftrain - yFastsftrain).^2)) 
RMSEtestFastsf = sqrt(mean((tFastsftest - yFastsftest).^2)) 

  
%%% RMSE original or reversed shuffled 
RMSEtrainF = sqrt(mean((tFtrain - yFtrain).^2)) 
RMSEtestF = sqrt(mean((tFtest -yFtest).^2)) 

  

  
%% 

  

  
figure  
plot (tFastsftrain) 
hold on 
plot (yFastsftrain) 

  
figure  
plot (tFastsftest) 
hold on 
plot (yFastsftest) 

  
figure  
plot (tFtrain) 
hold on 
plot (yFtrain) 

  
figure  
plot (tFtest) 
hold on 
plot (yFtest) 

  

  
%%SLOW SPEED%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
perfslow= zeros(20,2); 

  
 seedslow = 19 % best of 20  

  
% for seedslow=1:20 
    rng(seedslow)  

     

     
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 18; 
net = fitnet(hiddenLayerSize,trainFcn); 
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% Setup Division of Data for Training, Validation, Testing 
 netslow = fitnet(hiddenLayerSize,trainFcn); 
    netslow.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netslow.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netslow.divideFcn = 'divideind'; 
    netslow.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netslow.divideParam.trainInd = 

[1:round(1/19*17*size(xSlowsf,2))]; 
    netslow.divideParam.valInd = [round(1/19*17*size(xSlowsf,2))+1 : 

round(1/19*18*size(xSlowsf,2))]; 
    netslow.divideParam.testInd = [round(1/19*18*size(xSlowsf,2))+1 

: size(xSlowsf,2)]; 
    netslow.performFcn = 'mse';  % Mean Squared Error 
    netslow.plotFcns = 

{'plotperform','plottrainstate','ploterrhist', ... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netslow,tr] = trainlm(netslow,xSlowsf,tSlowsf); 

  
% Test the Network 
ySlowsf = netslow(xSlowsf); 
enm = gsubtract(tSlowsf,ySlowsf); 
performanceslow = perform(netslow,tSlowsf,ySlowsf) 

  
%%% Since ySlowsf is the shuffled predicted output 

  
y3 = ySlowsf; %%% rename ySlowsf to y3 then we can reverse the 

shuffled ySlowsf afterward 

  
%%% NOW reversing the shuffled predicted output to original order 

  
ySlowsf(ind) = ySlowsf; 

  
yS = ySlowsf; %%% yS = the reversed ySlowsf to the original gait 

cycle (the original order of the predicted output) 

  
ySlowsf = y3; %%% ySlowsf at this line is the shuffled predicted 

output 

  

  
% view the Network 
% view(net) 

  

         
    seedslow 

  
    testPerformance = perform(netslow,performanceslow,ySlowsf); 

     
    perfslow(seedslow,1) = seedslow; 
    perfslow(seedslow,2) = testPerformance; 

  
    %[seed testPerformance] 
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% end 

  

  

  
%% IDENTIFY training and testing set of data 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%   SHUFFLED  %%% 

  
% training part of the shuffled target output 

  
tSlowsftrain = tSlowsf(1:round(1/19*17*size(tSlowsf,2)));  

  
% the training part of the shuffled predicted output 

  
ySlowsftrain = ySlowsf(1:round(1/19*17*size(ySlowsf,2)));  

  
% the validation part of the shuffled target output 

  
tSlowsfval = tSlowsf(round(1/19*17*size(tSlowsf,2))+1 : 

round(1/19*18*size(tSlowsf,2))); 

  
% the validation part of the shuffled predicted output 

  
ySlowsfval = ySlowsf(round(1/19*17*size(ySlowsf,2))+1 : 

round(1/19*18*size(ySlowsf,2))); 

  
% the testing part of the shuffled target output 

  
tSlowsftest = tSlowsf(round(1/19*18*size(tSlowsf,2))+1 : 

size(tSlowsf,2));  

  
% the testing part of the shuffled predicted output 

   
ySlowsftest = ySlowsf(round(1/19*18*size(ySlowsf,2))+1 : 

size(ySlowsf,2));  

  
%%% ORIGINAL or REVERSE SHUFFLED %% as this is the original gait 

cycle graph 

  

  
% training part of the original target output 

  
tStrain = tS(1:round(1/19*17*size(tS,2)));  

  
% the training part of the reverse shuffled predicted output 

  
yStrain = yS(1:round(1/19*17*size(yS,2)));  

  
% the validation part of the original target output 

  
tSval = tS(round(1/19*17*size(tS,2))+1 : round(1/19*18*size(tS,2))); 

  
% the validation part of the reverse shuffled predicted output 

  
ySval = yS(round(1/19*17*size(yS,2))+1 : round(1/19*18*size(yS,2))); 

  
% the testing part of the original target output 
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tStest = tS(round(1/19*18*size(tS,2))+1 : size(tS,2));  

  

% the testing part of the reverse shuffled predicted output 

   
yStest = yS(round(1/19*18*size(yS,2))+1 : size(yS,2));  

  

  
%% RMSE shuffled 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
RMSEtrainSlowsf = sqrt(mean((tSlowsftrain - ySlowsftrain).^2)) 
RMSEtestSlowsf = sqrt(mean((tSlowsftest - ySlowsftest).^2)) 

  
%%% RMSE original or reversed shuffled 
RMSEtrainF = sqrt(mean((tStrain - yStrain).^2)) 
RMSEtestS = sqrt(mean((tStest -yStest).^2)) 

  

  
%% 

  

  
figure  
plot (tSlowsftrain) 
hold on 
plot (ySlowsftrain) 

  
figure  
plot (tSlowsftest) 
hold on 
plot (ySlowsftest) 

  
figure  
plot (tStrain) 
hold on 
plot (yStrain) 

  
figure  
plot (tStest) 
hold on 
plot (yStest) 

  

  
toc 
%  
% writematrix(yNtest','results\yNtestp8.xlsx') 
% writematrix(yFtest','results\yFtestp8.xlsx') 
% writematrix(yStest','results\yStestp8.xlsx') 
% writematrix(tNtest','results\tNtestp8.xlsx') 
% writematrix(tFtest','results\tFtestp8.xlsx') 
% writematrix(tStest','results\tStestp8.xlsx') 

  

  
%%This part is to calculate normalised RMSE (NRMSE) and systemic 

mean absolute percentage error (SMAPE) 
%%%NRMSE = RMSE divides by average t (the average value of the 

measured data) 

  
NRMSEnormal = 100.*RMSEtestN/(max(tNtest)-min(tNtest)); 
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NRMSEfast = 100.*RMSEtestF/(max(tFtest)-min(tFtest)); 
NRMSEslow = 100.*RMSEtestS/(max(tStest)-min(tStest)); 

  

SMAPEnormal1 = abs(yNtest-tNtest); 
SMAPEnormal2 = abs(tNtest)+abs(yNtest); 
SMAPEnormal3 = SMAPEnormal1./SMAPEnormal2; 
SMAPEnormal = sum(SMAPEnormal3); 
SMAPEnormal = (SMAPEnormal/2000)*100; 

  
SMAPEfast1 = abs(yFtest-tFtest); 
SMAPEfast2 = abs(tFtest)+abs(yFtest); 
SMAPEfast3 = SMAPEfast1./SMAPEfast2; 
SMAPEfast = sum(SMAPEfast3); 
SMAPEfast = (SMAPEfast/2000)*100; 

  
SMAPEslow1 = abs(yStest-tStest); 
SMAPEslow2 = abs(tStest)+abs(yStest); 
SMAPEslow3 = SMAPEslow1./SMAPEslow2; 
SMAPEslow = sum(SMAPEslow3); 
SMAPEslow = (SMAPEslow/2000)*100; 

  
%%% then calculate correlation coefficient 

  

  
TN =   tNtest'; 
YN =   yNtest'; 
rN =   corrcoef(TN,YN) 

  
TF =   tFtest'; 
YF =   yFtest'; 
rF =   corrcoef(TF,YF) 

  
TS =   tStest'; 
YS =   yStest'; 
rS =   corrcoef(TS,YS) 
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Appendix 9. A Matlab script used to train the FFANN with data of 

seven marker coordinates at 56 hidden neurons  

%%%this script is to evaluate the ability of LMtrain to predict 

shuffled data  
%%from shuffled markers trajectories  
%%use data in 'marker7.mat' 
tic 
[M,N] = size(xtp8); 

  
rng(1) 
ind = randperm(N); 
xtp8_rand = xtp8(:,ind); 

  
xp8normal = xtp8_rand(1:21,:); 
tp8normal = xtp8_rand(22,:); 
t1 = xtp8(22,:); 

  
xp8fast = xtp8_rand(23:43,:); 
tp8fast = xtp8_rand(44,:); 
t2 = xtp8(44,:); 

  
xp8slow = xtp8_rand(45:65,:); 
tp8slow = xtp8_rand(66,:); 
t3 = xtp8(66,:); 

  
%% ANN training using the angles as inputs and the KAM as targets 
% 'trainlm' is usually fastest.  

  
xNormal = xp8normal; 
tNormal = tp8normal; 

  
xFast = xp8fast; 
tFast = tp8fast; 

  
xSlow = xp8slow; 
tSlow = tp8slow; 

  

  
%% train normal speed 
perf1= zeros(20,2); 

  
 seed1 = 16 % best of 20  
%  for seed1=1:20 
    rng(seed1)  

     

     
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 56; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm1 = fitnet(hiddenLayerSize,trainFcn); 
    netnm1.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netnm1.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
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    netnm1.divideFcn = 'divideind'; 
    netnm1.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm1.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm1.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm1.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm1.performFcn = 'mse';  % Mean Squared Error 
    netnm1.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm1,tr] = trainlm(netnm1,xNormal,tNormal); 

  
% Test the Network 
yNormal = netnm1(xNormal); 
enm = gsubtract(tNormal,yNormal); 
performance1 = perform(netnm1,tNormal,yNormal) 

  
%%% yNormal is the shuffled predicted output 
%%% rename yNormal to y1 
y1 = yNormal; 

  
%%% yNormal after this line will be the inverse from shuffled of the 

predicted output 
yNormal(ind) = yNormal; 

  
% View the Network 
% view(net) 

  

         
%     seed1 
%     testPerformance = perform(netnm1,performance1,yNormal); 
%      
%     perf1(seed1,1) = seed1; 
%     perf1(seed1,2) = testPerformance; 
    %[seed testPerformance] 

     
%  end 

  

  

  
%% identify traing and testing set of data 
%%%shuffled 
tNormaltrain = tNormal(1:round(1/19*17*size(tNormal,2))); %target 

output at training part  
y1train = y1(1:round(1/19*17*size(y1,2))); %predicted output at 

training part 

  
tNormaltest = tNormal(round(1/19*18*size(tNormal,2))+1 : 

size(tNormal,2)); %target output at testing part   
y1test = y1(round(1/19*18*size(y1,2))+1 : size(y1,2)); %predicted 

output at testing part  
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%%%non shuffled 
t1train = t1(1:round(1/19*17*size(t1,2))); %target output at 

training part before shuffled  
yNormaltrain = yNormal(1:round(1/19*17*size(yNormal,2))); %reversed 

predicted output at training part 

  
t1test = t1(round(1/19*18*size(t1,2))+1 : size(t1,2)); %target 

output at testing part before shuffled   
yNormaltest = yNormal(round(1/19*18*size(yNormal,2))+1 : 

size(yNormal,2)); %reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tNormaltrain -y1train).^2)) 
RMSEtestNormalSf = sqrt(mean((tNormaltest -y1test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t1train -yNormaltrain).^2)) 
RMSEtestNormal = sqrt(mean((t1test -yNormaltest).^2)) 

  
%% 

  

  
% figure  
% plot (tNormaltrain) 
% hold on 
% plot (y1train) 
%  
% figure  
% plot (tNormaltest) 
% hold on 
% plot (y1test) 
%  
% figure  
% plot (t1train) 
% hold on 
% plot (yNormaltrain) 
%  
% figure  
% plot (t1test) 
% hold on 
% plot (yNormaltest) 
%   

  
%% train fast speed 

  
% perf2= zeros(20,2); 

  
 seed2 = 7 % best of 20  
% for seed2=1:20 
    rng(seed2)  

  
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 56; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm2 = fitnet(hiddenLayerSize,trainFcn); 
    netnm2.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netnm2.output.processFcns = {'removeconstantrows','mapminmax'}; 
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    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnm2.divideFcn = 'divideind'; 
    netnm2.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm2.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm2.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm2.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm2.performFcn = 'mse';  % Mean Squared Error 
    netnm2.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm2,tr] = trainlm(netnm2,xFast,tFast); 

  
% Test the Network 
yFast = netnm2(xFast); 
enm = gsubtract(tFast,yFast); 
performance2 = perform(netnm2,tFast,yFast) 

  
%%% y2 isthe prediced output 
y2 = yFast; 

  
%%% yFast after this line will be the inverse shuffled of the 

predictedoutput 
yFast(ind) = yFast; 

  
% View the Network 
% view(net) 

  

         
%     seed2 
%     testPerformance2 = perform(netnm2,performance2,yFast); 
%      
%     perf2(seed2,1) = seed2; 
%     perf2(seed2,2) = testPerformance2; 
    %[seed testPerformance] 
%  end    

  

  
%% identify traing and testing set of data 
%%%shuffled 
tFasttrain = tFast(1:round(1/19*17*size(tFast,2))); %target output 

at training part  
y2train = y2(1:round(1/19*17*size(y2,2))); %predicted output at 

training part 

  
tFasttest = tFast(round(1/19*18*size(tFast,2))+1 : size(tFast,2)); 

%target output at testing part   
y2test = y2(round(1/19*18*size(y2,2))+1 : size(y2,2)); %predicted 

output at testing part  

  
%%%non shuffled 
t2train = t2(1:round(1/19*17*size(t2,2))); %target output at 

training part before shuffled  
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yFasttrain = yFast(1:round(1/19*17*size(yFast,2))); %reversed 

predicted output at training part 

  

t2test = t2(round(1/19*18*size(t2,2))+1 : size(t2,2)); %target 

output at testing part before shuffled   
yFasttest = yFast(round(1/19*18*size(yFast,2))+1 : size(yFast,2)); 

%reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tFasttrain -y2train).^2)) 
RMSEtestFastSf = sqrt(mean((tFasttest -y2test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t2train -yFasttrain).^2)) 
RMSEtestFast = sqrt(mean((t2test -yFasttest).^2)) 

  

  
%% 

  

  
% figure  
% plot (tFasttrain) 
% hold on 
% plot (y2train) 
%  
% figure  
% plot (tFasttest) 
% hold on 
% plot (y2test) 
%  
% figure  
% plot (t2train) 
% hold on 
% plot (yFasttrain) 
%  
% figure  
% plot (t2test) 
% hold on 
% plot (yFasttest) 

  

  
%% train slow speed 

  
perf3= zeros(20,2); 

  
 seed3 = 17 % best of 20  
% for seed3=1:20 
    rng(seed3)  
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 56; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm3 = fitnet(hiddenLayerSize,trainFcn); 
    netnm3.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netnm3.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnm3.divideFcn = 'divideind'; 
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    netnm3.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm3.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm3.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm3.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm3.performFcn = 'mse';  % Mean Squared Error 
    netnm3.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm3,tr] = trainlm(netnm3,xSlow,tSlow); 

  
% Test the Network 
ySlow = netnm3(xSlow); 
enm = gsubtract(tSlow,ySlow); 
performance3 = perform(netnm3,tSlow,ySlow) 

  
%%% y3 isthe prediced output 
y3 = ySlow; 

  
%%% ySlow after this line will be the inverse shuffled of the 

predictedoutput 
ySlow(ind) = ySlow; 

  
% View the Network 
% view(net) 

  

         
%     seed3 
%     testPerformance3 = perform(netnm3,performance3,ySlow); 
%      
%     perf3(seed3,1) = seed3; 
%     perf3(seed3,2) = testPerformance3; 
    %[seed testPerformance] 
% end    

     
%% identify traing and testing set of data 
%%%shuffled 
tSlowtrain = tSlow(1:round(1/19*17*size(tSlow,2))); %target output 

at training part  
y3train = y3(1:round(1/19*17*size(y3,2))); %predicted output at 

training part 

  
tSlowtest = tSlow(round(1/19*18*size(tSlow,2))+1 : size(tSlow,2)); 

%target output at testing part   
y3test = y3(round(1/19*18*size(y3,2))+1 : size(y3,2)); %predicted 

output at testing part  

  
%%%non shuffled 
t3train = t3(1:round(1/19*17*size(t3,2))); %target output at 

training part before shuffled  
ySlowtrain = ySlow(1:round(1/19*17*size(ySlow,2))); %reversed 

predicted output at training part 
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t3test = t3(round(1/19*18*size(t3,2))+1 : size(t3,2)); %target 

output at testing part before shuffled   
ySlowtest = ySlow(round(1/19*18*size(ySlow,2))+1 : size(ySlow,2)); 

%reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tSlowtrain -y3train).^2)) 
RMSEtestSlowSf = sqrt(mean((tSlowtest -y3test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t3train -ySlowtrain).^2)) 
RMSEtestSlow = sqrt(mean((t3test -ySlowtest).^2)) 

  
%% 

  

  
% figure  
% plot (tSlowtrain) 
% hold on 
% plot (y3train) 
%  
% figure  
% plot (tSlowtest) 
% hold on 
% plot (y3test) 
%  
% figure  
% plot (t3train) 
% hold on 
% plot (ySlowtrain) 
%  
% figure  
% plot (t3test) 
% hold on 
% plot (ySlowtest) 

  
%  end 
toc 

  
%%This part is to calculate normalised RMSE (NRMSE) and systemic 

mean absolute percentage error (SMAPE) 
%%%NRMSE = RMSE divides by average t (the average value of the 

measured data) 

  
NRMSEnormal = 100.*RMSEtestNormal/(max(t1test)-min(t1test)); 
NRMSEfast = 100.*RMSEtestFast/(max(t2test)-min(t2test)); 
NRMSEslow = 100.*RMSEtestSlow/(max(t3test)-min(t3test)); 

  
SMAPEnormal1 = abs(yNormaltest-t1test); 
SMAPEnormal2 = abs(t1test)+abs(yNormaltest); 
SMAPEnormal3 = SMAPEnormal1./SMAPEnormal2; 
SMAPEnormal = sum(SMAPEnormal3); 
SMAPEnormal = (SMAPEnormal/2000)*100; 

  
SMAPEfast1 = abs(yFasttest-t2test); 
SMAPEfast2 = abs(t2test)+abs(yFasttest); 
SMAPEfast3 = SMAPEfast1./SMAPEfast2; 
SMAPEfast = sum(SMAPEfast3); 
SMAPEfast = (SMAPEfast/2000)*100; 

  
SMAPEslow1 = abs(ySlowtest-t3test); 



265 

 

SMAPEslow2 = abs(t3test)+abs(ySlowtest); 
SMAPEslow3 = SMAPEslow1./SMAPEslow2; 
SMAPEslow = sum(SMAPEslow3); 
SMAPEslow = (SMAPEslow/2000)*100; 

  
%%% then calculate correlation coefficient 

  

  
TN =   t1test'; 
YN =   yNormaltest'; 
rN =   corrcoef(TN,YN) 

  
TF =   t2test'; 
YF =   yFasttest'; 
rF =   corrcoef(TF,YF) 

  
TS =   t3test'; 
YS =   ySlowtest'; 
rS =   corrcoef(TS,YS) 
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Appendix 10. A Matlab script used to predict KAM (four marker 

coordinates, 24 hidden neurons) 

%%%this script is to evaluate the ability of LMtrain to predict 

shuffled data  
%%from shuffled markers trajectories  
%%use data in 'markers4.mat' 
tic 
[M,N] = size(xtp8); 

  
rng(1) 
ind = randperm(N); 
xtp8_rand = xtp8(:,ind); 

  
xp8normal = xtp8_rand(1:12,:); 
tp8normal = xtp8_rand(13,:); 
t1 = xtp8(13,:); 

  
xp8fast = xtp8_rand(14:25,:); 
tp8fast = xtp8_rand(26,:); 
t2 = xtp8(26,:); 

  
xp8slow = xtp8_rand(27:38,:); 
tp8slow = xtp8_rand(39,:); 
t3 = xtp8(39,:); 

  
%% ANN training using the angles as inputs and the KAM as targets 
% 'trainlm' is usually fastest.  

  
xNormal = xp8normal; 
tNormal = tp8normal; 

  
xFast = xp8fast; 
tFast = tp8fast; 

   
xSlow = xp8slow; 
tSlow = tp8slow; 

  

  
%% train normal speed 
perf1= zeros(20,2); 

  
 seed1 = 7 % best of 20  
% for seed1=1:20 
    rng(seed1)  

     

     
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 24; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm1 = fitnet(hiddenLayerSize,trainFcn); 
    netnm1.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netnm1.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
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    netnm1.divideFcn = 'divideind'; 
    netnm1.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm1.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm1.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm1.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm1.performFcn = 'mse';  % Mean Squared Error 
    netnm1.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm1,tr] = trainlm(netnm1,xNormal,tNormal); 

  
% Test the Network 
yNormal = netnm1(xNormal); 
enm = gsubtract(tNormal,yNormal); 
performance1 = perform(netnm1,tNormal,yNormal) 

  
%%% yNormal is the shuffled predicted output 
%%% rename yNormal to y1 
y1 = yNormal; 

  
%%% yNormal after this line will be the inverse from shuffled of the 

predicted output 
yNormal(ind) = yNormal; 

  
% View the Network 
% view(net) 

  

         
    seed1 
    testPerformance = perform(netnm1,performance1,yNormal); 

     
    perf1(seed1,1) = seed1; 
    perf1(seed1,2) = testPerformance; 
    %[seed testPerformance] 

     
%  end 

  

  

  
%% identify traing and testing set of data 
%%%shuffled 
tNormaltrain = tNormal(1:round(1/19*17*size(tNormal,2))); %target 

output at training part  
y1train = y1(1:round(1/19*17*size(y1,2))); %predicted output at 

training part 

  
tNormaltest = tNormal(round(1/19*18*size(tNormal,2))+1 : 

size(tNormal,2)); %target output at testing part   
y1test = y1(round(1/19*18*size(y1,2))+1 : size(y1,2)); %predicted 

output at testing part  
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%%%non shuffled 
t1train = t1(1:round(1/19*17*size(t1,2))); %target output at 

training part before shuffled  
yNormaltrain = yNormal(1:round(1/19*17*size(yNormal,2))); %reversed 

predicted output at training part 

  
t1test = t1(round(1/19*18*size(t1,2))+1 : size(t1,2)); %target 

output at testing part before shuffled   
yNormaltest = yNormal(round(1/19*18*size(yNormal,2))+1 : 

size(yNormal,2)); %reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tNormaltrain -y1train).^2)) 
RMSEtestNormalSf = sqrt(mean((tNormaltest -y1test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t1train -yNormaltrain).^2)) 
RMSEtestNormal = sqrt(mean((t1test -yNormaltest).^2)) 

  
%% 

  

  
% figure  
% plot (tNormaltrain) 
% hold on 
% plot (y1train) 
%  
% figure  
% plot (tNormaltest) 
% hold on 
% plot (y1test) 
%  
% figure  
% plot (t1train) 
% hold on 
% plot (yNormaltrain) 
%  
% figure  
% plot (t1test) 
% hold on 
% plot (yNormaltest) 

  

  
%% train fast speed 

  
perf2= zeros(20,2); 

  
 seed2 = 11 % best of 20  
% for seed2=1:20 
    rng(seed2)  

  
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 24; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm2 = fitnet(hiddenLayerSize,trainFcn); 
    netnm2.input.processFcns = {'removeconstantrows','mapminmax'}; 
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    netnm2.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnm2.divideFcn = 'divideind'; 
    netnm2.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm2.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm2.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm2.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm2.performFcn = 'mse';  % Mean Squared Error 
    netnm2.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm2,tr] = trainlm(netnm2,xFast,tFast); 

  
% Test the Network 
yFast = netnm2(xFast); 
enm = gsubtract(tFast,yFast); 
performance2 = perform(netnm2,tFast,yFast) 

  
%%% y2 isthe prediced output 
y2 = yFast; 

  
%%% yFast after this line will be the inverse shuffled of the 

predictedoutput 
yFast(ind) = yFast; 

  
% View the Network 
% view(net) 

  

         
    seed2 
    testPerformance2 = perform(netnm2,performance2,yFast); 

     
    perf2(seed2,1) = seed2; 
    perf2(seed2,2) = testPerformance2; 
    %[seed testPerformance] 
% end    

  

  
%% identify traing and testing set of data 
%%%shuffled 
tFasttrain = tFast(1:round(1/19*17*size(tFast,2))); %target output 

at training part  
y2train = y2(1:round(1/19*17*size(y2,2))); %predicted output at 

training part 

  
tFasttest = tFast(round(1/19*18*size(tFast,2))+1 : size(tFast,2)); 

%target output at testing part   
y2test = y2(round(1/19*18*size(y2,2))+1 : size(y2,2)); %predicted 

output at testing part  

  
%%%non shuffled 
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t2train = t2(1:round(1/19*17*size(t2,2))); %target output at 

training part before shuffled  
yFasttrain = yFast(1:round(1/19*17*size(yFast,2))); %reversed 

predicted output at training part 

  
t2test = t2(round(1/19*18*size(t2,2))+1 : size(t2,2)); %target 

output at testing part before shuffled   
yFasttest = yFast(round(1/19*18*size(yFast,2))+1 : size(yFast,2)); 

%reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tFasttrain -y2train).^2)) 
RMSEtestFastSf = sqrt(mean((tFasttest -y2test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t2train -yFasttrain).^2)) 
RMSEtestFast = sqrt(mean((t2test -yFasttest).^2)) 

  

  
%% 

  

  
% figure  
% plot (tFasttrain) 
% hold on 
% plot (y2train) 
%  
% figure  
% plot (tFasttest) 
% hold on 
% plot (y2test) 
%  
% figure  
% plot (t2train) 
% hold on 
% plot (yFasttrain) 
%  
% figure  
% plot (t2test) 
% hold on 
% plot (yFasttest) 

  

  
%% train slow speed 

  
perf3= zeros(20,2); 

  
 seed3 = 7 % best of 20  
% for seed3=1:20 
    rng(seed3)  
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 24; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm3 = fitnet(hiddenLayerSize,trainFcn); 
    netnm3.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netnm3.output.processFcns = {'removeconstantrows','mapminmax'}; 
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    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnm3.divideFcn = 'divideind'; 
    netnm3.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm3.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm3.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm3.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm3.performFcn = 'mse';  % Mean Squared Error 
    netnm3.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm3,tr] = trainlm(netnm3,xSlow,tSlow); 

  
% Test the Network 
ySlow = netnm3(xSlow); 
enm = gsubtract(tSlow,ySlow); 
performance3 = perform(netnm3,tSlow,ySlow) 

  
%%% y3 isthe prediced output 
y3 = ySlow; 

  
%%% ySlow after this line will be the inverse shuffled of the 

predictedoutput 
ySlow(ind) = ySlow; 

  
% View the Network 
% view(net) 

  

         
    seed3 
    testPerformance3 = perform(netnm3,performance3,ySlow); 

     
    perf3(seed3,1) = seed3; 
    perf3(seed3,2) = testPerformance3; 
    %[seed testPerformance] 
% end    

     
%% identify traing and testing set of data 
%%%shuffled 
tSlowtrain = tSlow(1:round(1/19*17*size(tSlow,2))); %target output 

at training part  
y3train = y3(1:round(1/19*17*size(y3,2))); %predicted output at 

training part 

  
tSlowtest = tSlow(round(1/19*18*size(tSlow,2))+1 : size(tSlow,2)); 

%target output at testing part   
y3test = y3(round(1/19*18*size(y3,2))+1 : size(y3,2)); %predicted 

output at testing part  

  
%%%non shuffled 
t3train = t3(1:round(1/19*17*size(t3,2))); %target output at 

training part before shuffled  
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ySlowtrain = ySlow(1:round(1/19*17*size(ySlow,2))); %reversed 

predicted output at training part 

  

t3test = t3(round(1/19*18*size(t3,2))+1 : size(t3,2)); %target 

output at testing part before shuffled   
ySlowtest = ySlow(round(1/19*18*size(ySlow,2))+1 : size(ySlow,2)); 

%reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tSlowtrain -y3train).^2)) 
RMSEtestSlowSf = sqrt(mean((tSlowtest -y3test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t3train -ySlowtrain).^2)) 
RMSEtestSlow = sqrt(mean((t3test -ySlowtest).^2)) 

  
%% 

  

  
% figure  
% plot (tSlowtrain) 
% hold on 
% plot (y3train) 
%  
% figure  
% plot (tSlowtest) 
% hold on 
% plot (y3test) 
%  
% figure  
% plot (t3train) 
% hold on 
% plot (ySlowtrain) 
%  
% figure  
% plot (t3test) 
% hold on 
% plot (ySlowtest) 

  
%  end 
toc 

  

  
%%This part is to calculate normalised RMSE (NRMSE) and systemic 

mean absolute percentage error (SMAPE) 
%%%NRMSE = RMSE divides by average t (the average value of the 

measured data) 

  
NRMSEnormal = 100.*RMSEtestNormal/(max(t1test)-min(t1test)); 
NRMSEfast = 100.*RMSEtestFast/(max(t2test)-min(t2test)); 
NRMSEslow = 100.*RMSEtestSlow/(max(t3test)-min(t3test)); 

  
SMAPEnormal1 = abs(yNormaltest-t1test); 
SMAPEnormal2 = abs(t1test)+abs(yNormaltest); 
SMAPEnormal3 = SMAPEnormal1./SMAPEnormal2; 
SMAPEnormal = sum(SMAPEnormal3); 
SMAPEnormal = (SMAPEnormal/2000)*100; 

  
SMAPEfast1 = abs(yFasttest-t2test); 
SMAPEfast2 = abs(t2test)+abs(yFasttest); 
SMAPEfast3 = SMAPEfast1./SMAPEfast2; 
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SMAPEfast = sum(SMAPEfast3); 
SMAPEfast = (SMAPEfast/2000)*100; 

  

SMAPEslow1 = abs(ySlowtest-t3test); 
SMAPEslow2 = abs(t3test)+abs(ySlowtest); 
SMAPEslow3 = SMAPEslow1./SMAPEslow2; 
SMAPEslow = sum(SMAPEslow3); 
SMAPEslow = (SMAPEslow/2000)*100; 

  
%%% then calculate correlation coefficient 

  

  
TN =   t1test'; 
YN =   yNormaltest'; 
rN =   corrcoef(TN,YN) 

  
TF =   t2test'; 
YF =   yFasttest'; 
rF =   corrcoef(TF,YF) 

  
TS =   t3test'; 
YS =   ySlowtest'; 
rS =   corrcoef(TS,YS) 
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Appendix 11. A Matlab script used to create PCA data and predict 

the KAM using the PCA data 

%%%this script is to evaluate the ability of LMtrain to predict 

shuffled data 
%%use data in 'shuffle_2.mat' 
tic 
[M,N] = size(xtp8); 

  
rng(1) 
ind = randperm(N); 
xtp8_rand = xtp8(:,ind); 

  
xp8normal = xtp8_rand(1:9,:); 
tp8normal = xtp8_rand(10,:); 
t1 = xtp8(10,:); 

  
xp8fast = xtp8_rand(11:19,:); 
tp8fast = xtp8_rand(20,:); 
t2 = xtp8(20,:); 

  
xp8slow = xtp8_rand(21:29,:); 
tp8slow = xtp8_rand(30,:); 
t3 = xtp8(30,:); 

  
%% ANN training using the angles as inputs and the KAM as targets 
% 'trainlm' is usually fastest.  

  
% for normal speed 

  
xNormal = xp8normal; 
tNormal = tp8normal; 

  
xFast = xp8fast; 
tFast = tp8fast; 

  
xSlow = xp8slow; 
tSlow = tp8slow; 

  
[coeff1,score1,latent1,tsquared1,explained1,mu1] = pca(xNormal'); 

  
xNormal = score1(:,1:3); 
xNormal = xNormal'; 

  
[coeff2,score2,latent2,tsquared2,explained2,mu2] = pca(xFast'); 

  
xFast = score2(:,1:3); 
xFast = xFast'; 

  
[coeff3,score3,latent3,tsquared3,explained3,mu3] = pca(xSlow'); 

  
xSlow = score3(:,1:3); 
xSlow = xSlow'; 

  

  
%% train normal speed 
perf1= zeros(20,2); 
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 seed1 = 5 % best of 20  
% for seed1=1:20 
    rng(seed1)  

     

     
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 6;    
%%using 6 because the first 3 columns of score1 represented approx 

90% data in PCA  
%%and the number of hidden layers is number of input variables x 2%% 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm1 = fitnet(hiddenLayerSize,trainFcn); 
    netnm1.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netnm1.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnm1.divideFcn = 'divideind'; 
    netnm1.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm1.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm1.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm1.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm1.performFcn = 'mse';  % Mean Squared Error 
    netnm1.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm1,tr] = trainlm(netnm1,xNormal,tNormal); 

  
% Test the Network 
yNormal = netnm1(xNormal); 
enm = gsubtract(tNormal,yNormal); 
performance1 = perform(netnm1,tNormal,yNormal) 

  
%%% yNormal is the shuffled predicted output 
%%% rename yNormal to y1 
y1 = yNormal; 

  
%%% yNormal after this line will be the inverse from shuffled of the 

predicted output 
yNormal(ind) = yNormal; 

  
% View the Network 
% view(net) 

  

         
    seed1 
    testPerformance = perform(netnm1,performance1,yNormal); 
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    perf1(seed1,1) = seed1; 
    perf1(seed1,2) = testPerformance; 
    %[seed testPerformance] 

     
%  end 

  

  

  
%% identify traing and testing set of data 
%%%shuffled 
tNormaltrain = tNormal(1:round(1/19*17*size(tNormal,2))); %target 

output at training part  
y1train = y1(1:round(1/19*17*size(y1,2))); %predicted output at 

training part 

  
tNormaltest = tNormal(round(1/19*18*size(tNormal,2))+1 : 

size(tNormal,2)); %target output at testing part   
y1test = y1(round(1/19*18*size(y1,2))+1 : size(y1,2)); %predicted 

output at testing part  

  
%%%non shuffled 
t1train = t1(1:round(1/19*17*size(t1,2))); %target output at 

training part before shuffled  
yNormaltrain = yNormal(1:round(1/19*17*size(yNormal,2))); %reversed 

predicted output at training part 

  
t1test = t1(round(1/19*18*size(t1,2))+1 : size(t1,2)); %target 

output at testing part before shuffled   
yNormaltest = yNormal(round(1/19*18*size(yNormal,2))+1 : 

size(yNormal,2)); %reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tNormaltrain -y1train).^2)) 
RMSEtestNormalSf = sqrt(mean((tNormaltest -y1test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t1train -yNormaltrain).^2)) 
RMSEtestNormal = sqrt(mean((t1test -yNormaltest).^2)) 

  
%% 

  

  
% figure  
% plot (tNormaltrain) 
% hold on 
% plot (y1train) 
%  
% figure  
% plot (tNormaltest) 
% hold on 
% plot (y1test) 
%  
% figure  
% plot (t1train) 
% hold on 
% plot (yNormaltrain) 
%  
% figure  
% plot (t1test) 
% hold on 
% plot (yNormaltest) 
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%% train fast speed 

  
perf2= zeros(20,2); 

  
 seed2 = 18 % best of 20  
% for seed2=1:20 
    rng(seed2)  

  
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 6; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm2 = fitnet(hiddenLayerSize,trainFcn); 
    netnm2.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netnm2.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnm2.divideFcn = 'divideind'; 
    netnm2.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm2.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm2.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm2.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm2.performFcn = 'mse';  % Mean Squared Error 
    netnm2.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm2,tr] = trainlm(netnm2,xFast,tFast); 

  
% Test the Network 
yFast = netnm2(xFast); 
enm = gsubtract(tFast,yFast); 
performance2 = perform(netnm2,tFast,yFast) 

  
%%% y2 isthe prediced output 
y2 = yFast; 

  
%%% yFast after this line will be the inverse shuffled of the 

predictedoutput 
yFast(ind) = yFast; 

  
% View the Network 
% view(net) 

  

         
    seed2 
    testPerformance2 = perform(netnm2,performance2,yFast); 
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    perf2(seed2,1) = seed2; 
    perf2(seed2,2) = testPerformance2; 
    %[seed testPerformance] 
% end    

  

  
%% identify traing and testing set of data 
%%%shuffled 
tFasttrain = tFast(1:round(1/19*17*size(tFast,2))); %target output 

at training part  
y2train = y2(1:round(1/19*17*size(y2,2))); %predicted output at 

training part 

  
tFasttest = tFast(round(1/19*18*size(tFast,2))+1 : size(tFast,2)); 

%target output at testing part   
y2test = y2(round(1/19*18*size(y2,2))+1 : size(y2,2)); %predicted 

output at testing part  

  
%%%non shuffled 
t2train = t2(1:round(1/19*17*size(t2,2))); %target output at 

training part before shuffled  
yFasttrain = yFast(1:round(1/19*17*size(yFast,2))); %reversed 

predicted output at training part 

  
t2test = t2(round(1/19*18*size(t2,2))+1 : size(t2,2)); %target 

output at testing part before shuffled   
yFasttest = yFast(round(1/19*18*size(yFast,2))+1 : size(yFast,2)); 

%reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tFasttrain -y2train).^2)) 
RMSEtestFastSf = sqrt(mean((tFasttest -y2test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t2train -yFasttrain).^2)) 
RMSEtestFast = sqrt(mean((t2test -yFasttest).^2)) 

  

  
%% 

  

  
% figure  
% plot (tFasttrain) 
% hold on 
% plot (y2train) 
%  
% figure  
% plot (tFasttest) 
% hold on 
% plot (y2test) 
%  
% figure  
% plot (t2train) 
% hold on 
% plot (yFasttrain) 
%  
% figure  
% plot (t2test) 
% hold on 
% plot (yFasttest) 
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%% train slow speed 

  

perf3= zeros(20,2); 

  
 seed3 = 16 % best of 20  
% for seed3=1:20 
    rng(seed3)  
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 6; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
 netnm3 = fitnet(hiddenLayerSize,trainFcn); 
    netnm3.input.processFcns = {'removeconstantrows','mapminmax'}; 
    netnm3.output.processFcns = {'removeconstantrows','mapminmax'}; 
    %net.divideFcn = 'dividerand';  % Divide data randomly 
    netnm3.divideFcn = 'divideind'; 
    netnm3.divideMode = 'sample';  % Divide up every sample 
%     net.divideParam.trainRatio = 80/100; 
%     net.divideParam.valRatio = 10/100; 
%     net.divideParam.testRatio = 10/100; 
%% 

  
    netnm3.divideParam.trainInd = 

[1:round(1/19*17*size(xNormal,2))]; 
    netnm3.divideParam.valInd =  [round(1/19*17*size(xNormal,2))+1 : 

round(1/19*18*size(xNormal,2))]; 
    netnm3.divideParam.testInd = [round(1/19*18*size(xNormal,2))+1 : 

size(xNormal,2)]; 
    netnm3.performFcn = 'mse';  % Mean Squared Error 
    netnm3.plotFcns = {'plotperform','plottrainstate','ploterrhist', 

... 
        'plotregression', 'plotfit'}; 
% Train the Network 
[netnm3,tr] = trainlm(netnm3,xSlow,tSlow); 

  
% Test the Network 
ySlow = netnm3(xSlow); 
enm = gsubtract(tSlow,ySlow); 
performance3 = perform(netnm3,tSlow,ySlow) 

  
%%% y3 isthe prediced output 
y3 = ySlow; 

  
%%% ySlow after this line will be the inverse shuffled of the 

predictedoutput 
ySlow(ind) = ySlow; 

  
% View the Network 
% view(net) 

  

         
    seed3 
    testPerformance3 = perform(netnm3,performance3,ySlow); 

     
    perf3(seed3,1) = seed3; 
    perf3(seed3,2) = testPerformance3; 
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    %[seed testPerformance] 
% end    

     

%% identify traing and testing set of data 
%%%shuffled 
tSlowtrain = tSlow(1:round(1/19*17*size(tSlow,2))); %target output 

at training part  
y3train = y3(1:round(1/19*17*size(y3,2))); %predicted output at 

training part 

  
tSlowtest = tSlow(round(1/19*18*size(tSlow,2))+1 : size(tSlow,2)); 

%target output at testing part   
y3test = y3(round(1/19*18*size(y3,2))+1 : size(y3,2)); %predicted 

output at testing part  

  
%%%non shuffled 
t3train = t3(1:round(1/19*17*size(t3,2))); %target output at 

training part before shuffled  
ySlowtrain = ySlow(1:round(1/19*17*size(ySlow,2))); %reversed 

predicted output at training part 

  
t3test = t3(round(1/19*18*size(t3,2))+1 : size(t3,2)); %target 

output at testing part before shuffled   
ySlowtest = ySlow(round(1/19*18*size(ySlow,2))+1 : size(ySlow,2)); 

%reversed predicted output at testing part 

  
%%%shuffled 
RMSEtrain1Sf = sqrt(mean((tSlowtrain -y3train).^2)) 
RMSEtestSlowSf = sqrt(mean((tSlowtest -y3test).^2)) 

  
%%%non shuffled 
RMSEtrain1 = sqrt(mean((t3train -ySlowtrain).^2)) 
RMSEtestSlow = sqrt(mean((t3test -ySlowtest).^2)) 

  
%%  
% figure  
% plot (tSlowtrain) 
% hold on 
% plot (y3train) 
%  
% figure  
% plot (tSlowtest) 
% hold on 
% plot (y3test) 
%  
% figure  
% plot (t3train) 
% hold on 
% plot (ySlowtrain) 
%  
% figure  
% plot (t3test) 
% hold on 
% plot (ySlowtest) 

  
%  end 

  
%%%NRMSE calculation 

  
NRMSEnormal = 100.*RMSEtestNormal/(max(t1test)-min(t1test)) 
NRMSEfast = 100.*RMSEtestFast/(max(t2test)-min(t2test)) 
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NRMSEslow = 100.*RMSEtestSlow/(max(t3test)-min(t3test)) 

  
TN =   t1test'; 
YN =   yNormaltest'; 
rN =   corrcoef(TN,YN) 

  
TF =   t2test'; 
YF =   yFasttest'; 
rF =   corrcoef(TF,YF) 

  
TS =   t3test'; 
 

 


