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Abstract
Across multiple sectors, including food, cosmetics and pharmaceutical industries, there is a need to predict the potential
effects of xenobiotics. These effects are determined by the intrinsic ability of the substance, or its derivatives, to interact
with the biological system, and its concentration–time profile at the target site. Physiologically-based kinetic (PBK) models
can predict organ-level concentration–time profiles, however, the models are time and resource intensive to generate de
novo. Read-across is an approach used to reduce or replace animal testing, wherein information from a data-rich chemical is
used to make predictions for a data-poor chemical. The recent increase in published PBK models presents the opportunity
to use a read-across approach for PBK modelling, that is, to use PBK model information from one chemical to inform the
development or evaluation of a PBK model for a similar chemical. Essential to this process, is identifying the chemicals for
which a PBK model already exists. Herein, the results of a systematic review of existing PBK models, compliant with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) format, are presented. Model information,
including species, sex, life-stage, route of administration, software platform used and the availability of model equations, was
captured for 7541 PBK models. Chemical information (identifiers and physico-chemical properties) has also been recorded
for 1150 unique chemicals associated with these models. This PBK model data set has been made readily accessible, as a
Microsoft Excel® spreadsheet, providing a valuable resource for those developing, using or evaluating PBK models in
industry, academia and the regulatory sectors.

Keywords
PBK, PBPK, PBTK, systematic review, pharmacokinetic modelling, read-across

Introduction

Humans, like other animals, are exposed daily to a multitude
of chemicals of anthropogenic origin, including pharma-
ceuticals, food additives, pesticides, consumer goods and
cosmetic ingredients. The safety assessment of chemicals is
a legal requirement that is essential to ensure their safe use
by workers and consumers, and to ensure the protection of
domestic/farm animals and environmental species. How-
ever, for the majority of chemicals, there is a lack of
available data for safety assessment — hence predictive
models are essential. Predicting toxicity requires knowledge
of both the intrinsic activity of the chemical (or its deriv-
atives) and the extent to which the organism is exposed.
Whilst external exposure, or dose, has traditionally been
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used in assessments, it is recognised that the dose at the
target site (i.e. organ-level exposure) is the more relevant
measure, being causally linked to observed toxicity.1 This
reasoning has long been applied in drug design, where the
internal exposure level can be linked more reliably to the
desirable, therapeutic effect. As discussed by Pistollato
et al.2 in terms of legislation, kinetic data are a specific
requirement for plant protection and biocidal product safety
assessment, and, whilst not formally required, the incor-
poration of such data is widely recommended in other
regulations such as Classification, Labelling and Packaging
(CLP) and the Registration, Evaluation, Authorisation and
Restriction of Chemicals (REACH). Guidance documents
from the European Chemicals Agency (ECHA)3 and the
Scientific Committee on Consumer Safety4 recommend
making use of all available data (including kinetic data) to
support decision-making. Whilst general information re-
garding absorption, distribution, metabolism or excretion
(ADME) may be useful, more accurate prediction requires
organ-level concentration–time profiles. Physiologically-
based kinetic (PBK) models (synonymous with physio-
logically-based pharmacokinetic, toxicokinetic or bio-
kinetic (PBPK, PBTK or PBBK) models) are employed in
numerous industries to provide such predictions.

In a PBK model, the body is represented as a series of
compartments (e.g. individual organs) connected by blood
flow. The models use knowledge of physiology and anat-
omy (such as organ volumes and cardiac output), in

combination with chemical-specific information (such as
solubility and partitioning behaviour) to predict the
concentration–time profile of the chemical in tissues, cel-
lular compartments or sub-compartments. Differential
equations are used to describe the rate of change of con-
centration of the chemical in each compartment, as sum-
marised in Figure 1. Detailed information on how to
construct and validate PBK models, their applications in
different sectors and tools available to support PBK mod-
elling have been well-reported previously.1,5–9 Of particular
note is the recent Organisation for Economic Co-operation
and Development (OECD) Guidance on the character-
isation, validation and reporting of Physiologically Based
Kinetic (PBK) models for regulatory purposes.10 This
document builds on the principles described in the World
Health Organisation (WHO) report of 2010,1 but focuses on
the use of alternative approaches (in silico and in vitro) for
parameterising PBKmodels. The potential for applying new
approach methodologies (NAMs) and next generation (NG)
methods to support the development and use of PBKmodels
in safety assessment, was also promulgated by Paini and
colleagues.11 PBK models can assimilate new information
as it becomes available to increase predictive capacity; these
models provide an advantage over traditional one or two
compartment kinetic models.12

For environmental chemicals, the numerous applications
of these models include: determining the dose at target
tissues following external exposure; route-to-route

Figure 1. The key characteristics of PBK models and the data captured in the PBK model data set.
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extrapolation; dose extrapolation; inter-species and intra-
species extrapolation (accounting for species, population or
genetic variability through adaptation of physiological and
anatomical parameters); in vitro-to-in-vivo extrapolation
(IVIVE); ascertaining safe levels based on tissue dosimetry;
estimating chemical exposure from biomonitoring or epide-
miological data (by using reverse dosimetry); and assessing
potential for bioaccumulation. These applications comple-
ment the traditional role of PBPK modelling of drugs where
they can be utilised to predict first dose in man, potential for
drug–drug interactions or the influence of health status (e.g.
hepatic impairment) on kinetics.13

The ECHA reports that read-across is the most commonly
used alternative method to reduce or replace animal testing in
safety assessment.14 In this approach, information from a data-
rich (source) chemical is used to predict information for a data-
poor (target) substance that is considered similar.3 Kinetic
information plays a key role in supporting read-across
predictions3,15 and recent efforts have aimed to increase the
accessibility of such data. Sayre and co-workers16 published a
database of time-series concentration data, extracted from an
extensive search of the literature, and Pawar and co-workers17

identified 38 databases containing a range of ADME-relevant
data, as part of their overall review of resources to support
read-across and in silico model development. PBK models
provide an additional opportunity to derive data to support
read-across. Data may be acquired either from a PBK model
for the chemical under investigation (the target chemical) or
from a PBKmodel for an existing chemical considered similar
to the target (a source chemical). This latter approach —

wherein an existing PBK model for a source chemical is used
as a template for a target chemical — is contingent upon the
identification of existing, suitable PBK models.

Over the past 30 years, the number of published PBK
models and their applications has increased signifi-
cantly.18 In 2016, Lu and co-workers published a PBK
Knowledgebase, comprising 307 chemicals for which
PBK models were available from papers published be-
tween 1977 and 2014.19 In their report, the authors de-
scribed two case studies wherein PBK models from the
Knowledgebase were used to inform the development of
PBK models for ‘similar’ chemicals. In their study,
chemical analogues were identified based on similarity of
physico-chemical properties, although it is recognised
that there is no consensus as to the best method to de-
termine similarity.20 Ellison and Wu21 successfully
demonstrated an analogous approach wherein a PBK
model for a target chemical was evaluated by using in-
formation from source chemicals identified as structural
or functional analogues. In order to assist researchers in
identifying existing PBK models, a spreadsheet of those
collated from the literature by the US Environmental
Protection Agency (EPA), was made available via Fig-
share.22 This resource included information on species,

gender, life-stage, route of administration, compartments
and PubMed ID for the source of the models.

An enriched version of this PBK Knowledgebase was
recently used as a proof-of-principle, to demonstrate that
information from an existing PBKmodel could be used, in a
read-across approach, to inform safety assessment.23 In the
analysis, methyleugenol was considered as a target chem-
ical, with estragole and safrole being identified as suitable
source chemicals (with respect to structural similarity). This
approach was also successful, exemplifying how infor-
mation from an existing PBK model could assist the de-
velopment of a model for a similar chemical. Making best
use of existing data and in particular the application of the
read-across approach are recognised as important tools in
reducing animal testing.24 In order to facilitate the appli-
cation of this approach, it is essential to identify chemicals
for which PBK models are available. As ‘similarity’ is often
considered in relation to structure or physico-chemical
properties, it is also important to ascertain the nature of
the chemicals for which models are available, comparing
their characteristics to existing chemical data sets. Having
information regarding the chemicals and the models in a
readily accessible and updateable resource would be a
significant asset for researchers, industry and regulators,
with the potential to reduce the number of animals used in
drug development and chemical safety assessment.

Several key features (which are represented in Figure 1)
characterise an individual PBK model and include species,
sex, life-stage, route of administration and the compartments
required to accurately describe the time-course of the
chemical. In some models, key organs (such as the liver,
lungs, etc.) are incorporated individually as compartments; in
others, these are further divided into constituent sub-
compartments (for example, considering histopathological
regions or explicitly including lymph or interstitial/vascular
space) giving higher-level, more complex models. In other
scenarios, organs are grouped together (referred to as
‘lumping’) to create simpler models, for example, all poorly
perfused organs are considered as one compartment and all
highly-perfused organs are considered as another. In addition
to the physiological and anatomical information required,
chemical-specific data are also a prerequisite. A substance
may be identified using common names or chemical iden-
tifiers such as the Chemical Abstracts Service (CAS) Registry
Number, a Simplified Molecular Input Line Entry System
(SMILES) string or the International Chemical Identifier
Key (InChiKey). Ideally, multiple identifiers should be
incorporated in the data set to avoid ambiguity. Model
development can be performed with a range of software,
and the equations employed may be specified within the
publication itself or as part of the supplementary infor-
mation accompanying the article. Within this systematic
review, key model characteristics, such as species, sex, life-
stage, route of administration, compartments, availability of

Thompson et al. 199



model equations and chemical identifiers, were captured
within the PBK model data set, as summarised in Figure 1.

The second part of the analysis relates to the assessment of
the chemical space coverage of the PBK model data set.
There is no simple process by which a chemical can be
designated as being a particular ‘type’ — for example,
cosmetic ingredients may also be food additives, botanicals
may have pharmaceutical properties, etc. Consequently, in
order to assess the nature of the chemicals in the PBK model
data set, key physico-chemical properties were generated and
compared to those of chemicals appearing in other data sets.
The data sets studied were: botanicals, pesticides, pharma-
ceuticals, food, cosmetic ingredients and REACH chemicals.
The number of chemicals in the PBKmodel data set that also
appeared in each of the other data sets was ascertained.

In summary, the aim of this systematic review was the
curation of a data resource for existing PBK models.
Relevant information for the models (species, sex, life-
stage, substance identity, software used, etc.) was cap-
tured in a flexible spreadsheet format. The chemical space
occupied by the PBK models (in terms of physico-chemical
properties) was compared to that of other chemical types, by
using six existing data sets. This resource has been created
to assist the development and evaluation of PBK models
based on existing data, thereby reducing the need to gen-
erate new data from animal studies.

Methods

Systematic review

This systematic review was prospectively registered on
PROSPERO, the National Institute for Health Research’s
international prospective registration system with the re-
view question stipulated as: “For which substances are
physiologically based kinetic (PBK) models available and
which species, genders, life-stages and routes of adminis-
tration have been investigated for these substances? This
will include determining the chemical space coverage of the
models and the availability of the associated model equa-
tions within the literature”.25 The review complies with the
PRISMA reporting standards; the PRISMA checklist is
available as Supplementary Material S(i).

Briefly, following a scoping study of potentially useful
databases and search terms, Scopus (https://www.scopus.com/),
PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Web of
Science (https://www.webofknowledge.com) were selected
as the most appropriate databases for identifying published
papers on PBK models. The search of these databases was
completed in October 2020. The search terms (“pbpk” OR
“pbk” OR “pbbk” OR “pbtk” OR “pbpd” OR “pbpm” OR
“physiologically based”) AND (“pharmacokinetic” OR
“toxicokinetic” OR “biokinetic” OR “pharmacodynamics”
OR “biopharmaceutical”) were used to search abstracts, titles

and keywords of papers within each database, across all years
available. The systematic review management tool Covi-
dence was used for processing papers for the review (https://
www.covidence.org/; accessed May 2021). A total of 14,803
papers were initially identified; however, following auto-
mated removal of duplicates in Covidence, 6771 remained.
All abstracts were screened independently by two researchers
with all conflicts being resolved by discussion. The inclusion
criteria encompassed PBK models for all routes of admin-
istration for chemical, biological and carrier systems, in-
cluding cases where normal physiology was altered or
interactions between administered substances were investi-
gated. Models that could not be associated with a specific
substance (such as generic models applicable to large groups
of compounds) were excluded. Where an abstract was as-
sociated with a paper that had subsequently been retracted, it
was ensured that this model was excluded from the data set.
Although standard practice in other systematic reviews, as-
sessment of the quality of the reported models and risk of bias
in reporting was considered unnecessary for this review. Our
intention here was to document all available models, enabling
interested researchers to rapidly identify potentially useful
models to assist with future model development. The as-
sessment of PBK model quality (aside from fundamental
considerations relating to goodmodelling practice) needs to be
considered in terms of fitness for a given purpose.10 Therefore,
it is context dependent and remains the decision of the model
user. Following abstract screening, 3120 abstracts were re-
tained for full text screening. PBK model data were extracted
from 1649 of these papers, resulting in 7541 individual models
being captured. Note that, if oral and intravenous dosing were
used for both male and female subjects for the same chemical,
this would be extracted as four individual models, hence there
are many more models than individual chemicals. Reasons for
the exclusion of papers during full text screening included:
PBK model not being reported in the article; the article ref-
erenced a previously published model with no adaptations
(information on the PBK model was extracted from the
original publication); and full article not being available in
English or not being reasonably accessible.

Extraction of data from available
physiologically-based kinetic models

Data were manually extracted from these 1649 papers by one
reviewer, with information being acquired from text, tables,
figures and supplementary information. The data were en-
tered into a Microsoft Excel® spreadsheet that captured
details of the chemical: parent and metabolites (specified
where appropriate), species (with sub-category where rele-
vant), sex, life-stage, route of administration, literature ref-
erence for themodel (with DOI), compartments considered in
the model, the software employed and the availability of PBK
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model equations within the article. Where possible, con-
trolled vocabulary was used to ensure consistency of data
extraction and to enable the resulting spreadsheet to be
readily filtered and searched for specific types of models, that
is, controlled vocabulary was used for species, sex, life-stage,
route of administration, availability of equations and software
used. The vocabulary was empirically derived, to enable the
most efficient searching — the full rationale is given in the
Supplementary Material S(ii). For example, life-stages
can be reported in multiple ways — number of weeks,
months, years of age, young adult, adult, neonate, young
child, juvenile, etc. Therefore, for consistency, this informa-
tion was allocated to the more generic categories of: pre-
birth or pre-hatch; from birth or hatch up to adult; adult;
pregnant; old age (if specified); as well as a generic category
for health-compromised (excluding old age) individuals.

Chemical identifier information was obtained by manually
inputting the chemical name (as given in the publication) into
PubChem (https://pubchem.ncbi.nlm.nih.gov/; last accessed
May 2021) and extracting the molecular weight, canonical
SMILES, isomeric SMILES, InChiKey and CAS number. The
CAS Registry Number from PubChem was used as input for
the COSMOS database, version 2 (https://cosmosdb.eu; ac-
cessed April 2021). Where available, the CAS Registry
Number and chemical name, as recorded in COSMOS, were
extracted to confirm the identity of the chemical; the COS-
MOS ID was also extracted. This information was captured by
one reviewer. An assessment of the reliability of screening and
data extraction was undertaken and is reported below.

Assessment of the chemical space coverage of the
physiologically-based kinetic model data set in
relation to other chemical data sets

In order to identify the nature of the chemicals in the PBKmodel
data set and to compare the chemical space coverage (in terms of
key physico-chemical properties) six existing data sets were
investigated. These have been compiled in-house at Liverpool
John Moores University (Liverpool, United Kingdom) and

comprise: botanicals, pesticides, cosmetic ingredients (obtained
from COSMOS db version 2 (https://cosmosdb.eu; accessed
April 2021), food additives (obtained from http://foodb.ca;
accessed April 2021), pharmaceuticals (obtained from www.
drugbank.ca; accessed April 2021) and REACH chemicals (as
summarised in Table 1).

Canonical SMILES for all chemicals in these data sets
were generated by using OpenBabel (v.3.0.0; http://
openbabel.org/wiki/Main_Page; accessed April 2021). From
the PBK model data set, 1150 unique SMILES were
identified with 1187 unique InChiKeys (note that chemical
isomers may have the same SMILES string but different
InChiKeys). In order to determine how many chemicals
with PBK models were present in each of the other six data
sets, the InChiKeys were compared.

The SMILES strings for all data sets were inputted into
the RDKit (v. 2020.03.6; www.rdkit.org) Descriptor Node,
accessed through KNIME software (v. 4.3.1; www.knime.
com), in order to obtain the physico-chemical properties for
all chemicals. The properties included molecular weight,
number of hydrogen bond donors/acceptors, predicted
logarithm of the octanol:water partition coefficient (SlogP)
and the topological polar surface area (TPSA); the number
of Lipinski rule violations were calculated from this in-
formation. Whilst it is possible to generate thousands of
physico-chemical properties, here only a few readily cal-
culable properties were selected, representing those most
often used to broadly characterise chemicals in terms of
size, polarity and partitioning behaviour. These simple
properties were also used to determine Lipinski rule viola-
tions (frequently used to indicate potential oral absorption—
a common route of administration for these models). The
minimum, maximum, mean and median values, and the
interquartile ranges of these properties, were calculated by
using Minitab version 19.2 for all data sets. Histograms were
also generated with Microsoft Excel to enable a visual
comparison of the property ranges between the different data
sets. The results of the statistical analysis are available as
Supplementary Material S(iii).

Table 1. The number (and percentage) of chemicals with existing PBK models that are present in the six comparative data sets
investigated.

Data set
Number of chemicals in data set (with

unique, identifiable structure)
Number of chemicals in data set also

present in PBK model data set
Percentage of chemicals in data set also

present in PBK model data set

PBK
model

1187 N/A N/A

Botanical 899 24 2.67
Pesticide 945 43 4.55
COSMOS 5105 125 2.45
Food 2615 89 3.40
DrugBank 6587 392 5.95
REACH 73,192 633 0.86
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Structural feature analysis

In order to determine the relative frequency of the occur-
rence of specific structural features in the chemicals com-
prising the PBK model data set, the SMILES strings were
entered into the Chemotyper software (version 1.0; Molec-
ular Networks, Erlangen, Germany; https://chemotyper.org/).
A table which indicated the presence or absence of
structural features identified by using ToxPrints (https://
toxprint.org/) was created and exported into Microsoft
Excel. In brief, ToxPrints represent a collection of 729
generic structural fragments covering (amongst others)
commonly occurring functional groups, cyclic units and
biomolecular substituents.

Results

Systematic review

Figure 2 summarises the number of papers considered at
each stage of the review process and the final number of
models extracted in the PBK model spreadsheet. Of the
6771 of papers initially identified, 3120 remained after
abstract screening and data were extracted from 1649 of
these.

Extraction of data from available
physiologically-based kinetic models

A total of 7541 individual models were identified and
extracted. Note that, for an individual substance, multiple

models may be available in one paper. For example, if male
and female subjects were used and doses given intrave-
nously and by oral dosing, then this would be classed as four
models. This approach enables more flexible searching —

searches can be conducted, not just by chemical names, but
also by species or route of administration, etc. A total of
1889 chemical names are present in the PBKmodel data set.
Some represent biological entities (such as monoclonal
antibodies) or are not associated with a specific structure,
resulting in 1187 unique InChiKeys, that is, unique
chemicals with identifiable structures. Information con-
cerning the PBK models extracted is shown in Tables 2 and
3: Table 2 shows the breakdown of models by species
investigated and Table 3 shows the breakdown of models by
route of administration.

Assessment of the chemical space coverage of the
physiologically-based kinetic model data set in
relation to other chemical data sets

The results for the comparison of InChiKeys for chemicals
in the PBK model data set to those for the six comparative
data sets are shown in Table 1.

Table 4 shows the results of the statistical analysis of
the key physico-chemical properties (molecular weight,
number of hydrogen bond donors and acceptors, logarithm
of the octanol:water partition coefficient, topological sur-
face area and number of Lipinski rule violations for the
chemicals in the PBK model data set.

Figure 2. A summary of the papers considered at each stage of
the review process, and the total number of models extracted.

Table 2. The number of models associated with different species.

Species Number of models Percentage (%)

Human 3676 48.8
Rat 2348 31.1
Mouse unmodified 839 11.1
Non-human primate 145 1.9
Dog 103 1.4
Porcine 94 1.2
Aquatic 82 1.1
Rabbit 70 0.9
Hamster 36 0.5
Mouse modified 36 0.5
Guinea-pig 29 <0.5
Bovine 26 <0.5
Bird 21 <0.5
Gerbil 10 <0.5
Horse 8 <0.5
Sheep 8 <0.5
Cat 4 <0.5
Goat 4 <0.5
Oyster 1 <0.5
Rodent combined 1 <0.5
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The Supplementary Material S(iii) shows the results of a
similar statistical analysis of the physico-chemical properties for
the six data sets towhich the PBKmodel data set was compared.

Figures 3(a–f) shows the comparison of these key
physico-chemical properties across the seven data sets.

Structural feature analysis

Analysis using ToxPrints showed that of the 729 chemo-
types, 458 were present at least once in chemicals of the
PBK model data set. Table 5 summarises the prevalence of
32 chemotypes (manually selected as illustrative examples
of common functional groups and other features of interest).
The prevalence of all chemotypes is given in Supplementary

Material S(ii) Sheet five; the complete output from Tox-
Prints for chemicals of the PBK model data set is available
from the authors on request.

Assessment of screening and data
extraction reliability

After screening all 6771 abstracts in duplicate, 3120 were
taken forward to full text screening; of these, 1362 papers
were rejected at this stage. In addition, 109 papers could
not be readily obtained or were not in English. Therefore,
data were extracted from 1649 papers, resulting in 7541
models. The resultant spreadsheet comprises over 150,000
individual entries, as for each model, the species, sex, life-
stage, route of administration, availability of equations,
compartments, references and chemical identifiers were
captured. It is expected that errors will arise when as-
sessing the suitability of papers for inclusion and per-
forming extensive manual processing, hence a quality
assessment exercise was undertaken. As part of this pro-
cess, a representative sample from each of three stages of
the screening and data extraction process was assessed by a
second investigator:

— 5% of the papers that had been excluded at the full
text screening phase were reviewed;

— 5% of PBK model data extracted from the papers
(chemical information, species data (primary and
secondary categories), sex, life-stage, route of
administration, reference (DOI and PubMed ID if
available), compartments investigated, availability
of equations and simulation software were
checked; and

— 5% of the chemical identifier information from
PubChem and COSMOS (chemical name, CAS
Registry Number, molecular weight, canonical
SMILES, isomeric SMILES, InChiKey and COSMOS
ID) was obtained again from these sources and
compared to the values in the spreadsheet.

Table 4. Statistical analysis of the physico-chemical properties of the chemicals in the PBK model data set.

Variablea Mean Minimum Q1 Median Q3 Maximum Range IQR

MW 325.61 6.94 163.10 292.28 410.67 6496.26b 6489.26 247.57
No. HBD 1.79 0.00 0.00 1.00 2.00 100.00 100.00 2.00
No. HBA 4.17 0.00 1.00 3.00 6.00 120.00 120.00 5.00
SlogP 2.25 �45.03b 0.80 2.08 3.73 11.10 56.13 2.93
TPSA 73.07 0.00 23.47 56.93 93.00 2536.36 2536.36 69.53
nViolations 0.37 0.00 0.00 0.00 0.00 4.00 4.00 0.00

aThe variables are: MW = molecular weight; No. HBD = number of hydrogen bond donors; No. HBA = number of hydrogen bond acceptors; SlogP =
predicted logarithm of the octanol:water partition coefficient; TPSA = topological polar surface area; nViolations = number of violations of the Lipinski Rule
of Five (Lipinski et al.27).
bThe extreme values here are for vistarem®, a magnetic resonance imaging contrast agent with large hydrophilic chains.

Table 3. The number of models associated with different routes
of administration.

Route of administration Number of models Percentage (%)

Metabolism from parent 2138 28.4
Oral bolus 1903 25.2
Inhalation 1193 15.8
Intravenous bolus injection 1049 13.9
Oral feed/water 381 5.1
Intravenous infusion 360 4.8
Dermal topical 181 2.4
Dermal injection 82 1.1
Intramuscular 59 0.8
Intraperitoneal 58 0.8
Gills 36 0.5
In utero 35 0.5
Unspecified 21 <0.5
Intratracheal 17 <0.5
Intraarterial 7 <0.5
Nasal 7 <0.5
Buccal 6 <0.5
Intramammary 4 <0.5
Intraocular 2 <0.5
Intrathecal 1 <0.5
Intravaginal 1 <0.5
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Figure 3. A comparison of the ranges of physico-chemical properties across the seven data sets investigated.
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The greatest source of ‘error’ was determined to be the
exclusion of papers that were considered as potentially
relevant by a second investigator, that is, 6% of excluded
papers. In terms of the systematic review, this is not con-
sidered a highly significant problem. PBK models are
continually being published, hence there can never be a
finalised set of models. It is the intention to make this re-
source available in its current form, as a tool to assist re-
searchers in finding relevant PBK models, and to update the
resource in the future capturing models previously not
identified or erroneously excluded.

For PBK model data, manually extracted from the pa-
pers, an error was detected in the information captured for
3.5% of the substances. This does not equate to 3.5% of the
total information being incorrect, as this may indicate an
error in only one (or possibly more) of the 13 columns that
relate to the PBK model information.

An error was detected in the data for 2.4% of the
chemicals in relation to the identifier information. As above,
this does not equate to 2.4% of the total information being
incorrect, but that for 2.4% of chemicals an error was de-
tected in one (or more) of the seven columns associated with
chemical identifier information.

The authors welcome any feedback from users regarding
errors, omissions of existing models or updates for new
models (note that models require a minimum level of in-
formation and novelty to be included); please email the
corresponding author.

Discussion

In this systematic review, information concerning over
7500 PBK models were extracted from 1649 papers. The
models encompassed 18 species (including rat, human,
mouse, cow and guinea-pig) at various life-stages (e.g.
juvenile, adult, pregnant and health-compromised) across
21 administration routes (e.g. oral, inhalation and in utero).
The information has been distilled into a Microsoft Excel
spreadsheet that was constructed using controlled vo-
cabulary to enable users to search by using different cri-
teria (e.g. to allow the selection of models by species or
routes of administration, etc.). It is anticipated that re-
searchers or regulatory scientists can use this information
to assist in the building or evaluation of new models, or as
a resource from which to extract relevant pharmacokinetic
or toxicokinetic data.

Although this is the largest collation of PBK models that
the authors are aware of, it is not a complete list. As
identified in the quality assessment exercise, some of the
historic models were omitted. In addition, as this is such a
dynamic area of research, the generation of a finite list of all
models would not be possible. The publication of new
models has shown a rapidly increasing trajectory in recent
years.26 However, the current data set serves as a basis for
the continuing curation of existing models, which will
provide an increasingly rich source of information for
modellers in the future.

Table 5. The percentage of chemicals within the PBK model data set that contain the specified chemotypes identified by using
ToxPrints.

ToxPrint chemotype
%

Prevalence ToxPrint chemotype
%

Prevalence

6-Membered heterocycle 34.3 Organic sulphide/thiol 5.2
Carboxamide 27.7 Urea 4.8
Alcohol (aliphatic) 24.0 Ether (aromatic) 2.9
Amine (aliphatic) 22.6 Nitrile 2.7
Ether (aliphatic-aromatic) 21.9 Carboxylic acid (aromatic) 2.3
Organohalide (aromatic) 20.5 3-Membered heterocycle (e.g. epoxide) 2.2
Ether (aliphatic) 15.8 Transition metal 1.8
5-Membered heterocycle (single heteroatom, e.g.
pyrrole)

13.6 4-Membered heterocycle (single heteroatom,
e.g. azetidine)

1.8

Amine (aromatic) 12.6 Metalloid 1.7
Carboxylic acid (alkyl) 12.4 Imine 1.7
Organohalide (aliphatic) 11.2 Organophosphate (P = O) 1.6
Alcohol (aromatic) 10.6 Group I/II metal 1.4
5-Membered heterocycle (heteroatoms at 1,3-
positions, e.g. imidazole)

10.6 Aldehyde 1.1

Ketone 10.5 Thiocarbonyl 0.8
Carboxylic acid ester (alkyl) 6.8 Alkyl chain (C length ≥8) 0.5
Sulphonyl 5.8 Organic azo 0.0

Note that only 32 selected chemotypes from the total of 458 identified within the data set are given in the table; the full list is given in Supplementary
Material S(ii).
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Trends in model availability: Coverage of
chemical types

Chemicals can be used for a variety of purposes, and often it
is not feasible to allocate a chemical to a unique group (e.g.
there is a significant cross-over between chemicals used as
food additives and as cosmetic ingredients, hence the same
chemicals may appear in more than one of the different data
sets). It is therefore difficult to determine the chemical
‘types’ for which there are the most PBK models; however,
some trends are discernible from the analysis undertaken.
Unsurprisingly, given that PBK modelling evolved in drug
development, the greatest proportion of models correspond
to chemicals in the DrugBank data set. Pesticides are
generally well studied and data-rich; therefore, the second
most common type of chemical with PBK models are the
pesticides. For food additives and cosmetic ingredients,
where there are often chemicals in common, similar pro-
portions of chemicals have PBKmodels. Due to the size and
generality of the REACH data set, it would be anticipated
that relatively few chemicals would have existing PBK
models. The results confirm the paucity of PBK models
available in relation to different areas of chemical space, and
underline the importance of using existing PBK models to
help fill data gaps.

Trends in model availability: Coverage of
physico-chemical properties

Figure 3(a) shows the distribution of molecular weight
across the seven data sets. As expected, the majority of the
chemicals fall within the range of 100–600 Da, but notable
differences exist between the data sets. There are a relatively
high number of chemicals in the PBK data set with low
molecular weight — these will include the volatile chem-
icals for which respiratory uptake has been extensively
studied. Food additives and cosmetic ingredients (which
have chemicals in common) show a relatively high
proportion of low molecular weight chemicals. Chemicals
that are designed to be biologically active, such as drugs
and pesticides, tend to be developed in accordance with
guidelines relating to preferred physico-chemical prop-
erties. For example, the Lipinski Rule of Five stipulates
that drugs with poor oral absorption are associated with
chemicals with: molecular weight > 500 Da, log P > 5,
and > 10 hydrogen bond acceptors or > 5 hydrogen bond
donors.27 Other research has also suggested that a to-
pological polar surface area (TPSA) higher than 140 Å2 is
also unfavourable for oral absorption. Consequently,
certain chemical types are designed to fall within nar-
rower property ranges and such trends are evident in the
property ranges mentioned in this article. A correlation
between molecular weight and log P is often observed
amongst groups of chemicals (although there are many

exceptions to this); here a similar pattern to the range of
values is generally observed for log P and molecular
weight. For both properties, for the majority of chemicals
the values fall within a narrow range; however, there are
also extreme values for a few chemicals. Pesticide and
botanical data sets have a greater percentage of chemicals
in the log P ranges 3–4 (43% and 47%, respectively),
whereas the PBK data set only has 28% of chemicals in
this range.

Pesticide and botanical data sets comprise fewer mole-
cules capable of carrying a charge (associated with in-
creased hydrophilicity) — hence, on average, they have
higher log P values. This is significant, as partitioning
behaviour (often estimated by using log P) is a key element
in building PBK models. Whilst the extreme values for log
P, calculated by the software used here, may be unrealistic
(and therefore unsuitable for model building), when used for
comparison purposes they are still useful for demonstrating
the trends in the data. The range in values for all of the
physico-chemical properties of pesticides, is narrower than
for the other chemical types, indicating the more restrictive
chemical properties required for these chemicals.

Botanicals generally show a wider range of values for
each of the physico-chemical properties (in particular, more
chemicals show properties at the upper extremes of the
ranges). A significant number of compounds within this set
are large and complex. Whilst in other data sets, molecules
tend to be designed for a specific purpose, and those out-
with the given property ranges are filtered out, the same
exclusions would not be applicable to this data set. The
diversity of structural features present in the chemicals with
existing PBK models is demonstrated by the ToxPrints
analysis, with 458 chemotypes identified as being present
within this data set. The diversity of these chemicals, in
terms of their molecular complexity, is demonstrated by the
number of chemotypes identified — individual chemicals
were shown to contain between one and 69 chemotypes
within their structure.

Conclusion

Understanding the kinetic behaviour of a chemical within
the body, particularly its concentration–time profile at a
target site, is essential to accurately determine its potential
effect. For the majority of chemicals, there is a lack of data
concerning toxicity and kinetics. However, generating
such information de novo would require excessive use of
animals and is legally, ethically and financially con-
strained. Hence there is a need to leverage existing
knowledge in order to obtain as much information as
possible to assist decision-making. Read-across is the most
common method by which information from data-rich
chemicals is used to predict information for data-poor
chemicals. Herein is presented a comprehensive
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collation of existing PBK models that can be searched by
using multiple criteria. The physico-chemical space of
PBK models has been mapped against that of other
chemical types — that is, food additives, cosmetic in-
gredients, drugs, REACH chemicals, botanicals and pes-
ticides. Organising the current state of knowledge of
existing PBK models provides a valuable resource for
those working in the area to identify models for chemicals
of interest, or analogues, that can be used to assist the
development or evaluation of new PBK models. The
concept of using existing PBK model information in a
read-across approach to develop a new PBK model for an
analogous chemical has been demonstrated successfully in
recent publications.18,22 Such an approach is recom-
mended in the recent OECD guidance on PBK modelling,
which focuses on the use of alternative methods in PBK
model development.10 The PBK model data set described
herein enables researchers to readily gain insight into
available PBK models across multiple species, life-stages
and routes of administration, such that the structure and
parameterisation of PBK models for different chemicals is
more accessible. This ensures maximum use of existing
knowledge on PBK modelling, and reduces the time and
cost associated with the development of new PBK models.

Continuing effort is required to curate existing PBK
models. The ability to extract relevant data from models and
reproduce those published in the literature would be fa-
cilitated by researchers embracing the use of systematic
methods to record PBK models. Consistent formats for
publishing PBK models have been proposed previously,28,29

with the template proposed in the recent OECD guidance10

drawing on previous recommendations, most significantly
the reporting format proposed by Tan and co-workers.30 The
use of consistent reporting formats is strongly encouraged, as
this assists other researchers in re-using or re-purposing
existing models.

Future effort is required to curate available models,
identify appropriate similarity metrics to assist in the
identification of PBK models for analogues to chemicals of
interest, and, ideally, make such resources widely available,
for example, by incorporation into free webtools. Such
endeavours will help to leverage the wealth of information
available in existing PBK models.
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