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Abstract: When studying the use of assistive robots in
home environments, and especially how such robots
can be personalised to meet the needs of the resident,
key concerns are issues related to behaviour verification,
behaviour interference and safety. Here, personalisation
refers to the teaching of new robot behaviours by both
technical and non-technical end users. In this article, we
consider the issue of behaviour interference caused by
situations where newly taught robot behaviours may affect
or be affected by existing behaviours and thus, those beha-
viours will not or might not ever be executed. We focus in
particular on how such situations can be detected and

presented to the user. We describe the human–robot beha-
viour teaching system that we developed as well as the
formal behaviour checking methods used. The online use
of behaviour checking is demonstrated, based on static
analysis of behaviours during the operation of the robot,
and evaluated in a user study. We conducted a proof-of-
concept human–robot interaction study with an autono-
mous, multi-purpose robot operating within a smart home
environment. Twenty participants individually taught
the robot behaviours according to instructions they were
given, some of which caused interference with other beha-
viours. A mechanism for detecting behaviour interference
provided feedback to participants and suggestions on how
to resolve those conflicts. We assessed the participants’
views on detected interference as reported by the beha-
viour teaching system. Results indicate that interference
warnings given to participants during teaching provoked
an understanding of the issue. We did not find a significant
influence of participants’ technical background. These re-
sults highlight a promising path towards verification and
validation of assistive home companion robots that allow
end-user personalisation.

Keywords: human–robot interaction, companion robots,
behaviour interference, formal verification

1 Introduction

A long-term goal of robotics research is the use of assis-
tive robots in the home. Such robots have started to
appear in various guises ranging from stationary helpers
[1] to cleaning robots [2] to robotic companions [3,4]. In
previous research, companion robots have been designed
to serve useful functions for their users, while carrying
out those tasks in a socially acceptable manner [5].
The combination of an autonomous mobile robot and
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a “smart-home” environment, where the robot is able to
extend its capabilities via access to the home sensor net-
work, has been investigated in a number of large-scale
projects, e.g. refs. [6,7], motivated by the use of robotic
solutions to address the concerns of cost and care issues
resulting from an ageing population [8,9].

The use of home assistance robots to help older
adults stay independent in their homes faces many chal-
lenges. One of these challenges is to allow the robot to be
personalised, e.g. that the robot can be taught to change
its functional behaviours in response to the changing
needs of the older adult. Our previous research [7] inves-
tigated these issues, proposing and evaluating a teaching
system in a human–robot interaction (HRI) experiment.
Results were encouraging, showing the potential of the
system to be used easily by a number of stakeholders,
including health professionals, formal and informal carers,
relatives, friends and the older persons themselves to adapt
the robot to meet changing needs.

End-user personalisation is an active area of research
since it has been recognised that robots to be used “in the
field” need to allow users to adapt, modify and teach a
robot. Despite the best intentions to provide user-friendly
interfaces, often only experienced programmers can achieve
complex behaviour prototyping [10], but research has
demonstrated the feasibility to create systems that support
end-user robot programming and personalisation. To give a
few examples, Lourens and Barakova [11] suggested a user-
friendly framework to allow users with minimal program-
ming experience to construct robot behaviours. Building on
this work, pilot tests demonstrated how such an approach
could be used, e.g. in the area of robot-assisted therapy for
children with autism [12]. Furthermore, trigger-action rules
have been suggested and tested with end-user developers
to personalise home automation environments [13] and
achieve robot behaviour personalisation [14]. Recent trends
of End User Development and associated challenges have
been identified [15], with a focus on approaches specific to
Internet of Things and rule-based systems, e.g. the trigger-
action paradigm. For a recent systematic review on end-user
development of intelligent and social robots with a focus on
visual programming environments, see ref. [16].

A key issue that arises from end-user personalisation
of robot behaviours, and which is the focus of this article,
is that of behaviour verification and behaviour interfer-
ence. Behaviour verification is concerned with the effect
of adding behaviours via the teaching system and checking
whether the new behaviours violate operational goals. Our
previous research on methods of behaviour verification is
described in refs. [17–20]. Behaviour interference for a
home-assistive robot is a part of a verification approach
but deals with the consequences of teaching new behaviours

which may inadvertently affect the execution of existing
behaviours or not be executed themselves due to already
existing behaviours.

This article describes a behaviour interference detec-
tion mechanism embedded into a teaching system for
a home companion robot, designed to be used by carers,
relatives and older adults themselves (rather than robotics
experts or programmers). We conduct an evaluation of
the system with 20 participants (age range 26–69) in
order to gain insights on their views of the functionality
of the system, but importantly, to also investigate the
usability of such a system, which would be a crucial
factor in any future envisaged deployments of such sys-
tems in people’s own homes or care homes. Few studies
have investigated an actual deployment of companion
robots in real-world settings. Examples include studies
focusing on therapeutic and educational outcomes for
children with autism, e.g. a 1-month study involving
daily HRIs in children’s homes [21], or the year-long
deployment of a therapeutic robot used by staff in a spe-
cial needs nursery school [22]. Results from such “field
studies” highlight the importance of usability and a num-
ber of challenges have been identified that will influence
whether or not people are willing to keep using such a
system. In a pioneering study involving home companion
robots, De Graaf et al. described a 6-month, long-term
study which placed 70 autonomous robots in people’s
homes [23]. Investigating cases of non-use, i.e. refusal or
abandonment of the robot, the authors conclude “the chal-
lenge for robot designers is to create robots that are enjoy-
able and easy to use or (socially) predictable to capture
users in the short-term, and functionally-relevant and pos-
sess enhanced social behaviours to keep those users in the
longer-term” [24] (p. 229).

The contributions of the article are to identify and
classify when newly added behaviours might affect (or
be affected by) the execution of existing behaviours and
report on a HRI study in relation to this. The HRI study
evaluates the usability of the interference detection system
and provides an opportunity to assess participant actions
and reactions towards the system.

The remainder of this article is organised as follows.
Section 2 describes the overall setting of this study and
relevant background, including descriptions of the HRI
scenario, the robot behaviours and the previously devel-
oped behaviour teaching system (TEACHME). Section 3 dis-
cusses our approach to formal verification and behaviour
interference checking, analysing and categorising beha-
viour interactions. Section 4 outlines the TEACHME sys-
tem’s novel enhancement that allows users to add new
behaviours to the robot and being notified of possible
behaviour interference. Section 5 describes the user evalu-
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ation carried out with the results being reported and dis-
cussed in Section 6. Concluding remarks and future work
are presented in Section 7.

2 Setting and background

The research is being conducted in a typical suburban
British 3-bedroom house in a residential area off campus
but near the University of Hertfordshire. It has normal
house furnishings but has been upgraded to a smart
home. It is equipped with sensors and cameras which
provide information on the state of the house and its
occupants. Over 60 sensors report on electrical activity,
water flow, doors and cupboard opening/closing etc.
User locations are obtained via ceiling mounted cameras
[25], and robot locations via ROS navigation [26]. Since
this location has been used for many different HRI stu-
dies, there are no permanent residents occupying the
house, but its ecological validity is far greater than
laboratory experiments performed on campus. However,
in order to allow for researcher-led controlled experi-
ments, the setting is more constrained than the deploy-
ment of robots in real homes occupied by their owners/
tenants. We call this location, which bridges the gap
between a “real” and entirely “simulated” home environ-
ment (laboratory), the UH Robot House which is available
to University of Hertfordshire researchers but also other
researchers as an environment to test and evaluate smart
home and robotics technology [27]. The Robot House,
as a natural and realistic setting of a home environment,
has been used in many HRI studies, e.g. [6,28–31].

The physical sensors relevant to the present study
range from sensors monitoring activity of electrical devices
in the house (e.g. “fridge door is open,” “microwave is on,”
“TV is on” etc.), to sensors attached to furniture (e.g.
detecting operation of cupboard door, drawers etc.), to
sensors monitoring water flow and temperature (able to
detect e.g. “toilet is flushing,” “taps are running” etc.)
and, finally, pressure sensors (e.g. located on sofas, beds
etc. to indicate occupation).

The study reported here used a commercially available
robot, the Care-O-bot3® robot manufactured by Fraunhofer
IPA [32]. It is a multi-purpose, mobile manipulator that
has been specifically developed as a mobile robotic assis-
tant and companion to support people in domestic environ-
ments and is based on the concept of a robot butler
(Figure 1) [33].

The robot’s high-level decision-making uses a pro-
duction rule approach where each behaviour comprises

sets of rules (preconditions or guards) which, if satisfied,
execute actions. The rules can check the house and robot
sensor values both instantaneously and within a tem-
poral horizon (e.g. “has the doorbell rung in the last 10
seconds?”). Actions are generally related to the robot but
can also set other values which can be subsequently
checked by the rules. Thus, actions are either robotic
(e.g. “move to location X, raise tray”), or sensory/memory
based (e.g. “User has been informed to take her medi-
cine”). A more detailed description of the ontology of
the house and the robot control system approaches are
described in the studies by Saunders et al. [34,35].

Robot behaviours defined as production rules are
held as tables in a mySQL database. The rules themselves
are encoded as SQL statements and are generated by
the TEACHME teaching system, described in more detail in
Section 4.

Memory-based values are also held as “sensors” and
are used to define or infer knowledge about the house or
activities within the house at a higher semantic level. For
example, it may be inferred from electrical sensory activity
in the kitchen that the “sensor” called “Preparing meal”
is currently true. Other memory sensors are used to cope

Figure 1: Illustration of Care-O-bot3® operating in the UH Robot
House. Photography by Pete Stevens, www.creativeempathy.com.
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with on-going events in the house which are not reflected
by the physical environmental sensors (similar to Henderson
and Shilcrat [36]). For example, a sensor with the label,
“User has been reminded to take their medicine” might be
set if the robot has given such a reminder to the user and
would typically be used to ensure that the reminder was not
repeated. Temporal additions to the rules allow the system
to formulate rules such as “has the user been reminded to
take their medicine in the last 4 hours?”

Behavioural selection is via priority. Thus, where
more than one behaviour has all of the preconditions
evaluate as “true,” the behaviour with the highest priority
will execute first. If all the priorities are equal and all the
preconditions to the rules are true, then a non-determi-
nistic choice of the behaviours will be made (in practice,
the first rule from the rule set is chosen. However, as the
rule set is returned by an SQL query the order of results
is not guaranteed, which makes the choice non-determi-
nistic). The use of priorities provides a mechanism for
resolving conflicts between actions when the conditions
for more than one rule hold in a given instant (we call
this behaviour interference).

The Care-O-bot3® robot [32] is equipped with facil-
ities for manipulating the arm, torso, “eyes,” robot LEDs,
tray and has a voice synthesiser to express given text.
Typical robot actions would be for example, “raise tray,”
“nod,” “look forward,” “move to location x,” “grab object
on tray,” “put object x at location y,” “say hello” etc.

Production rules can be created in three ways. First,
by low-level coding (e.g. using C++ or Python). Second,
by a medium-level teaching mechanism which allows
easy creation of behaviours and setting of behavioural
priorities, but relies on the user to cope with higher-level
memory-based issues. We envisage that the second facility
would be used by technical “experts” generating sets of
behaviours for the first time. However, creating behaviours
in this way is very similar to low-level programming in
that a very logical and structured approach to behaviour
creation is necessary. Third, a high-level teaching facility
is provided which allows the user to easily create beha-
viours. This generates appropriate additional scaffolding
code but does not allow priority setting, all newly added
behaviours are automatically generated with equal prior-
ity. The cost of this simplification is a loss of generality;
however, it is compensated for by ease of use.

As we concentrate in providing a mechanism for (non-
technical) end users to create behaviours, behavioural
interference resolution is a challenge. Other approaches
to this include providing preferences e.g. in Soar [37],
planning, e.g. Hierarchical Task Networks [38] or learn-
ing rule utilities e.g. in ACT-R [39]. However, all of these

approaches require detailed knowledge of the underlying
system, as well as an understanding of the concept of inter-
ference and how to use such systems to resolve it. These
requirements make it unsuitable for end users such as
older adults or their carers who want to use a home
companion robot. One of the key aims of this study was
to allow non-expert users without detailed technical knowl-
edge to recognise behavioural interference and reflect on
how they might approach resolving it.

Next, we explain formal verification and how it is
being used in our approach for detecting possible beha-
viour interference as a consequence of users teaching the
robot new behaviours.

3 Formal verification and behaviour
interference checking

Formal methods are a family of mathematical approaches
which allow for the specification, design and analysis of
computer systems [40]. Formal methods can also be used
to verify software and hardware systems, in a process
known as formal verification. There are a wide variety of
software tools available for formal verification, including
model checkers and automated theorem provers. The aim
of formal verification is to show the correctness (or incor-
rectness) of algorithms and protocols using mathematical
analysis or formal proof. Formal verification has been used
extensively in the design and development of safety- and
mission-critical computer systems [41,42].

Formal verification is often used in the design and
implementation stages of software development, prior to
deployment. After this point, if the software is to be modi-
fied then the formal verification process must be repeated.
While many formal verification tools are automatic in their
operation (e.g. model checkers like SPIN [43], NuSMV [44]
or PRISM [45]), the process of creating and validating
models is often not automatic, andmust be done “by hand.”
Formal verification has been applied to autonomous robots
in various settings [46] including HRI [47,48], home service
robots [49] and collaborative robot applications [50].

In our previous work, we explored the use of model
checkers for the formal verification of the robot beha-
viours within the Robot House [17–20]. In the study by
Webster et al., our approach was based on a model of
the activity of a typical person within a house [17]. In the
study by Dixon et al. [18] an input model for the model
checker NuSMV [44] was constructed by hand, and later
this process was automated by a tool that can directly
read in sets of behaviours and automatically generate
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an input model [20]. This could potentially be used to
re-generate models of robot behaviours and be used
to formally verify properties of the system with newly
added behaviours. However, due to the complexity of
explaining counter models to users we chose to take a
different approach.

In the present study, we use static checking of beha-
viours to identify potential interactions between them.
This could be used by a technical expert setting up the
behaviours initially for the robot or by a user after deploy-
ment to personalise the behaviours. In particular, here
we consider the case where the user adds new behaviours
for the robot to follow. When a new behaviour is created
by the user it is possible for the new behaviour to interact
with other existing behaviours in what we term “beha-
viour interference.”

Example 1. The system may contain a behaviour (B24)
that says If the fridge door is open go to the kitchen (with
priority 30). A newly added behaviour (B37) might be If
the fridge door is open and someone is sitting on the sofa
go to the sofa and say “the fridge door is open” (with
priority 10). As the priority of the second behaviour (B37)
is less than the first (B24) and whenever the precondi-
tionsof the secondbehaviourare satisfied then theprecondi-
tions of the first behaviour are also satisfied then the newly-
added behaviour will never run.

Checking for and reporting such conditions allow the
users to identify when new or existing behaviours will not
or might not be executed even when their preconditions
are satisfied.

3.1 Behaviour interference

Note that in the scenario we discuss here, with users
adding behaviours to the behaviour repertoire of a robot,
the new behaviours are given the same priority. However,
when defining behaviour conflicts we consider a more
general case where newly added behaviours could have
any priority, so the same system could also be used by
technically competent users who would also be permitted
to input behaviour priorities.

Analysis of the robot behaviours revealed that some
potential problems with a new behaviour can be quickly
identified without the use of a model checker. A beha-
viour b is defined as follows:

IF THEN∧ ∧ … ∧b p p p A: ,n1 2

where pi are preconditions that must evaluate to true in
order for some sequence of actions A to take place. The
use of the logical and connective “∧” specifies that all n
preconditions must be true. The set of preconditions for a
behaviour b is denoted ( )P b . The behaviour has a priority

�( ) ∈π b which determines its relative priority. Recall, if
there are a number of behaviours whose preconditions
are all true, the robot scheduler will execute the beha-
viour with the highest priority. If all the priorities are
equal, then the scheduler will choose non-deterministi-
cally one of the behaviours for execution (in practice, the
first rule from the rule set is chosen. However, as the rule
set is returned by an SQL query the order of results is not
guaranteed, which makes the choice non-deterministic).

Given the behavioural selection algorithm of the
robot scheduler, it is possible for a behaviour to always
be chosen over another. For example, if the preconditions
of behaviour b1 are the same as the preconditions of
behaviour b2, and b1 has a higher priority than b2, then
b1 will always execute instead of b2. In fact, this is also
true if b1’s preconditions are a subset of b2’s precondi-
tions, as whenever b2’s preconditions are true, b1’s pre-
conditions must also be true. In this case, we say that b1
overrides b2, or conversely, that b2 is overridden by b1:

Definition 1. A behaviour b1 overrides another behaviour
b2 if ( ) ( )⊆P b P b1 2 and ( ) ( )>π b π b1 2 .

In Example 1, behaviour B37 (the newly added beha-
viour) is overridden by behaviour B24 so behaviour B37
will never be executed.

It is also possible for a behaviour b1 to be scheduled
instead of b2 in some circumstances, but not others. For
example, if the two behaviours b1 and b2 from the previous
definition have equal priorities, then either behaviour
may be chosen to execute. This is called interference:

Definition 2. A behaviour b1 interferes with another beha-
viour b2 if ( ) ( )⊆P b P b1 2 and ( ) ( )=π b π b1 2 .

Example 2. Assume now that we have behaviours as
described in Example 1 where both behaviours have
priority 10. We will refer to these as B24a and B37a.
Now behaviour B24a interferes with behaviour B37a.
In situations where the fridge door is open, and it is not
the case that someone is sitting on the sofa then B24a
will be executed. However, when both the fridge door is
open, and someone is sitting on the sofa then either beha-
viour might be executed. In Example 1, behaviour B37will
never be executed. Here there are situations where beha-
viour B37a might never be executed.
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Overriding and interference demonstrate two ways
in which behaviours can prevent the execution of other
behaviours. It is also possible to identify the potential for
overriding and interference in a wider range of cases. For
example, if a behaviour b1’s preconditions are a superset
of the preconditions of b2, i.e. ⊆b b2 1, and the extra pre-
conditions of b1, i.e. ( ) ( )⧹P b P b1 2 , may also be true at
some point during the execution of the robot, then we
can say that behaviour b1 potentially overrides b2:

Definition 3. A behaviour b1 potentially overrides another
behaviour b2 if ( ) ( )⊆P b P b2 1 and ( ) ( )>π b π b1 2 .

Furthermore, we can extend this idea to interference,
allowing for a behaviour to potentially interfere with
another behaviour of the same priority:

Definition 4. A behaviour b1 potentially interferes with
another behaviour b2 if ( ) ( )⊆P b P b2 1 and ( ) ( )=π b π b1 2 .

Definitions 1–4 provide a set of guidelines for identi-
fying conflicts and potential conflicts between the robot’s
behaviours.Additionally, theycanbeused to identifywhen
robot’s behaviour set contains behaviours that are likely
to overlapand result in unpredictable or undesired activity.
The guidelines are summarised in Table 1.

Example 3. Let us assume that a behaviour set consists of
two behaviours:

IF THEN

IF THEN∧ ∧

b p a
b p p p a

: ,
: ,

1 1 1

2 1 2 3 2

where ( ) =π b 701 and ( ) =π b 502 . Note that behaviour b1
overrides behaviourb2 (byDefinition 1) as { } { }⊆p p p p, ,1 1 2 3
and ( ) ( )>π b π b1 2 . Assume we add a new behaviour

IF THENb p a: ,3 2 3

where ( ) =π b 03 . Then behaviour b2 potentially overrides
behaviour b3 (by Definition 3) as { } { }⊆p p p p, ,2 1 2 3 and

( ) ( )>π b π b2 3 .

These guidelines can be computed for the robot’s
behaviour database in less than a second, meaning that
they can be used by the robot’s TEACHME system to quickly

determine in real-time whether a new behaviour sug-
gested by the user is likely to conflict with existing beha-
viours. While useful and efficient, these guidelines do not
provide the same level of verification made possible by
exhaustive state space analysis using model checkers.
However, they do allow a partial analysis of the robot’s
software that can be used to give timely and meaningful
feedback to the robot’s users.

The guidelines above are implemented in a software
tool called the Behaviour Checker (BC). The BC works by
parsing two databases, one containing the existing beha-
viours used by the robot, and the other containing the
new behaviours which have been defined by the user.
After parsing, the new behaviours are compared to the
already existing behaviours, and behaviour conflicts are
identified. Table 1 shows the different types of feedback
generated by the BC. The feedback given to the user, for a
new behaviour bn, and an existing behaviour be, can be
seen in Figure 6. Note that this is simplified for the user in
two ways. First, in cases where more than one definition
applies, the BC will output only the most severe conflict,
with overriding being the most severe, followed by inter-
ference, potential overriding and potential interference.
For example, if ( ) ( )=P b P bn e and ( ) ( )>π b π bn e , then
both ( ) ( )⊆P b P bn e and ( ) ( )⊆P b P be n , so following Defi-
nitions 1 and 3, bn both overrides and potentially over-
rides be and the BC will output only the former. Second, in
the case where a Definition is satisfied by more than one
existing behaviour, only one of the existing behaviours
will be shown to the user at a time to avoid overloading
the user with an extensive list of behaviours.

Table 1: Behaviour Checker feedback for different conflicts

π b π bn e( ) < ( ) π b π bn e( ) = ( ) π b π bn e( ) > ( )

( ) ( )P b P bn e⊆ bn is potentially overridden by be bn interferes with be bn overrides be

( ) ( )P b P be n⊆ bn is overridden by be bn potentially interferes with be bn potentially overrides be

Figure 2: Initial set of behaviours taught to the robot during training
of the participant.
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4 The TEACHME system and
behaviour interference
notification

In this section, we describe the TEACHME system that
allows the users, carers or relatives to input new beha-
viours into the robot. Full details of this part of our sys-
tem, as well as evaluations of its usability and useful-
ness in a user study can be found in ref. [7]. Note, a key
difference of TEACHME, compared to other popular ap-
proaches on human–robot teaching that extensively use
machine learning approaches (see overview in ref. [51]),
is the explicit representation of robot behaviours as rules
implemented as tables in a database. A similar rule-
based approach is taken by Porfirio et al. [47]; however
our approach supports utilisation of external sensors and
behaviours that involve continuous time (e.g. remind the
user to take medicine every 4 h). This allows us to con-
duct experiments that are situated within a realistic
Robot House smart home environment ontology which
includes knowledge about sensors, locations, objects,
people, the robot and (robot) behaviours.

The motivation of this approach was to provide a
format that can easily be read, understood and manipu-
lated by users who are not programmers, in order to facil-
itate easy and intuitive personalisation of the robot’s
behaviour by end-users.

We also explain in this section how any problems de-
tected between two behaviours are presented to the user.

4.1 Teaching system – TEACHME

In order to create behaviours the user must specify what
needs to happen (the actions of the robot) and when those
actions should take place. An example of the user teaching
interface (i.e. GUI) is shown in Figures 3–5 and displays the
actions a non-technical user would use to create a simple
behaviour to remind the user that the kettle is on.

The steps consists of “what” the robot should do
followed by “when” the robot should do it. Steps are as
follows: the user chooses to send the robot to the kitchen
entrance and then presses a “learn it” button. This puts
the command into the robot memory (top of Figure 3).
Then the user makes the robot say, “The kettle is on, are
you making tea?” This is not in the robot’s current set of
skills and so is entered as text input by the user (bottom
of Figure 3). This is followed by a press of the “learn it”
button. Now the two actions are in the robot’s memory
and the user can define when these actions take place.

The user is offered a number of choices based on
events in the house (such as user and robot location,
the settings of sensors showing the television is on, the
fridge door is open, etc.) and a diary function (reminders
to carry out a task, e.g. to take medicine or phone a friend
at a particular day and time) shown on the top of Figure 4.
The user chooses a house event occurring in the kitchen
(bottom of Figure 4). Again this is followed by pressing
the “learn it” button. Having completed both “what” and
“when” phases the user is shown the complete behaviour
for review and can modify it if necessary (Figure 5). Once
satisfied, the user presses a “make me do this from now on”
button and the complete behaviour becomes part of the
robot’s behaviour database.

4.2 Behaviour interference detection and
reporting

The behaviour interference function was embedded within
the TEACHME system. This is called when the completed
behaviour is signalled by the user to be ready for sche-
duling on the robot.

A challenge for this type of notification is to make it
both understandable to a naïve user and to provide
mechanisms for rectifying possible interference issues.

The screen that appears when interference is detected
is shown in Figure 6. It informs the user that a problem
has been found in two behaviours – an existing beha-
viour and the behaviour the user just created. It contin-
ues to list the “when” factors that are causing the inter-
ference – which are effectively the preconditions or sets
of preconditions that are equivalent between the beha-
viours. It also offers some choices to help the user ignore
or rectify the interference.

In order to evaluate our system we conducted a proof-
of-concept user study in the UH Robot House.

5 User evaluation

The aim of this study was to investigate the usability of
the system and if there was any difference in under-
standing the concept of behaviour interference between
already technically trained users (e.g. participants with
a computer science background) and those without any
systems/programming or robotics background. For future
applications of assistive home companion robots, it is
essential to know whether users of any systems designed
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Figure 3: Screenshots of the teaching interface. The “What” phase where the user has directed the robot to move to the kitchen and say
“The kettle is on, are you making tea?.”
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in this domain need to have technical training to under-
stand behaviour interference. The HRI studywas carried out

with the approval of the University of Hertfordshire Ethics
Committee, Protocol number COM/SF/UH/02083.

Figure 4: Screenshots of the TEACHME teaching interface. In the “When” phase the user chooses to consider events in the house and clicks on
the kettle option.
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5.1 Research questions

Our research questions were as follows:

1. Is the robot teaching system still considered usable by
users when it includes automatic behaviour interfer-
ence checking?

2. Do users find the mechanism for informing them about
behaviour interference effective in helping them under-
stand the nature of behaviour interference?

3. Does the participant’s background or gender have any
effect on detecting and solving behaviour interference
issues?

Note, regarding the third researchquestionweexpected that
participants’ familiarity with robots might have an impact
on the results. Regarding gender we did not have any par-
ticular hypothesis, so this was an exploratory question.

5.2 Participants

Twenty participants were recruited, 11 female and 9 male,
who took part individually in the experiment. The parti-
cipants had a mean age of 48.15 and a median age of 47.

The youngest participant in the sample was 26 and the
oldest participant was 69 with an interquartile age range
of 35–61. The participants were either postgraduate stu-
dents at the University of Hertfordshire (typically with
a computer science background) or people who had pre-
viously expressed a wish to interact with robots in the Robot
House. The latter group, which included some University
staff, hadminimal technical experience, although some had
taken part in robotics experiments in the past. Of the 20
participants, 17 had interacted with robots in general before
(although not necessarily this robot, and none had used
the TEACHME system previously) and eight had experience
in programming robots. Figure 7 shows the distribution of
the participants based on their prior robot programming
experience, with their age and gender information.

5.3 Proof-of-concept experiment:
methodology

The study was conducted in the UH Robot House with the
Care-O-bot3® robot, see Section 2 for detailed descriptions.

On arriving at the Robot House, each participant was
invited to review and sign the appropriate ethics forms

Figure 5: Screenshots of the TEACHME teaching interface. The user reviews the complete taught behaviour.
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and complete a short demographics questionnaire on
gender, age and technical background.

For the actual HRI scenario presented to participants,
we used narrative framing, allowing participants to feel
part of a consistent “story.” This technique has been used
successfully in HRI, cf. refs. [52–55]. It has also been used
in long-term HRI studies on home companion robots
where, inspired by ref. [56], it facilitated prototyping epi-
sodic interactions in which narrative is used to frame
each individual interaction [57], or to provide an overall
narrative arc encompassing multiple interactions and
scenarios [28]. In the present study, we used narrative
framing extensively, including multiple props, personas
and allocated roles for participants.

5.3.1 Scenario: new technician

The participants were asked to imagine that they had just
been accepted for a job with a fictitious company called

“Acme Care Robots” (ACR) as a robot technician. It was
explained that ACR builds robots to assist older adults
with the aim of helping them stay in their own home
(rather than being moved to a care home), and that it was
their job to create behaviours on the robot. They were
told that this was their first day of training and follow-
ing training they would receive their first assignment.

In order to reinforce the illusion of technician train-
ing, we used props – all persons involved in the experi-
ment were given white laboratory coats to wear. This in-
cluded the participant, the experimenter (who also acted
as the “trainer”) and a third person required to be present
by the University for safety purposes (Figure 8).

Training commenced with the experimenter introdu-
cing the TEACHME system and explaining in general terms
how it worked. The participants were then invited to use
the system to create the behaviours shown in Figure 2.
After each behaviour was taught the participant was
invited to test the behaviour, e.g. after teaching the robot
to say “the doorbell is ringing” when the doorbell rings,

Figure 6: Screenshots of the TEACHME teaching interface. The system detects a possible interference between two behaviours and asks
the user to take action to resolve it.
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the participant or experimenter would ring the physical
doorbell in the Robot House and check that the resulting
robot actions were correct.

Three individual behaviours were taught in the training
phase. These were chosen to be relatively simple but also to
exercise the speech, movements and diary functions of the
robot.

Having completed training the participant was given
their first assignment. This involved setting up beha-
viours for a fictitious older lady, a “persona” called “Ethel”
who supposedly lived in the Robot House. Details of the
assignment sheet given to the participant are shown in
Figures 9 and 10.

The choice of a naturalistic setting for the study,
the Robot House, the narrative framing approach (as dis-
cussed above), the introduction of a user persona, and
the use of props was meant to enhance the believability,
plausibility and ecological validity of the scenarios as
well as enhance users’ engagement and immersion. The
aim was to encourage participants to immerse themselves
into the role of a robot training technician. Props have
been a common tool in human–computer interaction
research and development for decades, e.g. ref. [58].
With regards to the development of scenarios for home
companion robots, narrative framing of HRI scenarios
has been used successfully, e.g. ref. [28,57]. The use of
personas has been pioneered by Alan Cooper in human–
computer interaction. According to Cooper, “Personas
are not real people, but they represent them throughout
the design process. They are hypothetical archetypes of
actual users.” [59], see also studies on user and robot
personas in HRI, e.g. refs. [60,61].

5.3.2 Interfering behaviours

The behaviours shown in the assignment sheets con-
sisted of four tasks. The first three we call the “A” section,
and the fourth task the “B” section. In the following

Figure 7: Demographics of participants’ gender, age and robot
programming experience. (a) Demographics of participants with no
robot programming experience. (b) Demographics of participants
with robot programming experience.

Figure 8: Training in progress. The experimenter is facing
the window, the participant is facing the laptop computer with the
TEACHME system running. The Care-O-bot3® robot is present in the
background.
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description, the priorities of all the behaviours are equal,
i.e. ( ) ( ) ( )= =π b π b π ba b c1 1 1 , etc.

The first task of the “A” section was designed to make
the robot attend the kitchen with its tray raised whenever
activity was detected. Thus, if “Ethel” were carrying out
some kitchen activity the robot would be present. Activity
was inferred from the kettle being on, the fridge door
being open, or the microwave being on. This can be for-
malised using the definitions from Section 3.1 as the fol-
lowing three behaviours:

IF THEN
IF THEN

IF THEN

b k a a
b f a a
b m a a

: ; ,
: ; ,
: ; ,

a

b

c

1 1 2

1 1 2

1 1 2

where k means that the kettle is on, m means that the
microwave is on and f means that the fridge door is open.
The action a1 means that the robot moves to the kitchen
entrance, and a2 means that the robot raises its tray.

The second task was designed so that the robot
would proceed to the sofa if Ethel was sitting there:

IF THENb s a: ,2 3

where s means that Ethel is sitting on the sofa and a3

means that the robot moves to the sofa. It was implied
that Ethel could place something on the robot’s tray while
in the kitchen, which the robot would then bring to her
once she sat on the sofa.

The third task contained an interference issue. It
required that if the kettle was on the robot should inform
Ethel that she might be making a cup of tea, and it should
proceed to the sofa:

IF THENb k a a: ; ,3 4 3

where a4 means that the robot says, “Are you making
tea?” As the preconditions of b a1 and b3 are equal ( ( ) =P b a1

( )P b3 ) and their priorities are equal ( ( ) ( )=π b π ba1 3 ) the
behaviour b a1 interferes with behaviour b3 and vice versa
by Definition 2, and both behaviours potentially interfere
with each other by Definition 4.

Similarly, the fourth task (the single task in the “B”
section) contained an interference issue. This task re-

Figure 9: Background information given to the participant after the training phase has completed. This is then followed by the actual
assignment shown in Figure 10.

Figure 10: Behaviour assignments for the participant.
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quired that the robot should say, “The fridge door is
open,” when the fridge door was open:

IF THENb f a: ,4 5

where a5 means that the robot says that the fridge door
is open. As the preconditions for b b1 and b4 are equal
( ( ) ( )=P b P bb1 4 ) and their priorities are the same ( ( ) =π b b1

( )π b4 ) behaviours b b1 and b4 interfere and potentially inter-
fere in a similar way to b a1 and b3.

5.3.3 Order of interference detection

The behaviour interferences described above were pre-
sented to users during the proof-of-concept experiment.
Two versions of the TEACHME system were created: one
with behaviour interference checking, and one without
in order to evaluate how participants responded to these
two versions.

To rule out familiarity effects (where all participants
experienced the checking procedure in the same order)
the two versions of the software were pseudo-randomised
between participants. Note, in both conditions, i.e. with
and without behaviour checking, after using the interface
to teach the robot a new behaviour, participants would
test the behaviour they created on the physical robot
multiple times. In the checker “off” condition, partici-
pants would be puzzled when the robot did not carry
out the desired task. Participants could then go back to
the interface and try to resolve the problem. In the
checker “on” condition, they would be alerted to why
this interference has happened and could subsequently
attempt to resolve the problem.

The 20 participants were randomly allocated into two
groups of 10 persons (10 in group X and 10 in group Y).
Before the “A” section those participants in group X had
checking turned on – the Y group had checking turned
off. Once the “A” section was complete the X group would
have checking turned off and the Y group have checking
turned on. This meant that for example a participant
might receive an interference warning after the “A” sec-
tion issue, but not after the “B” section. Another partici-
pant might receive an interference warning after the “B”
section issue but not after the “A” section. Figure 11
shows participants’ distribution across the two experi-
mental conditions based on robot programming experi-
ence. Note that the distribution of participants with robot
programming experience was not equal, i.e. three parti-
cipants in group X and five participants in group Y.

5.4 Measures

After both the A section and the B section, the participant
was asked to complete a questionnaire (Table 2). The ques-

Figure 11: Participants’ age distribution across different experi-
mental conditions. (a) Distribution of participants with no robot
programming experience. (b) Distribution of participants with robot
programming experience.
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tionnaire was based on a modified version of Brooke’s
System Usability Scale (SUS)which rates the general usab-
ility of an interactive system [62]. Answers to questions
are based on a 5-point Likert scale with values ranging
from 1 – “Not at all,” to 2 – “Not really,” 3 – “Maybe,”
4 – “Yes probably” and 5 – “Yes definitely.” Note, half of
the questions are positively phrased (odd numbered ques-
tions), half are negatively phrased (even numbered ques-
tions). We had used this scale in a previous validation
of the TEACHME system [7]; however, here we extended
the questionnaire with two additional Likert scale items
referred to as Question 11 (“The robot teaching system
helped me resolve inconsistencies in the relative’s instruc-
tions”) and Question 12 (“The robot teaching system helped
me understand how behaviours can interfere with each
other”). Note, Q11 addresses the ability of the system to
solve the problems at hand (e.g. resolving inconsistencies),
while Q12 is probing participants’ understanding of the
principle that different robot behaviours may interfere
with each other.

The participants were also given an opportunity to
write an expanded answer to these two questions if they
wished. Following the “B” section, participants could
provide further written comments.

6 Results and discussion

In this section, we provide the results for the user study.
In the following, the abbreviation “BC” is for “Behaviour
Checking” and “NBC” is “No Behaviour Checking.”

6.1 Usability outcome variables

There were three outcome variables: one from the responses
to the SUS (based on items 1–10 shown in Table 2), and
the two additional items (Questions 11 and 12) mentioned
above.

6.1.1 SUS responses

SUS responses for each of the two repeated measures
conditions are presented in Table 3. Note, “difference”
reported in this and other tables refers to the differences
in scores for each participant in this repeated measures
study. To calculate the SUS score, 1 is subtracted from
each of the values of the odd numbered questions. The
values for the even numbered questions are subtracted
from 5. The sum of these scores is then multiplied by 2.5,
which results in a score between 0 and 100. A SUS score
above 68 is considered above average, while scores less
than 68 are considered below average [62].

The mean scores are consistent with our previous
experiment on usability of the TEACHME system [7] (that
did not involve any behaviour interference detection)

Table 2: Usability Questionnaire used in the present study

Modified Brooke’s Usability Scale (5 point Likert scale), items 1–10, complemented by 2 additional items
1 – “Not at all,” to 2 – “Not really,” 3 – “Maybe,” 4 – “Yes probably,” 5 – “Yes definitely”

1. I think that I would like to use the robot teaching system like this often
2. I found using the robot teaching system too complex
3. I thought the robot teaching system was easy to use
4. I think that I would need the support of a technical person who is always nearby to be able to use this robot teaching system
5. I found the various functions in the robot teaching system were well integrated
6. I thought there was too much inconsistency in the robot teaching system
7. I would imagine that most people would very quickly learn to use the robot teaching system
8. I found the robot teaching system very cumbersome to use
8. I felt very confident using the robot teaching system
10. I needed to learn a lot of things before I could get going with the robot teaching system
11. The robot teaching system helped me resolve inconsistencies in the relative’s instructions
12. The robot teaching system helped me understand how behaviours can interfere with each other

Note, the last two items are referred to as “Question 11” and “Question 12” in this article.

Table 3: SUS responses for the two repeated measures conditions

Interference Mean SD Med. Min 25th–75th Max

With 80.12 11.65 81.25 65 67.5–90.625 97.5
Without 78.38 11.25 76.25 62.5 70–87.5 97.5
Difference 1.75 6.29 0 −5 −2.5–2.5 20
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with high usability. This indicates that there were no sig-
nificant or salient differences between the two repeated
measures conditions and suggests a positive response to
research question 1 (“Is the robot teaching system still
considered usable by users when it includes automatic
behaviour interference checking?”).

Table 4 considers the effects of the presentation
order, i.e. whether behaviour checking is turned on or
off for Sections A and B. NBC/BC denotes behaviour
checking was turned off for Section A and then on for
Section B (group Y, above the line in the table) and BC/
NBC denotes that behaviour checking was turned on for
Section A and then off for Section B (group X, below the
line in the table). Tables 7 and 10 have a similar structure.
Presentation order effects in terms of SUS responses were
insignificant (Table 4).

6.1.2 Question 11 of usability questionnaire

As Tables 5 and 6 suggest, there were differences between
the two repeated measures conditions. These differences
were significant with a moderate effect size [63] calculated
in the manner suggested by Rosenthal [64] (Wilcoxon sign-
rank test <p 0.01, effect size =r 0.60), and participants
considered the system with behaviour checking more fa-
vourably, partly providing a positive response to research
question 2 (“Do users find the mechanism for informing
them about behaviour interference effective in help-

ing them understand the nature of behaviour interfer-
ence?”).

Table 7 suggests that there were no effects from pre-
sentation order in terms of responses to the two different
conditions for question 11.

6.1.3 Question 12 of usability questionnaire

Tables 8 and 9 suggest that there were significant differ-
ences between the two repeated measures conditions.
These differences were significant with a moderate
effect size (Wilcoxon sign-rank test <p 0.05, effect size

=r 0.57). Thus, participants considered the interference
detection system helped them understand the interfer-
ence issue better, providing a positive response to research
question 2.

Table 10 suggests that there were no effects from
presentation order in terms of responses to the repeated
measures variable.

6.2 Demographics outcome variables

6.2.1 Gender

There were no relationships between the repeated mea-
sures conditions and gender for any of the three outcome
variables (see the difference between mean in Table 11).
This means that the data do not show a significant impact

Table 4: SUS response in terms of presentation order

Order Mean SD Med. Min Max

BC (NBC/BC) 78.25 11.31 77.5 65 97.5
NBC (NBC/BC) 76 9.66 75 62.5 90
Diff. NBC/BC 2.25 7.95 −1.25 −5 20
BC (BC/NBC) 82 12.29 82.5 65 95
NBC (BC/NBC) 80.75 12.7 78.75 62.5 97.5
Diff. BC/NBC 1.25 4.45 0 −2.5 12.5

NBC = no behaviour checking, BC = behaviour checking.

Table 7: Question 11 – Presentation order

Order Mean SD Med. Min Max

BC (NBC/BC) 4.1 0.88 4 3 5
NBC (NBC/BC) 3.4 0.97 3.5 2 5
Diff. NBC/BC 0.7 0.82 0.5 0 2
BC (BC/NBC) 3.9 0.88 4 2 5
NBC (BC/NBC) 3.2 1.14 3 1 5
Diff. BC/NBC 0.7 1.25 0 0 4

NBC = no behaviour checking, BC = behaviour checking.

Table 5: Question 11 – The robot teaching system helped me resolve
inconsistencies in the relative’s instructions (no. of persons)

Not
at all

Not
really

Maybe Yes,
probably

Yes,
definitely

NBC 1 3 7 7 2
BC 0 1 4 9 6

NBC = no behaviour checking, BC = behaviour checking.

Table 6: Question 11 – Descriptives

Mean SD Med. Min 25th–75th Max

NBC 3.3 1.03 3 1 3–4 5
BC 4 0.86 4 2 3.5–5 5
Diff. 0.7 1.03 0 0 0–1 4

NBC = no behaviour checking, BC = behaviour checking.
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of gender on the usability of the system and how it helped
them to resolve inconsistencies and understand beha-
viour interference.

6.2.2 Prior interaction with robots and programming
experience

There were no relationships between the repeated mea-
sures conditions and prior interactions with robots for
any of the three outcome variables (Table 12).

There were also no relationships between experience
of programming robots and the repeated measures con-
ditions for any of the three outcome variables (Table 13).

Thus, our data do not reflect a significant effect of
participants’ background on detecting and solving beha-
viour interference issues, in response to research ques-
tion 3 (“Does the participant’s background have any
effect on detecting and solving behaviour interference
issues?”).

7 Conclusions, limitations and
future work

We defined and implemented a static behaviour checking
system that considers the preconditions and priorities of
behaviours to identify cases where behaviours will never
be executed or may not be executed. We incorporated
this into the TEACHME System on the Care-O-bot3® robot
in the Robot House that fed back problems to users by
a graphical user interface. We carried out a user eval-
uation study to elicit their views on this system.

Regarding the static behaviour checking system we
elected to carry out checks on behaviour interference as
it was straightforward to explain results to an end-user.
An alternative approach would be to add the new beha-
viour, re-construct the underlying model of the system
and carry out full model checking. The main issue with
this approach we perceive is how to explain any output
to the end-user.

While the participants in this study did not find the
two conditions (with behaviour checking and without
behaviour checking) different in terms of general usability,
they did find that the behaviour checking approach was

Table 10: Question 12 – Presentation order

Mean SD Med. Min Max

BC (NBC/BC) 4.6 0.52 5 4 5
NBC (NBC/BC) 4 1.25 4 1 5
Diff. NBC/BC 0.6 0.97 0 0 3
BC (BC/NBC) 4.3 0.95 4.5 2 5
NBC (BC/NBC) 3.6 1.35 4 1 5
Diff. BC/NBC 0.7 1.25 0 0 4

NBC = no behaviour checking, BC = behaviour checking.

Table 8: Question 12 – The robot teaching system helped me
understand how behaviours can interfere with each other
(no. of persons)

Not
at all

Not
really

Maybe Yes,
probably

Yes,
definitely

NBC 2 1 3 7 7
BC 0 1 0 8 11

NBC = no behaviour checking, BC = behaviour checking.

Table 9: Question 12 – Descriptives

Mean SD Med. Min 25–75th Max

NBC 3.8 1.28 4 1 3–5 5
BC 4.45 0.76 5 2 4–5 5
Difference 0.65 1.09 0 0 0–1 4

NBC = no behaviour checking, BC = behaviour checking.

Table 11: Outcome differences between the two repeated measures
conditions according to gender

Mean SD Med Min 25–75th Max Wilcoxon
p. val

SUS-M 0.56 5.12 0 −5 −2.5–2.5 12.5 0.5
SUS-F 2.73 7.2 0 −2.5 −2.5–2.5 20
Q.11-M 0.44 0.53 0 0 0–1 1 0.61
Q.11-F 0.91 1.3 0 0 0–1.5 4
Q.12-M 0.33 0.5 0 0 0–1 1 0.46
Q.12-F 0.91 1.38 0 0 0–1 4

M = male, F = female, Q = question.

Table 12: Outcome differences between the two repeated measures
conditions according to participants with and without prior robot
interaction experience

Mean SD Med. Min 25–75th Max Wilcoxon
– p. val.

SUS-P 0.29 3.94 0 −5 −2.5–2.5 12.5 0.21
SUS-NP 10 11.46 12.5 −2.5 5–16.25 20
Q11-P 0.65 1.06 0 0 0–1 4 0.41
Q11-NP 1 1 1 0 0.5–1.5 2
Q12-P 0.65 1.17 0 0 0–1 4 0.5
Q12-NP 0.67 0.58 1 0 0.5–1 1

P = prior interaction, NP = no prior interaction, Q = question.
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significantly more useful for resolving and understanding
inconsistencies in the robot’s behaviour.

Furthermore, we found that technical background did
not have a significant effect in understanding the nature
of behaviour interference.

If those results can be confirmed in future larger
scales studies, then this is an encouraging direction for
the development of robot personalisation systems that
allow robot behaviour creation and modification that can
be carried out by both technical and non-technical users.
Specifically, the issue of behaviour interference and the
resulting conflicts could be understood by non-expert
users when detected and reported effectively. However,
although such mechanisms can report on interference,
a separate issue is how an end user could potentially
deal with and resolve the problem. In the study reported
in this article, the user had only limited options (deleting
or amending behaviours or simply ignoring the issue). In
more complex cases, solutions may be to provide addi-
tional behaviour priority modification. Further investiga-
tion of these more complex cases and their possible solu-
tions would be a valid next step in this area of research.

The integration of the behaviour checking system
into the Robot House also represents an additional tool
to compliment formal verification. Formal verification is
often used “offline,” i.e. prior to system deployment. In
addition, it is usually performed by highly-skilled veri-
fication engineers. However, the use of behaviour check-
ing based on static analysis of behaviours described in
this article has shown that such tools can be used online,
during the operation of a multi-purpose companion robot.
Furthermore, it can be used to give timely and informative
feedback directly to end-users during robot behaviour
teaching.

There are several limitations to our work. First, the
relatively small number of participants is a major limita-
tion, and the sample of participants is not ideally balanced
in terms of gender and programming background. Second,

it would have been helpful to have each participant car-
rying out several sessions in a longer-term study. Third,
video recording and analysis of participants’ actions and
reactions to those two conditions, and their interactions
with the experimenter during the experiment, could have
added additional detailed information on how participants
experienced the two conditions. Finally, we only tested
each participant in two conditions, with and without beha-
viour checking. A larger scale study, with a between-par-
ticipant design, could study different variations of the beha-
viour checking approach, in order to gain more detailed
feedback on the usability and usefulness of the system,
and how to improve the system, rather than, as we did in
this study, only considering the presence or absence of
behaviour checking.

With respect to future work there are a number of
directions we could improve the initial static behaviour
checking system. Currently, the behaviour checking system
is limited to behaviours in which the triggering condition
is a sequence of conjunctions, i.e. p1, p2 and p3, etc. A
more general approach would use Boolean formula as the
triggering condition, so that disjunctions, negations and
nested formula could also be included in the condition,
e.g. (p1 or p2) and ((not (p3)) and p4). Previously, we
assumed that the preconditions of behaviours were con-
junctions of atomic statements and represented these as
sets of preconditions. The definitions for overriding and
interfering were presented as subset checking between
sets of preconditions for two behaviours. Let ( )F bi denote
the Boolean formula representing the preconditions for
behaviour bi (which in Section 3 was a conjunction). An
alternative way to show ( ) ( )⊆P b P b1 2 where ( )P b1 and

( )P b2 were representing sets of conjunctions is to check
whether ( ) ( )→F b F b2 1 (where → is logical implication)
is a valid formula. If the preconditions of behaviours can
now be more complex Boolean formula, to check condi-
tions that previously were subsets, i.e. ( ) ( )⊆P b P b1 2 we
would now need to check that ( ) ( )→F b F b2 1 is a valid

Table 13: Outcome differences between the two repeated measures conditions according to participants with and without prior robot
programming experience

Mean SD Med Min 25–75th Max Wilcoxon p val.

SUS-P −0.94 2.65 −1.25 −5 −2.5–0.625 2.5 0.19
SUS-NP 3.54 7.42 1.25 −2.5 −2.5–5 20
Q11-P 0.75 1.39 0 0 0–1 4 0.7
Q11-NP 0.67 0.78 0.5 0 0–1 2
Q12-P 0.75 1.39 0 0 0–1 4 1
Q12-NP 0.58 0.9 0 0 0–1 3

P = programmed before, NP = not programmed before, Q = question.
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formula. We could program this directly or call to a the-
orem prover for propositional logic or SAT solver. This
would allow a greater range of flexibility of programming
the robot, both by developers at the code level, and end-
users using the TEACHME system.

Second, a more detailed study of the allowable pre-
conditions could be made so that interactions between
temporal constraints (such as it is between 10 and 11 and
it is morning) or spatial constraints (such as near the
sofa and in the living room) could be dealt with properly.
For these, we would need better representations related
to time and space with definitions for terms such as
morning, afternoon and evening. Constraint solvers or
spatial reasoners might be useful for reasoning here but
we would have to check what types of statements are
allowed concerning time or space and how best to reason
about them together with Boolean formulae.

Third, when adding a new behaviour we have just
presented one behaviour to the user that satisfies the
guidelines. A more detailed study might show all beha-
viours that match the guidelines and these could perhaps
be ordered in some way with the stronger conditions first
(overriding, then interfering, then potential overriding
and finally potential interfering).

Another avenue of future work would be to integrate
the use of more powerful verification tools like model
checkers and theorem provers and to convert the low-
level technical output of these types of systems into
easy-to-understand feedback for an end-user. In parti-
cular, a parser for the UH Robot House rules that trans-
lated these into input to the NuSMV model checker was
described in ref. [20]. If we add a new behaviour we could
check properties such as the pre-conditions for the new
property will never be satisfied (so it will never be run) or
if the pre-conditions are satisfied on some execution
sometime the behaviour will run. Similar checks for
existing behaviours could also be carried out. However,
how to report those results to non-technical users needs
more investigation.

Furthermore, the TEACHME interface would be more
robust if it supports priority settings and provides func-
tionality for users to create novel temporal and non-tem-
poral memory variables as opposed to relying on prede-
termined memory variables, created by technical users,
in the present version. The future development of the
user interface we designed might benefit from insights
gained in recent research on interfaces to allow novice
users to comprehend and debug software and systems,
e.g. refs. [65,66].

Finally, larger scale user studies specifically tar-
geting older adults as well as adults with dementia or

other health-related conditions, ideally performed in par-
ticipants’ own homes, could further illuminate the use-
fulness and usability of our developed system and its
impact on applications to support healthy and indepen-
dent living. More generally, the techniques and systems
presented in this article could be further developed and
applied as well to other application domains, including
therapy and education, where robots need to be taught
new behaviours by non-expert, novice users. In addition
to using the system in order to provide assistance func-
tionalities, our approach could also be extended, e.g. to
teaching a robot social behaviours.
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