
  

 Abstract—The use of multi-agent robotics for space 

exploration creates the need for verification and validation 

using formal methods and simulation-based testing of such 

systems. This paper presents an asteroid exploration simulation 

and visualisation tool that can facilitate agent research in an 

approximated space setting. The software is able to simulate 

and visualise multiple spacecrafts navigating a customisable 

asteroid field environment under the control of either user or 

agent commands and abiding to space physics constraints. A 

built-in autopilot system implements Lambert’s algorithm to 

allow autonomous orbital entry/transfer manoeuvres, and 

collision-free long-range path-finding if the objective is distant. 

A simulated scenario is described, involving two agents 

observing multiple asteroids during a debris strike. 

I. INTRODUCTION 

Recent years have seen a proliferation of research into the 
use of multi-agent systems for space exploration. Such 
systems require verification and validation which can be done 
through a combination of formal methods and simulation-
based testing [1, 2]. However, visualisation capabilities are 
lacking from many projects, hindering researchers’ 
communication and prototyping abilities. Existing space 
mission visualisation projects either do not support multi-
agent run-time simulation (e.g. [3, 4]), asteroid-rich 
environment (e.g. [5]), or have restricted access to 
researchers (e.g. [6]). This project aims at developing a tool 
for space mission simulation and visualisation in the context 
of an asteroid exploration mission. 

II. DESIGN AND IMPLEMENTATION 

AsteroidX consists of four basic components: a visualisation 

engine, a space physics engine, an external control program, 

and an autopilot. These are described in detail below. 

A. Visualisation Engine  

Visualisation was implemented using the Unity 3D 
graphics engine [7] (see Figure 1). Customisation of every 
visualisation detail, such as directional lighting, spacecraft 
thruster flame, and virtual orbit is allowed. Users can set up 
the viewpoint to follow the spacecraft or remain fixed in any 
place. Stabilisation of the virtual camera provides a 
comfortable and intuitive viewing experience. An 
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information panel provides a wealth of information directly 
during the simulation. 

 

Figure 1.  Visual modelling of asteroids, spacecraft, stellar sunlight, and 

space background. 

B. Space Physics Engine 

The physical constraints describing space physics, 
celestial mechanics, spacecraft behaviours and status are 
scripted in C# to interact with Unity’s C/C++ core. The 
default scaling system is the International System of Units 
(m/kg/sec) but can be configured to the solar scaling system 
(km/1024 kg/years). Newton's law of universal gravitation is 
implemented to all objects in the scene unless specified. 
Detection of spacecraft collision with asteroids will trigger 
collision reports. Users can set orbital parameters (if in 
autopilot mode, discussed later) by defining longitude, semi-
parameter, eccentricity, and inclination. 

C. External Control Program 

An external control program controlling spacecraft 
actions can be provided in any programming language, 
connecting to the simulator via TCP/IP software sockets. In 
most cases, external control programs transmit commands to 
the spacecraft, and the simulator sends back spacecraft sensor 
data. High-level instructions are made possible by built-in 
aided control programs such as autopiloting.  This ability to 
support external control software is key to the platform’s 
ability to serve as a research platform for agent program 
design.  The socket interface also allows direct user control of 
the spacecraft. 

D. Autopilot 

Autopilot is a built-in aided control program included in 
the project with the help of software packages NBodyPhysics 
[8] and Polarith AI [9]. This allows the external control 
program to focus on high-level mission commands leaving 
lower-level control to the simulation.  It can also assist direct 
users control when steering the spacecraft manually if their 
focus is elsewhere. Autopiloting allows automatic navigation 
of spacecraft to move towards targeted asteroids according to 
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interplanetary orbital entry/transfer manoeuvres such as 
Lambert Transfer, as shown in Figure 2. Simulation can be 
speed up to 200 times faster during automated orbital 
manoeuvres. Autopilot is also capable of collision-free long-
range path-finding if the objective is distant, as shown in 
Figure 3. The sensor range can be limited to simulate the lack 
of global knowledge. Users/external control programs can 
disable the autopilot program and gain full control of the 
spacecraft components such as thrusters and rotation, if 
desired.  

 

 
Figure 2.  Autopilot orbital manoeuvre: before first burn (top) and after 

first burn (bottom) during an orbital transfer using Lambert’s algorithm. 

 

Figure 3.  Autopilot path-finding: spacecraft avoiding debris strike using 

spatial proximity sensor. 

E. Setup 

The initial environment is defined by the positions, 
masses, and shapes (based on 3D models) of asteroids within 
the asteroid belt, as well as the spacecraft. Template 
environments are provided, and modification of those 
attributes can be achieved by changing these templates. Unity 
also provides an intuitive user interface that requires minimal 
effort to learn to configure those parameters in the initial 
environment. A detailed guide to setup can be seen on the 
project webpage1. 

III. SIMULATION SCENARIO 

The constructed visualisation scenario in AsteroidX 
echoes the design of Lincoln et al. [10], in which rational 
agents were able to react to the environment according to 
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sensor data in real-time. In the scenario presented here, two 
autonomous agents were able to negotiate and distribute 
responsibility while exploring a partially unknown asteroid 
field (see Figure 4). They could orbit the same asteroids 
together for close observation or orbit different asteroids. 
During all operations, notification of an approaching debris 
strike overrided all current activities, forcing the spacecraft to 
engage a collision avoidance mode. Figure 4 shows the 
screenshot for a simulated scenario where an external control 
program written in Java was used to instruct two spacecraft 
agents to orbit different asteroids. The commands sent to the 
agents in control of the spacecraft are shown in Table 1.  

 

Figure 4.  Simulated scenario where a Java program uses software sockets 

to instruct two spacecraft agents to orbit different asteroids. 

Table 1. Agent commands within the simulated scenario. 

Command Command Type Agent Additional 

Information 

Agent 1 to Site 1 Move 1 Site 1 

Agent 1 to Site 2 Move 1 Site 2 

Agent 2 to Site 1 Move  2 Site 1 
Agent 2 to Site 2 Move  2 Site 2 

Agent 1 stand by Abort  1  

Agent 2 stand by Abort  2  

Agent 1 report status Report  1 Status 

Agent 2 report status Report  2 Status 

IV. CONCLUSION 

AsteroidX is a 3D visualisation tool for simulation of 
asteroid exploration based on customisable models and visual 
effects settings. Space physics models were constructed to 
simulate the real-world behaviours of spacecraft and 
asteroids. A built-in API allows external programs running at 
the same time to exchange spacecraft commands and 
simulation information. The autopilot can take over the 
navigation tasks and ease the control. Setup is relatively 
straightforward while maintaining a high degree of 
customisation and flexibility. AsteroidX can be applied to 
more simulation-based space exploration research, 
development, and prototyping, and can be used to validate 
scenarios for verification and validation. The software could 
be extended by improving functionality through refinement 
of the template environment and the development of 
improved information panels and software sockets.    
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