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Abstract 
Some observational studies indicate a link between blood lead and kidney function although results remain controversial. In 
this study, Mendelian randomisation (MR) analysis was applied to obtain unconfounded estimates of the casual association 
of genetically determined blood lead with estimated glomerular filtration rate (eGFR) and the risk of chronic kidney disease 
(CKD). Data from the largest genome-wide association studies (GWAS) on blood lead, eGFR and CKD, from predominantly 
ethnically European populations, were analysed in total, as well as separately in individuals with or without type 2 diabetes 
mellitus. Inverse variance weighted (IVW) method, weighted median (WM)-based method, MR-Egger, MR-Pleiotropy 
RESidual Sum and Outlier (PRESSO) as well as the leave-one-out method were applied. In a general population, lifetime 
blood lead levels had no significant effect on risk of CKD (IVW: p = 0.652) and eGFR (IVW: p = 0.668). After grouping 
by type 2 diabetes status (no diabetes vs. diabetes), genetically higher levels of blood lead had a significant negative impact 
among subjects with type 2 diabetes (IVW = Beta: −0.03416, p = 0.0132) but not in subjects without (IVW: p = 0.823), with 
low likelihood of heterogeneity for any estimates (IVW p > 0.158). MR-PRESSO did not highlight any outliers. Pleiotropy 
test, with very negligible intercept and insignificant p-value, indicated a low likelihood of pleiotropy for all estimations. 
The leave-one-out method demonstrated that links were not driven by a single SNP. Our results show, for the first time, that 
among subjects with type 2 diabetes, higher blood lead levels are potentially related to less favourable renal function. Further 
studies are needed to confirm our results.

Key messages 

What is already known about this subject?

• Chronic kidney disease is associated with unfavourable lifestyle behaviours and conditions such as type 2 diabetes.
• Observational studies have reported an association between blood lead and reduced estimated glomerular filtration rate, 

but the relationship between lead exposure and renal function remains controversial.

What is the key question?

• Using Mendelian randomisation with data from 5433 individuals from the UK and Australian populations, does geneti-
cally determined blood lead have a potentially causal effect on estimated glomerular filtration rate and the risk of chronic 
kidney disease?

What are the new findings?

• Blood lead levels have a potentially causal effect on reduced renal function in individuals with type 2 diabetes.
• In subjects without diabetes, no such causal relationship was identified.
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How might this impact on clinical practice in the foreseeable future?

• This highlights the risk of elevated blood lead, for example, due to environmental exposure, amongst those with type 2 
diabetes, which may predispose them to impaired renal function.

Keywords Mendelian randomisation · Blood lead · Chronic kidney disease · Estimated glomerular filtration rate · 
Diabetes · Nephrology

Introduction

Chronic kidney disease (CKD) is an age-associated decline 
in renal function, diagnosed by impaired glomerular fil-
tration rate (GFR) or increased urinary albumin excretion 
(albuminuria) [1]. Up to 13% of the global population is 
estimated to suffer some degree of CKD with increasing age 
associated positively with reduced renal function such that 
over one-third of those 70 years or older are affected [2, 3]. 
Chronic kidney disease is a frequently observed comorbidity 
in multiple cardiometabolic conditions such as type 2 diabe-
tes, hypertension (HT), obesity and cardiovascular disease 
(CVD) [4–14], considerably adding to the burden of these 
conditions. As the aforementioned conditions are also com-
ponents of metabolic syndrome (MetS) [15], it is not surpris-
ing that CKD is also frequently associated with this diagno-
sis [16, 17] which is estimated to affect 20–25% of western 
populations [18, 19]. Of particular interest in patients with 
diabetes is the development of diabetic nephropathy, with 
diabetes being a primary cause of end-stage renal disease in 
40–60% of cases, globally [20]. Furthermore, recent research 
has illustrated that environmental lead exposure may accel-
erate progressive diabetic nephropathy, and that reductions 
in body lead levels by chelation therapy can reduce this rate 
of progression [21].

Similar to MetS and its constituent conditions, the inci-
dence of CKD is associated with unfavourable dietary pat-
terns and lifestyle behaviours such as low levels of physical 
activity [22–25]. Interestingly, a number of observational 
studies have found an association between blood lead lev-
els and reduced estimated glomerular filtration rate (eGFR) 
[26–29], although not to a clinically significant degree, and 
this finding is not consistently observed [30–32]. Lead expo-
sure may also be associated with a slight hyperfiltration state, 
which has been found to attenuate the age-related decline in 
baseline creatinine clearance, a measure of GFR and even 
increased eGFR [32]. Thus, the relationship between lead 
exposure and renal function remains controversial, and fur-
ther investigation is required. While randomised controlled 
trials (RCTs) are reliable determinants of causal inferences 
in nutrition science, not all exposure-outcome interactions 
can be tested. This is due to both a cost and time perspective 
and also because of ethical considerations brought about 

by exposing participants to presumed risk factors, in this 
case, lead.

Alternatively, Mendelian randomisation (MR) analysis 
uses functional polymorphisms (single nucleotide poly-
morphisms (SNPs)) associated with specific changes in 
exposures (e.g. lead) as genetic instruments and can pro-
vide unbiased and robust evidence on mechanisms of disease 
pathogenesis. Thus, MR studies can overcome this short-
coming of RCTs [33]. Unlike conventional observational 
studies and risk factor–based epidemiology, MR studies are 
considerably less prone to confounding, residual bias and 
reverse causation [34]. Therefore, we used MR analysis to 
obtain unconfounded estimates of the casual association 
of genetically determined blood levels of lead with renal 
function.

Methods

Study design

A two-sample MR study design was used, in which sum-
mary statistics from different genome wide association 
studies (GWAS) were analysed for the exposures (blood 
lead) and outcomes (renal function), to estimate the effects 
of exposure on outcome [35]. Essentially, we applied 
genetic predictors of blood lead to extensively genotyped 
case–control studies of renal function (eGFR and the risk 
of CKD) to obtain estimates of the association of exposure 
to our clinical outcomes.

Genetic predictors of exposures

We retrieved summary data for the association between 
SNPs and circulating lead from the GWAS carried out by 
the Queensland Institute of Medical Research (QIMR), Aus-
tralia (n = 2603, mean age 47.2 years, 59% women), and 
from the Avon Longitudinal Study of Parents and Children 
(ALSPAC) (2830 unrelated mothers, mean age 28.4 years) 
[36]. Genotyping, quality control and imputation procedures 
are described elsewhere [36]. If a SNP was unavailable for 
the outcome GWAS summary statistics, we identified proxy 
SNPs with a minimum linkage disequilibrium (LD) r2 = 0.8. 
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We used 13 independent SNPs with a p-value < 5 ×  10−6. 
To minimize bias in effect estimates induced by correlation 
between SNPs, we restricted our genetic instrument to inde-
pendent SNPs not in linkage disequilibrium (p = 0.0001). 
We refer to a set of SNPs that proxy blood lead as “genetic 
instruments.”

Genetic predictors of outcomes

Genetic associations with renal function were obtained from 
the largest available extensively genotyped study based on a 
meta-analysis (n = 133,413 individuals with replication in up 
to 42,166 individuals) (full details of all studies included are 
available in the original article) [37]. eGFR was estimated 
using the four-variable modification of diet in renal disease 
(MDRD) equation [37]. CKD was defined as eGFR < 60 ml/
min/1.73  m2. Type 2 diabetes was defined as fasting glu-
cose ≥ 126 mg/dl, antidiabetic drug treatment or by self-
reported history. Kidney function and type 2 diabetes were 
assessed simultaneously.

For GWAS analysis, a centralized analysis plan was 
applied with each study regressing sex- and age-adjusted 
residuals of the logarithm of eGFR on SNP dosage levels. 
Furthermore, logistic regression of CKD was performed on 
SNP dosage levels adjusting for sex and age. For all traits, 
adjustment for appropriate study-specific features, such as 
study site and genetic principal components, was included 
in the regression and family-based studies appropriately 
accounted for relatedness. There was no overlap between 
the exposure sample size and outcome sample size.

Statistics

We combined the effect of instruments using the inverse var-
iance weighted (IVW) method as implemented in the Two-
SampleMR package running under R. Heterogeneity was 
assessed using Q value for IVW. To address the potential 
effect of pleiotropic variants on the final effect estimate, we 
performed sensitivity analysis including weighted median 
(WM) and MR-Egger. Sensitivity analysis was conducted 
using the leave-one-out method to identify instruments that 
might drive the MR results. The WM estimate provides 
correct estimates as long as SNPs accounting for ≥ 50% of 
the weight are valid instruments. Inverse variance is used 
to weight the variants, and bootstrapping is applied to esti-
mate the CIs [35]. MR-Egger is able to make estimates even 
under the assumption that all SNPs are invalid instruments, 
as long as the assumption of instrument strength independ-
ent of direct effect (InSIDE) is satisfied [35]. However, 
the InSIDE assumption cannot be easily verified. Average 
directional pleiotropy across genetic variants was assessed 
from the p value of the intercept term from MR-Egger [35]. 
Causal estimates in MR-Egger are less precise than those 

obtained by using IVW MR [38]. Analysis using MR-Egger 
has a lower false-positive rate, but a higher false-negative 
rate, than IVW, i.e. it has a lower statistical power [39].

Heterogeneity between individual genetic variant esti-
mates was assessed by the use of the Q′ heterogeneity sta-
tistic [40]. The Q′ statistic uses modified 2nd-order weights 
that are a derivation of a Taylor series expansion, taking into 
account the uncertainty in both numerator and denominator 
of the instrumental variable ratio [40].

To assess the instrumental variable analysis “exclusion-
restriction” assumption, we used Ensembl release (http:// 
useast. ensem bl. org/ index. html) that contains a base of SNP 
phenotypes and PhenoScanner (Ensembl gives SNP phe-
notypes, PhenoScanner also gives phenotypes of correlated 
SNPs.).

Sensitivity analysis

As sensitivity analysis, we used MR-Egger and MR pleiot-
ropy residual sum and outlier (MR-PRESSO) test [40]. MR-
Egger and MR-PRESSO may provide correct estimates as 
long as the instrument strength independent of direct effect 
assumption is satisfied [40]. MR-Egger can be imprecise, 
particularly if the associations for SNPs on exposure are 
similar, or the number of genetic instruments is low [40]. A 
non-null MR-Egger intercept suggests that the IVW estimate 
is invalid. MR-Egger does not explicitly identify outliers. 
MR-PRESSO detects, and if necessary, corrects for poten-
tially pleiotropic outliers [40]. The MR-PRESSO framework 
detects effect estimates that are outliers and removes them 
from the analysis by regressing the variant-outcome asso-
ciations on variant-exposure associations. A global hetero-
geneity test is then implemented to compare the observed 
distance between residual sums of squares of all variants to 
the regression line with the distance expected under the null 
hypothesis of no pleiotropy [41]. Furthermore, MR-Robust 
Adjusted Profile Score (RAPS) was applied. This method 
can correct for pleiotropy using robust-adjusted profile 
scores. We consider as results causal estimates that agreed in 
direction and magnitude across MR methods, passed nomi-
nal significance in IVW MR, and did not show evidence of 
bias from horizontal pleiotropy using heterogeneity tests. 
All analyses were done using the R software (version 3.4.2 
R Core Team, 2017).

Ethics

This investigation uses published or publicly available sum-
mary data. No original data were collected for this manu-
script. Ethical approval for each of the studies included in 
the present analysis can be found in the original publica-
tions (including informed consent from each participant). 

http://useast.ensembl.org/index.html
http://useast.ensembl.org/index.html
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The study conforms to the ethical guidelines of the 1975 
Declaration of Helsinki.

Results

Demographic characteristics of the study participants are 
shown in Online Resource 1. The genetic instruments and 
observed phenotypes are shown in Online Resource 2, and 
the instrument associations for blood lead levels are shown 
in Online Resource 3. The instruments have F-statistics 
higher than threshold, making significant bias from use of 
weak instruments unlikely [42]. The results, expressed as 
beta-coefficient for blood lead per 1 standard deviation (SD) 
increase in outcomes, are presented in Table 1.

Genetically higher blood lead levels had no significant 
effect on risk of CKD (IVW = Beta: 0.02677, p = 0.652: 
Table 1; Fig. 1) or level of eGFR (IVW = Beta: −0.001514, 
p = 0.668, Table 1) in this sample. After grouping subjects 
based on type 2 diabetes status (no type 2 diabetes vs. type 
2 diabetes), genetically determined levels of blood lead had 
no significant impact on subjects without type 2 diabetes 
(IVW = Beta: 0.0008706, p = 0.823: Table 1; Fig. 2). How-
ever, in subjects with type 2 diabetes, a significant effect 
on eGFR was observed (IVW = Beta: − 0.03416, p = 0.0132: 
Table 1; Fig. 3).

Heterogeneity results and pleiotropy bias are also 
shown in Table 1. Estimation based on both MR Egger and 
IVW was higher than 0.05, which indicated no chance of 

heterogeneity (all IVW p > 0.158, all MR Egger p > 0.175). 
Further, the results of the MR-PRESSO did not indicate any 
outliers for all the estimates. The horizontal pleiotropy test, 
with very negligible Egger regression intercept, also indi-
cated a low likelihood of pleiotropy for all of our estimations 
(all p > 0.139). The results of the MR-RAPS were identical 
with the IVW estimates, highlighting again a low likelihood 
of pleiotropy. The results of the leave-one-out method dem-
onstrated that the links were not driven by single SNPs.

Discussion

In this study, we have analysed a set of genetic variants that 
were demonstrated to be associated with blood lead levels 
in order to determine their relationship with renal function. 
Mendelian randomisation analyses showed that higher blood 
lead might be linked with less favourable renal function but 
only amongst individuals with type 2 diabetes.

Lead is commonly used for industrial purposes, and 
chronic exposure to lead, either through industrial or envi-
ronmental means, has been responsible for numerous cases 
of lead toxicity or plumbism [43–45]. Concerns over the tox-
icity of lead have led to the phasing out of some of its use in 
industry and consumer goods [46–48]. In particular, lead in 
petrol and paint is believed to have been one of the principle 
contributors to increased blood lead levels in humans and 
was phased out of use in the USA from the late 1970s [49].

Table 1  Results of the Mendelian randomisation (MR) analysis for effects of blood lead on CKD and eGFR

WM weighted median, IVW inverse variance weighted, SE standard error, beta beta-coefficients, MR Mendelian randomisation, CKD chronic 
kidney disease, eGFR estimated glomerular filtration rate, RAPS robust adjusted profile score, T2DM type 2 diabetes mellitus

Exposures MR Heterogeneity Pleiotropy

Method Beta SE p Method Q p-value Intercept SE p

Blood lead CKD MR Egger   0.2227 0.2405 0.397 MR-Egger 6.389 0.272 −0.025 0.029 0.430
WM −0.02288 0.07127 0.7482
IVW   0.02677 0.05943 0.6524 IVW 7.036 0.293
RAPS   0.02344 0.06442 0.716

eGFR (overall) MR Egger −0.01488 0.01406 0.3381 MR-Egger 6.642 0.248   0.0017 0.0017 0.377
WM −0.00294 0.004129 0.4766
IVW −0.00151 0.003539 0.6688 IVW 7.793 0.245
RAPS −0.00197 0.003753 0.5989

eGFR (No T2DM) MR Egger −0.01441 0.01536 0.3913 MR-Egger 7.854 0.164   0.0019 0.0019 0.355
WM −0.00098 0.004262 0.8183
IVW   0.000871 0.003896 0.8232 IVW 9.485 0.148
RAPS   0.000262 0.00407 0.9486

eGFR (T2DM) MR Egger   0.07222 0.04948 0.2043 MR-Egger 2.113 0.832  −0.013 0.006 0.096
WM −0.03251 0.01742 0.06207
IVW −0.03416 0.0138 0.01328 IVW 7.068 0.314
RAPS −0.03816 0.01433 0.007746
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While the relation between lead exposure and CVD is 
well established [50, 51], the role of blood lead levels in the 
development of CKD and reduced renal function remains 
controversial. Indeed, cross-sectional studies of lead-
exposed workers often report changes in markers of kidney 
function, such as increases in creatinine clearance, without 
clinically significant reductions in eGFR or diagnosis of 
renal failure [28, 29, 52, 53]. In a sample of 803 Korean 
lead workers, blood lead levels were significantly associated 
with increased uric acid (UA) levels (which is known to be 
nephrotoxic) in the oldest tertile of workers with serum cre-
atinine greater than the median [28]. Similarly, in a sample 
of 229 Chinese lead battery factory workers, there was an 
increasing trend in the dose–response relationship between 
blood lead levels and indicators of renal function of blood-
urea nitrogen (BUN) and UA [29]. However, only those with 
longer periods of occupational lead exposure had a higher 
possibility of reduced renal function. Cardenas et al. [52] 
compared data from 50 Belgian, lead-exposed workers with 
age-matched controls and reported no indication of signifi-
cantly increased proteinuria in those exposed to lead. How-
ever, blood lead was associated with altered urinary excre-
tion of 6-keto-PGF and thromboxane, eicosanoids which 
may contribute to the pathologies involved in renal failure 
and hypertension [54]. Pollock and Ibels [53] presented a 
case study of 6 men exposed to lead from paint in Australia 
and suffering from lead intoxication. While some measures 

related to renal function, such as serum uric acid, urinary 
protein and creatinine clearance, were abnormal in some 
cases, these were not consistently observed in the majority 
of the cases presented. Thus, it can be seen that while lead 
exposure may have effects on renal-related parameters, a 
conclusive relationship between lead and CKD in otherwise 
healthy populations cannot be drawn. Furthermore, such 
cross-sectional data is not sufficient to determine a causal 
relationship between lead exposure and CKD, and thus, suf-
ficiently controlled, longitudinal studies as well as mecha-
nistic evidence for a causal effect would be needed. How-
ever, the use of MR analysis can overcome the limitations 
of observational studies as MR is a powerful tool for the 
detection of causation [34]. As such, the results of this study 
provide evidence that small, life-long changes in genetically 
determined blood lead do not impact the development of 
CKD in individuals without type 2 diabetes.

As such, our study did find an association between geneti-
cally determined blood lead and decreased eGFR in those 
presenting with type 2 diabetes. Renal tubule damage is a 
common feature of type 2 diabetes and is considered to be 
a pathway to glomerular dysfunction associated with pro-
teinuria and the development of CKD in those with type 2 
diabetes [55]. It could be speculated that the nephrotoxic 
effects of substances such as UA, which are elevated in lead-
exposed individuals, might contribute to the development of 
diminished kidney function in those already experiencing 
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rs1805313

rs12136530

rs9863067

rs2662776

rs798338

rs16968074

All- MR Egger

All- Inverse variance weighted

MR effect size for “blood lead” on “CKD”
-0.25 0 0.25 0.50 0.75-0.50

Fig. 1  Forest plot of overall and individual SNP effects on CKD. SNP single nucleotide polymorphism; CKD chronic kidney disease
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renal tubule damage due to type 2 diabetes [28, 29]. This 
might explain why high blood lead is only seen to contribute 
to CKD in those with type 2 diabetes, i.e. those with pre-
existing damage to renal tubules.

We believe this to be the first study to report that there is a 
relationship between genetically determined blood lead lev-
els and reduced eGFR in individuals with diabetes. Indeed, 
diabetes is a frequent comorbidity in CKD and is believed to 
contribute to the development of impaired renal function [7, 
20]. It has been observed that individuals with earlier onset 
type 2 diabetes, and consequently longer duration of diabe-
tes, have a 2.6-fold higher risk of CKD, compared to those 
with later-onset diabetes [56]. Lead is known to contribute to 
oxidative stress in those exposed to high levels [57, 58], and 
more specifically, lead has been reported to lead to oxidative 
stress and apoptosis in in vitro human mesangial cells which 
may be a possible mechanism for lead-induced nephrotox-
icity [59]. Similarly, lead exposure is known to affect the 
immune system resulting in altered cytokine metabolism and 
a proinflammatory response [60]. We propose that as the 
diabetic state is associated with metabolic derangement such 
as elevated oxidative stress [61] as well as elevated levels of 
proinflammatory cytokines [62, 63] and renal tubule damage 

[55], lead exposure may accelerate and augment these detri-
mental processes (which may not be present in those with-
out diabetes) and lead to renal dysfunction more readily in 
subjects with type 2 diabetes. Further research is needed to 
investigate the mechanisms of the blood lead–related renal 
dysfunction amongst those with diabetes.

A major strength of our study is the large sample popu-
lation with access to individual participant data of high 
validity for eGFR and CKD status, and with the relevant 
SNPs available for blood lead concentration. Additionally, 
the use of MR methods allows us to examine the potential 
causal effects of blood lead, largely without the disadvan-
tages of confounding or reverse causation. We checked for 
known pleiotropy using Ensembl and found few known 
phenotypes of the genetic predictors of blood lead apart 
from multiple associations for rs550057 (ABO) (Online 
Resource 2). A potential limitation of this study is the use 
of a predominantly white, ethnically European population 
which limits the generalizability of the results. As such, 
ethnically diverse GWAS and MR studies are necessary 
to generalize MR results to people of different ancestries. 
Furthermore, while this MR analysis provides evidence 
on the effect of smaller life-long, genetically determined 
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blood lead levels, it may not necessarily apply to short-
term larger changes in blood lead, due to environmental 
factors. Another potential concern with MR analysis is the 
risk of stratification bias, which would only be an issue 
if type 2 diabetes resulted from both elevated blood lead 
levels and the presence of CKD. Finally, due to the limited 
number of shared SNPs identified by both the QIMR and 
ALSPAC studies (n = 3) (Online Resources 4 and 5), it is 
not possible to perform a sensitivity analysis to determine 
differences between the results of both datasets. As such, 
future research should endeavour to perform such sensitiv-
ity analyses, as sufficient data on relevant SNPs becomes 
available.

In conclusion, this investigation found evidence to sup-
port a potential causal association between genetically deter-
mined blood lead levels on renal function in individuals with 
type 2 diabetes. However, in subjects without diabetes, no 
such causal relationship was identified. While further inves-
tigation is required to investigate the link between lead expo-
sure and indices of renal function in those with diabetes, this 
novel data also contributes to the current understanding that 
the relationship between lead exposure and CKD in non-
diabetic individuals may simply be associative.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00109- 021- 02152-5.
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