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Abstract
Observing and quantifying primate behavior in the wild is challenging. Human
presence affects primate behavior and habituation of new, especially terrestrial,
individuals is a time-intensive process that carries with it ethical and health
concerns, especially during the recent pandemic when primates are at even
greater risk than usual. As a result, wildlife researchers, including primatolo-
gists, have increasingly turned to new technologies to answer questions and
provide important data related to primate conservation. Tools and methods
should be chosen carefully to maximize and improve the data that will be used
to answer the research questions. We review here the role of four indirect
methods—camera traps, acoustic monitoring, drones, and portable field labs—
and improvements in machine learning that offer rapid, reliable means of
combing through large datasets that these methods generate. We describe key
applications and limitations of each tool in primate conservation, and where we
anticipate primate conservation technology moving forward in the coming years.

Keywords Endangered .Methods .Monitoring . Remote Sensing . Tools

International Journal of Primatology
https://doi.org/10.1007/s10764-021-00245-z

Handling Editor: Joanna M. Setchell.

* A. K. Piel
a.piel@ucl.ac.uk

1 Department of Anthropology, University College London, London, UK
2 School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool,

UK
3 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam,

Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10764-021-00245-z&domain=pdf
http://orcid.org/0000-0002-4674-537X
mailto:a.piel@ucl.ac.uk


Introduction

Observing and quantifying primate behavior in the wild is challenging (Williamson and
Feistner 2003). Primates live across a vegetation gradient, from dense tropical and
montane forests to savanna mosaics (Lehman and Fleagle 2006). Some are entirely
arboreal and others nearly entirely terrestrial; when not habituated to humans, it
is common for individuals to flee on contact (Williamson and Feistner 2003).
As a result, visual study can be restricted to a few groups already under study
or habituated for tourism.

Human presence affects primate behavior (Crofoot et al. 2010; Nowak et al. 2014)
and habituation of new, especially terrestrial, groups is a time-intensive process that
carries with it ethical and health concerns (Allan et al. 2020; Doran-Sheehy et al. 2007;
Gazagne et al. 2020; Jack et al. 2008; Williamson and Feistner 2003), especially during
the recent pandemic when primates are at even greater risk than usual (Gillespie and
Leendertz 2020; Melin et al. 2020). As a result, wildlife researchers, including prima-
tologists, have increasingly turned to new technologies as indirect methods to answer
questions and provide important data related to primate conservation.

In this article we attempt to summarize some of the key advances driving data
collection and analyses in primate conservation. This is by no means a comprehensive
summary of the tools available to primate conservationists. Not only is that beyond the
scope of this article, but there is a steady stream of new tools available to eager
technologists (e.g., broad reviews on applicable technologies for wildlife conservation:
Berger-Tal and Lahoz-Monfort 2018; Marvin et al. 2016; Pimm et al. 2015). Some of
these tools are hardware, some are software, and some integrate them both, and in so
doing are transformational. These and other systems generate new questions of inquiry,
new methods of data collection, and with them, encourage the development of new
analytical tools to investigate them.

These innovative tools take multiple forms and can be implemented at the data collection
and analysis stage. In the review that follows, we discuss examples of both: camera
traps (CT), passive acoustic monitoring (PAM), drones, and portable genomics labs as
means of collecting indirect (and often, remotely sensed) data for primate conservation, and
developments in machine learning for analyses of especially big data. At the data collection
stage, remotely sensed data often complement direct behavioral observations by
human observers in the field, or replace them entirely where ground-truthing
has been previously established (Leyequien et al. 2007). The diversity of
information that we can now extract from indirect evidence has transformed
what we can understand about individuals, groups, and populations, all without
ever directly observing an animal (Lynn et al. 2016). At the data analysis stage,
in parallel with improvements in data collection, recent improvements in how
we move data means that some of the limitations that have historically plagued
research are steadily being overcome.

We begin by reviewing what we consider to be four increasingly common and
informative technological developments and describe the ethical consideration neces-
sary in their deployment, and then their application to monitoring primates and threats.
We then highlight recent improvements in machine learning and (big) data analysis,
before concluding with a discussion on the limitations of these methods, and where we
see the future of technology in primate conservation.
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Which Technologies?

Camera Traps

Camera trapping is the use of motion-sensitive cameras to record videos or pictures of
humans or animals (Kucera and Barrett 2011). The technique dates back nearly a
century and has become almost ubiquitous in studies of wildlife research and conser-
vation (Wearn and Glover-Kapfer 2019). CTs have long targeted large, charismatic
mammals (Ahumada et al. 2011; Cove et al. 2013; Gerber et al. 2010; Kauffman et al.
2007), but have more recently expanded into assessing entire wildlife communities,
including small and large species (Cusack et al. 2015a; Kays et al. 2009).

CTs share critical advantages with other remote sensing technologies. They collect
data automatically, can be deployed in remote areas for extended periods (many
months), record on a 24-h cycle, and are noninvasive and minimally disruptive to
wildlife (Meek et al. 2014, 2016). The application of CT has seen remarkable growth
and diversification to broad ecological questions and especially in its application to
primate research and conservation, including documenting species presence or distri-
bution ( Fang et al. 2020; Rovero and Zimmerman 2016).

Passive Acoustic Monitoring

Many primate species are characterized by long calls that travel a few hundred meters
or even multiple kilometers (Delgado 2006; Mitani and Stuht 1998; Wich and Nunn
2002). These characteristics make call detection an effective way of identifying species
presence.

Passive acoustic monitoring describes a system composed of microphones (hereafter
acoustic sensors) and in-house storage capacity, which is often synchronized to detect
and monitor wildlife sounds in both marine and terrestrial environments. PAM is
applicable to any taxa that produces acoustic signals, including insects, fish,
herpetofauna, birds, andmammals (Sugai et al. 2019).While the first system that listened
to wildlife sounds was deployed underwater during World War 1 (reviewed in Sousa-
Lima et al. 2013), recent advances in bioacoustics have expanded the applications of
acoustic sensors for terrestrial species (Blumstein et al. 2011; Sugai et al. 2019),
including primates (Kalan et al. 2015; Piel 2018; Spillmann et al. 2015). PAM is
noninvasive and especially applicable when visual detection is limited, for instance in
dense tropical forests, at night, or when weather conditions are poor. It can be deployed
for long periods in the field (months or years) and simultaneously at multiple locations
and thus offers the possibility to monitor animal calls at large spatiotemporal scales. The
increasing interdisciplinary collaboration between engineers and field ecologists is
driving new, affordable, and effective PAM-related tools with reduced size and weight.

Drones

The use of drones in primatology started ca. 10 yr ago to facilitate data
collection on three main aspects that are relevant to primate conservation
(Koh and Wich 2012): 1) land-cover classification and monitoring changes, 2)
obtaining data on primate presence/absence and density, and 3) detecting
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poachers. Other drone usages such as monitoring of food availability, remotely
studying social behavior, or identifying individuals have not yet been conduct-
ed. Despite the decade since their introduction to the field, there have been
relatively few published studies on the use of drones in primatology (Bonnin
et al. 2018; Spaan et al. 2019; Zhang et al. 2020). For a more in-depth
overview of the usage of drones in conservation we refer the reader to several
review articles (Chabot and Bird 2015; Jiménez López and Mulero-Pázmány
2019; Nowak et al. 2019) and a recent book (Wich and Koh 2018). Here, we
summarize the advantages and disadvantages of the three primary drone models
(Table I).

Portable Genomics Labs

Primate feces have long been used in endocrinological, diet, and genetic studies.
Endocrinologically, hormonal data reveal mechanisms that inform on primate
behavior, health, causes and consequences of stress, and even life history
(Beehner and Bergman 2017; Higham 2016). Feces also provide researchers
with a catalog of consumed plant species and parts, enabling us to map
important food sources and assess the role of primates as seed dispersers for
forest regeneration (Kalbitzer et al. 2019). More recently, we can now apply
metagenomics to primate feces to more comprehensively reveal primate diet,
parasites, and population genetics (Srivathsan et al. 2016). The genetic material
in primate feces allows us to identify individuals and use those data for
censusing (Arandjelovic and Vigilant 2018; Vigilant and Guschanski 2009), to
understand genetic structure, and to identify population boundaries (Eriksson
et al. 2004). Feces have long revealed key data on the health of wild primates
(Nunn and Gillespie 2016), especially in light of increasing anthropogenic
activity (Chapman et al. 2005).

Genomics is an increasingly valuable tool in wildlife conservation (Frankham et al.
2010). It is important for species identification and the dynamics of endangered
populations (McMahon et al. 2014) and contributes to identifying inbreeding depres-
sion, population structure, and the effect of population fragmentation (Hoban et al.
2013). Moreover, molecular epidemiology from genomic data is an increasingly
common tool in primate health monitoring (Gilardi et al. 1999). Several studies have
now shown the potential of combining noninvasive samples with portable genomics
for, e.g., parasitology (Knot et al. 2020), sexing (Guevara et al. 2018), and species
identification (Seah et al. 2020). Portable genomics has been demonstrated across
habitats, from rainforests (Menegon et al. 2017; Pomerantz et al. 2018), to dry forests
(Guevara et al. 2018), mountainous terrains (Parker et al. 2017), and even polar regions
(Goordial et al. 2017; Johnson et al. 2017) and offers a way to address some of the
critical limitations to traditional lab work that relies on field samples.

Despite the benefits of molecular research for primate conservation, traditional
molecular labs are located far away from field sites and consist of bulky and expensive
machines. This means researchers often invest many weeks and much funding toward
storing, processing, and transporting samples for later analyses. At the same time this
often creates dependency of local researchers on foreign collaborators, and numerous
range countries are now encouraging if not requiring researchers to conduct analyses in

Noninvasive Technologies for Primate Conservation in the 21st...



Ta
bl
e
II

Su
m
m
ar
y
of

re
ce
nt

m
in
ia
tu
re

to
ol
s
fo
r
m
ol
ec
ul
ar

pr
oc
es
si
ng

of
fi
el
d
sa
m
pl
es

T
yp
e
of

eq
ui
pm

en
t

Pr
od
uc
t
na
m
e

C
om

pa
ny

Pr
ic
e
(U

S$
)a

W
eb
si
te

A
ll-
in
-o
ne

D
N
A

la
bo
ra
to
ry

B
en
to

L
ab

B
en
to

L
ab

16
00
–2
00
0

ht
tp
s:
//w

w
w
.b
en
to
.b
io

G
el
el
ec
tr
op
ho
re
si
s
an
d
vi
su
al
iz
at
io
n

sy
st
em

bl
ue
G
el
/G
E
L
A
T
O

A
m
pl
yu
s

35
0–
89
0

ht
tp
s:
//w

w
w
.m
in
ip
cr
.

co
m
/p
ro
du
ct
-c
at
eg
or
y/
ge
l-
el
ec
tr
op
ho
re
si
s/

PC
R

m
in
i8
/m

in
i1
6

A
m
pl
yu
s

65
0–
84
0

ht
tp
s:
//w

w
w
.m
in
ip
cr
.c
om

/p
ro
du
ct
s/
m
in
ip
cr
/

qP
C
R

L
ib
er
ty
16

U
bi
qu
ito
m
e

60
00

ht
tp
://
w
w
w
.u
bi
qu
ito

m
eb
io
.c
om

qP
C
R

M
in
i
R
T
-P
C
R

M
yg
o

92
00

ht
tp
://
w
w
w
.m
yg
op
cr
.c
om

qP
C
R

O
pe
n
qP

C
R

C
ha
i

45
00
–6
50
0

ht
tp
s:
//w

w
w
.c
ha
ib
io
.c
om

/o
pe
nq
pc
r

qP
C
R

Fr
an
kl
in

on
e9

/
tw
o9
/-

th
re
e9

B
io
m
em

e
59
50
–9
95
0

ht
tp
s:
//i
nf
o.
bi
om

em
e.
co
m
/m

ob
ile
-q
pc
r-
th
er
m
oc
yc
le
rs

qP
C
R

M
IC

qP
C
R

B
M
S

96
00
–1
2,
00
0

ht
tp
s:
//b

io
m
ol
ec
ul
ar
sy
st
em

s.
co
m
/e
n-
gb
/m

ic
-q
pc
r/

Se
qu
en
ce
r

M
in
IO

N
/M

k1
C

O
xf
or
d
N
an
op
or
e

T
ec
hn
ol
og
ie
s

10
00
–4
90
0

ht
tp
s:
//n

an
op
or
et
ec
h.
co
m
/p
ro
du
ct
s

Se
qu
en
ci
ng

fl
ow

ce
lls

Fl
on
gl
e/
fl
ow

ce
ll

O
xf
or
d
N
an
op
or
e

T
ec
hn
ol
og
ie
s

90
–9
00

ht
tp
s:
//s
to
re
.n
an
op
or
et
ec
h.
co
m
/u
s/
fl
ow

ce
lls
.h
tm

l

L
ab

w
or
ks
pa
ce

M
er
cu
ry

L
ab

M
R
IG

lo
ba
l

>
50
,0
00

ht
tp
s:
//w

w
w
.m
ri
gl
ob
al
.o
rg
/m

er
cu
ry
/

a
Pr
ic
e
is
an

in
di
ca
tio

n
on
ly
.T

ru
e
pr
ic
es

w
ill

be
su
bj
ec
tt
o
ex
ch
an
ge

ra
te
s,
sh
ip
m
en
tc
os
ts
,e
tc
.T

he
m
os
tu
p-
to
-d
at
e
in
fo
rm

at
io
n
an
d
te
ch
no
lo
gi
es

ca
n
be

fo
un
d
at
po
rt
ab
le
ge
no
m
ic
s.
or
g.

Piel A.K. et al.

https://www.bento.bio
https://www.minipcr.com/product-category/gel-electrophoresis/
https://www.minipcr.com/product-category/gel-electrophoresis/
https://www.minipcr.com/products/minipcr/
http://www.ubiquitomebio.com
http://www.mygopcr.com
https://www.chaibio.com/openqpcr
https://info.biomeme.com/mobile-qpcr-thermocyclers
https://biomolecularsystems.com/en-gb/mic-qpcr/
https://nanoporetech.com/products
https://store.nanoporetech.com/us/flowcells.html
https://www.mriglobal.org/mercury/
http://www.portablegenomics.org


country. Thanks to a revolution in miniaturizing molecular equipment (Table II), this
presents new opportunities for a decentralization of conservation research ef-
forts. One example is from Oxford Nanopore Technologies, which launched the
MinION in 2014, a portable and compact USB-powered sequencer (Jain et al.
2016). This miniaturization is now pervasive, from portable real-time polymer-
ase chain reaction (qPCR) and gel electrophoresis systems to thermocyclers and
even all-in-ones that offer extraction and sequencing preparation (Marx 2015).
Incorporating fecal samples into field research protocols will be a valuable
approach to obtain more information on a wide variety of primates, and these
current technological advances present an exciting opportunity to analyze this
information on site.

Ethical Considerations of Remote Monitoring

Before we discuss the application of these technologies to primate conservation
specifically, we must first address the ethical and logistical considerations of access
and exposure. As has been described elsewhere in detail (Sandbrook et al. 2018), new
technologies are not a panacea for all primate conservation challenges. Although those
described here offer clear benefits to data collection and analyses, their deployment
must be thoroughly considered before use. The ability of remote sensing tools to
incidentally (or deliberately, in the case of poachers) reveal the location, movement,
and behavior of individuals raises concerns about informed consent, privacy, civil
liberties, and fear of arrest. To our knowledge, there is no standard for determining
when images or sounds captured from remote sensing can be shared or used
(Pebsworth and LaFleur 2014), despite the growing need for universal agreements on
these and related contexts that require formal guidance.

A recent discussion of the ethical issues related to camera trapping, for example, laid
out recommendations for a basic code of conduct (Sharma et al. 2020). These include
discussion of steps to obtain appropriate permission to use and deploy cameras to the
consultations and meeting necessary to agree on terms that govern disclosure decisions.
These issues are permeated by questions and differences in culture, value, power, and
even law (Brittain et al. 2020). Historically, even well-intended conservation efforts
have had negative consequences for some groups of people. For example, protecting
wildlife can displace indigenous communities, even when local stakeholders are
engaged in conservation policy (Adams and Hutton 2007). Aware of these negative
repercussions, as practitioners our obligation is to identify the beneficiaries but also
those who are likely to suffer from these decisions. In this sense, we echo recent calls
for a more holistic approach to these complex issues of the ethics of conservation
research, beyond what institutions require and inclusive of what local stakeholders
deserve (Brittain et al. 2020).

It is also important to critically examine who controls how information flows and is
processed, and how can these processes be democratized (Arts et al., 2015). For
example, researchers in the Canadian territories of Manitoba and Nunavut are involving
indigenous communities in the camera trapping process and tapping into their tradi-
tional ecological knowledge of the region (Clark et al. 2018). We support these

Noninvasive Technologies for Primate Conservation in the 21st...



improved attempts at inclusivity when planning and especially implementing the
deployment of remote sensing technology for data collection.

Avenues for Investigation

Detection, Presence–Absence, Prioritization

An important first step in wildlife conservation is detecting a species presence and
thereafter, identifying priority areas (Groves et al. 2002). In most cases, this involves
weighing important metrics such as forest loss and forest loss rate, size of the area in
need of protection, relative species (or overall phylogenetic) diversity, and measures of
irreplaceability or vulnerability (Carvalho et al. 2020; Isaac et al. 2007; Ondei et al.
2019). Just as important is assessing a species presence, especially for cryptic, elusive,
or rare species where distribution and ranging patterns are unknown. Although chal-
lenging, establishing species presence is an early and fundamental step in conservation,
necessary for studying population trends.

One common analytical tool for doing this is to model occupancy (Cove et al. 2013;
Crunchant et al. 2020). Occupancy is the proportion of an area used by a species
(MacKenzie et al. 2017; MacKenzie and Royle 2005). Occupancy models use
detection/nondetection data from multiple visits of a given area to infer the probability
of species presence and provide a useful tool to assess the population status (i.e.,
declining, stable, or increasing). They also allow researchers to determine the predic-
tors, such as vegetation, season, etc., that most influence animal presence (e.g.,
Crunchant et al. 2020). Although a common technique across wildlife studies, occu-
pancy modeling is far less common in primatology. CTs, PAM, and drones can provide
data on animal habitat use, especially important across vast areas that researchers
cannot regularly monitor.

CT is widely used to reveal primate habitat use. For instance, in a case study from
western Tanzania, occupancy models built from CT data revealed chimpanzee (Pan
troglodytes) use of an extremely large home range to be highly variable across space
and season (Crunchant et al. 2020). Seasonal changes in habitat use and in diet have
been observed using CT in wild mandrills (Mandrillus sphinx: Hongo et al. 2018),
blonde capuchin monkeys (Sapajus flavius: Medeiros et al. 2019) and wild Japanese
macaques (Macaca fuscata: Hanya et al. 2018).

Besides documenting animal presence, CT footage has the advantage over other
techniques (e.g., PAM) in revealing the sex and age of those that pass by cameras (e.g.,
Head et al. 2013). From a conservation perspective, monitoring life history landmarks,
such as births, deaths, and immigrations/dispersal events reveal demographic patterns
that inform and are informed by conservation strategies (Galvis et al. 2014; Strier
1991). While confirming a species presence is a critical first step toward conserving it,
establishing group demography can offer insight into population health, especially
given that some threats disproportionately affect individuals of certain age–sex classes
(i.e., with younger indiviudals more succeptible; Lilly et al. 2002).

For decades researchers have deployed CTs terrestrially, tacitly acknowledging that
cameras could not access higher-canopy-level dwelling species. The last few years,
however, have seen the emergence of arboreally deployed cameras. Early studies
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targeted areas such as canopy crossing points, thought to be used by numerous taxa,
including primates (Gregory et al. 2014), where high canopy-species inventories were
conducted (Whitworth et al. 2016). In some cases, arboreal deployments have targeted
particular primate species (e.g., Prolemur simus) and shown that, in some areas,
arboreally deployed cameras have higher detection rates than subcanopy cameras
(Olson et al. 2012). More recent studies have focused on extracting CT data for
building occupancy models and revealing species richness (Chen et al. 2021;
Johnson et al. 2020; Moore et al. 2020).

The use of PAM is well established in wildlife behavior and conservation (Balantic
and Donovan 2019; Brauer et al. 2016; Campos-Cerqueira and Aide 2016; Comer et al.
2014), but it is seldom used to confirm primate presence and habitat use. Two reasons
may explain this. First, the historic success of long-term projects that rely on direct
observations of habituated groups may have favored a methodological inertia that
suppressed innovation and creativity. Second, all the great apes (Fruth et al. 2018)
and some strepsirrhines (Kappeler 1998) build nests for sleeping, which remain on the
landscape for months, and from which researchers can derive habitat use, saving them
the financial and logistical burden of deploying a new technology. Thus, although the
application of PAM remains atypical in primate research, there is a growing niche for
this method to reveal primate presence, abundance, and behavior.

Two of the earliest studies applied PAM to wild great apes. In one of these,
researchers deployed 20 acoustic sensors in the Taï National Park, Côte d’Ivoire, to
assess the potential of a customized algorithm for the automated detection of chimpan-
zee buttress drumming and the loud calls of Diana (Cercopithecus diana) and king
colobus (Procolobus badius) monkeys over 35–45 km2 (Kalan et al. 2015). The use of
PAM and a semiautomated call detector provided similar results to data collection via
walked transects. The authors argued that sensor deployment is far less time consuming
than walking transects. That same year, the second study was published, where
researchers deployed 20 sensors successfully detected wild male orangutans (Pongo
pygmaeus) from ≤900 m, including localizing callers to <60 m (Spillmann et al. 2015).
Detection algorithms correctly identified species from almost half a mile (700 m),
demonstrating the geographic reach of such a system, especially when individual
callers can be identified (Spillmann et al. 2017).

Two other studies compared the efficiency of CT and PAM in primate detection. In
one, camera traps and acoustic sensors were deployed to study sika deer (Cervus
nippon) and Japanese macaques (Macaca fuscata) in Japan (Enari et al. 2019) used.
The authors showed that acoustic sensors were superior, largely due to the increased
(spatial) detection coverage—100–7000 times larger—than CTs, as well as far more
reliable when using automated detectors for auditory compared to visual signals. In
comparing automated detectors for acoustic vs. camera trap footage of the monkeys,
they noted that whereas images of animals rarely change, call parameters respond to the
intrinsic (age–sex class) and extrinsic physical (rainfall, wind) and social (activity)
context. Alas, although PAM offers more effective detection, automated detection may
be more complicated, with many species exhibiting high intracaller acoustic variability
(Bouchet et al. 2012; Zimmermann and Lerch 1993).

The second study compared the efficiency of PAM and CT in detecting chimpan-
zees in the Issa Valley, Tanzania (Crunchant et al. 2020). Detectability with both
methods varied across seasons, likely due to social and ecological factors that influence
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chimpanzee party size and vocalization rate. Nonetheless, PAM was more efficient than
CT, confirming chimpanzee absence in fewer than 10 days of recordings, 5 times faster
than CT data (Crunchant et al. 2020). Additional work comparing methods is necessary
to more comprehensively understand the advantages of each method and which
questions they can best address.

The use of drones to detect animals is a growing application across taxa and habitats.
Although for some species the animal–background color contrast is sufficient to
facilitate detection, for many species that is insufficient (Chabot et al. 2019; Linchant
et al. 2015). As a result, conservation scientists sometimes use other evidence of
wildlife to assess their presence and distribution, such as nests (chimpanzees: Bonnin
et al. 2018; alligators: Elsey and Trosclair 2016). In one of the first demonstrations of
this application, researchers used a camera on a fixed wing drone and flew line transects
over chimpanzee habitat in Gabon (van Andel et al. 2015). The fraction of ground nests
detected in the aerial images was far higher (49%) in open, coastal forests than closed,
inland forests (8%), suggesting an important nest–forest color contrast in aiding
detection. A follow-up study in a mosaic landscape in western Tanzania compared
nest detections from ground surveys and aerial images (Bonnin et al. 2018). Only a
fraction (9.6%) of the ground nests were detected from the aerial images, but there was
a significant, but weak relationship between the ground and aerial nest numbers. The
fraction of nests observed in aerial images compared to the ground (39.9%) was lower
in this study than in Gabon, likely due to methodological differences (van Andel et al.
2015). In Tanzania, detection probability of nests was mainly influenced by image
resolution (Bonnin et al. 2018).

In some cases, drones provide imagery from which animals themselves—and not
nests—can be detected. A comparison of ground observations of spider monkeys
(Ateles geoffroyi) in Mexico with detections by human analysts on thermal infrared
images showed that there was good concordance between the ground and aerial counts
for small parties, but the aerial counts were higher for larger parties, indicating that
ground observers do not see as many individuals as aerial cameras do (Spaan et al.
2019). Owing to the difficulties of detecting primates directly in the tree canopy with
visual spectrum cameras, scientists have resorted to thermal infrared cameras that can
detect the heat radiated from primates (Burke et al. 2019; Kays et al. 2019; Spaan et al.
2019). These studies have used multirotor drones with a variety of thermal infrared
cameras to detect several primate species and have the best detection probabilities at
dawn and dusk when the vegetation is relatively cool. A study that focused on Bornean
orangutans (Pongo pygmaeus morio) in Sabah established that orangutans, and the
smaller proboscis monkeys (Nasalis larvatus), can be detected and distinguished from
each other in the thermal signal on the basis of their size (Burke et al. 2019). As early
demonstrations of the efficacy of drones and especially thermal imagery to detect wild
primates, these studies have been enormously constructive. Limitations remain, how-
ever, in detections.

Specifically, although thermal cameras are effective in detecting species in the upper
canopy, individuals even just under the top level of the canopy are generally not
detected (Kays et al. 2019). In fact, in general, we know little about false negatives,
which remains an issue during analyses. Figuring out ways to correct for that is
important. Further, once daytime temperatures rise and the canopy warms, higher
individuals will not be as detectable given the low temperature differential (Kays
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et al. 2019). Even though detection was high at night, distinguishing between species
was difficult, which the authors argued could potentially be remedied by combining
thermal imagery with flash photography or infrared illumination so that visual spectrum
cameras can be used to facilitate species classification (Kays et al. 2019).

Lastly, innovations in portable labs have also enhanced our ability to remotely detect
primates. Several studies have demonstrated the possibility of using portable se-
quencers for species identification in the field through DNA barcoding, which is limited
to one gene region per sample (Blanco et al. 2020; Menegon et al. 2017; Pomerantz
et al. 2018). Further, metabarcoding offers the potential to sequence mixed DNA
barcode amplicons from bulk community or pooled samples (Krehenwinkel et al.,
2019b). Metabarcoding using Illumina sequencing has been applied to a variety of
primatological research questions, for example to assess parasite diversity (Gogarten
et al. 2020; Pafčo et al. 2018). Metabarcoding is also possible using MinION sequenc-
ing, but few studies have taken advantage of this (Krehenwinkel et al., 2019b). This is
largely due to the fact that the individual reads have error rates between 5% and 15%,
meaning the more closely related the individuals, the more unreliable the readout. For
spatially restricted species, this is likely less of a concern. There are signs of improve-
ment in reducing these errors, however (Krehenwinkel et al. 2019a), with recent
reported sequencing accuracy up to 97% (Baldi and La Porta 2020) and the R10.3
chemistry having a >99.87% accuracy compared to Illumina sequencing (Chang et al.
2020). Furthermore, bioinformatics pipelines still focus mostly on Illumina or PacBio
data. Development of new pipelines designed to handle MinION data is expected to
improve the applicability of metabarcoding for species identification from community
or pooled samples and thus offer another way to indirectly confirm species presence.

Abundance and Density

Once species presence is confirmed, a natural next parameter to establish is abundance
(or density), especially important in species monitoring, evaluating extinction risk, and
assessing the efficacy of conservation policy and practice. Estimations of population
size have long on extractions from observations made on line transects (Buckland et al.
2010; Kolowski and Alonso 2012; Teelen 2007) or from feces (Goossens et al. 2006;
Guschanski et al. 2009; Lynn et al. 2016), nest counts (Kouakou et al. 2009; Morgan
et al. 2006), and vocalizations (Kidney et al. 2016).

Different statistical approaches can be used to estimate animal density from camera
footage, whether animals are individually recognizable or not. When individuals are
individually recognizable through a combination of facial and bodily characteristics
(e.g., ear colors and forms, presence of scars), spatial capture–recapture (SCR) models
can be applied (e.g., Borchers and Efford 2008; Efford 2004), for example to estimate
chimpanzee density (Després-Einspenner et al. 2017; Head et al. 2013). The accuracy
of SCR with CTs has been empirically evaluated based on known individual chimpan-
zees at Taï Forest, Ivory Coast (Després-Einspenner et al. 2017). Results indicated that
nearly all weaned individuals were detected on only 5 cameras deployed for 38 weeks
and camera trap derived densities were highly accurate and precise. SCR models can
also be used when individuals are unmarked/unidentified but this requires intensive
sampling and generates low-precision estimates (Chandler and Andrew Royle 2013).
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When animals are not recognizable via identifiable markings, as can occur for
example in, nocturnal species, the random encounter model (REM) can estimate
density using average animal group size and day range, and the distance and angle
within which it detects animals. It requires camera sensitivity and animal speed
movement to be measured (Rowcliffe et al. 2008, 2011, 2016). The REM model was
later expanded (and relabeled as REST: random encounter and staying time) to assess
densities even when individuals were not recognizable (Nakashima et al. 2018). The
accuracy of the REM model remains to be demonstrated with more tests needed under
field conditions (e.g., Cusack et al. 2015a; Rovero et al. 2013).

Another approach when individuals are not recognizable is camera trap distance
sampling (CTDS). This applies distance sampling methods (e.g., Buckland et al. 2015)
with extended point-transect methods (Howe et al. 2017). CTDS has been evaluated
with chimpanzees in Tai Forest, Ivory Coast. The results showed that the CT-derived
density estimate was accurate (0.66 ind./km2 vs. a true density of 0.67 ind./km2) and
less biased than that calculated from line transects with nest counts (0.78–0.84 ind/km2

vs. a true density of 0.89 ind./km2; Kouakou et al. 2009), further demonstrating the
efficacy of CTs in assessing primate density. CTDS is not dependent on previous
knowledge of known individuals and thus can be applied in areas where little other
information is available, as shown recently in a broad-based wildlife survey in Salonga
National Park, DRC (Bessone et al. 2020).

Like CTs, acoustic sensors can also both detect animal presence and reveal animal
density. This was initially demonstrated for marine species (e.g., Minke whales
[Balaenoptera acutorostrata]: Martin et al., 2012); reviewed in Marques et al. 2013;
McDonald and Fox 1999) before being expanded to terrestrial species (e.g., Cape
peninsula moss frog [Arthroleptella lightfooti]: Borchers et al. 2015; Measey et al.
2017; Stevenson et al. 2015; ovenbirds [Seiurus aurocapilla]: Dawson and Efford
2009; Efford et al. 2009). Like with CT data, the main approaches to estimate
abundance have been adapted from observational encounters and include capture–
recapture (CR), distance sampling (DS), and acoustic spatial capture–recapture (aSCR),
reviewed in more detail in Marques et al. (2013). No study has yet used PAM to
estimate primate density. However, spatially explicit CR methods with humans acting
as acoustic detectors was used to estimate yellow-cheeked gibbon (Nomascus
annamensis) density in northeastern Cambodia, using bearing estimates to detected
groups to improve density estimates, and results were promising (Kidney et al. 2016).
aSCR methods require a priori knowledge of call rate (the number of calls produced
per unit of time), to convert the density of calls (the number of calls per unit time per
unit space) derived statistically from the acoustic survey into caller density (the number
of animals per unit space). Call rate data can be obtained by following animals and
recording call events.

Like with PAM, drone data show good promise in providing data on primate
density, but few empirical studies have been conducted to date. Although drones have
been used to obtain data on the distribution of a wide variety of taxa (Barasona et al.
2014; Chabot and Bird 2015; Mulero-Pázmány et al. 2015; Wich and Koh 2018), few
studies have applied this technique to primates. This could be due to the fact that
primates often occur in vegetation types that pose challenges for data collection
(Ancrenaz et al. 2005). Studies with manned aircrafts have indicated that orangutan
nests can be detected by observers on a small, low-flying helicopter and converted into
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orangutan density (Ancrenaz et al. 2005). A natural extension of this was to evaluate
whether an off-the-shelf visual spectrum camera fitted to a drone could be used to
detect nests and compare these observations to ground surveys. Results of two studies,
one on orangutans (Wich et al. 2015) and another on chimpanzees (Bonnin et al. 2018),
showed that a low, but consistent, proportion of nests that were observed from the
ground are detectable from the air. A third study using a drone with a thermal infrared
camera to determine the presence and count the number of spider monkeys in Mexico
showed similarly encouraging results, with high reliability between aerial and ground
counts of individual monkeys (Spaan et al. 2019). These studies indicate that aerial
counts from camera-fitted drones offer an exciting new tool to monitor population
trends in wild primate populations.

Because great ape nest numbers have to be converted into great ape densities
through a conversion that involves other variables such as nest decay and nest building
rate, the confidence intervals from survey data are usually large, which make them less
suitable for detecting small population changes (Kouakou et al. 2009; Piel et al. 2015).
From the aforementioned studies it thus seems that counting primates from the air also
requires correction factors in most cases to yield accurate estimates. It remains to be
determined whether such correction factors can be established and how they differ
between vegetation types for the same species and between species living in the same
vegetation types. It is likely that aerial counts using thermal infrared will work best for
primate species that sleep in relatively open canopies of emergent, relatively large trees.
For those species, correction factors may not even be necessary. For species that are
smaller and/or sleep below the canopy or in tree holes the usage of thermal infrared will
be less suitable and correction factors far more important (and larger).

Main Threats

Poaching

The technologies that we review here can detect more than animals themselves; these
tools are potentially capable of revealing threats to primates and their habitat as
effective as the primate themselves. All over the world wild primates are extracted
from their natural habitat for either consumption, use in traditional medicine, the exotic
pet trade, or used as trophy and status symbols, causing major threats to their distribu-
tion and abundance worldwide (Ni et al. 2018; Nijman et al. 2017). Poaching occurs
predominantly for food and for some species also during human-primate conflict
situations, and is one of the major causes leading to species declines (Meijaard et al.
2010, 2011; Wich and Marshall 2016).

Poaching is widespread and occurs across protected areas, plantations, logging
concessions, and forest reserves. As a result there is considerable interest in reducing
poaching pressure on primate species and evaluating whether technology can facilitate
such a reduction (Mulero-Pázmány et al. 2014; Wich and Koh 2018). When poaching
occurs in large landscapes that are covered in dense vegetation, poacher detection is
challenging. This means that technological solutions need to cover large swaths of an
area rapidly and with high poacher-detection probability. Due to poachers often
operating outside of daylight hours, one direction that conservation managers
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and researchers have turned to is the employment of thermal infrared cameras
to detect poachers. Further, predictive modelling can be used in areas where
poaching has the highest likelihood of occurring to automate such missions
(Olivares-Mendez et al. 2015).

Although the application of drones to detecting poachers is promising, areas for
improvement remain. First, habitat type will impact the proportion of detected (and thus
missed) poachers. One study found that drones using thermal infrared cameras in
relatively open miombo woodland failed to detect ~60% of human subjects even
during optimal flight times that maximized the thermal contrast of subjects to the
surrounding vegetation (Hambrecht et al. 2019; see also Mulero-Pázmány et al. 2014).
Canopy cover, distance from the flight path, and flight altitude all negatively influenced
detection probability. Because thermal infrared signals do not carry through thick layers
of vegetation it is unlikely that poachers in dense forest will be detected with this
method, although potentially this offers opportunities for indirect detection from camp
fires (Burke et al. 2018). Machine learning is important to remove variability that arises
from human analysts and is poised to dramatically improve detection success rates
(Bondi et al. 2019; Longmore et al. 2017). Second, predictive modelling for optimizing
drone flights would benefit from more studies and easy-to-use software applications for
users. Third, long-flight drones are essential due to the large areas that need to be
covered. This could be achieved through fixed-winged drones with power systems such
as gas engines, batteries in combination with photovoltaic cells on wings (for areas and/
or seasons with high solar radiation), or hydrogen. Such systems will likely be larger
than the relatively small fixed-wing systems that are predominantly used in conservation
and hence will likely need to land on wheels instead of the belly and need some sort of
runway. An alternative to cover large areas is to have several take-off and landing areas
throughout an area and use swarms of smaller drones to cover larger areas.

Acoustic information can also be used to inform wildlife crime units of the presence
of poachers. When combined, PAM and acoustic localization systems (ALSs) can
reveal key threats to wild primates when used to identify the source of e.g. gunshots,
axe, or chainsaw sounds. For example, CARACAL, a low-cost hardware and software
platform, can identify gunshot origins from over 1 km with an accuracy of less than 35
m (Wijers et al. 2019). AudioMoth, another low-cost platform, can detect gunshots
from up to 500 m (Hill et al. 2018).

Finally, genetic wildlife forensics aids bushmeat identification and illegally traf-
ficked animals (McDowall 2008). Species identification benefits from molecular tech-
niques, especially in cases where animal parts cannot be morphologically identified.
For example, DNA barcoding can be used in forensic species identification (Comstock
et al. 2003), whereas microsatellite data reveal the origins of seized illegal wildlife
products and aid efforts to enhance law enforcement (Mondol et al. 2015). The latter
technique is well-established when elephant or rhinoceros parts are confiscated by
authorities (Wasser et al. 2004), but has not been used yet with primates, despite a
growing demand (Oklander et al. 2020).

Traditionally, genetic wildlife forensics took place in a central lab. However, using
portable genomics labs to investigate wildlife trade and crime from the field decentral-
izes otherwise bureaucratic processes, improves turnaround times for analyses, and
reduces costs. In a recent study that used a qPCR to detect the illegal trade of the
critically endangered European eel (Anguilla anguilla) at Hong Kong International
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Airport (Cardeñosa et al. 2019). The process of extracting and sequencing DNA was
rapid (~2 hr), mobile, and cost-effective (<US$1.00 per sample). Additionally, DNA
amplification using PCR and subsequent detection by electrophoresis have been
performed on site for microsatellite genotyping of two primate species (Propithecus
verreauxi and P. coquereli) in Madagascar (Guevara et al. 2018) (Guevara et al. 2018),
and a fully portable field lab including the MinION facilitated the molecular species
assignment of a Malagasy lemur species within a week, from animal capture to tissue
collection, to phylogenetic analysis (Blanco et al. 2020). Finally, a recent study using three-
gene PCR and high resolution melting analysis showed encouraging accuracy for East
Africanwildlife species identification (Ouso et al. 2020). Thismethod is rapid, low-cost, and
reliable, using melting profiles of ribosomal RNA gene PCR products, as opposed to mass
barcode sequencing, as has been traditionally used for bushmeat (forensic) surveillance
(Kimwele et al. 2012). These and other diverse applications of portable laboratories
highlight the potential of field-based genomics to address data gaps in traded primate species
and to improve data access for species conservation and management.

Landscape Integrity and Human–Wildlife Conflict Because habitat loss, fragmentation,
and degradation are negatively influencing primate populations, it is important to
determine the vegetation classes in which primates occur and monitor habitat change
(Estrada et al. 2017). One of the most effective and efficient ways of doing that is with
drones, and especially those using multispectral cameras. Although the number of
sensors (and thus bands) in multispectral cameras can differ, these are often green,
red, red-edge, and near-infrared (NIR) (Assmann et al. 2019). These sensors are often
used for vegetation monitoring given that they allow for the calculation of band ratios
such as the normalized difference vegetation index (NDVI), which is useful for land-
cover classification and plant health (Pettorelli 2013). Although these sensors are
common tools in various remote sensing studies, for example to monitor protected
areas (Coulter and Stow 2009) and rapidly assess ecological integrity (Díaz-Delgado
et al. 2018), multispectral cameras have not yet been used in primate studies. Their
potential use is diverse, however, capable of providing information on phenological
patterns and for tree species detection, for instance. Traditionally, satellite images have
been used for this process and these are still the method of choice for large-scale
analyses (Voigt et al. 2018). However, new sensors offer comparable data for phenol-
ogy (Brede et al. 2018). At a smaller scale, drones can offer advantages over satellite
images, such as flexible data collection, capturing imagery below cloud cover and
providing much higher resolution imagery than commercially available satellites
(Rodríguez et al. 2012; Wich and Koh 2018). Such data allow the detection of very
low impact logging activities, for instance, that would not be picked up by satellite
images (Koh and Wich 2012).

Broadly, very few studies have used drones to map primate habitats. One study
mapped Sumatran orangutan habitat with a fixed-wing drone that was equipped with a
standard RGB camera to examine whether various vegetation classes in a reforested
area could be distinguished from each other on drone images (Wich et al. 2018). This
study indicated that some classes such as oil palm plantations were classified with a
high accuracy, as were some of the reforestation classes, but that others such as logged
forest had low accuracy and were classified as reforested. The use of multispectral data
should improve such classifications. Another use of drone data can be as training data
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for classification algorithms for satellite image classifications (Szantoi et al. 2017).
Owing to the very high resolution of drone images, they can potentially be used as an
alternative to ground truthing, depending on location size, area accessibility, and the
classes in need of classification. In two areas where Sumatran orangutan presence was
mapped with a fixed-wing drone, researchers obtained very high resolution
orthomosaics of the area in which seven land-cover classes could be distinguished
(Szantoi et al. 2017). Drone-truthing data from these flights were subsequently used to
train a supervised classification model on Landsat 8 images from the same data
collection period. The accuracy of the classification was assessed with high-
resolution satellite data and indicated that accuracy was high for mature oil palm
(89%), logged (76%), and reforested areas (76%), but that riverine forest had a much
lower accuracy (23%) (Szantoi et al. 2017). These results indicate that the use of drones
to acquire training data for algorithms that use satellite images to scale to larger surface
areas is promising.

Drone images can also be used to obtain more detailed data on primate habitats. An
early study examined the potential to determine tree species in chimpanzee habitat in
Gabon on visual spectrum images taken from a camera on board a fixed wing drone
(van Andel et al. 2015). Results indicated that 14 important chimpanzee food tree
species could be identified in the images. This is a small number of species in a very
diverse habitat, but the results reflect the potential of such an approach. The use of
multispectral (and hyperspectral—which has hundreds of bands) cameras will allow the
identification of much larger numbers of species and thus relatively large-scale tree
species inventories of primate habitats and facilitate studies of primate behavioral
ecology. In addition, such methods could be applicable in assessing whether areas
are suitable for primate reintroduction.

An additional application of drones is assessing plant phenology (D’Odorico
et al. 2020; Klosterman and Richardson 2017). In primatology, phenology
monitoring is often conducted in a number of plots or along transects that
are distributed throughout study sites (Marshall and Wich 2013), which gives a
very useful but still limited dataset that does not cover a whole site and, in
cases of primate species with large home ranges, might not be distributed
throughout their whole range. If visual spectrum, multispectral, or hyperspectral
drone images can be leveraged to provide such data through the calculation of
various indices (e.g., enhanced vegetation index [EVI], normalized difference
vegetation index [NDVI], and the entitled green-red normalized difference
(GRND)] associated with leaf phenology (see Klosterman and Richardson
2017 for a nonprimate example), this would expand the spatial coverage of
phenological patterns and allow studies to associate primate ranging (Peres
1994) and feeding behavior over large scales and in high detail. Studies in
which drone-derived phenology indices are compared to phenology data from
ground plots are needed to test this in areas where primates occur and should
ideally address flower and fruit phenology as well as leaf phenology. Such
studies have not been conducted yet. In a further step, actual leaf, flower, and
fruit availability might be assessed from visual, multispectral, or hyperspectral
data. This is as yet unexplored in primatology but methods are being developed
and tested for fruits in the agricultural sector (Apolo-Apolo et al. 2020; Sarron
et al. 2018; Senthilnath et al. 2016).
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CTs are also useful in areas that researchers have trouble accessing, such as
agricultural areas and human settlements. Human–wildlife conflict pervades these
areas, and cameras can reveal primates’ use of them. In Guinea, for example, CT
footage showed that chimpanzees temporally offset their use of key resources by
visiting certain food trees when people are absent (Garriga et al. 2019). Similarly a
study in Kibale National Park, Uganda, showed that chimpanzees crop-foraged during
the night (Krief et al. 2014). Chimpanzees are not the only great ape that competes for
land with humans. Orangutans range across forest of varying protected status, from
national parks to commercial forest plantations, and abundance estimates require an
understanding of their abundance over this mosaic landscape. A deployment of CTs
across orangutan distribution revealed that individuals use two different types of
commercial forest (Acacia and Eucalyptus), and secondary forest patches; the proxim-
ity to natural forest was the best predictor of their abundance (Spehar and Rayadin
2017). A similar study sought to assess Moor macaque (Macaca maura) use of
farmland in Sulawesi, Indonesia. CTs provided data on the crop that monkeys foraged
on most and the times of year monkeys were most active in people’s fields (Zak and
Riley 2017). Although these data were informative, the authors acknowledged that for
they would need observational for monkey identity, group size, and amount of crop
eaten. In this case, however, camera data contributed toward resolving human–wildlife
conflict, providing data on what crops primates ate and when crop foraging occurred
for farmers and conservationists alike.

Disease

Along with habitat loss, disease (and especially zoonoses) is a key threat to wild
primates and to great apes specifically (Gilardi et al. 1999). Of the technologies
described so far, portable genomics offers the most promising means of transforming
how field workers study and respond to outbreaks. In situ genomics decreases turn-
around times, due to the lack of logistical barriers to transport samples to a different
location. Short turnaround times make the diagnostics especially important for research
on disease outbreaks, as demonstrated by successful use of the MinION sequencer in
human healthcare for real-time detection of Ebola virus in West Africa (Quick et al.
2016), Zika virus in Brazil (Quick et al. 2017), and the current global SARS-CoV-2
pandemic (Fauver et al. 2020). In the current SARS-CoV-2 pandemic, viral whole
genome sequences of (human) patient samples have been produced at unprecedented
rates, in such a way that they are actively informing government response to the
outbreak (Oude Munnink et al. 2020). During such global crises, reliably diagnosing
infected patients, or especially molecularly characterizing viral or bacterial strains, can
have dramatic effects on mediation at the local and also international level.

These in situ tools may be most applicable to African great apes owing to their higher
terrestriality and sociality, but also because of their close genetic relationship with humans,
compared to orangutans whichmeans that cross-species infection is a threat to both great apes
and humans alike. Emerging infectious diseases are thus considered to be one of the threemain
threats for great apes, alongside poaching and deforestation (Nunn and Gillespie 2016).
Respiratory diseases are responsible for outbreaks in chimpanzees (Negrey et al. 2019;
Patrono et al. 2020) and gorillas (Grützmacher et al. 2016) and can cause significant mortality
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(Emery Thompson et al. 2018). Some of these outbreaks originate from human transmissions,
confirmed through molecular analyses, and more of these early tests are being conducted on
site. For example, at Dzanga Sangha Protected Areas in the Central African Republic, DNA
amplification using PCR and subsequent detection by electrophoresis were performed on site
to screen for human respiratory syncytial virus in western lowland gorillas (Gorilla gorilla
gorilla). Tests revealed identical sequences of the virus in humans and gorillas (Grützmacher
et al. 2016). Besides offering diagnoses, field labs that have qPCR facilities can provide
quantitative information about viral loads in infected individuals. Evidence of rapid improve-
ments to these field-facilities continues, with recently validated portable qPCR tests for canine
distemper virus (Tomaszewicz Brown et al. 2020); the platform can be readily adapted to test
for pathogens that pose high risks for primates.

These tools are particularly pertinent given the SARS-CoV-2 outbreak and its
potential to inflict wild primates (Gillespie and Leendertz 2020). Several early studies
suggest that African and Asian monkeys and apes, as well as some lemurs, are all likely
to be highly susceptible to SARS-CoV-2. In comparison, platyrrhines and some
strepsirrhines and tarsiers are less at risk of infection (Damas et al. 2020; Liu et al.
2020; Melin et al. 2020). Macaques (Macaca mulatta andM. fascicularis) have already
been shown to be susceptible to this virus, whereas early results show no susceptibility
for the virus in the common marmoset (Callithrix jacchus) (Lu et al. 2020).

Simultaneous molecular and observational in situ health monitoring of nonhuman
primate species over the next few years offers the potential to reveal to what extent
SARS-CoV-2 has infiltrated wild primates and simultaneously shine light on other
infections currently going unnoticed.

Data Processing

One advantage of some of the techniques described in the preceding text is that they generate
a large amount of data in a relatively short amount of time. Although data are typically
beneficial to the conservation effort, the timely analysis of such data is a challenge
(Norouzzadeh et al. 2018). For example, wildlife poaching is a global issue that impacts
many primate species (Estrada et al. 2018) and although technologies produce useful raw
data at short notice and real time, the significant delays in data processing limit its usefulness
for poaching prevention and mitigation (O’Donoghue and Rutz 2016).

Until recently, data processing was often a manual process requiring hundreds of
human-hours to deduce meaningful information that would inform conservation strat-
egy. Areas such as computer vision and deep learning (DL) are helping to transform
traditional data analysis processes undertaken by conservationists (Chen et al. 2019;
Rowcliffe et al. 2016). Machine learning and advanced analytics that are already used
in other domains such health and industry have seen limited use in conservation but
have significant power in processing data and deriving new insights. By using these
approaches data obtained from conservation studies can be directly used to identify
trends and useful insights regarding animal and environmental health and behavior
(Joseph et al. 2017). Machine learning can be used to automatically identify patterns
and information of interest while discarding useless data (Kwok 2019).

Analytical platforms can automatically analyze data and provide useful visualiza-
tions to provide a clear understanding of primate populations across wide geographical
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boundaries. For example, object detection allows us to automatically detect and report
specific individuals in large image and video catalogs and even live streams (Brust
et al. 2017; Buehler et al. 2019), and count populations over to model biodiversity and
population health. This significantly decreases (manual) analysis time therefore poten-
tially reducing costs and streamlining conservation studies. In its application to PAM
data, where manual data processing is extremely labour intensive and time consuming,
automated signal processing; for example, deep learning for efficient data extraction is
increasingly required (Bianco et al. 2019). These techniques have proven highly
efficacious, for example for chimpanzee drumming, Diana and king colobus monkey
loud calls (Heinicke et al. 2015; Kalan et al. 2015), male orangutan loud calls
(Spillmann et al. 2015), and female gibbon calls (Clink et al. 2019), with potential to
expand these analytical techniques to other taxa.

Traditional analytic approaches in conservation are reactive in nature, with data
collected over long durations and analyzed retroactively. In many instances
intervention strategies to address threats such as poaching require data long
before they have traditionally been available. For example, when researchers
rely on feedback from global positioning system (GPS) tracking devices that
have been attached to animals, signal loss often suggests the death of the
animal, often by poaching, which can trigger a response by a nearby team to
confirm the death (Massawe et al. 2017). This is a reactive approach that does
not prevent the poaching event (Tan et al. 2016). Preventive efforts are in place
to detect poachers, for example using drones (Bondi et al. 2018a,b). However,
these approaches either require in-field human participation or off-line process-
ing of video footage, and both contribute to output delays.

This is an area where it makes sense to use computer vision and DL to
automate the process. Although drones (more recently equipped with DL
capabilities) have shown great utility in surveying geographical locations, this
power can be extended through the distribution of global system for mobile
communications (GSM)-enabled camera traps. GSM cameras can detect the
onset of incidents such as poaching and react as the event occurs to allow an
early intervention (Chalmers et al. 2019; Wang et al. 2019). Distributing
technology in this way has proven useful in illegal logging where networks
of sensors connecting trees allow rangers to detect when a break in communi-
cations is detected because trees are cut down (Mporas et al. 2020). These
systems are still reactive; however, the latency between incident and detection
is reduced dramatically compared to traditional methods. Visualizing the net-
work on an analytics platform it is possible to see black holes appear where
trees are being removed. This allows rangers to detect and intervene when trees
are being cut down, potentially resulting in a significant reduction in illegal
logging.

Similar applications concern the identification of rare or cryptic species of high
conservation value from automating species or even individual detection. DL and other
facial recognition algorithms have been used to automatically or semiautomatically
identify species or individuals in ring-tailed lemurs (Lemur catta: Crouse et al. 2017),
chimpanzees (Crunchant et al. 2017; Loos and Ernst 2013; Schofield et al. 2019), and
gorillas (Brust et al. 2017), with clear implications for many other species
(Norouzzadeh et al. 2018).
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Limitations

Costs

We hope to have made a compelling argument for the diverse applications of conser-
vation technology to protect primate biodiversity. Cameras, acoustic sensors, drones,
and portable labs have all been demonstrated to be reliable means of providing
important data for practitioners and analysts alike. Technology comes at varying types
and amounts of cost, though, which we summarize here.

Drones used by conservation researchers range in price from less than USD 1000 to
more than USD 1 million, depending on factors such as sensors, flight duration, and
durability. Increasingly, reliable drones can be purchased for hundreds (rather than
thousands) of dollars, and thus have become more affordable to primatologists than
even just a few years ago. The sensors that are attached to drones and that determine
data type and quality drive the cost up. For example, one reason that hyperspectral
cameras have not yet been used in primatology is their price tag, ca. USD 50,000 for a
Rikola camera at the time of writing. This is easily the annual budget for many field-
based projects and several times the annual budget for other field projects. Another
limitation to drone use is that in most countries drone operations need to follow
government guidelines, which almost always hamper operations in large areas because
drones are restricted to being operated close (e.g., with 500 m) to the remote pilot on
the ground. Whilst such guidelines are important for safety, exemptions for drone usage
beyond 500 m from the remote pilot would facilitate primate research.

For PAM, the cost of commercial devices and accessories (microphones, batteries)
has likely prevented primatologists from using this monitoring technology to date. The
good news is that, although initial systems were expensive, the costs of acoustic sensors
have declined as technology has improved (e.g., Solo: ca. USD 100; Whytock and
Christie 2017) or Audiomoth: ca. USD 75; Hill et al. 2018) and now align more closely
with primatologists’ research budgets.

The infrastructure necessary to run any portable genetics machinery (e.g., power)
and support for running costs are necessary concerns for any future field genomicist.
Both the cost per sample and the necessary equipment are obstacles for any initial
project. A maximum per sample cost of USD 25 (which would satisfy 53% of potential
users) and a maximum instrumentation cost of USD 6000 per unit (which would work
for 60% of users) was recently estimated (Masters et al. 2019). Portable genomics
instrumentation is approaching these desired price ranges.

Power

Camera traps and acoustic sensors typically run on AA batteries, often the type readily
available in any nearby town. Power for drones and genomics labs is far more
complicated and expensive. Flying drones to assess habitat or density of wide ranging,
low-density primates such as orangutans requires long flights over large areas (e.g., >5
km2), as the camera footprint is small, meaning flight duration must be several hours to
capture sufficient ground (Burke et al. 2019). This means that multiple batteries need to
be available to avoid charging during the day. Most drone batteries cost below USD
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250, but some drone systems use multiple batteries (e.g., six for the DJI Matrice 600)
simultaneously, which increases costs.

As any field biologist knows, the basic layout of a field lab can vary greatly. Some
are basic tent or wooden structures without access to reliable electricity (Gowers et al.
2019; Menegon et al. 2017), whereas others are proper buildings with semi-reliable
access to electricity (through access to the main electrical grid, a generator or solar
panels) (Pomerantz et al. 2018; Quick et al. 2016). However, even the most luxurious
field labs regularly have to deal with short or longer disruptions in the power supply.
This complicates the scheduling of experiments that require a reliable energy supply for
a fixed time, such as a 24-h run on a sequencing machine. Solar panels can offer
solutions in some sun-rich areas, and power stations can provide temporary energy
solutions, allowing for 1 or 2 days of genetic analyses depending on the type of
research being done. The energy requirements will have to be assessed per research
project and location, but complete off-grid analyses are possible (Blanco et al. 2020;
Gowers et al. 2019; Guevara et al. 2018).

Sample Capacity and Networking

For field genomics, a current limitation is that it is not high-throughput.
Because of limited budgets, some researchers pursue the lowest possible costs
per sample, sequencing, for example 3500 samples on one MinION flow cell
(Srivathsan et al. 2019). However, collecting, preserving, and preparing this
quantity of samples requires considerable time, which will be challenging to
achieve with the limited capacity offered by current portable molecular labs
such as Bento Lab and miniPCR. Currently, there is a trade-off between high-
throughput/cost-effectiveness and near real-time analyses/flexibility of sample
processing (Chang et al. 2020; Knot et al. 2020).

Another limitation of the MinION is the error rate, which some argue limits
the utility for metabarcoding (Loit et al. 2019), although there is a growing
expectation that this is soon to improve, with rapid developments in flow cell
chemistry and bioinformatics pipelines (Baldi and La Porta 2020; Chang et al.
2020; Krehenwinkel 2019b). Currently field implementation of metabarcoding
requires more testing and validation. Offline bioinformatics is also a limitation,
as most remote field sites lack sufficient network capability. Even offline
bioinformatic pipelines, including relevant databases, need to be prepared before
undertaking any field genomics.

Conclusion and Future Perspectives

The technologies presented in this review are already essential tools for wildlife
biologists, providing data on species diversity, abundance, habitat, threats, and animal
movement. They are not yet common in the typical primatologist’s toolbox, but there
are signs of their proliferation. None of these should be seen as a silver-bullet for
primate surveys, but rather as tool for use under specific circumstances, sometimes with
particular species. For example, acoustic sensors work best with loud calling species
and drones with those that can be spotted from above.
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For all technologies, access is limited to those with sufficient resources. For
institutions and researchers with poor access to facilities or funds, large, upfront costs
are prohibitive. Although successful deployment of some of these tools (e.g., drones,
MinIONs) is necessarily restricted to those with training and expertise, others offer
more potential for in-house research and development. In some cases, the support and
training can be acquired remotely. For example, WILDLABS.NET supports an inter-
disciplinary community where researchers using field labs share ideas, challenges, and
needs, and where collaborations are fostered, maintained, and expanded. Additional
examples include hardware modifications to suit local needs, for example, tweaking the
focal length and sensor sensitivity for the species of interest in camera traps (Welbourne
et al. 2019), or else taking advantage of low-cost hardware such as the audiomoth
(<USD50; Hill et al. 2018). In these ways, technologies can be developed in-house,
independent of resource availability, so that their cost is not an impediment to their use,
and their deployments can be sustained for conservation-related data gathering.

Nearly all of these techniques share scope for interdisciplinary collaboration. Those
partnerships can be between scientists (e.g., biologists and engineers), and between
academia and industry, where field primatologists can greatly benefit from the research
and development of technologies that rely on large budgets to propel them forward.
Together these groups can develop custom systems (and detectors) for particular habitats
and species, and improve automated data mining, processing, and analysis. For example,
Microsoft’s AI for Earth platform provides a suite of tools under development, including
for species classification and camera trap image processing (Joppa 2017).

Current technologies described here will also benefit in the near future from
advances in microelectronics and the expansion of wireless communication
networks (mobile networks or internet) that facilitate data transmission in real
time, which is particularly important for responding to conservation threats at
short notice (e.g., poaching) and to save unnecessary visits to collect them in
person (e.g., SD cards for camera traps or acoustic sensors).

Combining technologies can further improve species monitoring. Drones
have already been equipped with microphones that capture bat and bird sounds
(August and Moore, 2019; Wilson et al., 2017), and there are plans to diversify
drone-acoustic applications to monitor terrestrial species, such as gibbons
(Borchers, pers. com.). Similarly, by integrating camera traps with acoustic
sensors, we can capture complementary data on biotic interactions and animal
behavior across multiple scales and provide a more thorough picture of animal
presence, movement, and communication than by using any single method on
its own (Buxton et al. 2018). Further integrating physiology and remote sensing
adds an even higher resolution of data on animal behavior and conservation
(Kays et al. 2015). A further step in this approach is the Internet of Things
(IoT), where heterogeneous sensors (e.g., camera traps, environmental sensors,
biologgers) can communicate with each other without human intervention,
opening avenues for gathering data on animal behavior and environmental
changes at matching spatiotemporal scales.

Costs are declining for most of these tools, and access is improving; there is rich
scope in the application of these new technologies to help conserve and protect primate
biodiversity.
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