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Abstract

One of the significant challenges in the Internet of Things (IoT) is the provisioning of guaran-

teed security and privacy, considering the fact that IoT devices are resource-limited. Often-

times, in IoT applications, remote users need to obtain real-time data, with guaranteed

security and privacy, from resource-limited network nodes through the public Internet. For

this purpose, the users need to establish a secure link with the network nodes. Though the

IPv6 over low-power wireless personal area networks (6LoWPAN) adaptation layer stan-

dard offers IPv6 compatibility for resource-limited wireless networks, the fundamental

6LoWPAN structure ignores security and privacy characteristics. Thus, there is a pressing

need to design a resource-efficient authenticated key exchange (AKE) scheme for ensuring

secure communication in 6LoWPAN-based resource-limited networks. This paper proposes

a resource-efficient secure remote user authentication scheme for 6LoWPAN-based IoT

networks, called SRUA-IoT. SRUA-IoT achieves the authentication of remote users and

enables the users and network entities to establish private session keys between them-

selves for indecipherable communication. To this end, SRUA-IoT uses a secure hash algo-

rithm, exclusive-OR operation, and symmetric encryption primitive. We prove through

informal security analysis that SRUA-IoT is secured against a variety of malicious attacks.

We also prove the security strength of SRUA-IoT through formal security analysis con-

ducted by employing the random oracle model. Additionally, we prove through Scyther-

based validation that SRUA-IoT is resilient against various attacks. Likewise, we demon-

strate that SRUA-IoT reduces the computational cost of the nodes and communication over-

heads of the network.
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1 Introduction

Low-power wireless personal area networks (LoWPANs) have found numerous applications

in the Internet of Things (IoT) [1]. LoWPAN devices are amenable with IEEE 802.15.4 and are

constricted in power, communication, data rate, and storage resources [2]. IEEE

802.15.4-enabled LoWPAN devices are deployed in various real-world applications, such as

home automation, healthcare systems, security surveillance, smart grids, and industrial motor-

ing. To provide Internet connectivity to a large number of devices deployed in a particular IoT

environment, the IPv6 protocol is considered the most accordant solution because of its larger

address space to render a unique IP address to each sensor node. By using IPv6 addressing,

sensor nodes can transmit sensed information to other devices or to a central location through

the public Internet.

To support large-scale connectivity for IoT, the Internet Engineering Task Force has

designed IPv6-over-LoWPAN (6LoWPAN) adaptation layer to render packet fragmentation,

reassembly, and encapsulation features for IEEE 802.15.4-based LoWPAN networks [3, 4].

Since LoWPAN devices collect information and send to a designated location via the public

Internet, it is imperative for LoWPAN applications to provide security and privacy. However,

the basic 6LoWPAN design does not provide security and privacy features to preclude an

unauthorized network entity from procuring the collected information and to prevent illegiti-

mate users from accessing the 6LoWPAN network resources [5–9].

6LoWPANs encounter the same security attacks as the traditional networks. These include

denial-of-service (DoS), replay, user/server impersonation (UI/SI), man-in-the-middle

(MITM), identity guessing (IG), user anonymity (UA), user/device impersonation (UI/DI),

stolen smart card/device (SSC/SSD), and ephemeral secret leakage (ESL) attacks. However,

due to the resource-constricted nature of 6LoWPANs and the inadequacy of organized net-

work architectures, securing 6LoWPAN becomes more challenging [10]. Authentication,

availability, integrity, data freshness, and confidentiality are imperative security provisions in

6LoWPANs. Confidentiality guarantees secure data transmission between authorized users

and servers. Authentication and key establishment (AKE) is the mechanism to identify devices’

and users’ legitimacy in 6LoWPANs [11] and to set up a secret session key (SK) for encrypted

communication. Therefore, a lightweight AKE mechanism becomes imperative for securing

the network [12–20].

1.1 Related work

An overview of the existing AKE schemes for 6LoWPAN-based IoT networks and their limita-

tions is presented in S1 Table, which shows that no existing scheme can withstand all known

attacks. Pandi et al. [42] propounded an authentication scheme for vehicular ad-hoc networks

(VANETs) to enable the network entities to communicate securely. The scheme presented by

Pandi et al. is efficient in terms of certificate computation while preserving privacy of the enti-

ties. Pandi et al. [43] presented an AKE scheme for IoT-based wireless body area networks

(WBANs), which is computationally less expensive and ensures secure communication. Azees

et al. [44] propounded an anonymous authentication scheme for WBANs, which is capable of

resisting various covert security attacks while requiring fewer resources. Azees et al. [45] pre-

sented a blockchain based authentication scheme for VANETs, which is capable of resisting

different security attacks and renders secure communication in VANETs.

The authors in [34] propounded a multi-factor AKE scheme for the IoT environment. The

AKE scheme proffered in [34] uses a lightweight hash function along with advanced encryp-

tion standard (AES). However, the scheme is unable to restrain SSD, DoS, replay, and sensor

node (SN) capture attacks. A Chinese remainder theorem-based authentication scheme is
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presented in [23], which cannot resist replay attack and does not provide strong privacy. In

addition, a signature and certificate-based computationally efficient authentication scheme for

VANETs is presented in [46]. The authors in [47] propounded a resource-efficient AKE

scheme for the IoT environment by utilizing hash function and XOR operation. However, the

AKE scheme presented in [47] is prone to SSD, stolen verifier, UI, and UA attacks and is

unable to ensure SN’s anonymity. An AKE scheme is propounded in [48] for mobile networks.

The scheme proposed in [48] is resource-efficient and is suitable for mobile networks. A cosine

similarity-based AKE scheme for the IoT environment is proposed in [49]. Furthermore, to

enable security and privacy in different IoT-based networks, various AKE schemes are

reported in the exiting literature [19, 50–66].

Additionally, the security analysis of an eminent AKE scheme presented in [31] is given at

S1 Appendix. We have thoroughly analyzed the scheme and demonstrate that it is unsafe

against de-synchronization attack and does not provide a revocation phase (RP). In [31], gate-

way broadcasts the authentication message to all sensor nodes deployed in the network, and a

user does not specify the sensor node from which it is going to procure the information. Thus,

all the sensor nodes in the network process the received message, which causes an extra

computational overhead for every node.

1.2 Research contributions

This paper presents a resource-efficient secure remote user authentication scheme for 6LoW-

PAN-based IoT networks (SRUA-IoT). The proposed scheme performs user authorization

before procuring real-time data from sensors stationed in the 6LoWPAN-based IoT networks.

The scheme employs a lightweight secure hash algorithm (SHA-160) and advanced encryption

standard (AES-192) to accomplish the AKE process and makes the following contributions.

1. SRUA-IoT is an AES and hash function based remote user AKE scheme for 6LoWPAN-

based IoT networks, which renders user revocation and password change phases. Besides,

SRUA-IoT ensures the legitimacy of remote users (RUs) to access real-time information

from a sensor node while ensuring the privacy and anonymity of RUs. An RU indicates to

the gateway a particular sensor node for procuring real-time information, which reduces

the unnecessary computational overhead.

2. SK’s security in SRUA-IoT is corroborated using random oracle model (ROM). Informal

security validation illustrates that SRUA-IoT is protected against SSC, de-synchronization,

replay, and DoS attacks. In addition, Scyther tool analysis illustrates that the proposed

scheme is protected.

3. We demonstrate that SRUA-IoT renders enhanced security functionalities aside from its

low storage, computational, and communication costs, as compared to well-known AKE

schemes.

1.3 Paper organization

The remainder of this paper is organized as follows. The system model is presented in Section

2. The proposed SRUA-IoT scheme is elaborated in Section 3. Security analysis is presented in

Section 4. Performance evaluation of SRUA-IoT is detailed in Section 5. Finally, the paper is

concluded in Section 6.
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2 System model

The network model consists of a gateway GW, a registration center (RC), and remoter users

(RUy|y = 1, 2, 3, � � �, N). In the SH environment, sensor nodes (SNx|x = 1, 2, 3, � � �, n) are

deployed to monitor various processes. SNx collect critical information and forward to the

server stationed at RC. RC is responsible for the deployment of SNx and implementing various

access control policies in SH. Before procuring real-time information from SNx, it is necessary

for RUy to register with RC. After registration, RUy can access the network resources and the

allocated SNx. It is assumed that all network nodes are time synchronized.

The well-established Dolev Yao (DY) threat model [67] is employed, wherein an adversary

A can intercept communications between two network entities communicating via a public

channel. A can modify the intercepted messages or use the message for various malicious pur-

poses. A can procure the secret credentials stored in a sensor node’s memory. Furthermore, A
can obtain RUy’s smart device SDy and can extract secret credentials form SDy to execute vari-

ous security attacks.

RUy needs to communicate with SNx to securely procure the real-time information col-

lected by SNx. Therefore, an AKE scheme is imperative for secure and reliable communica-

tions between RUy and SNx. To achieve reliable and secure communication, the following

section presents an RUy AKE scheme, called SRUA-IoT.

3 The proposed SRUA-IoT scheme

SRUA-IoT seeks to ensure reliable and secure access to 6LoWPAN network resources. The

scheme first verifies the authenticity of RUy and then establishes a secret SK for encrypted

communication by employing a lightweight hash function and AES-192 during the AKE pro-

cess. SHA is an irreversible function, which means that it is impossible to derive the input

from the output of SHA-160. Moreover, SHA-160 is a collision resistance function, which

means that the output of SHA-160 can never be the same for different inputs. AES-192 is used

as the encryption and decryption scheme in SRUA-IoT. SRUA-IoT is composed of seven

phases, which are presented in the following subsections. S2 Table lists the notations used in

this paper.

3.1 Sensor node deployment phase

RC assigns various secret credentials to SNx before its deployment in the 6LoWPAN network.

Moreover, RC selects a GW’s secret Key (GK) of 512 bits and a unique identity IDG. Both GK
and IDG are known only to GW. RC executes the following steps to accomplish the sensor

node deployment (SND) phase.

3.1.1 Step SND-1. RC picks a unique IDSNx
and PIDSNx

each of size 80 bits. Moreover, RC

selects a random number Rx and computes a temporary secret (TS) for SNx as Ae = H(GK k
Rxk IDG), and TSSNx

¼ Aa
e � Ab

e , where Aa
e and Ab

e are two chunks of Ae, each of size 80 bits.

3.1.2 Step SND-2. RC stores the credentials {IDSNx
, PIDSNx

, TSSNx
} in the memory of SNx

before its deployment.

3.2 Remote user registration phase

It is imperative for RC to register RUy before providing access to the 6LoWPAN network

resources. RC assigns different secret credentials and a list of SNx to RUy. RC executes the fol-

lowing steps to perform the remote user registration (RUR) phase.
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3.2.1 Step RUR-1. RUy selects a distinct identity IDRUy
and computes HIDy ¼ HðIDRUy

Þ.

Moreover, RUy contrives a registration message MEr
1

: fHIDyg and dispatches MEr
1

to RC via a

protected channel.

3.2.2 Step RUR-2. RC selects a distinct pseudonym PIDx for RUy and calculates Aq = H
(GK k IDG), and Ax = H(HID k IDG k GK). RC determines a TS credential for RUy by dividing

Ax into two equal parts, namely, Aa
x and Ab

x, each of size 80 bits, and computes

TSRUy
¼ Aa

x � Ab
x. Moreover, RC computes the revocation parameter (ReP) as Bx = Aq�HIDy

and RPRUy
¼ Ba

x � Bb
x, where Ba

x and Bb
x are two chunks of Bx. Besides, RC assigns a list of SNx

to be accessed by RUy. Furthermore, RC computes encryption key as EK = (Aq k [Aq]
32), where

[Aq]
32 are the first 32 bits of Aq (to make the size of EK 192 bits). In addition, RC derives

CTRUy
¼ EEKfTSRUy

; PIDSNx
;TSSNx

g by using AES-192, and stores a list of credentials {PIDx,

RPRUy
, CTRUy

} in GW’s memory. Finally, RC fabricates a message MEr
2

: fPIDx;TSRUy
; PIDSNx

g

and sends MEr
2

to RUy securely.

3.2.3 Step RUR-3. After procuring MEr
2

from RC, RUy supplies its IDRUy
, password PSRUy

and BRUy
at the interface of smart device SDy and computes ðbk;RpÞ ¼ GenðBRUy

Þ by using

fuzzy extractor (FE). FE consist of two functions. The first one is Gen(.), which is a probabilis-

tic function that takes bio-metric information BRUy
of RUy and produces two output parame-

ters, namely, secret bio-metric key βk and reproduction parameter Rp. The second function of

FE is Rep(.), which is a deterministic function that takes Rp and BRUy
to reproduce βk. More-

over, SDy calculates Zx ¼ HðPIDx k TSRUy
k PIDSNx

Þ, Zy ¼ HðIDRUy
k PSRUy

k bkÞ, and encryp-

tion key EKy = (Zy k [Zy]
32), where [Zy]

32 are the first 32 bits of Zy to create EKy of size 192 bits.

Furthermore, SDy calculates CTlo ¼ EEKy
fPIDx;TSRUy

;CTRUy
g by using AES-192. In addition,

SDy computes authentication parameter as Authy ¼ HðIDRUy
k PSRUy

k bk k ZxÞ.

3.2.4 Step RUR-4. Finally, SDy stores the list of credentials {CTlo, Authy, Rp, Gen(.), Rep
(.), Et} in its memory and deletes all other parameters.

3.3 RU AKE phase

To access and communicate with the deployed 6LoWPAN based devices, it is necessary for

RUy to register itself with RC. RC allocates a list of secret credentials and devices to RUy at the

time of registration. After authorizing RUy’s legitimacy, RC allows RUy to access the specified

devices deployed in the network. After getting authenticated by RC, RUy and SNx set up an SK

for reliable and secure communication. The following steps elaborate RU AKE phase (RAP).

3.3.1 Step RAP-1. SDy receives the secret credentials PSRUy
, IDRUy

, and BRUy
, and computes

bk ¼ RepðBRUy
;RpÞ and Zy ¼ HðIDRUy

k PSRUy
k bkÞ. In addition, SDy computes the decryption

key DKlo as DKlo = (Zy k [Zy]
32), where [Zy]

32 are the first 32 bits of Zy to make DKlo of size 192

bits. Moreover, SDy computes PTlo ¼ DDKlo
fCTlog, where CTlo is the ciphertext stored in SDy,

and retrieves PTlo ¼ fPIDx;TSRUy
; PIDSNx

g. Furthermore, SDy calculates

Zlo
x ¼ HðPIDx k TSRUy

k PIDSNx
Þ, and authentication parameter

Authlo ¼ HðIDRUy
k PSRUy

k bk k ZxÞ. Finally, SDy checks Authy = Authlo to perform local

authentication. If the condition holds, SDy continues the AKE process.

3.3.2 Step RAP-2. After performing the local authentication, SDy chooses Tx of size 32

bits, and R1 of size 80 bits. SDy calculates G1 ¼ ðR1 k PIDSNx
Þ � HðTSRUy

k TxÞ and

Autha1 ¼ HðPIDx k PIDSNx
k R1 k TSRUy

Þ. Furthermore, SDy contrives a message MEa: {Tx,

PIDx, G1, Autha1} and dispatches it to GW via an open communication channel.
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3.3.3 Step RAP-3. Upon procuring MEa from SDy, GW verifies the validity of timestamp

by validating the condition TDx� |Tr − Tx|, where TDx is maximum tolerable packet time

delay, Tr is the receiving time of MEa, and Tx is fabrication time of MEa. If MEa receives at the

GW within the maximum allowed time delay limit, GW considers MEa to be a licit and fresh

message and continues the AKE phase. GW picks PIDx from the received MEa and looks up

PIDx in GW’s memory. If found, GW extracts the list of credentials {PIDx, RPRUy
, CTRUy

} related

to PIDx. In addition, GW calculates DK as M1 = H(GK k IDG) and DK = (M1 k [M1]32). More-

over, GW computes PT1 ¼ DDKfCTRUy
g by using AES-192, and procures secret credentials

{TSRUy
, (PIDSNx

, TSSNx
)} from PT1. Furthermore, GW obtains R1 and PIDSNx

by computing

ðR1 k PIDSNx
Þ ¼ G1 � HðTSRUy

k TxÞ. To validate the authenticity of MEa, GW calculates

Autha2 ¼ HðPIDx k PIDSNx
k R1 k TSRUy

Þ and verifies the condition Autha1 = Autha2. If the

condition holds, GW continues the execution of the AKE process.

3.3.4 Step RAP-4. After validating the authenticity of MEa, GW picks a timestamp Ty and

random number R2, and computes W1 ¼ HðR1 k TSRUy
k PIDxÞ, where W1 is obtained using

hash of the parameters, including R1, TSRUy
, and PIDx. GW calculates the update parameter

(UP) as UP ¼Wa
1
�Wb

1
, where Wa

1
and Wb

1
are obtained by dividing W1 into two equal

chunks of 80 bits each. Besides, GW computes PIDx+1 = UP� PIDx and stores both PIDx and

PIDx+1 in its memory to avoid the de-synchronization attack. Moreover, GW calculates

W2 ¼ HðTSSNx
k PIDSNx

k TyÞ, G2 = W1�W2, G3 = (R2, R1)�W2, and

Autha3 ¼ HðW1 k R2 k R1 k TSSNx
k PIDSNx

k TyÞ. Finally, GW creates a message MEb: { Ty,

G2, G3, Autha3} and sends it to SNx via the public channel.

3.3.5 Step RAP-5. After procuring MEb from GW, SNx verifies the condition TDx� |Tr −
Ty|. If the condition holds, SNx computes W3 ¼ HðTSSNx

k PIDSNx
k TyÞ, W1 = G2�W3, and

(R2, R1) = G3�W3. Moreover, SNx calculates

Autha4 ¼ HðW1 k R2 k R1 k TSSNx
k PIDSNx

k TyÞ. Furthermore, SNx determines the integrity

of MEb by validating the condition Autha3 = Autha4. If the condition holds, SNx picks a time-

stamp Tz and a random number R2, and computes G4 = H(R1 k R2 k R3)�W1. For securing

communication with RUy, SNx calculates SKx ¼ HðHðR1 k R2 k R3Þ kW1 k Tz k PIDSNx
Þ. In

addition, SNx computes Autha5 = H(H(R1 k R2 k R3) k R1 k Tz k SKx). Finally, SNx calculates a

message MEc: {Tz, G4, Autha5} and sends it to RUy via the public channel.

3.3.6 Step RAP-6. RUy considers the received MEc fresh if the condition TDz� |Tr − Tz|

holds. If MEc is valid, RUy calculates W4 ¼ HðR1 k TSRUy
k PIDxÞ, and H(R1 k R2 k R3) = G4

W4. For encrypted communication with SNx, RUy computes

SKy ¼ HðHðR1 k R2 k R3Þ kW4 k Tz k PIDSNx
Þ. Furthermore, RUy computes Autha6 = H(H

(R1 k R2 k R3) k R1 k Tz k SKy) and checks Autha5 = Autha6. If the equation holds, RUy consid-

ers MEc as a valid message. Finally, RUy computes UP ¼Wa
4
�Wb

4
and updates PIDx by calcu-

lating PIDx+1 = PIDx� UP1. RUy keeps both PIDx+1 and PIDx in its memory to ensure

resistance against de-synchronization attack. The user AKE phase of SRUA-IoT is summarized

in S1 Fig.

3.4 Password change phase

In SRUA-IoT, an authorized user RUy can change its password and update bio-metric infor-

mation without involving RC. RUy needs to perform the following steps to execute the pass-

word change phase (PCP).
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3.4.1 Step PCP-1. RUy provides its secret credentials, namely, IDo
RUy

, PSoRUy
, and Bo

RUy
as

inputs at the interface of SDy. After procuring the inputs, SDy computes the bio-metric key

b
o
k ¼ RepðBo

RUy
;RpoÞ. Moreover, SDy derives the decryption Key DKo

lo by computing

Zo
y ¼ HðIDo

RUy
k PSoRUy

k b
o
kÞ, and DKo

lo ¼ ðZ
o
y k ½Z

o
y �

32
Þ. By using AES-192 decryption algo-

rithm, SDy calculates PTo
lo ¼ DDKo

lo
fCTo

log, where PTo
lo ¼ fPID

x;TSRUy
; PIDSNx

g. Furthermore,

SDy computes Zo
x ¼ HðPIDx k TSRUy

k PIDSNx
Þ;Autho

lo ¼ HðIDo
RUy
k PSoRUy

k b
o
k k Z

o
xÞ, and veri-

fies if the condition Autho
lo¼Authlo holds. If it holds, SDy notifies RUy to enter a new password

PSnRUy
and update bio-metric information Bn

RUy
. Otherwise, SDy halts the AKE process.

3.4.2 Step PCP-2. Upon procuring PSnRUy
and Bn

RUy
from RUy, SDy determines a new bio-

metric key βn by computing ðb
n
;RpnÞ ¼ GenðBn

RUy
Þ. Moreover, SDy computes the encryption

key EKn
lo as Zn

y ¼ HðIDo
RUy
k PSnRUy

k b
n
kÞ, EK

n
lo ¼ ðZ

n
y k ½Z

n
y �

32
Þ, where ½Zn

y �
32

are the first 32 bits

of Zn
y . Furthermore, SDy calculates new plaintext PTn

lo by deriving

PTn
lo ¼ fPID

x;TSRUy
; PIDSNx

g. In addition, SDy computes Zn
x ¼ HðPIDx k TSRUy

k PIDSNx
Þ, and

Authn
lo ¼ HðIDo

RUy
k PSnRUy

k b
n
k k Z

n
xÞ. Finally, by utilizing AES-192 encryption algorithm, SDy

calculates CTn
lo ¼ EEKn

lo
fPTn

log, replaces fCTn
lo;Auth

n
y ;Rp

n;Genð:Þ;Repð:Þ;Etng with {CTlo,

Authy, Rp, Gen(.), Rep(.), Et} in SDy’s memory, and deletes all other credentials in its memory.

S2 Fig summarizes PCP.

3.5 Revocation phase

If a legitimate RUy loses its SDy, RUy can obtain a new SDnew
y from RC. To obtain SDnew

y , it is

necessary for RUy to remember its IDRUy
. For proper RP, it is necessary to remove the previous

data from GW’s memory. Most AKE schemes do not delete the old data from the memory of

GW or server. RUy needs to perform the succeeding steps to procure a new SC.

3.5.1 Step RP-1. Upon getting IDRUy
, SDy computes HIDy ¼ HðIDRUy

Þ, constructs a mes-

sage MErov
1

: fHIDyg, and forwards MErov
1

to RC. After getting MErov
1

from RUy, RC computes B
= H(GK k IDG)�HIDy, RPRUy

¼ Ba � Bb, and verifies if RPRUy
exists in its memory. If found,

RC removes RPRUy
related record and informs RUy for new registration by sending MErov

1
:

fregistration requestg to RUy.

3.5.2 Step RP-2. Upon getting the new registration request, RUy picks new PSnewRUy
, IDnew

RUy
,

and computes HIDnew ¼ HðIDnew
RUy
Þ. SDy constructs a message MErov

3
: fHIDnew

y g and sends to

RC.

3.5.3 Step RP-3. RC picks a new pseudonym PIDx
new for RUy and computes

Anew
q ¼ HðGK k IDGÞ. To issue a new SDnew

y to RUy, RC computes the same computation as

accomplished in Step RUR-2 of Section 3.2. Finally, RC contrives a message MErov
4

:

fPIDx
new;TS

new
RUy
; PIDnew

SNx
g and sends MErov

4
to RUy via a reliable channel.

3.5.4 Step RP-4. After receiving MErov
4

from RC, SDy executes the same computation as

excuted in Step RUR-3 of Section 3.2 Finally, SDy stores a new list of parameters {CTnew,

Authnew
y , Gen(.), Rep(.), Rpnew, Etnew} in SDy’s memory. Moreover, RC stores a list of credentials

{PIDx
new, RPnew

RUy
, CTnew

RUy
} in GW’s memory. The revocation phase is summarized in S3 Fig.

3.6 New SN deployment phase

RC can deploy a new SN (NSN) by performing the following steps.
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3.6.1 Step NSN-1. RC picks a distinct IDn
SNx

and PIDn
SNx

for NSN SNn
x . In addition, RC

picks Rn
x and computes a new temporary secret TSnSNx

for SNn
x by calculating

An
e ¼ HðGK k Rn

x k IDGÞ, and TSnSNx
¼ An� a

e � An� b
e , where An� a

e and An� b
e are two chunks of

An
e , each of size 80 bits.

3.6.2 Step NSN-2. Finally, RC stores the credentials {IDn
SNx

, PIDn
SNx

, TSnSNx
} in SNn

x ’s mem-

ory before its deployment.

4 Security analysis

In this section informal security analysis of SRUA-IoT is carried out to shows its resistance

against various security attacks. The security of SK is validated by utilizing the well-known

ROM. Scyther based security analysis is performed to validate SRUA-IoT’s resistance against

replay and MITM attacks.

4.1 Informal security analysis

This subsection illustrates that the proposed scheme is protected against various attacks,

namely, replay, MITM, UI, offline PG, PI, and impersonation attacks.

Proposition 1 SRUA-IoT is resistant to replay attack.

proof 4.1 There are three messages exchanged during the execution of the AKE phase,
namely, MEa: {Tx, PIDx, G1, Autha1}, MEb: {Ty, G2, G3, Autha3}, and MEc: {Tz, G4, Autha5}.
These messages are constructed by incorporating latest timestamps Tx, Ty, and Tz. The freshness
of each timestamp is verified by validating the conditions TDx� |Tr − Tx|, TDx� |Tr − Ty|, and
TDx� |Tr − Tz| for each message MEa, MEb, and MEc, respectively. If these conditions do not
hold, GW, SNx, and RUy will detect the replay attack and the receiving network entity will dis-
card the received message. Therefore, SRUA-IoT is resistant to replay attack.

Proposition 2 SRUA-IoT is protected against DoS attack.

proof 4.2 In SRUA-IoT, RUy uses its secret credentials to pass the local authentication, for
which SDy needs to calculate Authlo ¼ HðIDRUy

k PSRUy
k bk k ZxÞ and check the condition

Authy = Authlo. Local verification will be successful if the condition holds. After local verification,
SDy sends the AKE request to GW. Otherwise, SDy terminates the AKE process and prevents RUy

from sending a large number of AKE requests to GW. Hence, SRUA-IoT is protected against DoS
attack.

Proposition 3 SRUA-IoT ensures untraceability and anonymity of RUy.

proof 4.3 In SRUA-IoT, during the registration and the AKE phase, only pseudo identities
are used, which do not provide any information about IDRUy

. For each new AKE session, RUy uti-
lizes the updated PIDx+1, and fresh random numbers R1, R2, and R3. During the AKE process, the
communicated messages are different for each session. Therefore, A cannot correlate the captured
message from two different AKE sessions. Thus, SRUA-IoT renders the anonymity and untrace-
ability of RUx and SNx.

Proposition 4 SRUA-IoT is protected against MITM attack.

proof 4.4 In SRUA-IoT, there are three messages exchanged, i.e., MEa, MEb, and MEc. Let A
captures the the message MEa: {Tx, PIDx, G1, Autha1}, which is transmitted by RUy, and tries to
update the message content by selecting a random number Ra

1
and timestamp Ta

x . For this, A
needs to compute Ga

1
and Autha

a1
to pretend that MEa

a is from a legitimate RUy. However, A can-
not compute valid G

1
and Autha1

without knowing the secret credentials, namely, TSRUy
, and

PISSNx
, which are known only to RUy. We can illustrate the same conditions for MEb, and MEc.

Hence, SRUA-IoT is protected against MITM attack.
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Proposition 5 SRUA-IoT is immune to offline PG and SSC attacks.
proof 4.5 In this case, A can execute various attacks by procuring sensitive information stored

on the stolen/lost smart card or device. Let A obtains lost/stolen SDy of RUy and, by using power
analysis attack, can procure the information, such as {CTlo, Authy, Rp, Gen(.), Rep(.), Et} stored
in the memory of SDy. From the obtained information, A cannot retrieve secret credentials,
which are used during the AKE process. Therefore, SRUA-IoT is protected against SSC attack.
To update the password of RUy, A picks a random identity, password and bio-metric informa-
tion to compute ba

k ¼ RepðBa
RUy
;RpÞ, Za

y ¼ HðIDa
RUy
k PSaRUy

k b
a
kÞ, DKa

lo ¼ ðZ
ay k ½Za

y �
32
Þ,

and PTa
lo ¼ DDKa

lo
fCTlog, retrieve PTa

lo ¼ fPID
x; PIDa

SNx
;TSaRUy

g, calculate Za
x ¼

HðPIDx k TSaRUy
k PIDa

SNx
Þ;Autha ¼ HðIDa

RUy
k PSaRUy

k b
a
k k Z

a
xÞ, and check Autha

y¼Authlo.

However, without knowing the secret credentials of RUy, such as IDRUy
, PSRUy

, and BRUy
, it is not

possible for A to perform valid commutation as mentioned above. Therefore, SRUA-IoT is
immune to offline PG attack.

Proposition 6 SRUA-IoT is secure against impersonation attack.

proof 4.6 SRUA-IoT considers the following three types of impersonation attacks.

1. UI attack: Let A tries to generate an AKE request message MEa
a : fTa

x ; PID
x;Ga

1
;Aautha1g by

selecting Ta
x , and R1. However, to send an AKE request to RC, A needs to known both the

secret credentials, i.e., TSRUy
and PIDSNx

, which are known only to RUy. Moreover, TSRUy
and

PIDSNx
are stored in SDy’s memory in the encrypted form. Therefore, SRUA-IoT is secure

against UI attack.

2. RC impersonation attack: In this case, A picks Ra
2
, Ta

y , and contrives a message
MEa

b : fTa
y ;G

a
2
;Ga

3
;Autha

a3
} to pretend that this messages is from a legitimate RC. However, to

generate MEa
b, A needs to know the secret parameters, such as TSSNx

and PIDSNx
, which are

stored in encrypted form. Therefore, without knowing these parameters, A cannot fabricate a
false massage to make SNx believe that the message is created by a legal RC. Hence, SRUA-IoT
is secure against RC impersonation attack.

3. SNx impersonation attack: A can generate a fake message MEa
c : fTa

z ;G
a
4
;Autha

a5
g and send it

to RUy to make RUy believe that the message is from a legal SNx. However, to generate a valid
MEc, A needs to knowW1, R1, R2, R3, and TSSNx

. Without the knowledge of these secret cre-
dentials, it is impractical for A to create a licit message MEc. Hence, SRUA-IoT is secure
against SNx impersonation attack.

Proposition 7 SRUA-IoT is resilient against SNx capture attack.

proof 4.7 In 6LoWPANs, SNx are deployed in unattended environment. A can capture an
SNx and can procure the sensitive information stored in the memory of SNx. Since all the
deployed SNx contain distinct secret information, therefore, by capturing an SNx A cannot
breach the security of the entire 6LoWPAN. Hence, SRUA-IoT is resilient against SNx capture
attack.

Proposition 8 SRUA-IoT is immune to de-synchronization attack.

proof 4.8 If the network entities are updating pseudonyms during the execution of the AKE
process, A can establish de-synchronization attack by dropping the captured message. In
SRUA-IoT, GW and RUy update PIDx to PIDx+1 to accomplish anonymous communication.
However, to avoid the de-synchronization attack, both GW and RUy keep PIDx and PIDx+1 in
their memory. If A halts the AKE process by dropping the authentication messages, RUy can use
old PIDx for the AKE process. Therefore, SRUA-IoT is immune to de-synchronization attack.

Proposition 9 SRUA-IoT is resistant to ESL attack.
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proof 4.9 Proof In SRUA-IoT, both RUy and SNx compute SK as
SKx;y ¼ HðHðR1 k R2 k R3Þ k HðR1 k TSRUy

k PIDxÞ k Tz k PIDSNx
Þ. It is obvious that the calcu-

lated SK is the concoction of ephemeral (short term) parameters R1, R2 and R3, and long term cre-
dential, TSRUy

, PIDSNx
, and PIDx. A needs to compromise both ephemeral and long term

credentials to reveal SK. Therefore, SRUA-IoT is resistant to ESL attack.

Proposition 10 SRUA-IoT ensures PFS.

proof 4.10 From the discussion in Proposition 9, it is clear that SK is the concatenation of
fresh ephemeral and long term secret credentials. If A compromises SK of the previous AKE pro-
cess but cannot compromise SK of the new AKE processes, then SRUA-IoT renders the PFS
feature.

Proposition 11 SRUA-IoT ensures secure MA.

proof 4.11 In SRUA-IoT, RUy achieves validation on RC after verifying the condition Autha1

= Autha2. For this condition to hold, the knowledge of credentials GK, IDG, and TSRUy
is required.

To verify the condition at SNx Autha3 = Autha4, the knowledge of TSSNx
and PIDSNx

is necessary.
SNx achieves authentication on SDRUy

by validating the condition Autha5 = Autha6. Therefore,
RUy, SNx, and GWmutually validate each other to achieve secure mutual authentication.

4.2 SK security validation using random oracle model

We employ ROM to corroborate SK’s security in SRUA-IoT. In ROM, A consociates with kth

instance of a participating entity ENk, which is involved in executing SRUA-IoT. It can be a

legitimate RUy, GW or SNx. Therefore, ENk
RUy

, ENk
GW , and ENk

SNx
are kth

1
, kth

2
, and kth

3
instances of

RUy, GW, and SNx, respectively. To simulate real attacks, ROM considers various queries,

namely, Send, Test, Reveal, CorruptSD, and Execute. A description of these queries is presented

in S3 Table. Furthermore, SHA is modeled as a random oracle HR (|HR| specifies the rage

space of SHA output) and it is available for all SRUA-IoT executing entities including A. By

using the queries presented in S3 Table, the security of SK is proved in Theorem 4.12.

Theorem 4.12 Suppose a polynomial-time A is running against the proposed SRUA-IoT in
time Ti. If QRh denotes the hash quires, |HR| specifies the range space of SHA output, SQs indi-
cates the send queries, lbk defines the length of βk key, and |PD| refers to the password dictionary,
the approximated advantage of A in breaching the security of SRUA-IoT for procuring SK
between RUy and SNx can be defined as

ADSRUA� IoT
A ðTiÞ �

QR2
h

jHRj
þ

SQs

2lbk� 1jPDj
: ð1Þ

proof 4.13 To prove this theorem, we consider the following four games (GMx|x = 0, 1, 2, 3).

4.2.1 GM0. A real security attack is accomplished by A against SRUA-IoT in GM0. A picks
c bits at GM0. Therefore, we can procure

ADA
SRUA� IoTðTiÞ ¼ j2:AD

A;GM0

SRUA� IoT � 1j: ð2Þ

4.2.2 GM1. In GM1, A effectuates an eavesdropping attack and captures all the exchanged
messages MEa:{Tx, PIDx, G1, Autha1}, MEb:{Ty, G2, G3, Autha3}, andMEc:{Tz, G4, Autha5} during
the AKE process of SRUA-IoT by utilizing the execute query defined in S3 Table. To procure SK,

A executes the Reveal and Test queries and checks if the return key is a random string or real key
at the completion of GM1. The constructed SK between RUy and SNx is
SKx;y ¼ HðHðR1 k R2 k R3Þ k HðR1 k TSRUy

k PIDxÞ k Tz k PIDSNx
Þ. A needs to know all the
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long-term secrets and other ephemeral numbers, which are known only to RUy, SNx, and RC.
Hence by executing the eavesdropping attack, the chance of A to win the game will not be
enhanced. Therefore, it is evident that

ADA;GM1
SRUA� IoT ¼ ADA;GM0

SRUA� IoT: ð3Þ

4.2.3 GM2. In GM2, A performs an active attack by simulating Send and Hash quires. All
the exchanged messages MEa, MEb, and MEc are protected using the collision resistance SHA
function. The communicated message incorporates random number, timestamps, secret identi-
ties, and TSs. Therefore, no SHA collision will occur when A effectuates the Send and Hash quar-
ries. By birthday paradox, the following can be achieved.

jADA;GM1

SRUA� IoT � ADA;GM2

SRUA� IoTj � QR2
h=ð2jHRjÞ: ð4Þ

4.2.4 GM3. This game effectuates the simulation of CorruptSD query. Typically, RUy picks
low-entropy passwords. By utilizing the password dictionary attack, A tries to guess the password
of RUy after procuring the information stored on SDy, including {CTlo, Authy, Rp, Gen(.), Rep(.),
Et}. A also attempts to guess βk from the information stored on SDy. SRUA-IoT employs robust
FE that generates highly random βk 2 [0, 1]lbk, where lbk is the length of βk. The probability of
guessing βk is nearly 1

2lbk
. Furthermore, in the communication system, only a limited number of

wrong password attempts are allowed. Under these conditions, we have

jADA;GM2
SRUA� IoT � ADA;GM3

SRUA� IoTj �
SQs

2lbkjPDj
: ð5Þ

After executing the above queries, A needs to guess bit c upon executing the Test query. There-
fore, we have ADA;GM3

SRUA� IoT ¼
1

2
.

By utilizing the triangular inequality and simplifying (2)–(5), the following is achieved:

1

2
ADA

SRUA� IoTðTiÞ ¼ jAD
A;GM3

SRUA� IoT ¼
1

2
j

¼ jADA;GM1

SRUA� IoT � ADA;GM3

SRUA� IoTj

� jADA;GM1
SRUA� IoT � ADA;GM2

SRUA� IoTj

þjADA;GM2

SRUA� IoT � ADA;GM3

SRUA� IoTj

�
QR2

h

2jHRj
þ

SQs

2lbkjPDj
:

ð6Þ

Hence, we get

ADA
SRUA� IoTðTiÞ �

QR2
h

jHRj
þ

SQs

2lbk� 1jPDj
: ð7Þ

4.3 Scyther analysis

We employ the well-known formal security validation tool, called Scyther [68], to validate the

security properties and correctness of the proposed SRUA-IoT scheme. To that end, the
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security protocol description language (SPDL) is utilized to specify SRUA-IoT by employing

the operational semantics ascertained in [68]. S4 Fig demonstrates that proclaims are satisfied,

which are specified in the SPDL script. In S4 Fig, SRUA-IoT is the name of the devised proto-

col with the initiator RU and RC as the helper node and SN as the responder. The descriptions

of Nisynch and secrecy are provided in [68]. Secrecy signifies that specific information is not

disclosed to any attacker, even when the information is exchanged over a public network. Fur-

thermore, Nisynch describes that any claim defined in the devised protocol specification will

also appear in the trace. Moreover, SRUA-IoT analysis illustrates that the supplementary secu-

rity characteristics produced by Scyther, namely, weak agreement (Weakagree), aliveness

(Alive), and non-injective agreement (Niagree) are validated.

5 Performance evaluation

In this section, the performance of SRUA-IoT is compared with Park et al. [69], Shuai et al.
[36], Das et al. [30], Shin et al. [31], Challa et al. [22], Srinivas et al. [33], Wazid et al. [35], and

Chen et al. [27] in terms of computational cost, communication cost, security features, and

storage cost. We use C/C++ based cryptographic library MIRACL and Raspberry PI-3 (RPI-

3B) with Quad-core @1.2 GHz, 1BG of RAM, and Ubuntu 16.04 LTS for implementing the

proposed SRUA-IoT and the relevant AKE schemes.

5.1 Security features

The proposed SRUA-IoT is compared with the relevant AKE scheme in terms of security func-

tionalities and resistance against various attacks. S4 Table exhibits that Park et al. [69] is

unprotected against UA, SSC, and PT attacks, Shuai et al. [36] is unsafe against de-synchroni-

zation attacks, Das et al. [30] cannot withstand SSC, PI, and UA attacks and does not ensure

SK security, Shin et al. [31] is insecure against de-synchronization attack and does not provide

revocation phase, Challa et al. [22] cannot withstand PI, SSC, UA, PG, and UI attacks, Srinivas

et al. [33] fails to protect against UI, PI, and SSC attacks, Wazid et al. [35] is unsafe against UI,

PI, and SSC attacks, and Chen et al. [27] cannot protect PI, PG, UA, UI, replay and DoS attacks

and also does not ensure mutual authentication. Contrarily, SRUA-IoT is secure as compared

to the relevant eminent AKE schemes, as shown in S4 Table.

5.2 Computational cost

In this subsection, the approximated computational overhead of SRUA-IoT and relevant AKE

schemes is determined by using computational time of various cryptographic primitives pre-

sented in S5 Table. SRUA-IoT has a computational cost of 19TSA + 2TED + Tbk � 6:901 ms,

which is less than the benchmark schemes, as shown in S5 Fig and S6 Table. SRUA-IoT has

53.09%, 23.88%, 44.23%, 29.56%, 22.04%, 76.41%, 24.07%, and 38.93% less computational cost

as compared to Park et al. [69], Shuai et al. [36], Das et al. [30], Shin et al. [31], Srinivas et al.
[33], Challa et al. [22], Wazid et al. [35], and Chen et al. [27], respectively. Furthermore,

SRUA-IoT has a computational overhead of 5TSA� 1.275ms at SNx, which is less than the

benchmark AKE schemes, as shown in S6 Fig and S6 Table. The computational overhead at

GW increases with the number of users accessing the network resources. S7 Fig shows that

SRUA-IoT requires low computational overhead while processing multiple AKE requests

simultaneously.

Although the security of SRUA-IoT is verified through formal and informal analyses in Sec-

tion 4 where the scheme has been shown to resist various covert security attacks, however, an

attack or some unexpected event can halt the execution of SRUA-IoT, which may occur at any
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step of the AKE phase. Under a specific attack, the execution time can be computed as

Tatp ¼

P100

i Ti

ð1 � attack success probabilityÞ
; ð8Þ

where Ti denotes time required to accomplish the AKE phase and
P100

i Ti denotes the average

time, which is procured after running SRUA-IoT 100 times, and Tatp denotes the execution

time required to complete the AKE phase under successful attack probability. S8 Fig demon-

strates the time utilization of SRUA-IoT and other related schemes with attack success proba-

bility. Under various successful attack attempts, SRUA-IoT requires less time to complete its

execution than the related AKE schemes.

5.3 Communication cost

The comparative analysis of communication cost is illustrated in this subsection. For

SRUA-IoT, the size of timestamp is 32 bits, ECC point is 160 bits, SHA output size is 160 bits,

random number size is 80 bits, different PID size is 80 bits, and AES key size is 192 bits. During

the execution of the AKE phase, SRUA-IoT exchanges three message, namely, MEa: {Tx, PIDx,

G1, Autha1}, MEb: {Ty, G2, G3, Autha3 and MEc: {Tz, G4, Autha5}, of length {32 + 80 + 160

+ 160} = 432 bits, {32 + 160 + 160 + 160} = 512 bits, and {32 + 160 + 160} = 412 bits, respec-

tively. The aggregated communication overheads of SRUA-IoT is 1356 bits. S7 Table and S9

Fig demonstrate the comparison of SRUA-IoT and other related AKE schemes. SRUA-IoT has

75.92%, 21.53%, 11.72%, 29.28%, 46.36%, 11.72%, 20.05%, and 57.2% less communication cost

as compared to Park et al. [69], Shuai et al. [36], Das et al. [30], Shin et al. [31], Challa et al.
[22], Srinivas et al. [33], and Chen et al. [27], respectively.

5.4 Storage cost

This subsection provides the storage cost comparison of SRUA-IoT with other AKE schemes.

In SRUA-IoT, RUy, GW, and SNx store {CTlo, Authy, Rp, Gen(.), Rep(.), Et}, {PIDx+1, PIDx,

RPRUy
, CTRUy

}, and {PIDSNx
, TSSNx

} of length {240 + 160 + 160 + 8} = 568 bits, {80 + 80 + 80

+ 240} = 480 bits, and {80 + 80} = 160 bits, respectively. The total storage overhead can be cal-

culated as {568 + 480 + 160} = 1208 bits. Besides, the storage costs of Park et al. [69], Shuai

et al. [36], Das et al. [30], Shin et al. [31], Challa et al. [22], Srinivas et al. [33], Wazid et al.
[35], and Chen et al. [27] are 1600 bits, 1776 bits, 3738 bits, 1160 bits, 4016 bits, 2888 bits, 4126

bits, and 1792 bits, respectively. SRUA-IoT has a slightly higher storage cost as compared to

Shin et al. [31]. However, SRUA-IoT has less computational and communication cost during

the AKE phase in contrast to Shin et al. [31]. S10 Fig illustrates the storage cost comparison of

SRUA-IoT and the related AKE schemes.

6 Conclusion

Information security is critical in resource-constricted 6LoWPAN-based IoT networks. This

paper has presented an AKE scheme called SRUA-IoT for resource-constricted 6LoWPAN

devices to validate the legitimacy of remote users interacting in real-time with sensor nodes

deployed in smart home networks. The scheme performs user authorization before procuring

real-time data from sensors by employing a lightweight secure hash algorithm (SHA-160) and

an advanced encryption standard (AES-192) to accomplish the AKE process. The proposed

scheme is corroborated both formally and informally to explicate its resistance against various

malicious security vulnerabilities. Moreover, numerical results in comparison with bench-

marks reveal that SRUA-IoT requires low computational and communication resources in
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6LoWPANs to accomplish the AKE phase. Our future work will explore authenticated encryp-

tion with associated data to devise a resource-efficient AKE scheme with reduced computa-

tional cost for resource-constricted IoT devices.
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