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Figure 6. 1 Standard curve of Lambda dsDNA detected with QuantiT™ PicoGreen
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reagent. Cell Proliferation Assay. Lambda DNA was diluted to create standards of known 

concentrations (0-2000 ng/mL) and were quantified. Samples were excited at 480 nm and 

fluorescence emission intensity measured at 520 nm. Relative fluorescent units were plotted as 
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ADP phosphorylation, F) Spare respiratory capacity G) Coupling efficiency (%). Data are 
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replicatively aged skeletal myotubes in the absence of presence of dietary flavonoids. Cells 
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independent repeats with two replicates per treatment. Statistical significance was tested for by 

a three-way ANOVA, with dose, age and antimycin A as factors: c main effect of age (P<0.05).
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Statistical significance was determined by a two-way ANOVA, with age and time as factors. 

Multiple comparisons performed by Sidak’s test to determine differences in gene expression 
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Abstract 

Introduction: Exercise tolerance gradually declines with sedentary ageing, which contributes 

to reduced quality of life. With ageing, slower pulmonary oxygen uptake kinetics manifest as 

a consequence of impairments along the oxygen transport and utilisation pathways. 

Consequently, there is a mismatch between metabolic demand and O2 delivery, and the oxygen 

deficit is exacerbated during exercise. Strategies that target the vascular endothelium and 

skeletal muscle are therefore required to respectively improve O2 delivery and utilisation. 

Flavonoids may provide therapeutic value through their interaction with cellular processes 

associated with energy metabolism, but their exact effects on vascular endothelial and skeletal 

muscle cells are yet to be fully described. 

Objective: The overall objective of this thesis is to investigate whether flavonoid 

supplementation impacts V̇O2 kinetics and exercise tolerance in vivo, and to examine whether 

flavonoids modulate vascular endothelial and/or skeletal muscle cell (control and aged) 

function as it relates to energy metabolism, in vitro. 

Methods: Three models were used to achieve the thesis objectives: 1) Randomised, double-

blind placebo-controlled trial to investigate whether flavonoid supplementation modulates V̇O2 

kinetics and exercise tolerance in physically inactive middle-aged adults. 2) human vascular 

endothelial cell model to investigate the effects of flavonoids on RONS production, 

mitochondrial function and cells signalling. 3) Replicative ageing skeletal myoblast/myotube 

model to investigate the impact of ageing on the effects of micromolar concentrations of 

flavonoids on RONS production, mitochondrial function, cell signalling and metabolic 

signatures. 

Results: Model 1: Cocoa-flavanol supplementation sped phase II V̇O2 kinetics by 15% during 

moderate-intensity exercise in physically inactive middle-aged adults, but did not alter exercise 

tolerance. Model 2: In vascular endothelial cells, antimycin A augmented ROS emission, which 

was modulated by flavonoids in a dose-dependent manner. However, flavonoids did not impact 

mitochondrial respiration. EPI treatment augmented NRF2 expression and genes associated 

with mitochondrial remodelling. NRF2 induction in vascular endothelial cells appeared 

downstream of increased ERK1/2 signalling and may relate to increased NO bioavailability. 

Model 3: Ageing attenuated coupling efficiency and OXPHOS in myotubes, but not myoblasts, 

whilst increasing mitochondrial ROS production. Flavonoid treatment did not rescue age-

related mitochondrial dysfunction. However, flavonoids upregulated NRF2 in skeletal muscle 

cells, and in the presence of EPI, NRF2 induction appeared downstream of increased AMPK 
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signalling, but independent of NO bioavailability. Replicative ageing significantly altered the 

metabolic signatures of myoblasts and myotubes, which were only partially affected by 

flavonoid treatment. 

Conclusion(s): Cocoa-flavanols speed V̇O2 kinetics during moderate intensity exercise, but do 

not enhance exercise tolerance. The speeding of V̇O2 kinetics with cocoa flavanols in vivo may 

relate to the action of flavonoids on vascular endothelial and skeletal muscle cellular processes. 

Flavonoids differentially impact mitochondrial ROS production and gene expression profiles 

in skeletal muscle and vascular endothelial cells. However, flavonoids do not play a major role 

in modulating mitochondrial respiration, regardless of cell type. EPI in-particular may afford 

mitochondrial adaptations via induction of NRF2 and ERK1/2 or AMPK signalling in vascular 

endothelial and skeletal muscle cells, respectively, potentially through the effects of hormesis. 

In the context of sedentary ageing, flavonoid supplementation may enhance quality of life 

through effects on V̇O2 kinetics, and the modulation of RONS production and adaptive 

responses at the cellular level. 
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1.1 General Introduction  

Ageing and physical inactivity are two bio-cultural trends at the forefront of public interest. 

Physical inactivity itself is identified as the fourth leading risk factor for global mortality 

(WHO, 2010), and a major contributing factor for disability and poor health (Peterson et al., 

2009). Moreover, physical inactivity is related to approximately 3 million deaths per year 

globally and accounts for the occurrence of 6–10% of the major non-communicable diseases 

(Lim et al., 2012). In the UK alone, it is estimated that around 20 million adults are 

insufficiently active, putting them at significantly greater risk of cardiovascular disease (CVD) 

and premature death than their active counterparts (BHF, 2017). Older adults typically have a 

more sedentary lifestyle, spending more than 9 hours inactive per day (Harvey et al., 2015). 

The high rate of physical inactivity that characterises the older adult population compounds 

impairments to physiological systems typically observed with chronological ageing. Indeed, 

living an inactive lifestyle into older age can lead to a greater loss of functional capacity, due 

to exacerbated deficits in strength, endurance, and flexibility (Chodzko-Zajko et al., 2009). 

Ultimately, the non-adherence to physical exercise in adults, which is as prevalent as non-

adherence to medicines (Barnett, 2014; Jefferis et al., 2014), can not only negatively impact 

activities of daily living but also lead to life-threatening conditions (Figueiredo et al., 2016).  

 

Whilst inactivity is a major cause of poor physiological fitness and disease in older age (Booth 

et al., 2012), maintaining a physically active lifestyle through middle and older age is 

associated with improved health and longevity (Hamer et al., 2014) (Manini et al., 2006; 

Stessman et al., 2009). Fortunately, the trajectory towards frailty is directly modifiable through 

physical activity habits earlier in life (Department of Health and Social Care, 2011; Tak et al., 

2013). For instance, beginning a new exercise regimen in middle age is associated with healthy 

ageing (Sabia et al., 2012; Sun et al., 2010). Despite the well-known benefits of physical 
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activity, the adoption of a physically active lifestyle has remained low for reasons including 

limitations in self-efficacy and lack of free time (Lavie et al., 2019). One frequently reported 

barrier to engagement in physical activity is perceived physical exertion or fatigue (Jones & 

Nies, 1996; Malone et al., 2012; Thomson et al., 2016). Acknowledging such barriers to 

engagement in physical activity is important, but ultimately, the poor/insufficient adherence 

levels of the general population to physical activity guidelines are unacceptable, emphasising 

the need for alternate strategies to help individuals engage with physical activity and maintain 

functional capacity and independence into older age (see Figure 1.1). 

 

Figure 1. 1 Graphical representation of the relationship between ageing and functional 

capacity.  Adapted from WHO, 2000. 

 
 
 
An individual’s tolerance for the activities of daily living is compromised with sedentary 

ageing. Major determinants of exercise tolerance including cardio-pulmonary and muscle-

energetic function are impaired with sedentary ageing, which culminates in reduced oxygen 

(O2) transport and impaired utilisation (Ward, 2007). Indeed, lowered capacity for O2 transport 

and utilisation manifests as reduced maximal O2 uptake and slower pulmonary O2 uptake (V̇O2) 
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kinetics during exercise. As a result, sedentary ageing increases the physical and cognitive 

burden of a given task. Physiologically, the vascular endothelium and skeletal muscle tissue 

play central roles in regulating the delivery and consumption of O2, respectively. Evidence 

suggests that sedentary ageing impairs vascular endothelial and skeletal muscle function (and 

thus O2 delivery and utilisation, respectively; see Figure 1.2), which is largely attributable to 

intricate mechanisms converging on cellular mitochondria. Both the vascular endothelium and 

skeletal muscle mitochondria, therefore, may represent important therapeutic targets for 

enhancing O2 uptake, and ultimately exercise tolerance.  

 

Figure 1. 2 Pathway of O2 and CO2 transport from mouth to mitochondria. Physiologic 

mechanisms that link respiration at the cellular and whole-body levels. Red bars denote 

inhibitory effects of sedentary ageing upon O2 delivery and utilisation pathways. 

 

Dietary interventions are increasingly considered for their potential as relatively inexpensive 

strategies to mitigate the burden of sedentary ageing. Polyphenols are bioactive constituents of 

foodstuffs, broadly categorised into four subclasses according to their molecular structure 

(Pandey & Rizvi, 2009). One class of naturally occurring polyphenols, flavonoids, account for 

the majority of known polyphenol compounds (~60%) (Manach et al., 2004). Flavonoids were 

first discovered in the 1930’s by the Nobel laureate Dr. Albert Szent-Gyorgyi. After isolating 

unknown compounds from lemon juice and Hungarian red pepper, Szent-Gyorgyi restored 
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capillary resistance in man through intravenous administration of the compounds, which he 

subsequently classified as another vitamin group, ‘P’ (Rusznyak & Szent-Gyorgyi, 1936). 

Later, it was determined that vitamin P was rather a mixture of flavonoids, that would later 

belong to a class of over four thousand identified metabolites. Unlike micronutrients, there is 

no established disease associated with suboptimal flavonoid consumption. Nevertheless, 

flavonoids are considered essential for maintaining health across the life course (Holst & 

Williamson, 2008).  A plethora of research has been published describing how flavonoids and 

flavonoid-rich products afford beneficial effects upon cardiovascular and metabolic health (see 

section 1.2.13 and Figure 1.3). Today, the consensus is that the health promoting effects of 

flavonoids can be owed to their capacity to modulate enzyme activities, activate signalling 

pathways and even interact with the energy-producing organelles of cells, the mitochondria 

(Kicinska & Jarmuszkiewicz, 2020; Williamson et al., 2018). 

 

 

Figure 1. 3 Flavonoid ingestion may promote beneficial effects upon target tissues such as 

the vascular endothelium and skeletal muscle tissue. 

 

Considering the therapeutic potential of flavonoids in the context of sedentary ageing, the aim 

of the experiments in this thesis were twofold: To assess 1. whether dietary flavonoids can 
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speed V̇O2 kinetics and enhance exercise tolerance, in vivo, in physically inactive middle-aged 

adults and 2. Whether dietary flavonoids improve vascular endothelial and/or skeletal muscle 

function as it relates to energy metabolism in vitro. To achieve these aims, complementary in 

vivo (human) and in vitro (vascular endothelial and skeletal muscle cells) studies were 

conducted that investigated whether flavonoid supplementation impacted: 1. V̇O2 kinetics in 

inactive middle-aged adults, 2. Reactive oxygen and nitrogen species (RONS) production, 

mitochondrial function and signalling in vascular endothelial cells, 3. NO bioavailability, 

mitochondrial function and gene expression of C2C12 myoblasts, 4. Mitochondrial function, 

ROS production and cell signalling of C2C12 myotubes and 5. The metabolome of C2C12 

skeletal myoblasts and myotubes. Together, these studies facilitated a critical appraisal of the 

literature that addressed four key areas: 1. The molecular processes underpinning vascular 

endothelial and skeletal muscle (dys)function during ageing, with a particular focus on the role 

of the mitochondria; 2. Evidence for impaired O2 delivery and uptake with older age; 3. The 

impact of older age on V̇O2 kinetics and potential sites of regulation in the rest-to-work 

transition and 4. The known health benefits of dietary flavonoids in vivo and their biological 

activities at the cellular and molecular level.  

 

1.2 Literature Review     

1.2.1 Mitochondria – an overview 

The mitochondrion is hailed as "the powerhouse of the cell” because it provides the majority 

of the cell’s chemical energy currency, adenosine triphosphate (ATP). In doing so, 

mitochondria generate a small quantity of reactive molecules containing unpaired electrons, 

collectively known as reactive oxygen and nitrogen species (RONS). Yet, mitochondria are 

also involved in other critical cellular activities, such as retrograde signalling, cellular 

differentiation, apoptosis and cell senescence (Groschner et al., 2012; Hood et al., 2019). Given 
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the multifaceted role of this organelle, it is no wonder that mitochondria are widely implicated 

in human health, disease and the ageing process.  

 

1.2.2 Mitochondrial oxidative phosphorylation 

Cellular energy requirements are met by the energy released in the oxidation of electron donors 

derived from reduced substrates (such as carbohydrates, fatty acids, and amino acids). This 

intricate process involves the entry of electrons into the electron transport system (ETS), and 

their subsequent movement down >20 reduction-oxidation (redox) couples to molecular O2, 

which serves as the ultimate electron acceptor. The ETS is a highly refined molecular engine, 

made up of multi-protein complexes (Complex I-V) encoded by both nuclear and 

mitochondrial DNA (mtDNA), and are embedded in the inner mitochondrial membrane (see 

Figure 1.4). The movement of electrons down the gradient of redox potential in the ETS is 

tightly coupled to the energy-demanding reactions of ATP synthesis, and is achieved through 

a chemiosmotic mechanism (Mitchell, 1961). As electrons flow through the ETS, Complex I, 

Complex III and Complex IV translocate protons from the mitochondrial matrix to the inner 

membrane space. Through this mechanism, a proton-motive force is generated, consisting of 

an electrical gradient (membrane potential; ∆ψ), accompanied by a small chemical gradient 

(∆pH). The resultant proton motive force drives protons back into the matrix through the 

mitochondrial ATP synthase (Complex V), resulting in ATP synthesis. Together, this dynamic 

and orchestrated process is the mechanism of oxidative phosphorylation (OXPHOS). 
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Figure 1. 4 Schematic of the molecular machinery responsible for oxidative phosphorylation 

within the mitochondrion.  Electron (e-) transfer along the electron transport chain (comprising 

complex I, II, II and IV embedded in the inner mitochondrial membrane [IMM]) drives protons 

(H+) from the mitochondrial matrix into the inner membrane space (IMS). The electrochemical 

potential created by accumulation of H+ within the mitochondrial membranes is used by ATP 

synthase (complex V) to produce ATP. Proton leak allows H+ to re-enter the matrix, bypassing 

ATP synthase, such that oxygen (O2) consumption is not entirely coupled to ATP synthesis. 

Electron leakage from complex I and III leads to partial reduction of O2 to form superoxide 

(O2-), which is rapidly quenched to form hydrogen peroxide (H2O2) by superoxide dismutase 

(SOD). H2O2 is further metabolised to water (H2O) by catalase (CAT). 

 

 

1.2.3 Mitochondrial turnover 

By virtue of their endosymbiotic origins, mammalian mitochondria maintain their own 

individual 16.5-kb genome which works in conjunction with nuclear DNA for the expression 

of mitochondrial proteins (Calvo et al., 2016). Of the nearly ~1500 proteins that make up 

mitochondria (Zhao et al., 2013), mtDNA is responsible for the transcription of just 13, albeit 

integral, ETS proteins, along with 2 rRNAs and 22 tRNAs (Anderson et al., 1981). Hence, the 
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vast majority (>99%) of the remaining mitochondrial proteins require transcription in the 

nucleus and import into their appropriate compartments via mitochondrial chaperones and 

protein import channels (Schwarz & Neupert, 1994; Takahashi & Hood, 1996).  

 

The transcription of nuclear encoded mitochondrial proteins is highly regulated, and the 

transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-

1α) is considered a major governor of this process (Handschin & Spiegelman, 2006; Lin et al., 

2005; Scarpulla et al., 2012), despite its apparent dispensability for mitochondrial biogenesis 

(Rowe et al., 2012). PGC-1α acts to upregulate gene transcription by docking with transcription 

factors and additional proteins on DNA promoters to regulate nuclear genes encoding 

mitochondrial proteins (Puigserver et al., 1999; Scarpulla, 2011a; Scarpulla et al., 2012). Once 

activated, PGC-1α interacts with TFs including nuclear respiratory factor (NRF)-1/2, which 

induce the expression of mitochondrial transcription factor A (Tfam). Tfam is subsequently 

imported into the organelle and serves as the most important transcription factor to upregulate 

the transcription of mtDNA-derived proteins (Gordon et al., 2001; Scarpulla, 2011b). Besides 

activation of the mitochondrial biogenesis pathway leading to an increase in mitochondrial 

content, elimination of organelles via mitophagy is important to maintain or improve the 

quality of the mitochondrial pool (Erlich & Hood, 2019; Kim & Hood, 2017). Mitophagy 

involves the engulfment of damaged organelles by autophagosomes when they exhibit a 

decreased membrane potential and/or excessive increases in RONS production (Chen et al., 

2018; Kim et al., 2019; Wei et al., 2015). One key regulatory pathway involved in mitophagy 

involves PINK1 and the E3 ligase Parkin. Initially, stabilisation of PTEN-induced kinase 1 

(PINK1) on the outer membrane occurs, which recruits Parkin, and upon phosphorylation, 

targets membrane proteins such as mitofusin-2 (Mfn2) for selective degradation through a 

ubiquitin tag. 
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1.2.4 Mitochondria morphology 

Mitochondria comprise of four specific regions, including the outer mitochondrial membrane 

(OMM), intermembrane space, inner mitochondrial membrane (IMM), and the mitochondrial 

matrix. Although often depicted as stand-alone organelles, mitochondria exist as an 

interconnected network (see Figure 1.5), that is not static but rather highly dynamic, and 

dictated by the metabolic demands of the cell (Picard et al., 2013). The morphology of these 

organelle relies on the dynamic interplay between fission and fusion activities, where the fusion 

of smaller organelles allows for the sharing of cellular material and facilitates the expansion of 

the mitochondrial network (Liu et al., 2009). The primary proteins involved in mitochondrial 

fusion include mitofusin1/2 (Mfn1/2), which anchors adjacent OMMs, and optical atrophy 1 

(OPA1), which plays a similar role in IMM fusion (Mishra & Chan, 2016). Conversely, fission 

is required to break the reticulum into smaller fragmented organelles, an important step in 

removing dysfunctional mitochondria from the mitochondrial pool for degradation. In a 

manner similar to Mfn2, the fission protein dynamin-related protein 1 (Drp1) resides on the 

OMM and works in conjunction with mitochondrial fission factor and fission protein 1 to wrap 

around and constrict the mitochondria to promote organellular separation (Losó n et al., 2013).  
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Figure 1. 5 Highly interconnected cellular network of mitochondria. HUVEC mitochondria 

stained with Mitotracker Green (25 nM) and image captured at 63x magnification by confocal 

microscopy. 

 
 
1.2.5 Mitochondrial (& extra-mitochondrial) reactive oxygen species 

As electrons pass down the ETS during OXPHOS, a small proportion of them (∼0.15%) will 

escape their destined path and react with O2, generating RONS (St-Pierre et al., 2002). 

Typically, this reaction results in the formation of the superoxide radical, that is rapidly 

dismutated to the freely diffusible oxidant hydrogen peroxide (H2O2) (St-Pierre et al., 2002). 

Despite their relatively short half-life, RONS can trigger key redox-sensitive signalling 

pathways and subsequently promote important cellular adaptations (Krylatov et al., 2018; 

Powers et al., 2010). The importance of RONS as beneficial signalling molecules for adaptation 

has been eloquently demonstrated by studies showing antioxidant supplementation regimes 

blunt vasodilation and mRNA responses following exercise (Gomez-Cabrera et al., 2008; 

Sindler et al., 2009; Strobel et al., 2011). In spite of their indispensability, excessive emission 

of RONS can increase oxidative stress, which may culminate in damage to lipids, DNA and 

proteins, and even impair mitochondrial function (Melov et al., 2000; Schriner et al., 2005). 

Indeed, RONS may compromise the activity of complexes within the ETS, which can be 

directly altered by oxidative modifications (Cobley et al., 2019; Mailloux et al., 2014). To help 
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maintain appropriate cellular redox balance in the face of oxidative insults, specific antioxidant 

defence enzymes are deployed, including those within the glutathione system, superoxide 

dismutase and catalase (Dimauro et al., 2012; Jones, 2006). 

 

1.2.6 Section Summary & link to thesis objectives 

To summarise, mitochondrial form and function play a vital role in maintaining cellular 

function by serving the requirements for ATP, co-ordinating signalling responses and 

regulating the oxidative state. Ensuring a dense and robust cellular mitochondrial network is 

therefore of utmost importance for defending against the perils of ageing, physical inactivity 

and disease. In Chapters 4, 5 and 6 of this thesis, mitochondrial function will be interrogated 

in vascular endothelial cells and skeletal muscle cells. 

 

1.2.7 Mechanisms of age-related mitochondrial dysfunction  

1.2.7.1 Skeletal muscle mitochondrial (dys)function 

Mitochondrial dysfunction is considered a major hallmark of the ageing process (López-Otín 

et al., 2013). Investigations into the mechanisms underlying skeletal muscle mitochondrial 

dysfunction with ageing have unveiled marked reductions in mitochondrial contents and 

capacity (Holloszy et al., 1991; Lyons et al., 2006; Zahn et al., 2006), as well as increased 

production of RONS (Palomero et al., 2013; Vasilaki et al., 2010). Early work studying 

mitochondrial turnover with ageing revealed a substantial decline (~40%) in the rate of 

mitochondrial protein synthesis from young- to middle-age that persisted into older age 

(Rooyackers et al., 1996). Subsequent studies have repeatedly shown older skeletal muscle 

displays lower expression of key proteins that regulate mitochondrial function, such as PGC-

1α (Chabi et al., 2008a; Konopka et al., 2014). It is thought that this reduction in mitochondrial 

content is partly attributable to blunted responses to stimuli that augment mitochondrial 
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biogenesis, such as contractile activity (Ljubicic et al., 2009; Ljubicic & Hood, 2009). In this 

regard, the deleterious effects of ageing can be observed at the level of energy sensing 

signalling pathways, where the activation of AMP-activated protein kinase (AMPK) is lower 

after endurance exercise in aged compared to young muscle (Reznick et al., 2007a). 

Remodelling of the mitochondrial network also involves targeted degradation (mitophagy) and 

dynamic quality control processes, fusion and fission. Both mitophagy and mitochondrial 

dynamics are altered in older compared to young skeletal muscle, evidenced by increased 

expression of autophagy- and mitochondrial fission-related proteins (Carter et al., 2018; Chen 

et al., 2018; Iqbal et al., 2013). Although conflicting data have been reported in older animals 

with respect to mitophagy and fission (Distefano et al., 2017; Joseph et al., 2013a; Leduc-

Gaudet et al., 2015; Russ et al., 2012), an increased drive for mitophagy and fission activities 

may result in a less functional and more fragmented mitochondrial network (Gouspillou et al., 

2014). 

 

On the issue of mitochondrial function, a wide range of studies have described the impact of 

ageing on the intrinsic capacities of mitochondria. Those reporting the activity of mitochondrial 

respiratory enzymes from ageing muscle tissue have shown a marked decline in some (Bass et 

al., 1975; Desai et al., 1996; Lezza et al., 1994), but not all cases (Barrientos et al., 1996; 

Örlander et al., 1978). Other integrated measures of functionality in cultured cells and isolated 

muscle mitochondria by respirometry have suggested age-related deficiencies. For example, 

isolated aged skeletal muscle mitochondria demonstrate altered indices of function, including 

reduced maximal ATP‐generating capacity (Drew et al., 2003a), lower ADP-stimulated 

respiration (Picard et al., 2010a) and reduced maximal respiratory capacity (Chabi et al., 

2008b). These altered indices of organelle function coincide with changes in metabolic 

pathways in vitro, where cultured skeletal muscle cells from older donors display greater 
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reliance on glycolysis for ATP synthesis compared to younger donors (Marrone et al., 2018a; 

Pääsuke et al., 2016). In this thesis, intrinsic mitochondrial function will be investigated in 

control and replicatively aged skeletal myoblasts (Chapter 5) and myotubes (Chapter 6).  

 

Aside from contents and capacity, another driver of dysfunctional mitochondria in ageing 

skeletal muscle is increased mitochondrial-derived RONS (Holloway et al., 2018; Jang et al., 

2010). Mitochondrial peroxide generation has been repeatedly shown to be increased in 

skeletal muscle during ageing (Jang & Remmen, 2009; Martinez Guimera et al., 2018; 

Palomero et al., 2013). For instance, isolated skeletal muscle mitochondria demonstrate age-

related increases in H2O2 production (Chabi et al., 2008b; Vasilaki et al., 2006), which is likely 

the result of excessive generation of superoxide from the ETS (Brand et al., 2013). Although 

the reported increase in ROS production with ageing may also manifest due to increased action 

of cytosolic NADPH oxidases (Jackson et al., 2015). However, increased mitochondrial RONS 

with ageing has not been consistently demonstrated in vitro (Distefano et al., 2017; Gouspillou 

et al., 2014a). Such discrepancies in study outcomes can partly be explained by a failure of 

some cellular models to closely mimic the in vivo environment. However, when physiological 

concentrations of ADP are employed, ageing skeletal muscle presents increased production of 

H2O2 (Holloway et al., 2018). Given that mitochondria are responsible for the bulk of oxygen 

consumption and ATP production (Rolfe & Brown, 1997), the aforementioned (age-related) 

perturbations to the abundance and overall function of these organelles (see Figure 1.6) has 

major implications for contractile bioenergetics and oxygen uptake in vivo. 
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Figure 1. 6 Impact of sedentary ageing upon on skeletal muscle mitochondria. In older, 

physically inactive skeletal muscle, mitochondria display lowered respiratory function, 

reduced mitochondrial content, and increased production of mitochondrial-derived reactive 

oxygen species (ROS). Ultimately, these effects lead to a diminished capacity for oxygen 

utilisation. 

 
 
 
 
1.2.7.2 Vascular endothelial mitochondrial dysfunction 

From a mechanistic standpoint, endothelial dysfunction is characterised by several, interlinked 

factors, including mitochondrial dysfunction, elevated oxidative stress, reduced NO 

bioavailability and altered energy-sensing pathways (Ungvari et al., 2018). Of these factors, 

mitochondrial dysfunction has received the least attention in the recent literature, largely owed 

to early observations that endothelial cells contain relatively few mitochondria (2–5% of cell 

volume) in comparison to other cell types like skeletal muscle (2.5-9.5% of cell volume) 

(Howald et al., 1985; Ørtenblad et al., 2018; Vincent et al., 2019) and cardiomyocytes (~35% 

of cell volume) (Barth et al., 1992; Oldendorf et al., 1977). Nevertheless, mitochondria have 

emerged as having a potential key role in contributing to vascular endothelial dysfunction with 
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ageing. Ageing is associated with reduced endothelial mitochondrial content, evidenced by 

reduced expression of PGC-1α and citrate synthase, as well as lowered cytochrome c oxidase 

(COX) activity (Park et al., 2018a; Ungvari et al., 2008a). Such declines in mitochondrial 

content may contribute to increased production of mitochondrial ROS in the ageing 

endothelium. Associated with reductions in mitochondrial proteins, impairments to organelle 

quality control processes (fusion and fission) have been demonstrated in aged versus young 

human vascular endothelial cells (Jendrach et al., 2005) by light microscopy. Aside from 

content, it was recently shown that the respiratory function (complex I and I + II state 3 

respiration) of aged human skeletal muscle feed arteries is impaired in old compared to young 

participants (Park et al., 2020). Therefore, age-related changes in mitochondrial content and 

function may contribute to vascular endothelial dysfunction with advancing age. 

 

A second, well documented feature of vascular endothelial ageing is increased oxidative stress 

(see Figure 1.7), a state in which the production of RONS outweighs the buffering capacity of 

antioxidant defences (Cai & Harrison, 2000; Harrison, 1997). There is strong evidence for 

increased production of RONS in the ageing rodent and human endothelium (Adler et al., 

2003a; Csiszar et al., 2002a; Eskurza et al., 2004; Jacobson et al., 2007), that is both cytosolic 

(e.g. NADPH oxidases) and mitochondrial in origin (Donato et al., 2007a; Durrant et al., 2009a; 

Ungvari et al., 2007; Zhou et al., 2009). It is thought that elevated oxidative stress within the 

ageing vascular endothelium is caused by defects in the ETS (Ungvari et al., 2008b), and/or 

compromised antioxidant responses (Csiszar et al., 2014; Ungvari et al., 2011; Van Der Loo et 

al., 2000a). Irrespective of the underlying cause, increased oxidative stress may culminate in 

critical modifications to DNA or proteins (Sastre et al., 2003), though one of its most potent 

effects is a reduction in NO bioavailability, caused by the reaction of superoxide with NO to 

produce peroxynitrite (Donato et al., 2007a; Durrant et al., 2009b; Lesniewski et al., 2009). 
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The lowered bioavailability of NO with ageing can also be explained by a reduced activity and 

expression of the enzyme responsible for its synthesis, endothelial nitric oxide synthase 

(eNOS) (Cernadas et al., 1998a; Chou et al., 1998; Donato et al., 2009a); although other work 

suggests ageing may elevate eNOS expression as a compensatory mechanism (Thijssen et al., 

2016).  

 
Figure 1. 7 Impact of advancing age on the vascular endothelium. In younger endothelial cells 

(top), eNOS (endothelial NO synthase) produces NO through the conversion of L-arginine to 

L-citrulline, to facilitate endothelium-dependent vasodilation (EDD). Reactive oxygen species 

(ROS), for example, O2− and H2O2, are produced by the mitochondrial electron transport chain 

(ETC) or cytosolic oxidant enzymes, such as NOX (NADPH oxidase). These reactive 

molecules are quenched by endogenous antioxidant enzymes such as superoxide dismutase 

(SOD) and catalase (CAT). In older endothelial cells (bottom), ROS production increases due 

to increased mitochondrial and NOX-derived ROS. Increased O2− diminishes NO 

bioavailability, through its conversion to peroxynitrite (ONOO−). Ultimately, these effects lead 

to a reduction in endothelial-dependent vasodilation in the aged endothelium. Figure adapted 

from (Donato et al., 2018). 

 

The energy-sensitive serine/threonine kinase AMPK plays an important role in regulating 

vascular endothelial mitochondrial function and biogenesis, thus determining sensitivity to 
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oxidative stresses (Ceolotto et al., 2007; Colombo & Moncada, 2009; Ido et al., 2002; 

Kukidome et al., 2006). Activation of AMPK requires phosphorylation of the α subunit and 

occurs downstream of two kinases, including liver kinase B1 (LKB1) and Ca2+/calmodulin-

dependent protein kinase (CaMKII) (Hawley et al., 2005; Stahmann et al., 2006). AMPK is 

also considered to regulate the activity of eNOS, through its phosphorylation at Ser1177 (Chen 

et al., 1999), amongst other sites. During ageing, AMPK expression and activity are reportedly 

downregulated in the vascular endothelium (Lesniewski et al., 2012), thus highlighting the 

therapeutic potential in targeting this protein kinase for ameliorating vascular endothelial 

dysfunction.  

 

 
 
1.2.8 Evidence of age-related impairments in the capacity to deliver and utilise oxygen 

in vivo 

1.2.8.1 Impaired O2 utilisation  

The aforementioned age-related disruptions to mitochondria at the cellular and molecular level 

have implications for O2 utilisation in vivo. In-fact, mitochondrial dysfunction is implicated in 

the causality of slower walking speeds, fatigability and slowing of V̇O2 kinetics with ageing 

(Choi et al., 2016a; Coen et al., 2013; Joseph et al., 2012; Murias & Paterson, 2015a; Sundberg 

et al., 2019; Zane et al., 2017). Reports of muscle oxidative capacity in older humans using 

31P-magnetic resonance spectroscopy (MRS) have suggested mitochondrial dysfunction by 

slowed phosphocreatine (PCr) resynthesis in resting (Fleischman et al., 2010) and contracting 

skeletal muscle (Choi et al., 2016b; Distefano et al., 2018). Nevertheless, no such impairments 

to PCr recovery were observed in the tibialis anterior muscle of aged compared to young 

subjects when matched for physical activity levels (Kent-Braun & Ng, 2000; Lanza et al., 

2005). More invasive and direct examinations of mitochondrial function in permeabilised 
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myofibers by respirometry have also produced equivocal results. A decline in mitochondrial 

function with ageing has been evidenced by reduced basal and maximal respiration (Joseph et 

al., 2012; Tonkonogi et al., 2003a), as well as impaired coupling efficiency (Porter et al., 2015). 

On the other hand, some studies have found no such impediments to muscle mitochondrial 

respiration in isolated muscle fibres of aged human and rat skeletal muscle (Gouspillou, 

Sgarioto, et al., 2014b; Hütter et al., 2007; Picard et al., 2010a). The apparent discrepancies 

between study outcomes could be explained by the fitness or physical activity levels of older 

participants (Conley et al., 2013; Distefano et al., 2018; Gram et al., 2015), or even due to 

artefacts introduced by mitochondrial isolation procedures (Picard et al., 2010b). Using an 

alternative experimental approach involving modular control analysis, one study reported that 

activation of mitochondrial oxidative phosphorylation in response to a given increase in ATP 

demand, or affinity for ADP (during low contractile activity, reflecting daily living activity), 

is markedly reduced with skeletal muscle aging (Gouspillou et al., 2014a), adding support to 

the idea mitochondrial bioenergetics (and O2 utilisation) are significantly impaired in vivo in 

aged skeletal muscle. 

 

Besides potential limitations in mitochondrial function of older muscle, it has been reported 

that the key enzyme, pyruvate dehydrogenase (PDH), might also play a role in regulating O2 

utilisation. One study demonstrated blunted PDH activation in biopsy samples from the vastus 

lateralis 30 s into a moderate-intensity exercise transition in older adults, which the authors 

concluded was partly responsible for the slower V̇O2 kinetics observed compared to young 

adults (Gurd et al., 2008). Besides PDH, research has suggested  that creatine kinase (CK) 

induced breakdown of phosphocreatine may also modulate mitochondrial respiration through 

feedback control (Grassi et al., 2011). In this way, CK appears to slow the signal responsible 

for the activation of OXPHOS in mammalian skeletal muscle, although this is yet to be 
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explored in older populations. Multiple groups have used 31P-MRS to demonstrate close 

relationships between phosphocreatine kinetics and V̇O2 during moderate-intensity exercise 

(Barstow et al., 1994a, 1994b; McCreary et al., 1996; Rossiter et al., 2002). Collectively, the 

reported decrements in mitochondrial respiration and potentially impaired PDH activation 

reported in physically inactive older adults may contribute to the age-related decline in V̇O2 

kinetics in the rest-to-work transition. 

 

Another possible and noteworthy factor related to O2 uptake is the influence of NO on 

mitochondrial function. In addition to its well-known role in the regulation of endothelium 

dependent vasodilation, NO has the potential to compete with O2 for the binding site at COX 

(Brown, 2000; Schweizer & Richter, 1994), thereby inhibiting respiration and ATP synthesis 

(Takehara et al., 1995). Human based studies (Jones et al., 2003, Jones et al., 2004) have 

reported that inhibition of NO synthesis with N(ω)-nitro-L-arginine methyl ester (L-NAME) 

actually results in a significant speeding of the primary response of V̇O2 kinetics, albeit in 

young adults. Paradoxically, NO also stimulates mitochondrial biogenesis, and plays a critical 

role in vasodilation responses. With older age, NO levels markedly decline, yet V̇O2 kinetics 

are concurrently slowed during exercise (Bell et al., 1999; Gurd et al., 2008). Therefore, it 

seems that the potential inhibitory effects of NO on V̇O2 are intricate and not completely 

understood. Quite possibly, the relationship between NO and V̇O2 is complicated with older 

age due to changes in the muscle redox state (Casey et al., 2015; Kirby et al., 2009). 

 

1.2.8.2 Impaired O2 delivery 

It is thought that structural and functional changes in the O2 transport system of older 

individuals negatively affect the matching of O2 delivery to O2 utilisation (see Figure 1.8), such 

that a greater O2 deficit is incurred during the onset of exercise. Potential regulatory sites along 
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the O2 transport pathway include limitations in cardiac output, heart rate, vascular reactivity, 

and capillarization (Chilibeck et al., 1996; Coggan et al., 1992; Harper et al., 2006; Murias & 

Paterson, 2015a). A substantial amount of research over the past three decades has attempted 

to decipher the relative contribution of these limitations to muscle O2 delivery with ageing, 

which has underlined diminished microvascular blood flow as a major candidate. 

 

The decline in vascular endothelial function with advancing age is well documented. In the 

femoral and brachial artery, measures of endothelial function by flow-mediated dilation (FMD) 

have shown impairments with older age (Black et al., 2009; Celermajer et al., 1994; Thijssen 

et al., 2006). Similar effects of ageing have been observed in the (cutaneous) microvasculature, 

where ageing leads to impaired vasodilatory responses to heating and local acetylcholine 

infusion (Black et al., 2008a; Tew et al., 2010). As previously discussed (see section 1.2.7.2), 

a primary mechanism underlying vascular dysfunction with ageing appears to be related to the 

bioavailability of NO and production of RONS. Support for reduced NO bioavailability in vivo 

is provided by studies showing lowered forearm vasoconstrictor responses to infusion of the 

NO‐synthase inhibitor N G‐monomethyl‐l‐arginine (l‐NMMA) (Singh et al., 2002a; Taddei et 

al., 2000a), and impaired microvascular dilation response to local heating (Black et al., 2008b). 

Furthermore, L-arginine (NO precursor) supplementation in older adults improves peripheral 

flow-mediated vasodilation (Bode-Böger et al., 2003) and reflex cutaneous vasodilation 

(Holowatz et al., 2006).  

 

Research examining macro- and micro-vascular blood flow responses to exercise with 

advancing age has yielded divergent results. Initial work hinted that macrovascular blood flow 

was unlikely to be limiting to V̇O2 kinetics, where researchers reported that femoral artery 

blood flow exhibited faster kinetics than V̇O2 kinetics during single-leg knee extension exercise 
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in older adults (Bell et al., 2001). More recent research supports the premise V̇O2 kinetics are 

not limited by macrovascular blood flow, where the dynamic adjustment of femoral artery 

blood flow in the rest-to-work transition was similar between young and older adults 

(Dumanoir et al., 2010). However, leg blood flow appears to be lower in sedentary older 

compared to young adults during cycling exercise (Poole et al., 2003). On the contrary to 

macro-vascular flow, capillary blood flow (micro-vascular) kinetics are in fact slower than 

those of V̇O2 (Harper et al., 2006) during exercise onset. Data derived from studies utilising 

near-infrared spectroscopy (NIRS) to measure deoxygenation of the vastus lateralis of older 

men and women have demonstrated a greater reliance on O2 extraction for a given V̇O2 

compared to younger or trained counterparts - indicative of poorer matching of O2 delivery to 

utilisation (Dogra et al., 2013; Murias et al., 2010a, 2011). Additional support for 

microvascular blood flow impairments in ageing comes from rodent models that have shown 

lowered endothelium-dependent vasodilation in feed arteries and arterioles (Behnke & Delp, 

2010a; Muller-Delp et al., 2002a) and increased blood flow distribution to glycolytic muscle 

(Musch et al., 2004a). Overall, microvascular delivery and/or distribution of O2 within regions 

of active muscle fibres might not be satisfactory to meet imposed metabolic demands in older 

adults, potentially resulting in slowed V̇O2 kinetics. 

 

 
 
 
 
 
 
 
 
 

Figure 1. 8 Schematic depicting the impact of sedentary ageing upon skeletal muscle and 

vascular endothelial function. Impairments to skeletal muscle and vascular endothelial cells 

manifest as reduced O2 transport and utilisation. 
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1.2.9 Consequences of impaired capacity for the delivery and utilisation of O2: V̇O2 

kinetics and exercise tolerance 

1.2.9.1 V̇O2 kinetics offers insights into skeletal muscle metabolism  

The first assessment of gas exchange kinetics in an exercising human was performed over a 

century ago by Krogh and Lindhard. Using the classic Douglas bag technique to measure 

pulmonary oxygen uptake (V̇O2), the authors administered an immediate, step increment in 

work rate and demonstrated that O2 uptake increased relatively slowly in comparison to the 

onset of exercise (Krogh & Lindhard, 1913). Since this pioneering study, the non-invasive 

study of V̇O2 kinetics has significantly advanced our understanding of the mechanisms 

controlling the dynamic adjustment of OXPHOS. Actually, studying dynamic V̇O2 responses 

to submaximal exercise is often considered a more important outcome variable than peak 

exercise capacity (V̇O2 peak) in older adults (Alexander et al., 2003a). This is because 

submaximal activity is more translatable to everyday life activity and is relatively independent 

of motivation and effort, unlike V̇O2 peak (Kitzman & Groban, 2011). Furthermore, below a 

particular V̇O2 peak threshold (∼30 mL/kg-1/min-1), daily life activities like brisk walking may 

be performed at submaximal intensities (Paterson et al., 2007). With this in mind, studying 

V̇O2 kinetics in sedentary adults offers the unique opportunity to decipher the effectiveness of 

targeted interventions in the context of physical activity that closely resembles that of daily life 

activity. 

 

When assessed on a breath-by-breath basis, pulmonary V̇O2 displays three distinctive phases 

following the onset of moderate-intensity exercise (see Figure 1.9): phase I, an initial response 

phase of ~19 s reflecting the circulatory transit delay of O2 from the active tissues to the lungs. 

Changes in V̇O2 during this phase represent an increase in pulmonary blood flow rather than 
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increased O2 extraction in active skeletal muscle; phase II (often termed the fundamental 

response), in which V̇O2 increases with approximately exponential response dynamics. It 

describes a mono-exponential increase until a steady state is achieved (Whipp et al., 1982, 

2005); and phase III, the steady state (Whipp et al., 1982). When subjected to the appropriate 

data analysis, phase II pulmonary V̇O2 kinetics provides an accurate reflection of muscle V̇O2 

kinetics during exercise (Barstow et al., 1990; Grassi et al., 1996; Rossiter et al., 1999). 

Specifically, the duration of the primary response of V̇O2 is characterised by the V̇O2 time-

constant (!V̇O2), which describes the time required for V̇O2 to reach 63% of its steady state 

value. A lower !V̇O2 (i.e., faster V̇O2 kinetics) in the rest-to-work transition will attenuate the 

O2 deficit incurred, thereby potentially causing less perturbations to intracellular homeostasis.  

 

 

Figure 1. 9 Schematic depicting typical pulmonary oxygen uptake response during constant-

rate moderate-intensity exercise. After phase I which represents the time taken for 

deoxygenated blood to reach pulmonary circulation, oxygen uptake rises in a mono-

exponential fashion (phase II, primary response), before reaching a steady-state (phase III). 

 

1.2.10 V̇O2 kinetics: Deleterious effects of ageing (and inactivity) 
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The study of V̇O2 kinetics across age groups has revealed that older adults typically display a 

slower dynamic adjustment of V̇O2 (Bell et al., 1999; Cunningham & Paterson, 1994; DeLorey 

et al., 2004a; Gurd et al., 2008; Murias et al., 2010a, 2011). As a result, older adults incur a 

greater O2 deficit in the transition to physical activity, which may contribute to the reduced 

exercise tolerance observed in this demographic (Goulding et al., 2017; Grassi, et al., 2011). 

However, data are not fully conclusive on whether ageing per se slows V̇O2 kinetics, which 

could be explained by the confounding effect of physical activity levels in research participants. 

George and colleagues reported a slowing of V̇O2 kinetics in inactive, young and otherwise 

healthy individuals to similar levels of those in older inactive adults. Hence, the authors 

suggested that fitness level, and not ageing per se, determine the rate of V̇O2 kinetics (George 

et al., 2018). In spite of this, it is evident that ageing is associated with a progressive slowing 

of V̇O2 kinetics across the lifespan that coincides with exercise intolerance. With regards to the 

mechanisms underpinning the slower V̇O2 kinetics with ageing, research is not conclusive. 

There is strong support for the concept that a limitation in O2 delivery to working muscles may, 

at least partly, be responsible for the greater !V̇O2 observed in older compared with young 

individuals (Murias et al., 2010a, 2011; Poole & Jones, 2012; Poole & Musch, 2010). Besides 

O2 delivery through the (rapid) vasodilation of (feed) arteries to the active muscles, there is 

also experimental support that a key locus of control for V̇O2 kinetics resides intracellularly 

(see Figure 1.10), that is, one that pertains to an individual’s capacity for O2 utilisation within 

the mitochondria (Murias & Paterson, 2015a). 
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Figure 1. 10 Idealised portrayal of the relationship between the speed of V̇O2 kinetics (given 

by the time constant, τ) and muscle(s) O2 delivery. Note the presence of O2 dependent 

(leftwards) and O2-independent (rightwards) zones falling either side of the “Tipping Point”. 

When O2 delivery falls below the tipping point V̇O2 kinetics become progressively slowed as 

evidenced by increasing τ. In young healthy individuals conventional locomotory activities 

such as walking, running, and cycling lie to the right of the tipping point. However, V̇O2 

kinetics become demonstrably slowed with aging (black downward arrow), by moving the 

individual leftward into the O2-delivery dependent region. Figure adapted from (D. C. Poole & 

Jones, 2012). 

 
 

1.2.11 Section Summary 

Advancing age and chronic physical inactivity impair pathways involved in the transport and 

utilisation of O2 in active skeletal muscle, which culminates in relatively slow rates of V̇O2 

kinetics compared to younger healthy counterparts. Therefore, there is a requirement for 

interventions targeted at pathways related to O2 delivery and utilisation in ageing adults, with 

the aim of speeding V̇O2 kinetics and enhancing exercise tolerance. To meet this need, Chapter 
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3 of this thesis will test the effects of a nutritional intervention upon V̇O2 kinetics and exercise 

tolerance in sedentary middle-aged adults. 

 

1.2.12 Dietary flavonoids: An overview 

Flavonoids are a chemically defined class of polyphenols characterised by a common structure 

consisting of two aromatic rings (A and B) and an oxygenated heterocycle ring (see Figure 

1.11). These compounds comprise of several subgroups according to their ascending degree of 

oxidation: flavanols, flavanones, isoflavones, flavonols, and anthocyanidins (Beecher, 2003; 

Bravo, 2009). The pattern of hydroxylation and conjugation in the aromatic rings further 

categorises individual flavonoids within these subclasses. These structurally diverse 

compounds exhibit a wide range of biological activity, that may explain their health-related 

effects. Whilst ubiquitous in plants, dietary flavonoids can be found in a wide variety of foods 

and beverages including fruit, vegetables, tea and cocoa (Arts et al., 1999).  

 

 
 

 

Figure 1. 11 Chemical structure of dietary flavonoids: A) quercetin, B) epigallocatechin-

gallate, C) (-)-epicatechin. 

 

 

After ingestion of flavonoid-containing foods or beverages, flavonoids must pass from the gut 

lumen before entering circulation (see Figure 1.12). Firstly, flavonoids are hydrolysed in the 

small intestine, and the resulting aglycones are subject to the action of phase I (hydrolysing 
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and oxidising) and II (conjugating and detoxifying) enzymes that produce sulfate, glucuronide 

and/or methylated metabolites (Scalbert & Williamson, 2000; Spencer, 2003; Spencer et al., 

1999). Upon entering circulation, flavonoid metabolites can be subjected to further phase II 

metabolism with biotransformation occurring in the liver, prior to urinary excretion. Those 

flavonoids not absorbed by the small intestine pass to the colon, in which the enzymes of the 

gut microflora induce the breakdown of flavonoids to simple phenolic acids that may then 

undergo absorption and are further metabolised in the liver (Spencer et al., 2008). Once taken 

up by target tissues, flavonoids may also be subject to specific types of intracellular 

metabolism, including oxidative metabolism, glutathione conjugation and even demethylation 

(Moridani et al., 2001; Spencer et al., 2003). 

 

 

Figure 1. 12 Basic overview of flavonoid absorption and metabolism. 

 

 

The total estimated flavonoid intake of adults living in western nations is ~430 mg/day 

(Peterson et al., 2015), and the concentration of flavonoid metabolites that reach systemic 

circulation is likely up to 10 µM (Manach et al., 2005a). Some of the factors that likely affect 

flavonoid bioavailability in vivo include flavonoid dose, flavonoid structure, and the 

macronutrient composition of the ingested food matrix (Bohn et al., 2014). Once in circulation, 
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flavonoids may be taken up into cells via the organic anion transporters (OAT), which are 

specific for the class of flavonoid, its conjugated group and conjugation position (Wong et al., 

2011). Studies describing the cellular uptake and metabolism of flavonoids by different cell 

types are very limited. Nonetheless, some research has examined how the flavonoids quercetin 

(Q) and (-)-epicatechin (EPI) are metabolised in vitro, using primary vascular cells as a model 

(Rodriguez-Mateos et al., 2014; Tribolo et al., 2013). One previous study demonstrated EPI is 

taken up and metabolised by HUVECs, resulting in the appearance of distinct metabolites 

conjugated with methyl and glucuronide groups (Rodriguez-Mateos et al., 2014). These data 

suggest that human endothelial cells contain enzymes (e.g., UDP-glucuronosyltransferases, 

sulfotransferases, or catechol O-methyl transferase) potentially capable of metabolising some 

phenolic compounds, whilst more research is needed to confirm the presence of such enzymes 

in other cell types. Taken together, flavonoids are bioactive food constituents that undergo 

extensive metabolism in vivo. Once in circulation, these compounds (or their metabolites) may 

have the potential to modulate cellular function, given their sustained bioavailability, and 

potential uptake and metabolism by target tissues.  

 

Initial interest in flavonoids as health-promoting entities grew from epidemiological evidence 

suggesting the total daily consumption of flavonoids was associated with lower risk of 

cardiovascular disease (Arts et al., 2001; Geleijnse et al., 2002; Hertog et al., 1997; Knekt et 

al., 2002). For instance, in the Zutphen Elderly Study published in The Lancet, a significant 

inverse correlation between flavonoid intake and coronary heart disease was observed in 805 

males aged between 65-84 years (Hertog et al., 1993a). However, other reports have found no 

such associations between flavonoid intake and lower cardiovascular disease risk (Lin et al., 

2007; Rimm et al., 1996; Sesso et al., 2003). In addition, flavonoids were believed to play a 

causal role in the beneficial effects of the Mediterranean diet upon incidence of coronary heart 
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disease (Ferrières, 2004). Building upon these data, a plethora of research has focused on the 

possible health benefits of flavonoids and flavonoid-rich food, particularly with respect to 

cardiometabolic health. From these studies, the emerging consensus is that flavonoids are 

lifespan essential and help protect, at least in part, against the deleterious effects of ageing and 

disease (Ezzati & Riboli, 2013; Holst & Williamson, 2008). Although our understanding of the 

health benefits and mechanisms of action of flavonoids has transformed, our knowledge is far 

from complete. 

 

1.2.13 Evidence for flavonoids purported health benefits on vascular and skeletal 

muscle health: Reported effects and associated mechanisms 

 

1.2.14 Cocoa-flavanols 

Cocoa is derived from seeds of the fruit of the Theobroma cacao tree and contains the 

monomeric cocoa flavanols (CFs) EPI and catechin, and oligomeric procyanidins (Holt et al., 

2002). For many years, cocoa has been recognised for its therapeutic value, and some cocoas 

have been manufactured to be extra rich in flavanols, which may underlie their associated 

health benefits. It is established that CFs stimulate NO production, resulting in improved 

vascular endothelial function (Grassi et al., 2012, 2014; Heiss et al., 2005; Karim et al., 2000; 

Monahan et al., 2011; Phillips et al., 2016). Beyond augmenting NO production, CFs may also 

regulate oxidative stress and inflammation in the vasculature (Hermann et al., 2006; Monagas 

et al., 2009). Whilst the precise mechanisms of CFs actions remain to be defined, both acute 

(single bolus containing >600 mg flavanols) and chronic (12-weeks of daily flavanol 

supplementation [>900 mg]) CF intake has been demonstrated to augment endothelium-

dependent vasodilation, as measured by FMD (Berry et al., 2010; Davison et al., 2008; Heiss 

et al., 2007). Other studies have reported reductions in diastolic and systolic blood pressure 
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after CF intake, although this effect has not consistently been reproduced. A meta-analysis of 

randomised controlled trials reported a significant lowering of systolic blood pressure by 4 

mmHg in hypertensive patients after cocoa intake, although normotensive patients did not 

exhibit a significant reduction (Ried et al., 2017). Furthermore, the blood-pressure lowering 

effect of CFs was found to be less effective with advancing age in the same study. EPI, the 

most commonly found CF monomer, seems primarily responsible for all of the above-

mentioned beneficial effects (Schroeter et al., 2006). Indeed, it has been shown that ingestion 

of pure EPI mimics vascular effects observed after CF consumption (Schroeter et al., 2006), 

and that EPI, and not catechin, is capable of mediating vasodilatation in vivo (Ottaviani et al., 

2011).  

 

The effects of CFs on skeletal muscle adaptation have also been investigated, albeit to a lesser 

extent. Whilst research is still in its infancy, studies employing long-term CF supplementation 

regimes have reported enhanced mitochondrial adaptations (Taub et al., 2012, 2016) and 

attenuated oxidative stress (Ramirez-Sanchez et al., 2013). Taub and colleagues demonstrated 

that skeletal muscle citrate synthase activity increased 2.5-fold following 3 months CF 

supplementation in sedentary middle-aged adults (Taub et al., 2016). However, a more recent 

study, using a 7-day CF supplement regime, reported no impact of supplementation on the 

expression of mitochondrial-related genes in healthy older male skeletal muscle (Crossland et 

al., 2019). Taken together, CFs may enhance vascular endothelial function, primarily through 

effects on NO bioavailability, and may also enhance indices of mitochondrial function in 

skeletal muscle. To further investigate the potential therapeutic effects of CFs in vivo, Chapter 

3 will examine how CFs impact pulmonary V̇O2 kinetics and exercise tolerance. 
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1.2.15 Quercetin 

Quercetin is a naturally occurring flavonoid, found primarily in onions, apples and other 

foodstuffs (Wach et al., 2007), with documented health benefits (Arts & Hollman, 2005; 

Hertog et al., 1993a). Previous studies using quercetin supplementation in rodents or humans 

to examine muscle and/or vascular function have not always produced positive results. The 

treatment of rodents with quercetin apparently increased the mRNA and protein levels of 

markers of mitochondrial biogenesis, through the induction of PGC-1α (Davis et al., 2009a; 

Sharma et al., 2015a). Likewise, in untrained humans, the supplementation of this flavanol 

marginally increased endurance performance, in concert with elevated mRNA expression of 

citrate synthase, sirtuin-1 (SIRT1) and PGC-1α (Nieman et al., 2010). Results from studies 

investigating how quercetin supplementation impacts vascular endothelial function are 

equivocal. A randomised, placebo-controlled cross-over design trial in 12 healthy males 

demonstrated quercetin is able to augment indices of NO bioavailability (Loke et al., 2008a). 

However, 4 weeks quercetin supplementation in apparently healthy adults (40-80 years) had 

no measurable effect on flow-mediated dilation (Dower et al., 2015). In the same way, 

quercetin supplementation (50-400mg) had no impact on NO bioavailability or endothelial 

function of the brachial artery (Bondonno et al., 2016). Clearly, there is no consensus on 

whether quercetin improves vascular endothelial function in adults, although it may modulate 

energy metabolism. 

 

Mechanistically, quercetin is thought to act by increasing AMPK activation (Hawley et al., 

2010a), which occurs via its phosphorylation at Thr172 and also by increasing SIRT1 gene 

expression and activation (Howitz et al., 2003). These effects on AMPK activation are thought 

to occur by decreasing cellular ATP concentrations (and increasing the AMP:ATP ratio) and 

reducing O2 consumption (Dorta et al., 2005; Hawley et al., 2010a). Given these data, it is 
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unsurprising quercetin has been shown to augment indices of mitochondrial biogenesis in vivo. 

Besides mitochondrial synthesis, quercetin has been shown to upregulate the targeted 

degradation of mitochondria by mitophagy. For instance, quercetin enhanced mitophagy 

through the reversion of Parkin inhibition and increased lysosome biogenesis and 

mitophagosome formation (Yu et al., 2016). Similar effects were reported in hepatic steatosis 

in mice, whereby quercetin enhanced LC3-II formation through the PINK1/Parkin pathway 

(Liu et al., 2018). Given that quercetin has been shown to accumulate within the mitochondria 

of cells (Fiorani et al., 2010a), and to impact the function of mitochondria in various cell types 

(Brookes et al., 2002; Fiorani et al., 2010a; Park et al., 2003), further research is necessary to 

understand how quercetin may regulate mitochondrial function. Chapters 4, 5 and 6 will 

describe how Q impacts mitochondrial functionality. 

 

1.2.16 EGCG 

The main catechins present in green tea are EPI, epigallocatechin (EGC), epicatechin-3-gallate 

(ECG) and epigallocatechin-3-gallate (EGCG). The most abundant catechin in green tea is 

EGCG (~59%), followed by EGC (~19%), ECG (~14%) and EPI (~6%) (Cabrera et al., 2006). 

One of the protective effects of tea consumption on health relates to blood pressure, where a 

number of studies have reported lowered blood pressure in response to black or green tea 

consumption in normo- and hyper-tensive patients (Grassi et al., 2015; Nogueira et al., 2017; 

Wasilewski et al., 2016). Tea consumption is also linked with enhanced vascular endothelial 

function (Ras et al., 2011), as measured by improved flow-mediated dilation. For instance, a 

randomised controlled trial conducted with 14 healthy participants reported that the intake of 

green tea polyphenol-enriched ice cream could immediately enhance vascular function and 

reduce oxidative stress (Sanguigni et al., 2017). Whilst it is unclear what exact constituents of 

green tea are responsible for the reported improvements in cardiovascular health, EGCG was 
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considered a major candidate. However, a randomised controlled trial involving 50 healthy 

men compared the endothelial protective effects of EGCG in three formulas, including a green 

tea beverage, green tea extract, and pure EGCG, and found that only the green tea beverage 

could improve flow-mediated dilation (Lorenz et al., 2017). In light of this, there is no clear 

consensus on whether EGCG has a major role in regulating endothelial function. 

 

Data describing EGCG (or green tea) supplementation and skeletal muscle mitochondrial 

function are limited. Murase and colleagues observed that green tea extract supplementation 

led to increased activation of PGC-1α mRNA in skeletal muscle, which coincided with 

increases in treadmill running time in mice (Murase et al., 2006). One study administered 

EGCG (282 mg/day-1) over 3 days to overweight adults and observed a significant reduction 

in blood lactate concentrations of skeletal muscle using microdialysis, suggesting a potential 

shift towards oxidative metabolism (Most et al., 2015a). In the skeletal muscle of diabetic rats, 

the oral gavage of 100 mg EGCG/kg-1/day-1 for 3 months significantly reduced the expression 

levels of beclin1 and DRP1 (Yan et al., 2012), suggesting that EGCG regulates mitochondrial-

involved autophagy. Here, chapters 5 and 6 will help to describe the effects of EGCG on 

mitochondrial function in skeletal muscle cells. 

 

Several studies have sought to determine the mechanisms by which EGCG may impact 

endothelial function and muscle metabolism. Numerous reports have shown ECGG induces 

endothelial vasodilation, effects that are mediated in part by eNOS (Appeldoorn et al., 2009; 

Lorenz et al., 2004a, 2015; Ng et al., 2017; Romano & Lograno, 2009). Interestingly, these 

vasodilatory effects are hypothesised to partly depend on the activation of PI3-kinase and Akt 

pathways. In neuronal cells, EGCG was reported to interact with the mitochondria, where 90–

95% of administered 3H‐EGCG was found accumulated in the mitochondrial fraction, 
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suggesting that it may act as a free radical scavenger at the mitochondrial level (Schroeder et 

al., 2009). This proposition was supported by a study using murine skeletal muscle cells, where 

it was shown EGCG treatment repressed mitochondrial biogenesis, via reductions in PGC-1α 

and AMPK activation, an effect attributed to reductions in cellular ROS (Wang et al., 2016). 

Further support for EGCG interacting with mitochondria came from a study examining EGCG 

and mitochondrial bioenergetics. In this study, EGCG inhibited mitochondrial oxidative 

phosphorylation, thereby decreasing ATP levels (Valenti et al., 2013). Similarly, increased 

AMPK activation was documented after EGCG treatment in cultured adipocytes (Hwang et al., 

2005). When taken together, it is clear that EGCG can modulate endothelial function and 

muscle metabolism, which may be achieved through its actions on eNOS and AMPK activity. 

Chapters 4, 5 and 6 will help clarify the effects of EGCG on vascular endothelial and muscle 

cell energy metabolism. 

 

1.2.17 (-)-Epicatechin (EPI) 

The monomer EPI is particularly abundant in dark chocolate and cocoa products (Katz et al., 

2011). As outlined above, EPI is reportedly responsible for the vasodilatory effects of CFs in 

vivo. Accordingly, EPI administration enhances FMD and leads to reductions in blood pressure 

(Fraga et al., 2011; Galleano et al., 2013; Karim et al., 2000; Schewe et al., 2008; Schroeter et 

al., 2006), effects attributable to the modulation of NO bioavailability. The augmentation of 

NO bioavailability after EPI supplementation is thought to occur primarily via increased 

activation and expression of eNOS (Ramirez-Sanchez et al., 2011, 2018). Support for this 

proposal comes from studies employing cell culture and rodent models, whereby EPI activates 

eNOS via increased phosphorylation at Ser-616, Ser-633 and Ser-1177 (Gómez-Guzmán et al., 

2011, 2012; Ramirez-Sanchez et al., 2010). Additionally, EPI may also contribute to NO 
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production through its capacity to inhibit arginase, the arginine-degrading enzyme. By doing 

so, EPI may increase L-arginine bioavailability for NO synthesis (Schnorr et al., 2008). 

 

Beyond regulating NO bioavailability, several lines of evidence suggest that EPI may impact 

mitochondrial function. Evidence for the modulation of mitochondria by EPI is unequivocal. 

In C2C12 muscle cells, EPI treatment produced negligible effects upon mitochondrial 

respiration (Bitner et al., 2018). Other studies in which isolated mitochondria or 

submitochondrial particles were exposed to EPI showed that different parameters of 

mitochondrial function and oxidant production, e.g. O2 consumption, NADH oxidation, 

mitochondria membrane potential, and in few cases, H2O2 production, were only marginally 

affected (Dorta et al., 2005; Kopustinskiene et al., 2015a; Lagoa et al., 2011; Moini et al., 

1999). In rodents and humans, EPI has been reported to induce adaptations typically associated 

with exercise, such as increased mitochondrial signalling, superior mitochondrial protein 

content and enzyme activity, and elevated fatigue resistance (Lee et al., 2015; Moreno-Ulloa 

et al., 2013; Nogueira et al., 2011; Ramirez-Sanchez et al., 2018; Taub et al., 2012). Although, 

one recent study reported blunted cycling-induced aerobic adaptations after 4 weeks EPI 

supplementation (Schwarz et al., 2018). To date, there is limited data available on the impact 

of EPI on mitochondrial bioenergetics in aged skeletal muscle and vascular endothelial cells; 

topics that will be addressed in Chapters 4, 5 and 6 of this thesis. 

 

Research attempting to dissect EPI effects on mitochondria function have highlighted its 

potential to regulate cell signalling responses. In 2014, Moreno-Ulloa and colleagues suggested 

EPI effects are mediated by a plasma membrane receptor, having demonstrated similar 

responses between cells treated with EPI alone, and EPI bound to dextran (preventing EPI cell 
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internalisation) in endothelial cells (Moreno-Ulloa et al., 2014). Further research from the 

group indeed highlighted a role for the G-protein-coupled estrogen receptor (GPER) as a target 

for EPI through a series of experiments using GPER agonists, selective blockers, and siRNA 

in endothelial (Moreno-Ulloa et al., 2015a), and murine skeletal muscle cells (Moreno-Ulloa 

et al., 2018). At least in endothelial cells, the authors highlighted EPI modulated its effects via 

the GPER in an extracellular signal-regulated protein kinase 1 and 2 (ERK1/2)- and CaMKII- 

dependent manner, although the precise mechanisms are yet to be fully elucidated in skeletal 

muscle cells. From current knowledge, it is thought EPI may evoke mitochondrial adaptations 

via an AMPK dependent signalling cascade in skeletal muscle (Murase et al., 2009; Si et al., 

2011). However, further work is required to completely describe EPI’s mechanism of action 

on the AMPK pathway, which will be addressed in Chapter 4 and 6. 

 

1.2.18 Section Summary 

Dietary flavonoids are bioactive compounds with the potential to regulate processes related to 

energy metabolism (see Figure 1.13). Currently, our knowledge of the mechanisms regulating 

the effects of flavonoids on vascular endothelial and skeletal muscle cells is limited. In spite of 

our incomplete understanding, it is emerging that flavonoids may impact indices of 

mitochondrial function, highlighting their potential therapeutic value in the context of 

sedentary ageing. Following this hypothesis, there is a need to examine the efficacy of 

flavonoid-based interventions in speeding V̇O2 kinetics and improving exercise tolerance in 

vivo, whilst simultaneously resolving their mechanisms of action, in vitro. 
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Figure 1. 13 Schematic overview of the known effects of dietary flavonoids on skeletal muscle 

and vascular endothelial cells, as they relate to mitochondrial function and RONS production. 
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1.3 Thesis Perspective 

To summarise, the dynamic change in V̇O2 across a metabolic transient is highly coordinated, 

with major sites of regulation present both upstream of, and proximal to, the site of O2 

utilisation within the mitochondrion. Unfortunately, advancing age and physical inactivity 

compromise the capacity for O2 transport and utilisation, partly due to impairments in 

mitochondrial function, which manifests as slower V̇O2 kinetics and impaired exercise 

tolerance. In light of this, there is a need for targeted interventions that mitigate these 

impairments and help maintain one’s functional capacity into later life. Increasing evidence 

suggests a potential role for dietary flavonoids as compounds with therapeutic potential. The 

potential use of flavonoids to combat the deleterious effects of ageing and physical inactivity 

on O2 delivery and consumption requires an in-depth understanding of their mechanisms of 

action, and appropriate randomised controlled trials to determine their effectiveness and 

translational potential to daily life. 

 

1.4 Thesis Aims & Objectives  

The central aim of this thesis is to use dietary flavonoid supplementation to speed V̇O2 kinetics 

and enhance exercise tolerance in vivo, and to enhance vascular endothelial and/or skeletal 

muscle energy metabolism, in vitro. To realise this aim, the following objectives will be 

addressed: 

 

1. Investigate the impact of cocoa-flavanol supplementation on pulmonary V̇O2 kinetics 

and exercise tolerance in sedentary middle-aged adults (Chapter 3). 
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2. Examine whether flavonoids regulate ROS production, NO bioavailability, 

mitochondrial function and signalling of endothelial cells, using human vascular 

endothelial cells as a model system (Chapter 4). 

3. Determine the effects of replicative ageing and flavonoids on mitochondrial function, 

NO bioavailability and gene expression using C2C12 myoblasts as a model system 

(Chapter 5). 

4. Investigate how replicative ageing and flavonoids impact mitochondrial function, ROS 

production and cell signalling using C2C12 myotubes as a model system (Chapter 6). 

5. Explore how replicative ageing and dietary flavonoids impact the metabolome of C2C12 

skeletal myoblasts and myotubes (Chapter 7). 

 
 

 
The following hypotheses were tested: 

1. Cocoa-flavanols will speed phase II V̇O2 kinetics during moderate and severe-intensity 

exercise and enhance exercise tolerance in physically inactive middle-aged adults. 

2. Dietary flavonoids will attenuate ROS emission, increase NO production and enhance 

indices of mitochondrial function and cell signalling in vascular endothelial cells. 

3. Replicative ageing will impair indices of mitochondrial function, lower NO 

bioavailability and blunt gene expression in C2C12 myoblasts, but these effects will be 

rescued by flavonoid treatment. 

4. Dietary flavonoids will mitigate age-related impairments to mitochondrial function, 

and attenuate ROS production and enhance cell signalling in aged C2C12 myotubes. 
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2.1 Cell culture 

All cell culture procedures were undertaken in a Class II Microbiological Safety Cabinet (BSC; 

Kojair, Mänttä-Vilppula, Finland) under aseptic conditions. All cells were sub-cultured and 

incubated in a HERAcell 150i CO2 humidified incubator (Thermo Fisher Scientific, Cheshire, 

UK) at 37°C and 5% CO2 and were routinely monitored using an inverted light microscope 

(Olympus, CKX31, Japan). An extraction pump (Charles Austen Pumps Ltd, Surrey, UK) was 

used to remove waste media and supernatant. 

 

2.2 Cell culture reagents  

Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Gibco (Life 

Technologies, California, US) and was used for murine C2C12 cells. All serum was purchased 

from Gibco (Life Technologies, California, US) and included: heat-inactivated horse serum 

(HS), heat-inactivated newborn calf serum (hiNBCS) and heat-inactivated fetal bovine serum 

(hiFBS). The antibiotics penicillin and streptomycin (PS) were added to all media (1%: 50 

U/mL penicillin and 50 μg/mL streptomycin). To wash the cells, phosphate buffered saline 

(PBS) or Dulbecco's phosphate-buffered saline (D-PBS; PBS without calcium and magnesium) 

was used. The PBS/D-PBS was purchased from Sigma-Aldrich (Poole, UK) in tablet or powder 

form, respectively. The tablet/powder was reconstituted to a working concentration of 10 mM 

phosphate buffer, 3 mM KCl and 140 mM NaCl at a pH of 7.4 in dH2O. For cell adherence, 

gelatin type A from porcine skin was used (Sigma-Aldrich, Poole, UK) and reconstituted to 

create a working stock of 0.2% gelatin. The trypsin was composed of 0.05% trypsin and 0.02% 

ethylenediaminetetraacetic acid (EDTA) and purchased from Sigma-Aldrich (Poole, UK).  

 

For murine C2C12 cells, growth media (GM) comprised: DMEM, 10% hiFBS, 10% hiNBCS, 

1% PS and 2 mM L-Glutamine (LG). Differentiation media (DM) included: DMEM, 2% HS, 
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1% PS and 2 mM LG. GM was used to promote cell proliferation and DM was used to induce 

cell differentiation. Complete Endothelial Cell Growth Medium (EGM; Cell Applications Inc, 

San Diego, USA) was used to sub-culture primary human umbilical vein endothelial cells 

(HUVEC) and contained 1 g/L glucose, 2% FBS and 1.461 g/L LG. 

 

The flavonoids used throughout this thesis for in vitro experiments included quercetin (Q), 

epigallocatechin-gallate (EGCG) and (-)-epicatechin (EPI). All compounds were purchased in 

powder form from Sigma-Aldrich (Poole, UK). All supplements were reconstituted as 10 mM 

stocks in deionised H2O or dimethyl sulfoxide (DMSO) and stored at -20°C. Compounds were 

diluted in appropriate medium for experimental procedures, and relevant compound vehicle 

concentrations were used in control conditions where appropriate. The final concentration of 

DMSO in experimental chapters did not exceed 0.1%. The specific concentrations of 

flavonoids used will be outlined in the methods section of each experimental chapter. 

 

2.3 C2C12 skeletal muscle cells 

Murine C2C12 skeletal muscle myoblasts were sourced from the American Tissue Culture 

Collection (ATCC; Rockville, USA), were passaged to increase cell yield and were stored in 

liquid nitrogen (LN2) until required for experimentation. C2C12 cells are the C12 sub-clone of 

the C2 parental cell line, originally derived from the crush injured leg of the C3H mouse (Blau 

et al., 1985; Yaffe & Saxel, 1977). The C12 sub-clone was selected for their differentiation 

capability, hence the extensive use of this cell line for in vitro research. 

 

2.3.1 Passaging C2C12 cells 

C2C12 cells were sub-cultured in T25 or T75 flasks (Nunc™, Thermo Fisher Scientific, 

Waltham, MA, USA) containing GM composed of high glucose Dulbecco’s modified Eagle’s 
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medium (DMEM, Lonza, UK), 10% hiFBS, 10% hiNBCS, 2 mM LG, 100 U/mL penicillin 

and 100 μg/mL streptomycin until 80% confluency was attained (see Figure 2.1). Here, existing 

GM was removed, and cells underwent 2 × PBS washes. Either 500 μL (for T25 flasks) or 1 

mL (for T75 flasks) trypsin was added to the culture flask(s) and incubated for 5 minutes (37°C, 

5% CO2) in order to dissociate cells from the culture flask surface. Following detachment of 

cells, 2.5 mL (for T25 flasks) or 4 mL (for T75 flasks) GM was added to neutralise trypsin 

activity, and the cells were subsequently counted (see section 2.5). 

  

Figure 2. 1 Murine C2C12 myoblasts in culture. A) Skeletal myoblasts. B) Late differentiating 

skeletal myotubes (96 hours). Images taken at 10x magnification (Olympus, CKX31). 

 
 
 
2.3.2 Replicatively aged C2C12 myoblasts 

Given a global drive to reduce animal research, relevant cell models are required to inform 

relevant in vivo studies. To this end, we have developed a myoblast model, with an application 

to ageing muscle cell behaviour (Sharples et al., 2011a). C2C12 myoblasts underwent multiple 

population doublings (130-150) to passages 46-50 by repeatedly passaging cells (Sharples et 

al., 2011a). This model is used throughout the thesis and these cells are referred to as 

‘replicatively aged’.  
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Figure 2. 2 Replicatively aged murine C2C12 myoblasts in culture. A) Aged skeletal myoblasts 

(24 hours) B) Late differentiating aged skeletal myotubes (96 hours). Images taken at 10x 

magnification (Olympus, CKX31). 

 

 

2.4 Primary Human Umbilical Vein Endothelial Cells 

HUVECs were purchased from Thermo Fisher Scientific, (Waltham, MA, USA), passaged to 

increase cell yield and were stored in LN2 until required for experimentation. Cells were not 

passaged more than 8 times because changes in HUVEC phenotype can occur with multiple 

population doublings, that ultimately lead to cell senescence (Chang et al., 2005; Cheung, 

2007; Grillari et al., 2000). 

 

2.4.1 Passaging HUVEC 

HUVECs were sub-cultured in T25 or T75 flasks (Nunc, Thermo Fisher Scientific, Waltham, 

MA, USA) containing complete endothelial cell growth medium (EGM; Cell Applications Inc, 

San Diego, CA, USA). Cells were grown to 70-80% confluency (see Figure 2.3), which was 

typically attained after 96 hours. Existing EGM was then removed, and cells underwent 2 × D-

PBS (PBS without calcium and magnesium) washes. Either 500 μL (for T25 flasks) or 1 mL 

A B 
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(for T75 flasks) trypsin was added to the culture flask(s) and incubated for 2-3 minutes (37°C, 

5% CO2) in order to dissociate cells from the culture flask surface. Following detachment of 

cells, 2.5 mL (for T25 flasks) or 4 mL (for T75 flasks) of EGM was added to neutralise trypsin 

activity. The cell suspension was transferred to a 15 mL flacon tube and centrifuged at 220 × 

g for 5 min at 20°C to obtain a cell pellet. The supernatant was discarded, and the cell pellet 

was resuspended in either 1 mL (T25 flasks) or 2 mL (T75 flasks) EGM ready for counting 

(see section 2.5). 

 

Figure 2. 3 Primary human umbilical vein endothelial cells (HUVEC) in monolayer. Typical 

cobblestone morphology. Image taken at 10x magnification (Olympus, CKX31). 

 
 
2.5 Cell counting 

After trypsinising cells, the suspension was dissociated 8 × using a 19G hypodermic needle 

(Becton Dickinson, USA). Cells were manually counted on a Neubauer haemocytometer 

(BLAUBRAND® Neubauer, Sigma-Aldrich, Poole, UK) using the trypan blue exclusion 

method, whereby 20 μL of cell suspension was mixed with 20 μL 0.4% trypan blue stain 

(Sigma-Aldrich, Poole, UK) in a 1:1 ratio. The mixture was pipetted onto either end of the 

haemocytometer, flooding both chambers via capillary action. Cells present within each 

quadrant were counted. Small, round and clearly visible cells were considered viable whereas 
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larger, darker/blue stained cells were considered non-viable cells or debris and were therefore 

excluded from cell counts. To determine the concentration of cells/mL present within the cell 

suspension, the mean number of cells in 8 × grids was calculated (average cell numbers per 0.1 

mm3 grid) which was multiplied by 2 (to account for the trypan blue dilution factor) and 104 

(to convert the number of cells in 0.1 mm3 to 1 cm3). The total number of cells present within 

the cell suspension was calculated by simply multiplying the cells/mL by the cell suspension 

volume in mL (see Equation 2.1).  

 

A 

Cells/mL = Average cell count of 8 grids × dilution factor (2) × 104; 

Total number of cells = Cells/mL × cell suspension volume (mL) 

 

B 

Cell suspension required (mL) = Desired cell concentration (cells/mL) / current cell 

concentration (cells/ mL) × required cell suspension volume (mL) 

 

Equation 2. 1 Cell counting equations.  

A) Equation used to calculate cell concentrations (cells/mL). B) Equation used to determine 

the cell suspension volume for the desired cell seeding concentration. 

 

 

2.6 Cell cryopreservation and resuscitation 

Once counted (see section 2.5), GM and EGM was added to existing cell suspension to ensure 

a concentration of 1 × 106 cells/mL or 5 × 105 cells/mL for C2C12 and HUVEC cells, 

respectively. Dimethyl sulfoxide (DMSO; Sigma-Aldrich, Poole, UK), a cryoprotectant that 



 

 90 

prevents ice crystal formation, was added at 10% of the total cell suspension volume (Lovelock 

& Bishop, 1959) before distributing the cell suspension into labelled (name, cell type, passage 

number, concentration and date) 2 mL cryovials (Simport Scientific, Fisher Scientific, UK). 

The cryovials were transferred to a cryopreservation container (‘Mr Frosty’, Thermo Fisher 

Scientific, Waltham, MA, USA) containing isopropanol (Sigma-Aldrich, Poole, UK) which 

was placed in a -80°C freezer for 24 h to ensure a gradual freezing rate (-1°C/min-1) before 

storing individual cryovials in liquid nitrogen (LN2). When resuscitating cells, a cryovial was 

removed from LN2, mist sprayed with 70% ethanol and placed in a BSC incubator to thaw at 

RT. Cell suspension was then pipetted onto a pre-gelatinised T75 flask(s) (5 mL of 0.2% gelatin 

(Sigma-Aldrich, Poole, UK) per T75, incubated at RT for 20 mins) containing 15 mL of 

preheated (37°C) GM and incubated at 37°C, 5% CO2 to allow cell attachment and proliferation 

over the ensuing day(s). The time to reach ~80% confluency for 1 × 106 C2C12 and 1 × 106 

HUVEC cells was approximately 72 and 96 h, respectively.  

 

2.7 Cell viability 

The fluorescent CyQUANT® Proliferation Assay kit (ThermoFisher, Waltham, MA, USA) was 

used to determine cell viability. Firstly, an experiment was performed to establish a cell number 

standard curve to enable the conversion of sample fluorescence values into cell numbers. This 

was completed for C2C12 myoblasts and HUVECs separately (see Figure 2.4A/B). For 

subsequent experiments, cells were treated for 24 h with specific doses of Q, EGCG and EPI 

(0, 0.5, 1.0, 5.0 10.0 and 20.0 µM). Wells were washed twice with PBS, aspirated, and the plate 

was frozen immediately at -80°C. On the day of the experiment, plates were thawed at room 

temperature, and 100 µL of CyQUANT® GR dye/cell-lysis buffer was added to each sample 

well. Plates were gently mixed on an orbital shaker for 5 minutes protected from light. Sample 

fluorescence was measured using a CLARIOStar plate reader (BMG Labtech, Bucks, Great Commented [CS81]: Details of company – I wont write this 
again, but please update methods accordingly 
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Britain) with Excitation 485-12 and Emission EM520 filters in bottom reading, well scanning 

mode.  

 

 
 

Figure 2. 4 Standard curve generated for C2C12 myoblasts and HUVECs using CyQUANT® 

Cell Proliferation Assay. Cells were seeded at densities of 0-50,000 cells per well and grown 

in GM for 24 h. C2C12 myoblasts were then switched to DM for a further 24 h before freezing 

and subsequent processing on the day of assay. HUVECs remained in GM for an additional 24 

h before freezing and processing. Data are representative of one experiment performed with 5 

replicates for each cell number. 

 

 

 

 

0 10,000 20,000 30,000 40,000 50,000
0

1×105

2×105

3×105

Cell number

Fl
ou

re
sc

en
ce

 (R
FU

)

0 10,000 20,000 30,000 40,000 50,000
0.0

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

Cell number

Fl
ou

re
sc

en
ce

 (R
FU

)

A

B

Commented [CS82]: N=? replicates? 

Commented [CS83]: This will become method text if you 
amend according to comment above. 



 

 92 

2.8 Mitochondrial ROS production (MitoSOX assay) 

Mitochondrial derived superoxide was detected in adherent skeletal muscle and vascular 

endothelial cells using MitoSOX, a hydroethidine probe which is targeted to the mitochondria 

by a conjugated triphenyl-phosphonium moiety. In the presence of mitochondrial superoxide, 

and to some extent hydrogen peroxide (Robinson et al., 2006; Zielonka & Kalyanaraman, 

2010), MitoSOX is oxidised to fluorescent products which are readily detected 

fluorometrically. C2C12 myoblasts and HUVECs were seeded at 3 × 104 cells/mL into 12-well 

microplates until ~80% confluence. Next, C2C12 myoblasts were switched to DM for 96 h. 

Subsequently, skeletal myotubes or HUVECs were washed into pre-warmed Krebs-Ringer 

buffer (KRH) comprising: 135 mM NaCl, 3.6 mM KCl, 10 mM HEPES (pH 7.4), 0.5 mM 

MgCl2, 1.5 mM CaCl2, 0.5 mM NaH2PO4, 2 mM glutamine and 25/5.5 mM D(+)-glucose; with 

or without 15 µM antimycin A (AA), and incubated at 37ºC for 30 minutes. After incubation, 

AA-containing KRH was removed, and MitoSOX was loaded into cells in fresh pre-warmed 

KRH to a final concentration of 2.5 µM. Plates were immediately transferred to a plate reader 

(BMG Labtech, Bucks, Great Britain), and fluorescence was monitored continuously at ~30-

sec intervals over 30 min. Fluorescent MitoSOX oxidation products were excited at 510 nm 

and light emission was detected at 580 nm. The plate reader’s focal height and gain was 

optimised and fixed between different experiments. Since MitoSOX is primarily oxidised by 

mitochondrial superoxide, the rate at which mitochondrial superoxide was produced could be 

determined from the slope of the resultant progress curve over the 30-minute period post 

MitoSOX loading (See Figure 2.5). Upon completion of the 30-min reading, plates were 

immediately fixed for the determination of cell density by the SRB assay (see section 2.14), 

which was used to normalise obtained fluorescence values. 
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Figure 2. 5 Mitochondrial superoxide production was estimated from rates of MitoSOX 

oxidation, in the absence and presence of 15 µM antimycin A. Fluorescence was recorded at 

~30-second intervals for 30 minutes. Probe oxidation rates were calculated from the slopes of 

the progress curves. Relative fluorescence units (RFU) were normalised to cell number. 

 

 

2.9 CellROX Assay 

Cellular ROS were detected using the CellROX® Deep Red reagent by spectrophotometry. The 

cell-permeant dye is non-fluorescent while in a reduced state and exhibits bright fluorescence 

upon oxidation by ROS. C2C12 myoblasts and HUVECs were seeded at 3 × 104 cells/mL into 

12-well microplates until ~80% confluence. Next, C2C12 myoblasts were switched to DM for 

96 h. Both skeletal myotubes and HUVECs were then treated for 24 h with 0, 5 and 10 µM Q, 

EGCG or EPI. After treatment, myotubes and HUVECs were washed into KRH with or without 

15 µM antimycin A (AA) and incubated at 37ºC for 30 minutes. Next, KRH was removed, and 

CellROX was loaded into cells in fresh, pre-warmed KRH buffer, to a final concentration of 

2.5 µM. Following 30 minutes incubation with the reagent, cells were washed 2 × with PBS 

and immediately transferred to a plate reader (BMG Labtech, Bucks, Great Britain), where 
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fluorescent CellROX oxidation products were excited at 640 nm and light emission detected at 

665 nm. The plate reader’s focal height and gain was optimised and fixed between experiments. 

Upon completion of the reading, plates were immediately fixed for the determination of cell 

density by the SRB assay (see section 2.14), which was used to normalise obtained 

fluorescence values. 

 

2.10 Assessing mitochondrial bioenergetics 

The single most valuable general test of mitochondrial (dys)function in cell populations is the 

measurement of cell respiratory control (Brand & Nicholls, 2011). Until recently, the analysis 

of mitochondrial respiration had predominantly relied upon the classical oxygen electrode 

(Chance & Williams, 1955). Whilst the use of this system over the past 50 years has advanced 

understanding of mitochondrial respiratory function, the oxygen electrode has notable 

limitations with regard to signal stability, instrumental background noise, resolution, and 

throughput (Gnaiger, 2008). Addressing these limitations, the Seahorse XF Analyzer, first 

introduced during 2006/2007 (M. Wu et al., 2007), enabled a high-throughput system for the 

determination of mitochondrial (dys)function in adherent cells. The basic principle of the 

system is to measure the rate of mitochondrial oxidative phosphorylation (through 

determination of the oxygen consumption rate [OCR] measured in picomoles/minute) and 

glycolysis (through determination of the extracellular acidification rate measured in milli-pH 

units/minute; (Ferrick et al., 2008). These measurements are obtained through fluorescent 

sensors contained within a bio-cartridge that fits over a cell culture microplate. Pharmaceutical 

reagents or mitochondrial respiratory electron transport system inhibitors are distributed in 

ports surrounding the sensor, which can be sequentially injected to each well to interrogate 

components of mitochondrial function. 
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2.10.1 Mitochondrial stress test protocol 

Mitochondrial respiration was measured in adherent C2C12 myoblasts and myotubes, and in 

HUVECs using Seahorse XFe96 and XFe24 Analyzers, respectively (Agilent Technologies, 

Santa Clara, CA, USA). C2C12 myoblasts (passages 9-11 [control] and 47-50 [aged]) were 

seeded in XFe96 well plates at 5,000 or 10,000 cells per well in 100 µL of GM for 24 h to 

allow cell attachment.  Whereas HUVECs (passages 4-6) were seeded at 30,000 cells per well 

in 200 uL and grown in EGM for 24 h. After 24 h, control and aged C2C12 myoblasts were 

washed twice with PBS and transferred to DM. For myoblast experiments, cells were dosed 

with specific concentrations (0, 1, 5 and 10 µM) of Q, EGCG and EPI in DM for 24 hours. In 

a separate experiment, myotubes were allowed to form over 96 h in DM, before being dosed 

with Q, EGCG and EPI (0, 1, 5 and 10 µM) in DM for a further 24 hours. After 24 h, HUVEC 

were washed twice with D-PBS and replaced with fresh EGM containing specific 

concentrations (0, 5 and 10 µM) of Q, EGCG and EPI for 24 hours. Sensor cartridges for the 

XFe96 and XFe24 Analyzer were hydrated by loading each well with deionised water and XF 

Calibrant (Agilent Technologies, Santa Clara, CA, USA) at 37°C in a non-CO2 incubator in the 

24 h preceding the assay, respectively.  

 

On the day of the assay, C2C12 myoblasts and myotubes were washed into 200 µL pre-warmed 

modified KRH at pH 7.4. See Table 2.1 for composition of KRH. The cells were incubated in 

this buffer for 45 minutes at 37°C in a non-CO2 incubator and then transferred to a Seahorse 

XFe96 extracellular flux analyser (maintained at 37°C). Similarly, on the day of the assay, 

HUVECs were washed into 500 µL pre-warmed unbuffered Seahorse DMEM (Agilent 

Technologies, Santa Clara, CA, USA) at pH 7.4. The cells were incubated in this buffer for 45 

minutes at 37°C in a non-CO2 incubator and then transferred to a Seahorse XFe24 extracellular 

flux analyser (maintained at 37°C). 
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Table 2. 1 Modified KRH Buffer Composition 

 
 

 

 

 

 

 

 

 

 

Following a 10-minute calibration step, OCRs were measured by 3-4 loop cycles, each 

consisting of a 1-min mix, 2-min incubate and 3-min measure to record cellular basal 

respiration (see Figure 2.6). After measuring basal respiration, 2 µM OLI was added to 

selectively inhibit the mitochondrial ATP synthase. Subsequently, 2 µM 2-[2-[4-

(trifluoromethoxy)phenyl]hydrazinylidene]-propanedinitrile (FCCP) or 3 µM N5,N6-bis(2-

Fluorophenyl)[1,2,5]oxadiazolo[3,4-b]pyrazine-5,6-diamine (BAM15), followed by a mixture 

of 2 µM rotenone and 2 µM antimycin A were added sequentially to, 1) uncouple oxygen 

consumption rates to ATP synthesis rates to determine maximal respiration or 2) inhibit 

complex I and III of the electron transport chain to determine non-mitochondrial respiration 

(see Figure 2.6). Rates of oxygen consumption and proton production (PPR) were expressed 

relative to the DNA content or cell number of the appropriate well. Three independent 

experiments were performed to assess mitochondrial respiration.  

 

Chemical Final Concentration 

NaCl 135 mM 

KCl  3.6 mM 

HEPES 10 mM 

MgCl2  0.5 mM 

CaCl2  1.5 mM 

NaH2PO4 0.5 mM 

GlutaMAX  2 mM 

BSA  0.1% 
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Figure 2. 6 Typical mitochondrial stress test profile. Rates of oxygen consumption expressed 

in pmol/min and recorded over 120 minutes. Sequential additions of oligomycin, uncoupler 

(e.g., FCCP or BAM15), and mixture of rotenone and antimycin A were performed in order to 

interrogate mitochondrial function. 

 

2.10.2 Bioenergetic parameters analysis 

Using the Wave Desktop 2.6.1 software (Agilent Technologies, Santa Clara, CA, USA) and in 

accordance with previously described methods, seven parameters of mitochondrial respiration, 

basal OCR, ATP-linked OCR, OCR due to proton leak, maximal OCR, spare respiratory 

capacity, non-mitochondrial OCR, and PPR were calculated from the bioenergetic profiles 

obtained from the XFe96 and XFe24 extracellular flux analyser (see Table 2.2). Briefly, basal 

OCR refers to the total baseline cellular respiration rate and includes respiration due to ATP 

production, proton leak (leak of protons across the inner mitochondrial membrane) and oxygen 

consumption due to nonmitochondrial processes. ATP-linked oxygen consumption is 

determined through the addition of the ATP synthase inhibitor oligomycin, which effectively 

shuts down ATP production due to oxidative phosphorylation. Any residual mitochondrial 

respiration/oxygen consumption noted at this point can then be attributed to proton leak. 
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Maximal OCR is determined through the addition of the proton ionophores (uncoupler) FCCP 

or BAM15, which increase inner mitochondrial membrane permeability to protons, increasing 

oxygen consumption and allowing for the assessment of the maximal oxygen 

consumption/respiration possible in the cells. Spare respiratory capacity is calculated through 

determining the difference between basal OCR and maximal OCR in the cells and this reflects 

the extra amount of oxygen consumption/ATP production that can be achieved by the cells in 

response to increased energy demand. Non-mitochondrial respiration is the oxygen 

consumption due to non-mitochondrial processes. Although not well defined, these have been 

attributed to such processes as hydrogen peroxide production and the enzymatic activity of 

oxygenases.  

 

Table 2. 2 Mitochondrial Stress Test parameters and associated calculations. 

Parameter Equation 

Non-mitochondrial O2 

consumption Minimum rate measurement after rotenone/antimycin A injection 

Basal Respiration (Last rate measurement before first injection) – (Non-Mitochondrial 
Respiration Rate) 

Maximal Respiration (Maximum rate measurement after FCCP injection) – (Non-Mitochondrial 
Respiration Rate) 

Proton Leak (Minimum rate measurement after Oligomycin injection) - (Non-
Mitochondrial Respiration Rate) 

ADP Phosphorylation (Last rate measurement before Oligomycin injection) – (Minimum rate 
measurement after Oligomycin injection) 

Spare Respiratory 
Capacity (Maximal Respiration) – (Basal Respiration) 

Spare Respiratory 
Capacity (%) (Maximal Respiration) / (Basal Respiration) x 100 

Coupling Efficiency (%) (ATP Production Rate) / (Basal Respiration Rate) x 100 
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2.11 Rates of ATP production and proton production 

Rates of ATP production and PPR were calculated post-hoc from the bioenergetic parameters 

obtained from the mitochondrial stress test. The raw values of extracellular acidification rate 

(ECAR) and OCR were sub-divided into component rates (Mookerjee & Brand, 2015). For 

ECAR, the total rate of change of pH was first converted to total proton production rate 

(PPRtot), then divided into proton production rates originating from respiratory bicarbonate 

production (PPRresp) (using OCR data) and glycolytic lactate production (PPRglyc). For OCR, 

mitochondrial oxygen consumption rate (OCRmito) was defined as total oxygen consumption 

rate (OCRtot) minus the oxygen consumption rate (OCRR/AA) in the presence of the respiratory 

chain poisons rotenone and antimycin A (OCRmito = OCRtot – OCRR/AA), and the 

phosphorylating or coupled rate was defined as the total oxygen consumption rate minus the 

oligomycin-insensitive oxygen consumption rate (OCRoli), with a small additional correction 

by 9.2% to compensate for changes in mitochondrial protonmotive force upon addition of 

oligomycin (Mookerjee & Brand, 2015). Thus, OCRcoupled = 0.908 × (OCRtot – OCRoli). The 

vast majority of ATP made in cells comes either from glycolysis (ATPglyc) or from oxidative 

reactions (ATPox). The corresponding rates (denoted by J) are JATPglyc and JATPox. The total rate 

of ATP production (JATPproduction) is defined as the sum of JATPglyc + JATPox.  

 

Total Rate of Glycolysis (JATPglyc) was calculated by equation 2.2:  

PPRglyc×	ATP lactate⁄  +	OCRmito ×	2P/Oglyc   

 

Equation 2. 2 Total rate of glycolysis 
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Total Rate of Oxidative Phosphorylation (JATPox) was calculated by Equation 2.3: 

OCRcoupled× 2P/Ooxphos + OCRmito × 2P/OTCA  

Equation 2. 3 Total rate of oxidative phosphorylation 

 

Where P/Oglyc equals 0.242, P/Ooxphos equals 2.486, and P/OTCAis equal to 0.121 (Mookerjee 

& Brand, 2015). 

 

Normalised mitochondrial respiration was determined by Equation 2.4: 

(OCRtot − OCRR/AA) ⁄ Normalisation factor = OCRmito    

 

Equation 2. 4 Normalised mitochondrial respiration 

 

 

Total PPR was determined using Equation 2.5: 

(ECARtot buffering power)⁄ /	Normalisation factor = PPRtot   

 

Equation 2. 5 Total proton production rate 

 

 

The buffering power of each medium was determined a priori and was equal to 3.2- and 0.8-

mM H+/pH for C2C12 DM and HUVEC EGM, respectively. 
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The respiratory portion of PPR was calculated using Equation 2.6, assuming a max H+/O2 value 

of 1: 

OCRmito× max H+⁄O2 × (10pH −  pk1)⁄(1+ 10pH −  pk1) = PPRresp        

 

Equation 2. 6 Respiratory portion of PPR 

 

 
Where, the combined hydration/dissociation constant (pk1) is equal to 6.093, derived from the 

conversion of CO2 to HCO3- at pH 7.4. 

 

The glycolytic portion of PPR was determined using Equation 2.7: 

 

PPRtot −  PPRresp =	PPRglyc   
 

Equation 2. 7 The glycolytic portion of PPR 

 

2.12 RT-qPCR Gene expression  

2.12.1 RNA extraction 

Following experimental procedures (dosing with flavonoids as detailed above), cells were 

washed in cold PBS and lysed in TRIzol. All plasticware used in the following procedures was 

RNA free and laboratory space was cleaned with 70% ethanol. Once lysed, 0.1 mL chloroform 

(Sigma-Aldrich, Poole, UK) per 0.5 mL TRIzol reagent was added to the homogenates, 

followed by vigorous shaking by hand for 15 seconds. This separated the sample into a lower 

red organic layer (containing TRIzol and cell debris), a cloudy interphase layer (containing 

DNA and protein) and a clear upper aqueous layer (containing RNA and chloroform). Samples 
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were incubated at RT for 10 minutes, before centrifugation at 12,000 × g for 15 minutes at 4°C. 

The aqueous layer was carefully transferred into a new Eppendorf tube, prior to the addition of 

isopropanol (ratio 1:2 of isopropanol to TRIzol reagent), and vigorous shaking, in order to 

precipitate the RNA. Following 10 minutes incubation at RT, the samples were centrifuged at 

12,000 × g for 10 minutes at 4°C. The supernatant was removed, and 1 mL 75% ethanol was 

added to the pellet. The samples were centrifuged 7,500 × g for 8 minutes at 4°C and the 

supernatant decanted. A further 1 mL 75% ethanol was added to the pellet before another 

centrifugation step (7,500 × g for 8 minutes at 4°C), and subsequent decanting of the 

supernatant. The pellet was left to air dry to remove excess ethanol, before being resuspended 

in RNA storage solution (Ambion® RNA Storage Solution, Invitrogen, Thermo Fisher 

Scientific, Waltham, MA, USA). Lastly, samples were vortexed and placed in a block heater 

for 10 minutes at 35°C, before vortexing and storing at -20°C until further processing.   

 

2.12.2 Assessment of RNA Concentration and Purity  

RNA concentration and purity were assessed using a spectrophotometer (NanoDrop™ 2000, 

Thermo Fisher Scientific, Waltham, MA, USA). One microliter of extracted RNA was pipetted 

onto the NanoDrop probe and the amount of ultraviolet (UV) light absorbed at 260 nm (the 

wavelength at which nucleic acids best absorb light) was measured by a photodetector to 

determine the concentration of RNA inferred using the Beer-Lambert law (see Equation 2.8). 

Following assessment of RNA concentration, the purity or RNA was determined from the ratio 

of absorbance at 260 nm to 280 nm, the wavelengths at which RNA/DNA and protein best 

absorbs UV light, respectively. A A260/A280 ratio of ~2 is indicative of highly purified RNA, 

and a ratio of 1.8-2.2 was accepted. Other potential contaminants include ethanol, phenol or 

guanidine, which are measured at 230 nm. Therefore, the A260/A230 ratio is measured where a 
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reading >1.5 of is accepted. RNA concentrations and purities are reported within the methods 

section of each experimental chapter throughout this thesis.  

 

The data derived from the Nanodrop UV spectrophotometer were used to calculate RNA 

quantity based on the absorbance at 260 nm. A spectrophotometric reading of 1 at 260 nm is 

equivalent to 40 μg/mL-1 RNA. The following Beer-Lambert equation was used by the 

Nanodrop software: 

 

C =	 (Α	×	%)
b

   

 
Equation 2. 8 Beer-Lambert equation 

 

Where C = nucleic acid concentration (µg/mL-1), A = absorbance in AU, ε = extinction 

coefficient (ng/cm/µL-1), which is 40 ng/cm/µL-1 for RNA and b = path length in cm. 

 

 

2.12.3 Principle of the polymerase chain reaction 

The polymerase chain reaction (PCR), a technique widely used to amplify specific fragments 

of DNA, was first introduced in 1993 by Nobel prize recipient Kary Mullis (Mullis & Faloona, 

1987). Fundamentally, a cells phenotype is dictated by its component proteins. The synthesis 

of functional protein first requires that its corresponding gene is transcribed to produce a 

messenger ribonucleic acid (mRNA). This mRNA can then be translated into protein when it 

associates with the ribosome. Therefore, assessment of mRNA responses following specific 

stimuli is necessary to shed light on the molecular processes underpinning cellular adaptation.  
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Following isolation of mRNA from cells (see section 2.12.1), the single stranded RNA 

(ssRNA) must be reverse transcribed to form a complimentary DNA (cDNA) before the target 

sequence is amplified. In order for reverse transcription to occur, oligonucleotides (dNTPs) are 

added to the ssRNA using the enzyme reverse transcriptase and cDNA is synthesised from the 

3’ to 5’ end of the mRNA molecule. Once synthesised, the cDNA is amplified in a process 

known as RT-PCR, via three distinct steps all of which represent 1 cycle of a PCR reaction that 

is repeated numerous times (30-40 cycles) to produce ~1 billion copies of the target sequence 

(see Figure 2.7). These steps include: 1) Denaturation, whereby the double stranded DNA 

(dsDNA) is subjected to high temperatures (95°C) in order to separate the DNA into two 

strands exposing the 3’ end of the DNA. 2) Annealing, whereby the temperature is lowered 

(optimal temperature is primer specific, with all the primers used herein designed to anneal at 

approximately 60°C) to enable binding of short sequence (approximately 18-30 bp) primers to 

the DNA strands. 3) Extension, where Taq polymerase (an enzyme derived from the bacterium 

species Thermus Aquaticus that is able to withstand high temperatures) binds to the primers 

and synthesises the complimentary strand using free dNTPs.  

 

During each PCR cycle, a fluorescent dye (SYBR Green was used in these experiments) binds 

to each dsDNA molecule after primers anneal to the 3’ end. The amount of light excited and 

emitted from SYBR Green is able to provide a ‘real-time’ measurement of DNA amplification, 

as the amount of light measured by the fluorometer within the PCR thermocycler instrument is 

directly proportional to the amount of targeted DNA produced. The fluorescence is quantified 

following each PCR run according to the number of cycles required to exceed the fluorescence 

cycle threshold (CT). Therefore, generally, the lower the CT value the higher the expression 

levels of the gene of interest, as the fluorescence being detected earlier above background 

fluorescence reflects the larger amount of starting nucleic acid material. The resultant CT values 
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of the target gene in each sample are then compared to the CT values of a housekeeper/reference 

gene (one of which should remain consistent, regardless of any given stimulus) to determine 

either absolute or relative quantities (Livak & Schmittgen, 2001). 

 

 

 

Figure 2. 7 Diagram illustrating the main processes in the real time polymerase chain reaction 

(RT-qPCR). A) cDNA generation from a single strand of mRNA (from the 3’ to 5’ end) isolated 

from an experimental sample. B) Outline of RT-qPCR, where three key steps occur, including: 

Denaturation, annealing of primers, and extension of primers. Primers specific to the gene of 
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interest anneal at both of the 3’ end of the sense (top) and anti-sense (bottom) strand. The PCR 

reaction amplifies the amount of DNA over 40 cycles. 

 

2.12.4 Procedure 

Throughout this thesis, a one-step PCR method (QuantiFast SYBR® Green RT-PCR Kit, 

Qiagen, UK) was used to analyse mRNA expression whereby the cDNA synthesis and PCR 

steps were performed in the same reaction tube for time efficiency and reduced risk of cross 

contamination. Reaction tubes were either prepared manually by hand or automatically using 

the QIAgility robot (Qiagen, Crawley, UK). Each reaction included 5.6 μL of master mix, 

containing 5 μL 2x QuantiFast SYBR® Green (comprising HotStarTaq® DNA polymerase, 

SYBR® green RT-PCR buffer, dNTP mix and ROX™ passive reference dye), 0.25 μL of 

forward and reverse primers and 0.1 μL reverse transcriptase (RT) and 4.4 μL RNA (at a 

concentration of 7.9 ng/μL in nuclease-free H2O) sample. The preparation method (i.e. manual 

or automatic using the QIAgility robot) used per reaction will be specified within the methods 

section of each experimental chapter. Prepared reaction tubes were transferred to a PCR 

thermal cycler (Rotor-Gene 3000Q, Qiagen, UK) to undergo reverse transcription/cDNA 

synthesis (hold 50°C for 10 min), transcriptase inactivation and initial denaturation (95°C for 

5 min) followed by 40 × amplification cycles consisting of: 95°C for 10 s (denaturation) and 

60°C for 30 s (annealing and extension). For some products with low gene expression levels, 

the total number of cycles was extended by 5-10 cycles to enable sufficient amplification. 

 

2.12.5 Quantification of Relative Gene Expression 

Following the completion of 40 × PCR cycles (see section 2.12.4), melt curve analysis was 

first performed to ensure that only the gene(s) of interest was amplified. Sample efficiencies 

were also analysed and are reported within the methods section of each experimental chapter. 
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An efficiency value of 2 represents a 2-fold increase (100% which is derived from dividing the 

efficiency value by 2 and multiplying by 100) of amplicon with each PCR cycle. To obtain the 

raw CT values for each sample, a threshold line was self-adjusted on the amplification curve 

according to where an exponential rise is fluorescence occurred (see Figure 2.8). The lower the 

number of cycles required for the gene to achieve the fluorescent threshold, the higher the 

expression and vice versa. The CT values were used to quantify relative gene expression using 

the comparative Delta Delta CT (2-ΔΔCT) equation (Livak & Schmittgen, 2001), whereby the 

expression of the gene of interest was determined relative to the internal control in the treated 

sample compared with the untreated control (see Equation 2.9). The CT values of the reference 

gene and the zero-hour control were used. 

 

Delta Delta CT (2-ΔΔCT) Equation: 

Expression fold change = 2-ΔΔCT   
 

 

Where, ∆CT Treated = CT (Gene of interest) - CT (Internal Control), ∆CT Calibrator = CT (Gene of 

interest) - CT (Internal Control) and ∆∆CT = ∆CT Treated (Treated Sample) - ∆CT Calibrator (Control 

Sample). 

 

Equation 2. 9 Delta Delta CT (2-ΔΔCT) Equation used to calculate relative gene expression 

against a reference gene and control group. 
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Figure 2. 8 Setting of cycle threshold (CT) to derive CT values for genes of interest. 

 

 

2.12.6 Primer Design  

All primers were custom designed according to several specific guidelines (Dieffenbach et al., 

1993), where a balance between primer specificity and efficiency of amplification was the 

primary aim. This was achieved by considering primer length, PCR product length, 

oligonucleotide content and metling temperature. Primers were manufactured and ordered via 

Sigma-Aldrich (UK) or Primer Design (UK). All stock (desalted) primers were suspended in 

RNA free H2O to a final concentration of 100 μM. For genes with multiple transcript variants, 

primers were designed to target all mRNA sequences of the main transcript and its variants to 

enable a global measure of gene expression. The Clustal Omega Multiple Sequence Alignment 

program (https://www.ebi.ac.uk/Tools/msa/clustalo) was used to identify gene regions which 

shared the same sequence across all transcript variants. Following primer design, specificity 

was confirmed via performing a Basic Local Alignment Search Tool (BLAST) online 

(http://blast.ncbi.nlm.nih.gov) search and conducting melt curve analysis. Melt curve analysis 

determines the melting temperature (Tm) and confirms that only the gene of interest was 

amplified (indicated by a single peak; Figure 2.8 B) without amplification of unintended targets 
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(indicated by a double melt curve peak; see Figure 2.8 A). Primer sequences for the gene(s) of 

interest are described in the methods section of each experimental chapter. 

 

 

Figure 2. 9 Melt curve analysis to determine specific target amplification. An example of melt 

curves analysed to determine primer specificity. A) A single peak suggesting no unspecific 

amplification whereas B) A double peak suggesting amplification of unintended targets and/or 

primer dimer issues. 

 

2.13 SDS-PAGE and immunoblotting  

2.13.1 Principle  

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is a discontinuous 

electrophoretic system that allows for separation of proteins by their molecular weight (kilo 

Daltons [kDa]) using an electrical current (Laemmli, 1970). To enable protein separation 

B 

A 
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during PAGE, proteins must be denatured with Laemmli buffer (and reducing agent) and 

coated with negative charges through addition of SDS. The denaturing process of 

secondary/tertiary structures in proteins permits their separation based upon the primary amino 

acid sequence, and theoretically, molecular weight. After these initial steps, PAGE is 

conducted in polyacrylamide gels using the frictional resistance of a protein as it migrates 

through pores formed between polymer chains within the gel (Ornstein, 1964). Polyacrylamide 

gels are comprised of polymerized acrylamide monomers along with cross-linking N,N′-

Methylenebisacrylamide monomers (Raymond & Weintraub, 1959), creating uniformly sized 

pores. Proteins move through pores within the gel structure once an electrical current is passed 

through. Typically, gels comprise of two separate regions: a “stacking gel” above a “resolving 

or separating gel” with larger and smaller pores, respectively. As proteins migrate into the 

resolving gel containing smaller pores, protein migration occurs more slowly and is dependent 

upon protein size, as previously mentioned. Following separation, the proteins are 

electrophoretically transferred to an appropriate membrane, thereby immobilising the 

separated proteins. Similar to PAGE, the negatively charged proteins in the gel are transferred 

across onto a membrane when a lateral electric current is applied. Subsequently, proteins can 

be probed with antibodies, and providing additional durability compared to gels (Towbin et al., 

1979). 

 

2.13.2 Procedures  

After relevant treatments, cells were lysed and scraped in ice-cold 1x 

radioimmunoprecipitation assay (RIPA) buffer containing: 25 mM Tris-HCl pH 7.6, 150 mM 

NaCl, 1% NP-40, 1% sodium deoxycholate and 0.1% SDS, supplemented with 1x Protease 

Inhibitor Cocktail Set V (Merck Life Science, UK). Cell lysates were centrifuged for 15 

minutes at 18,000 × g (4°C) and the supernatant was stored at -80°C before analysis for total 
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protein. Following determination of sample protein concentrations using the Pierce™ 

bicinchoninic acid (BCA) assay (see section 2.15), samples were resuspended in 4x Laemmli 

buffer (Bio-Rad laboratories, Hertfordshire, UK) containing reducing agent (1x working 

concentration: 31.5 mM Tris-HCl [pH 6.8], 10% glycerol, 1% SDS, 0.005% Bromophenol 

Blue and 355 mM 2-mercaptoethanol). After boiling samples for 5 minutes at 95°C, 22.5-25 

μg sample was loaded and electrophoresed on 10% Mini-PROTEAN® TGX Stain-Free™ 

Precast Gels (Bio-Rad laboratories, Hertfordshire, UK). Samples were separated in Tris-

glycine running buffer (1:10 10X Running buffer, Scientific Laboratory Supplies, Nottingham, 

UK) using Bio-Rad Mini-PROTEAN® Tetra vertical electrophoresis cell (Bio-Rad 

laboratories, Hertfordshire, UK). Voltage was set at 100 V for the entirety of electrophoresis. 

After protein separation, stain-free gels were activated by UV light for 5 minutes and subject 

to transfer. 

 

Semi-dry transfer of proteins to a 0.2 µM nitrocellulose membrane (Bio-Rad laboratories, 

Hertfordshire, UK) was performed using the Trans-Blot® Turbo™ Transfer System. Next, the 

polyacrylamide stain-free gel was stacked on a nitrocellulose membrane. Filter paper was used 

to sandwich the membrane and gel together. The nitrocellulose membrane and filter paper were 

pre-soaked in transfer buffer (600 ml H2O, 200 ml ethanol and 200 ml 5x transfer buffer (Bio-

Rad laboratories, Hertfordshire, UK). Care was taken to avoid bubbles in the transfer stack by 

using a roller. The transfer sandwich was placed into a transfer cassette and pressed evenly 

with the cassette lid. Proteins were transferred onto the nitrocellulose membrane at 25 V for 7 

mins. To verify the transfer of proteins, fluorescent stain-free imaging of the membrane was 

performed (ChemiDoc™ MP imaging system, Bio-Rad Laboratories, Inc. CA, USA). 
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After protein transfer, membranes were blocked for 1 hour in 5% non-fat dried milk (NFDM) 

or 5% bovine serum albumin (BSA) at room temperature. Membranes were then incubated 

overnight at 4°C with primary antibodies. The concentration of primary antibodies used will 

be specified in the experimental chapters. After overnight incubation, membranes were washed 

3 times in Tris-buffered saline with Tween 20 (TBST) (20 mM Tris [pH 7.5], 150 mM NaCl 

and 0.1% Tween 20) for 5 min and subsequently incubated for 1 hour in anti-rabbit IgG HRP-

linked secondary antibody (Cell Signaling Technology Europe, B.V.) at a dilution of 1:2000-

1:10,000 in 5% NFDM-containing TBST. Following secondary antibody incubation, 

membranes were again washed 3 times for 5 minutes in TBST. Proteins were visualised by 

enhanced chemiluminescence (ECL) (Pierce™ western blotting substrate, Thermo Fisher 

Scientific inc, Waltham, USA) by incubating membranes in reagents at a 1:1 dilution for ~3 

minutes. The membrane was then imaged by the ChemiDoc™ MP imaging system (Bio-Rad 

Laboratories, Inc. CA, USA). Band densities were analysed using Image Lab software (Bio-

Rad Laboratories, Inc. CA, USA). Stain-free image bands were measured for total lane protein 

levels. Bands of targeted proteins were measured and normalised to total protein in the relevant 

lane and made relative to the 0-hour CTRL condition. Detected phosphorylated proteins were 

normalised to their total protein expression before being compared between experimental 

conditions.  

 

2.14 SRB Assay 

The protein concentration of experimental samples was determined after relevant 

measurements to standardise ROS level/production as a function of the protein level (i.e., cell 

number) in each well of the culture plate. This was performed using the sulforhodamine B 

(SRB) assay, as described by (Vichai & Kirtikara, 2006). Directly after the measurement of 

ROS, cells were fixed by gently adding a cold solution of 1% (v/v) acetic acid in methanol and 
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incubating for at least 1 hour at -20ºC. Next, plates were air-dried in an incubator for ~10 

minutes. Following this, 0.5% (w/v) SRB solution in 1% acetic acid was added to each well 

and incubated for 1 hour at 37ºC with gentle shaking. The SRB solution was then aspirated and 

cells were gently washed with 1% (v/v) acetic acid. This step was repeated two-three times or 

until the remaining SRB solution was removed. Next the plate was dried for 10 minutes (e.g., 

in an incubator), before adding add 1 mL of 10 mM Tris to dried wells and applying gentle 

shaking for 15 min in order to dissolve the dye. Finally, 200 µL of the solution from each well 

was transferred into a 96-well plate (in duplicate) and the absorbance was measured at 540 nm 

using a plate reader. 

 

2.15 BCA Assay 

The protein concentration of samples was determined, prior to, or after relevant assays. The 

BCA assay can be used to quantify protein concentrations, as described herein. The 

determination of sample protein concentration (mg/mL) was achieved by generating a standard 

curve using BSA at concentrations ranging between 0-2000 µg/mL. To create the protein 

standards, serial doubling dilutions were performed using the 2 mg/mL BSA stock and 

appropriate volumes of diluent (Milli-Q H2O). For the assay, the Pierce™ BCA protein kit 

(Rockford, IL, USA) was used. Reagent A (sodium carbonate, sodium biocarbonate, BCA and 

sodium tartrate in 0.1 M sodium hydroxide) was mixed in a mixing trough with reagent B using 

a multichannel pipette (4% cupric acid sulphate) at a ratio of 50:1. In a 96 well plate, 20 μL of 

sample and standard were pipetted in each well followed by 200 μL BCA buffer. The plate was 

immediately shaken thoroughly on an orbital shaker for 30 seconds, prior to a 30-minute 

incubation at 37°C before measuring samples at 562 nm using a plate reader. 

 

2.16 Statistical Analysis  
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Data in this thesis are presented as means ± SEM, unless otherwise stated. Statistical 

significance was accepted when P<0.05. All statistical analyses were conducted using MiniTab 

Statistical Software (Minitab, Version 18, USA), GraphPad Software (Prism, Version 8.0, San 

Diego, CA) or R Studio (Version 1.3, RStudio, MA, USA). The software used and the specific 

statistical tests conducted will be specified in the methods section of each experimental chapter.  
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3.1 Abstract 

Introduction: Cocoa flavanols (CF) may exert health benefits through their potent 

vasodilatory effects, which are exerted by elevations in nitric oxide (NO) bioavailability, where 

NO diffuses and acts upon the smooth muscle layer.  These vasodilatory effects may contribute 

to improved delivery of blood and oxygen (O2) to exercising muscle.  

Objective: Therefore, the objective of this study was to investigate how CF supplementation 

impacts pulmonary O2 uptake (V̇O2) kinetics and exercise tolerance in sedentary middle-aged 

adults. It was hypothesised that CF supplementation would speed phase II V̇O2 kinetics during 

moderate and severe-intensity exercise and enhance exercise tolerance in healthy middle-aged 

individuals. 

Methods: In a double-blind cross-over, placebo-controlled design,17 participants (11 male, 6 

female; mean±SD, 45±6 years) randomly received either 7 days of daily CF (400 mg) or 

placebo (PL) supplementation. On day 7, participants completed a series of ‘step’ moderate- 

and severe-intensity exercise tests for the determination of V̇O2 kinetics.  

Results: During moderate-intensity exercise, the time constant of the phase II V̇O2 kinetics 

(τV̇O2) was decreased by 15% in CF as compared to PL (mean±SD; PL: 40±12 vs. CF: 34±9 

s, P=0.019), with no differences in the amplitude of V̇O2 (AV̇O2; PL: 0.77±0.32 vs. CF: 

0.79±0.34 l min−1, P=0.263). However, during severe-intensity exercise, τV̇O2, the amplitude 

of the slow component (SCV̇O2) and exercise tolerance (PL: 435±58 vs. CF: 424±47 s, 

P=0.480) were unchanged between conditions.  

Conclusion(s): The data show that acute CF supplementation enhanced phase II V̇O2 kinetics 

during moderate-, but not severe-intensity exercise in middle-aged participants. These effects 

of CFs, in this demographic, may reduce the O2 deficit and contribute to improved tolerance 

of moderate-intensity physical activities, which appear commonly present in daily life. 
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3.2 Introduction 

Skeletal muscle contraction and force production form the basis for the ability to perform 

physical activity, both for daily life activities as well as during sports-related events. Repeated 

muscle contractions require continuous regeneration of adenosine triphosphate (ATP). The 

production of ATP during (prolonged) physical activity is driven through the mechanism of 

oxidative phosphorylation, which depends on sufficient availability of oxygen (O2) amongst 

other key substrates (Poole et al., 2008). Impairment to pathways involved in the delivery of 

O2 to working skeletal muscle, like that observed in older and physically-inactive adults, leads 

to slower rates of phase II (the exponential rise in oxygen uptake following exercise onset) 

pulmonary O2 uptake (V̇O2) and therefore greater O2 deficit (Cunningham & Paterson, 1994; 

DeLorey et al., 2004a; Dumanoir et al., 2010; George et al., 2018; Whipp & Rossiter, 2013). 

Slower phase II V̇O2 kinetics in response to physical activity are associated with lower exercise 

tolerance (Goulding et al., 2017, 2018; Grassi, et al., 2011), and may affect the capacity to 

perform daily life activities that require moderate-intensity physical activity. 

 

The slower dynamic adjustment of V̇O2 across a metabolic transient observed in older adults 

is thought to be due to a mismatch of O2 delivery to O2 utilisation (George et al., 2018; Murias 

et al., 2010a; Murias & Paterson, 2015a). This possible imbalance could be due to reductions 

in the supply of microvascular blood flow and/or lowered mitochondrial sensitivity to ADP 

(Gouspillou et al., 2014b; Murias & Paterson, 2015b). Indeed, attenuations in microvascular 

blood flow supply and distribution (and thus O2 delivery) within aged skeletal muscle are well 

documented (Behnke & Delp, 2010a; Dumanoir et al., 2010; Muller-Delp et al., 2002a; Musch 

et al., 2004a). These reductions in O2 delivery to active skeletal muscle are likely caused by 

impaired vascular endothelial function and diminished nitric oxide (NO) bioavailability 

(Muller-Delp et al., 2002a; Sindler et al., 2009; Spier et al., 2004; Woodman et al., 2002). 
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Interestingly, lifestyle interventions, such as exercise training and dietary strategies (Schreuder 

et al., 2015; Vanhatalo et al., 2010), have demonstrated potent effects to enhance NO 

bioavailability and improve endothelial function. Consequently, a number of studies have 

shown faster V̇O2 kinetics in concert with increased O2 availability (Bailey et al., 2015; 

Goulding et al., 2017; Murias et al., 2010a).  

 

Cocoa flavanols (CFs) represent a group of flavonoids present in cocoa derived from seeds of 

the fruit of the Theobroma cacao tree. Previous studies have found CFs (700-900 mg range) 

act primarily through the monomer (-)-epicatechin, to stimulate NO production, resulting in 

improved vasodilation and endothelial function in healthy adults (Berry et al., 2010; Davison 

et al., 2008; Schroeter et al., 2006). Given the direct impact of CFs on NO production and 

vascular endothelial function, and the negative effects of sedentary ageing on O2 delivery and 

V̇O2 kinetics at the onset of exercise, the study objective was to test the hypothesis that, 

compared with placebo (PL), CF supplementation speeds phase II V̇O2 kinetics during 

moderate- and severe-intensity physical activity and enhances exercise tolerance in healthy 

middle-aged individuals. 

 

3.3 Methodology 

3.3.1 Participants 

Seventeen healthy middle-aged adults (11 male: mean±SD, age 45±6 years; body mass 

87.7±13.5 kg; height 1.75±0.07 m; and 6 female: aged 47±5 years; body mass 68.2±17.7 kg; 

height 1.62±0.09 m) volunteered and gave written informed consent to participate in the study 

(see Figure 3.1). All procedures conformed to the Declaration of Helsinki and were approved 

by Liverpool John Moores University Research Ethics Committee (approval reference number: 

18/SPS/014). Participants engaged in less than two hours of structured exercise training per 
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week. All participants were non-smokers and had no history of cardiovascular, respiratory or 

metabolic diseases. Participants were not taking any dietary supplements or medication.  

 

Participants reported to the laboratory at least 3 hours postprandial in a rested state, having 

completed no strenuous exercise within the previous 24 hours and avoided alcohol and caffeine 

for 24 and 6 hours, preceding each exercise test, respectively. Participants were advised to 

avoid consumption of flavonoid-rich foodstuffs (e.g. green tea, dark chocolate and berries) in 

the 24 hours preceding each experimental trial. 

 

Figure 3. 1 CONSORT diagram showing the flow of participants through each stage of the 

randomised trial. 

 

3.3.2 Procedures 
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Participants visited the temperature-controlled laboratory (19-22°C) on 4 occasions during a 

4-5-week period, with each test scheduled at the same time of day (± 1 h) and at least 48 h 

between visits. Participants completed two preliminary trials and two experimental trials. 

Exercise bouts were performed on an electrically operated cycle ergometer (Lode Corival, 

Groningen, The Netherlands). Saddle and handlebar height/angle were recorded at the first visit 

and replicated during each subsequent visit for each individual participant. Throughout all 

exercise tests, participants were instructed to maintain a cadence of 65-80 rpm, and exhaustion 

was defined as when the participants cadence dropped 10 rev min-1 below the target work rate. 

Time to exhaustion was measured to the nearest second (s) in all tests. 

 

3.3.3 Preliminary trial(s) 

Upon arrival to the laboratory, participants height and weight were recorded. Subsequently, 

each participant undertook an incremental step test until the limit of tolerance to establish V̇O2 

peak, the gas exchange threshold (GET) and the power outputs for later tests. The incremental 

step test consisted of 3-min of baseline pedalling at 0 W, followed by a continuous, stepped 

increase in power output of 30 or 25 W every minute (for males and females, respectively) until 

the limit of tolerance was established. Gas exchange and ventilatory variables were measured 

continuously at the mouth breath-by-breath throughout each test. V̇O2 peak was defined as the 

highest V̇O2 value obtained over 30 s. The GET was determined using a collection of 

previously established criteria (Beaver et al., 2016) including 1) a disproportionate rise in CO2 

production (V̇CO2) relative to V̇O2; 2) an increase in minute ventilation (V̇E) relative to V̇O2 

(V̇E/V̇O2) without an increase in V̇E relative to V̇CO2 (V̇E/V̇CO2); and 3) an increase in end 

tidal O2 tension without decreasing end tidal CO2 tension.  
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During the familiarisation trial (visit 2), participants were requested to perform two bouts of 

severe-intensity exercise at a fixed power output to exhaustion (e.g. Tlim), each separated by 45 

min of seated rest. The power outputs of these severe-intensity bouts were selected based upon 

performance during the incremental test and were calculated to be 60%D (i.e., a work rate 

calculated to require 60% of the difference between GET and V̇O2 peak). On occasion, 

adjustments were made to the power output of the subsequent exercise tests based upon 

performance in the familiarisation trials; the prescribed power output was lowered for 

participants who failed to exercise for up to 360 s during the severe-intensity bouts. 

 

After completion of the familiarisation trial, participants were randomly assigned (computer 

generated), using a double-blind cross-over design (see Figure 3.2), to receive 7 consecutive 

days of CF supplementation or a PL that was matched for caffeine and theobromine content. 

Nine participants began with the CF condition, and eight participants began with the PL 

condition. Participants were advised to consume 4 capsules daily. Each CF capsule contained 

316 mg CocoActiv (Naturex, Netherlands; ~100 mg total flavanols of which 22 mg DP1 = 

catechin + epicatechin) whereas PL capsules contained 0 mg CocoActiv product. This CF dose 

was selected based on the knowledge that ~400 mg CF’s are required to improve vascular 

function during exercise (Decroix et al., 2018a). Both PL and CF capsules contained 2.9 mg 

caffeine and 22.5 mg theobromine (Fagron, Netherlands). Remaining empty volumes of PL 

and CF capsules were filled with microcrystalline cellulose (Fagron, Netherlands). Two 

capsules were taken in the morning and two in the evening following ingestion of a mixed meal 

(Cifuentes-Gomez et al., 2015). A 7-day wash-out period separated the supplementation 

periods and the order between CF and PL supplementation was randomised. Throughout the 

study period participants were instructed to maintain their normal daily activities and diet. 

Participants kept a food dairy and were instructed to consume an identical diet in the two 
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periods of exercise testing. Physical activity levels were measured by accelerometery in the 6 

days preceding testing via a hip-mounted activity monitor (Actigraph GT3X). 

 

3.3.4 Experimental trials 

On the 7th day of supplementation, participants were advised to consume 4 capsules 45 min 

prior to arrival at the laboratory. The supplementation protocol was chosen so that participants 

commenced exercise testing ~90 min following supplement ingestion, which coincided with  

reported peak plasma flavanol concentrations (Cifuentes-Gomez et al., 2015). The participants 

completed a series of separate “step” exercise tests from an unloaded (0 W) baseline to 

moderate or severe-intensity work rates for the determination of pulmonary V̇O2 kinetics. Tests 

began with 3 minutes of 0 W baseline cycling, before a step change in power output to 80% 

GET for 6 minutes or 60%D until Tlim. Participants sequentially completed three bouts of 

moderate- and one bout of severe-intensity exercise, each separated by 10 min of passive 

recovery. This protocol was employed with the knowledge that multiple bouts of moderate-

intensity exercise do not impact the V̇O2 kinetics of subsequent moderate- and heavy-intensity 

exercise (Burnley et al., 2000a; Spencer et al., 2011a). 
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Figure 3. 2 Schematic of experimental design. 

 

 

3.3.5 Measurements 

After arrival to the laboratory, participants underwent an assessment of the previous 7 days 

physical activity levels and sedentary behaviour by the International Physical Activity 

Questionnaire (IPAQ) and by accelerometery (ActiGraph GTX3). Following 10 min of seated 

rest, participants blood pressure was measured in the brachial artery. Blood pressure was 

measured three times and the mean of the responses was recorded.  

 

During all exercise tests, pulmonary gas exchange and ventilation were measured at the mouth 

breath-by-breath using a metabolic cart (Jaeger Oxycon Pro, Hoechberg, Germany). 

Participants wore a facemask and breathed through a low dead space (90 ml), low resistance 

(0.75 mmHg l−1 s−1 at 15 l/s) impeller turbine assembly (Jaeger Triple V, Hoechberg, 

Germany). The inspired and expired gas volumes and gas concentration signals were 

continuously sampled at 100 Hz, the latter using paramagnetic (O2) and infrared (CO2) 

analysers (Jaeger Oxycon Pro, Hoechberg, Germany) via a capillary line connected to the 

mouthpiece. These analysers were calibrated before each test with gases of known 
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concentrations (16% O2 and 4% CO2), and the turbine volume transducer was calibrated using 

a 3-liter syringe (Hans Rudolph, Kansas City, MO). The volume and concentration signals 

were time aligned by accounting for the delay in capillary gas transit and analyser rise time 

relative to the volume signal. Breath-by-breath fluctuations in lung gas stores were corrected 

for by computer algorithms (Beaver et al., 1981). Heart rate was measured during all tests via 

short-range radiotelemetry (Polar H10, Polar Electro, Kempele, Finland). During one of the 

transitions to moderate- and severe-intensity exercise for both supplementation periods, a blood 

sample was collected from a fingertip over the last 30 s preceding the step transition in work 

rate and within the last 15 s of exercise. Blood samples were immediately analysed using a 

hand-held device (Lactate Pro, Nova Biomedical, USA) to determine blood lactate 

concentration. Blood lactate accumulation was calculated as the difference between blood 

lactate at end exercise and blood lactate at baseline. 

 

3.3.6 Data analysis 

Breath-by-breath V̇O2 data were edited to remove data points lying more than 3 standard 

deviations (SD) outside the local 5-breath mean (Lamarra et al., 1987). The resultant data were 

then linearly interpolated to provide second-by-second values. For V̇O2 and heart rate data in 

response to moderate exercise transitions, second-by-second data for the three transitions were 

averaged together to produce a single dataset. The severe-intensity exercise bout for each 

condition was not repeated and was modelled separately. For each exercise transition, the first 

20 s of data after the onset of exercise (i.e., the cardiodynamic or phase I response) were deleted 

(Benson et al., 2017; McNarry et al., 2012) and a mono-exponential model (Equation 3.1) with 

time delay was then fitted to the data (Whipp & Rossiter, 2013), as follows: 

 

V̇O2 (t) =V̇O2(b) + AV̇O2 ,1 −	-'(t'TDV̇O!⁄τV̇O!). 
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Equation 3. 1 Mono-exponential model 
 

Where V̇O2(t) is the V̇O2 at any time t, V̇O2b is the baseline V̇O2, which was taken as the mean 

V̇O2 over the final 30 s of the baseline period preceding the transition, AV̇O2 is the amplitude 

of the primary response above baseline, TDV̇O2
 is the time delay of the primary response 

relative to the onset of exercise, and τV̇O2 is the time constant of the primary response. For 

moderate intensity exercise, data were modelled to 360s. For severe intensity exercise, the 

onset of the V̇O2 slow component (TDSCV̇O2) was determined using purpose-designed 

programming in Microsoft Excel (Microsoft Corporation, Redmond, WA, USA), which 

iteratively fits a monoexponential function to the V̇O2 data, starting at 60 s until the window 

encompasses the entire response. The resulting primary time constants are plotted against time, 

and the TDSCV̇O2 was identified as the point at which τV̇O2 consistently deviates from a 

previously ‘flat’ profile, and the demonstration of a local threshold in the χ2 value (Rossiter et 

al., 2001). This method allows the fitting of Equation 1 to the primary component of the 

response isolated from the slow component, thus avoiding the possibility of arbitrarily 

parameterizing the slow component. The amplitude of the V̇O2 slow component was 

determined by calculating the difference between the end-exercise V̇O2 (i.e., mean V̇O2 over 

final 30 s of exercise) and (AV̇O2 + V̇O2b). In instances where exercise duration was too short 

to allow the slow component to be discerned the V̇O2 response was modelled using Equation 

1 to the end of exercise and the slow component was assigned a value of 0.  

 

Heart rate kinetics were modelled for each exercise transition using a monoexponential 

function (Equation 3.2) with the response constrained to the start of exercise (at t = 0; i.e., with 

no time delay): 
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HR(t)= HRb + AHR * ,1 - e(t/τHR). 
 

where HRb is the mean HR measured over the final 30 s of baseline cycling, and AHR and τHR 

are the amplitude and the time constant of the response, respectively. 

 

Equation 3. 2 Monoexponential function with no time delay 

 

 

3.3.7 Statistics 

Based on previous knowledge of a meaningful change in τV̇O2 during intervention studies (5 

s), and a common standard deviation of 4.3 s (Benson et al., 2017), the necessary calculated 

sample size was 12. Differences in the cardiorespiratory variables between conditions were 

determined with two-tailed, paired-samples t-tests (GraphPad, Prism, USA). Data are 

presented as means±SD. Statistical significance was accepted when P<0.05.  

 

3.4 Results 

Peak V̇O2 was 2.45±0.61 l min−1 (28.1±5.7 ml kg−1 min−1), with the mean GET occurring at 

1.51±0.46 l min−1 (108±39 W). The peak work rate attained from the incremental test was 

207±49 W and the work rates calculated to require 80% of the GET and 60%D were 87±29 W 

and 166±40 W, respectively. Levels of moderate-to-vigorous intensity physical activity were 

similar in the 7 days preceding experimental testing under PL and CF conditions (PL: 

44.8±17.9 vs. CF: 50.1±14.8 min/day-1). Total moderate-to-vigorous physical activity (MVPA) 

over the 7-day supplementation period was also similar between conditions (PL: 308.4±126.3 

vs. CF: 332.9±99.7 min). 
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3.4.1 Heart rate kinetics, blood lactate profiles and blood pressure 

There were no differences in the primary τHR between PL and CF for moderate- or severe-

intensity bouts (P=0.219 and 0.956, respectively, Table 3.1). Despite significant changes in 

blood lactate concentrations at Tlim compared to baseline (P<0.05; Table 3.1), there were no 

significant differences in blood [lactate] from pre- to post-exercise between conditions during 

moderate- and severe-intensity exercise (see Table 3.1). Overall, there were no differences 

between resting systolic (PL: 128±12 vs. CF: 127±12 mmHg, P=0.66) or diastolic (PL: 78±7 

vs. 78±7 mmHg, P=0.75) blood pressure following either PL or CF administration. 
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Table 3. 1 Heart rate and blood lactate responses during moderate- and severe-intensity exercise following CF and PL supplementation 

 
  

 
 

 

 

 

 

 

 

HRb, baseline heart rate; AHR, amplitude of the fundamental response; τHR, time constant of the fundamental response; PL, placebo; CF, cocoa 

flavanol. Values are mean±SD. #Significantly different from baseline blood lactate (P<0.05).

Parameter 
HRb 

(b min −1) 
AHR 

(b min−1) 
τHR (s) 

End exercise 
HR (b min−1) 

Baseline blood 
lactate (mM) 

End exercise 
blood lactate 

(mM) 

D blood 
lactate (mM) 

Blood lactate 
at exhaustion 

(mM) 

Moderate-
intensity exercise 

        

PL 83±13 31±8 53±22 114±16 1.5±0.7 2.6±0.5 1.2±0.9 - 

CF 83±14 32±8 47±13 115±18 1.3±0.4 2.5±0.7 1.3±0.8 - 

Severe-intensity 
exercise 

        

PL 89±15 69±16 89±17 159±14 1.9±0.9 8.8±2.0 7.4±2.5 9.5±2.3# 

CF 92±17 67±17 89±29 160±17 1.8±0.9 8.4±2.3 7.1±2.8 9.7±1.9# 
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3.4.2 V̇O2 kinetics and exercise tolerance 

The V̇O2 kinetic parameters for moderate intensity exercise are presented in Table 3.2, and the 

V̇O2 response of a representative participant to moderate-intensity exercise is shown in Figure 

3.3. Compared with PL, τV̇O2 was faster during moderate-intensity exercise following CF 

supplementation (PL: 40±12 vs. CF: 34±9 s, P=0.019). However, there were no differences in 

V̇O2b (P=0.175), AV̇O2 (P=0.263), TDV̇O2 (P=0.961) or end exercise V̇O2 (P=0.565) between 

PL and CF. 

 

 

 

 

 

 

Figure 3. 3 Pulmonary V̇O2 and best-fit modelled responses of a representative participant to 

moderate-intensity exercise following PL (solid black circles) and CF (clear circles) 

supplementation. τV̇O2 values are displayed for each transition, with the solid grey lines 

representing the modelled fits.   

 

The pulmonary V̇O2 response to severe-intensity exercise for a representative participant is 

shown in Figure 3.4A and group mean responses are shown in Figure 3.4B. The associated 

modelled parameters are presented in Table 3.2. No impact of CF supplementation on the τV̇O2 

(P=0.799) for exercise initiated at 60% ∆ over PL was evident. There were no differences in 

V̇O2b (P=0.246), AV̇O2 (P=0.427), TDV̇O2 (P=0.617), SCV̇O2 (P=0.887) or end exercise V̇O2 
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(P=0.954) between conditions. TDSCV̇O2was lower following CF vs. PL supplementation (PL: 

110±15 vs. CF: 95±13 s, P=0.002). Both end-exercise V̇O2 (P=0.959) and Tlim (P=0.480) were 

not significantly different following PL and CF supplementation during severe-intensity 

exercise (see Table 3.2). 

 

 

 

Figure 3. 4 Pulmonary V̇O2 and best-fit modelled responses to severe-intensity exercise 

following PL (solid black circles) and CF (clear black circles) supplementation. Panel A) 

Pulmonary V̇O2 responses of a representative participant displayed with associated τV̇O2. 

Panel B) Group mean V̇O2 responses during the rest-to-exercise transition following PL and 

CF supplementation. Group mean ± SD V̇O2 at limit of exercise tolerance also shown. Solid 

grey lines represent the modelled fits.  
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Table 3. 2 Pulmonary O2 uptake responses to moderate- and severe-intensity exercise following CF and PL supplementation 

 

 

 

 

 

 

 

 

 

 

V̇O2b, baseline oxygen uptake; AV̇O2, amplitude of the primary response; TDV̇O2, time delay of the primary response; τV̇O2, time constant of the 

primary response; TDSCV̇O2, time delay of the V̇O2 slow component; SCV̇O2, magnitude of the slow component; Tlim, limit of exercise tolerance; 

PL, placebo; CF, cocoa flavanol. Values are mean±SD. *Significantly different from PL (P<0.05).

Parameter V̇O2b (l min−1) AV̇O2  
(l min−1) TDV̇O2 (s) τV̇O2 (s) End exercise 

V̇O2 (l min−1) 
TDSCV̇O2 

(s) 
SCV̇O2  
(l min−1) Tlim (s) 

Moderate-
intensity 
exercise 

     
 

  

PL 0.69±0.12 0.77±0.32 13±6 40±12 1.50±0.35 - - - 

CF 0.66±0.13 0.79±0.34 13±7 34±9* 1.50±0.38 - - - 

Severe-intensity 
exercise         

PL 0.78±0.14 1.40±0. 40 17±4 27±9 2.60±0.66 110±15 0.50±0.20 435±58 

CF 0.74±0.13 1.50±0.52 16±4 28±6 2.60±0.65 95±13* 0.50±0.20 424±47 
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3.5 Discussion 

The objective of this study was to investigate the impact of CFs on pulmonary V̇O2 kinetics 

during two intensities of cycling exercise in healthy, normotensive middle-aged individuals. 

Congruent with the hypothesis, the major finding of this study was that 7-days CF 

supplementation sped pulmonary V̇O2 kinetics during moderate-intensity exercise as 

demonstrated by a significant reduction in τV̇O2. These effects of CFs, however, were not 

apparent during severe-intensity exercise when compared with a PL. Ultimately, the findings 

of the present study may have clinical potential in contributing to improved tolerance of daily 

life activity in middle-aged adults. 

 

This study is the first to investigate whether CFs modulate pulmonary V̇O2 kinetics. Here, 7 

days CF supplementation significantly reduced the τV̇O2 (40 vs. 34 s) associated with the 

transition from unloaded to moderate intensity cycling in middle-aged adults. Notably, the 

magnitude of change in τV̇O2 (~6 s) reported is important, as it exceeds the minimum 

physiologically relevant change of ~5 s (Benson et al., 2017). The reduction in τV̇O2 observed 

after CF supplementation in our middle-aged individuals reflects a shift towards values 

typically observed in younger healthy individuals (B. Grassi et al., 2009), whereby V̇O2 

kinetics are not limited by O2 delivery per se (Poole & Jones, 2012). Theoretically, a lowered 

τV̇O2 would reduce the O2 deficit incurred during the exercise transition, thereby causing less 

perturbations to the intracellular milieu (i.e., ∆ phosphocreatine, ADP, H+, inorganic 

phosphate, glycogen) and enhancing exercise tolerance (Goulding et al., 2017, 2018; Grassi et 

al., 2011). Therefore, the data suggest CFs may lower the O2 deficit incurred during moderate-

intensity activity by negating age-associated impairments to pulmonary V̇O2 kinetics.  
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Since the purpose of the study was to examine the impact of CFs on V̇O2 kinetics, the data 

raise questions about the potential underlying mechanisms contributing to the lowered τV̇O2 

with CF supplementation. It is acknowledged τV̇O2 is sensitive to manipulations in O2 delivery 

(DeLorey et al., 2004b; Gurd et al., 2009), and, that the slowing of V̇O2 kinetics with advancing 

age occurs at least partly as a consequence of lowered O2 availability in oxidative skeletal 

muscle (Behnke & Delp, 2010a; DeLorey et al., 2004a; Musch et al., 2004a). Given that CFs 

exert potent NO-dependent vasodilatory effects (Cifuentes-Gomez et al., 2015; Decroix, et al., 

2018a; Schroeter et al., 2006), CF supplementation may have sped V̇O2 kinetics by augmenting 

muscle blood flow and O2 availability. Although, it is important to acknowledge CFs can alter 

indices of mitochondrial biogenesis and function (Kopustinskiene et al., 2015a; Taub et al., 

2012), as well as lower markers of oxidative stress (Ahmed et al., 2020). Together these factors 

may also influence V̇O2 responses to exercise by augmenting the capacity for O2 utilisation 

and delivery. Clearly, further work is required to determine the mechanisms by which CFs may 

regulate blood flow and changes in V̇O2 kinetics. 

 

In spite of differences in the kinetics of V̇O2, no changes in the O2 cost of moderate-intensity 

exercise were observed after CF supplementation. Similarly, Patel and colleagues (2015) 

demonstrated no significant reduction in V̇O2 during twenty minutes of moderate-intensity 

cycling after 14 days dark chocolate supplementation (Patel et al., 2015). Together these 

findings contrast those published employing alternate dietary means of augmenting NO 

bioavailability, such as dietary nitrate, which reduces the O2 cost of moderate-intensity activity 

(Bailey et al., 2009; Lansley et al., 2011; Larsen et al., 2007; Vanhatalo et al., 2010). Such 

discrepancies may be explained by recent evidence linking dietary nitrate to improved 

contractile function (Bailey et al., 2019), an effect that has not been reported with CF 
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supplementation. Possibly, the mechanisms by which CFs impact physiological responses to 

exercise relate to muscle O2 delivery rather than contractile function. Given that measures of 

NO or redox biomarkers were not taken, it is not clear to what extent CFs sped phase II V̇O2 

kinetics through processes associated with reactive O2 and nitrogen species. Additional 

research will help delineate CFs mode of action in the context of exercise. 

 

In contrast to the observations during moderate-intensity exercise, acute CF supplementation 

had no measurable impact on pulmonary V̇O2 kinetics during severe-intensity cycling. For 

instance, the τV̇O2 of the phase II response was similar between PL and CF (27 vs. 28 s, 

respectively). The kinetics of V̇O2 are considered an important determinant of exercise 

tolerance (Grassi et al., 2011; Whipp & Ward, 1992). In line with this principle, no effect of 

CF supplementation on Tlim during severe-intensity exercise was found. Whilst no previous 

studies have examined the impact of CF supplementation on V̇O2 kinetics in the severe-

intensity exercise domain, a number have studied their effects on exercise performance. The 

present findings corroborate these data, showing no beneficial impact of acute or sub-chronic 

CF supplementation on time-trial or time-to-exhaustion performance in healthy male adults 

(Allgrove et al., 2011; Davison et al., 2012; Decroix, Tonoli, et al., 2018; Peschek et al., 2013; 

Stellingwerff et al., 2014).  

 

The data demonstrate divergent effects of CFs on V̇O2 kinetics between moderate- and severe-

intensity exercise domains. Given that the pattern of muscle-fibre activation within moderate- 

and severe-intensity exercise domains differs (type I and type II predominant, respectively) 

(Krustrup et al., 2004), future studies should investigate a potential muscle fibre-type 

dependency of CF supplementation on the physiological responses to exercise. Another 

potential explanation for the differences between exercise intensity domains presented herein 
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relates to the dose of CFs administered. Recent published evidence suggests that the 400 mg 

CF prescribed is the minimum dose necessary to exert beneficial effects during exercise 

(Decroix et al., 2018a). Therefore, the dose used in the present study may not have been high 

enough to raise blood flow sufficiently to detect a measurable effect upon V̇O2 kinetics during 

severe-intensity exercise. In addition, CFs had no beneficial impact on resting systolic or 

diastolic blood pressure over PL, which may be attributable to insufficient dosage and the 

normotensive population studied (Hooper et al., 2012).  

 

3.6 Limitations 

The experimental design of this study did not include measures of any blood or muscle 

biomarkers. Therefore, no biochemical or mechanistic information could be derived that may 

have afforded explanations of the faster V̇O2 kinetics observed with acute cocoa-flavanol 

supplementation. More specifically, it could not be established whether NO or redox markers 

were influenced by cocoa-flavanol supplementation. Besides these markers, vascular 

endothelial function and/or muscle oxygenation were also not measured as part of this 

randomised placebo-controlled study. Such measures would have been valuable in providing 

information on whether cocoa-flavanols sped V̇O2 kinetics due to changes along the O2 

transport pathway. Another limitation of this experimental design was the inclusion of a single 

severe-intensity exercise bout to model the phase II V̇O2 kinetics. This single bout reduced the 

confidence in the modelling parameters, but additional bouts would have required a minimum 

of two additional testing days that were not feasible with the chosen study design and 

population. Here, a single severe-intensity exercise bout was performed following three bouts 

of moderate-intensity exercise, with prior knowledge that moderate exercise does not influence 

the phase II V̇O2 kinetics of subsequent heavy intensity exercise (Burnley et al., 2000b; Spencer 

et al., 2011b). Nevertheless, it is possible that prior moderate intensity exercise, through its 
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effects on (muscle) perfusion, sped the phase II V̇O2 kinetics response during severe-intensity 

exercise in the population studied (Scheuermann et al., 2002). A 400 mg daily cocoa-flavanol 

dose was prescribed in this study, which is the minimum dose necessary to exert beneficial 

vascular effects during exercise (Decroix, Soares, et al., 2018b). Therefore, the dose 

administered may not have been high enough to raise blood flow sufficiently to detect a 

measurable effect upon V̇O2 kinetics during severe-intensity exercise, although vasodilation 

responses may already have been maximised by the severe-intensity exercise stimulus. 

 

3.7 Conclusion 

In the present study, seven days supplementation with a flavanol-rich cocoa-extract resulted in 

a reduced τV̇O2 during moderate-, but not severe-intensity exercise in normotensive, middle-

aged adults. Whilst the O2 cost of exercise was similar between CF and PL conditions, the 

phase II V̇O2 kinetics were sped at the onset of moderate-intensity exercise after acute CF 

intake. Such effects on phase II V̇O2 kinetics were not found during severe-intensity exercise 

with CF. Whilst the mechanism(s) responsible for CFs effects upon phase II V̇O2 kinetics are 

not known, subsequent chapters in this thesis will determine whether flavonoids impact 

vascular endothelial and skeletal muscle cell function. Overall, CF supplementation may 

reduce the metabolic perturbations associated with moderate-intensity exercise in middle-aged 

adults through speeding phase II V̇O2 kinetics. 
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4.1 Abstract 

Introduction: Sedentary ageing is associated with impaired vascular endothelial function that 

is characterised by lowered nitric oxide (NO) bioavailability. Several factors contribute to 

lowered NO bioavailability with older age, including increased production of reactive oxygen 

species (ROS), mitochondrial dysfunction and altered cell signalling. Flavonoids may mitigate 

oxidative stress and interact with mitochondria in vivo, but their effects on vascular endothelial 

cells in vitro are poorly understood. 

Objective(s): The primary objectives of this study were: 1) To examine whether flavonoid 

treatment modulates ROS production and NO bioavailability of human vascular endothelial 

cells (HUVECs). 2) To investigate the impact of flavonoid treatment on indices of 

mitochondrial function and cell signalling of HUVECs. It was hypothesised that flavonoids 

would attenuate ROS production, increase NO bioavailability and enhance indices of 

mitochondrial function and cell signalling. 

Methods: HUVECs were treated with the flavonoids quercetin (Q), epigallocatechin-gallate 

(EGCG) or (-)-epicatechin (EPI) at micromolar concentration for up to 48 h. Mitochondrial 

and non-mitochondrial specific ROS was measured in the absence and presence of antimycin 

A (AA). Genes associated with mitochondrial remodelling and the antioxidant response were 

quantified over 48 h using RT-qPCR. Mitochondrial bioenergetics were investigated by 

respirometry after 24 h and signalling responses examined, by western blotting, in the presence 

or absence of EPI. 

Results: In the absence of AA, MitoSOX oxidation was 54% lower, but 280% higher vs. CTRL 

with 5 and 10 µM Q (P=0.035 and P=0.011, respectively). EGCG lowered MitoSOX oxidation 

by ~85% in the absence of AA (P<0.0001), regardless of dose. With AA, 5 and 10 µM EGCG 

lowered MitoSOX oxidation by 42 and 74%, respectively (P<0.0001). MitoSOX oxidation 

without AA was increased 32% and decreased 53% after 5 and 10 µM EPI vs. CTRL. With 

AA, only 10 µM EPI increased MitoSOX oxidation vs. CTRL (25%, P<0.0001). NO 

bioavailability was increased by 45% with 10 µM EPI vs. CTRL (P=0.01). NRF2 expression 

was increased 1.5- and 1.6-fold with 5 and 10 µM EPI over 48 h vs. CTRL (P=0.015 and 

P=0.001, respectively). However, flavonoids did not impact mitochondrial respiration. EPI 

transiently increased ERK1/2 signalling (2.9 and 3.2-fold over 15 min and 1 h vs. 0 h, 

respectively; P=0.035 and P=0.011) and suppressed AMPK. 

Conclusion(s): Despite flavonoids differentially impacting mitochondrial ROS production and 

gene expression profiles in HUVECs, they did not directly modulate mitochondrial respiration. 
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EPI may afford mitochondrial adaptations via induction of NO, NRF2 and ERK1/2 signalling, 

independent of AMPK activation. EPI shows potential as a hormetic compound and requires 

further study in the context of sedentary ageing. 
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4.2 Introduction 

One of the primary limitations to V̇O2 kinetics in older adults is alleged to reside along the O2 

transport pathway (Murias & Paterson, 2015a). Indeed, both reduced flow and altered 

distribution of microvascular blood to glycolytic (type II) skeletal muscle fibres contributes to 

reduced O2 delivery during exercise (Behnke & Delp, 2010b; Muller-Delp et al., 2002b; Murias 

et al., 2010b; Musch et al., 2004b). Consequently, the precise coupling of metabolic demand 

with O2 delivery is dysregulated in older age, which exacerbates the O2 deficit during the rest-

to-work transition (Alexander et al., 2003b; Murias et al., 2010b). The vascular endothelium 

plays a central role in the regulation of vasodilation and blood flow (and therefore O2 delivery), 

but advancing age is known to impair endothelium-dependent vasodilation (Celermajer et al., 

1994; Thijssen et al., 2006; Vita et al., 1990), which is partly dependent on lowered NO 

bioavailability (Singh et al., 2002b; Taddei et al., 2000b).  

 

Nitric oxide is essential for vasodilatory responses, and its availability in the endothelium is 

modulated by eNOS content, activation and the production of ROS (Cernadas et al., 1998a; 

Chou et al., 1998; Donato et al., 2007b, 2009b). Critically, the ageing vascular phenotype is 

characterised by lowered eNOS expression and activity (Cernadas et al., 1998b; Chou et al., 

1998; Donato et al., 2009a). In addition, the ageing vasculature is associated with increased 

ROS production and elevated oxidative stress (Csiszar et al., 2002b, 2007; Donato et al., 2007b; 

Hamilton et al., 2001; Jablonski et al., 2007; Sun et al., 2004; Van Der Loo et al., 2000b), that 

may be cytosolic (Adler et al., 2003b; Csiszar et al., 2002a; Van Der Loo et al., 2000a) and/or 

mitochondrial in origin (Donato et al., 2007a; Durrant et al., 2009a; Ungvari et al., 2007; Zhou 

et al., 2009). 
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Although endothelial cells are considered to meet two thirds of their energy requirements via 

glycolysis (Culic et al., 1997), mitochondrial dysfunction can pose significant challenges to the 

maintenance of vascular endothelial cell health. For instance, ageing is associated with lowered 

mitochondrial contents in endothelial cells of conduit and feed arteries, as well as capillaries 

(Burns et al., 1979; Park et al., 2018b; Park et al., 2018; Ungvari et al., 2008a). Reductions in 

vascular endothelial mitochondrial protein with older age may be due to blunted transcriptional 

responses (Park et al., 2018; Ungvari et al., 2008a), as a result of diminished NO bioavailability 

(Gouill et al., 2007; Miller et al., 2013) and/or lowered AMP-activated protein kinase (AMPK) 

signalling (Lesniewski et al., 2012). Consequently, aged organelles exhibit impaired 

bioenergetics compared to young counterparts. Indeed, the mitochondrial oxidative respiratory 

capacity and coupling efficiency of aged human skeletal muscle feed arteries is lowered in 

middle-aged (55 years) and old (70 years) adults compared to young (Park et al., 2018b, 2020). 

Taken together, vascular endothelial mitochondria and ROS may represent therapeutic targets 

for interventions aimed at improving vascular endothelial function in advancing age. 

 

Dietary flavonoids are a class of polyphenols linked with positive health effects, particularly 

in relation to cardiovascular function (Arts et al., 2001; Hertog et al., 1993b). Whilst the 

antioxidant potential of flavonoids has long been appreciated (Williamson et al., 2018), less is 

known about their potential interaction with mitochondria. Interestingly, flavonoids have been 

reported to interact with mitochondrial proteins (Lagoa et al., 2011; Lang & Racker, 1974a; 

Zheng & Ramirez, 2000a), and even regulate mitochondrial bioenergetics (Dorta et al., 2005; 

Keller et al., 2020; Rowley et al., 2017a). Although the potential of flavonoids to interact with 

these organelles is recognised, the precise mode of action of flavonoids on vascular endothelial 

mitochondria is not known, with only limited data available on how specific flavonoids such 

as quercetin (Q), epigallocatechin-gallate (EGCG) and (-)-epicatechin (EPI) modulate 

Commented [CS139]: Production or availability? 

Commented [CS140]: Age and gender 

Commented [CS141]: Age and gender 

Commented [CS142]: Initial reference with his finding or a 
current review 

Commented [CS143]: If this is spelled out on the first use in 
each chapter, you can just use the abbreviations here for all 
flavonoids. 



 

 142 

mitochondrial bioenergetics in vascular endothelial cells. In chapter 3, cocoa-flavanol 

supplementation sped phase II pulmonary oxygen uptake (V̇O2) kinetics during moderate-

intensity exercise, but the underlying mechanisms are not well understood.  

 

To this end, the primary aim of this study was to use dietary flavonoids to enhance 

mitochondrial function and attenuate ROS production in human vascular endothelial cells (see 

Figure 4.1). The two main study objectives were: 1) To examine whether flavonoid treatment 

modulates ROS production and NO bioavailability of HUVECs. 2) To investigate the impact 

of acute flavonoid treatment on indices of mitochondrial function and cell signalling in 

HUVECs. We hypothesised that flavonoid treatment would attenuate ROS production, 

augment NO bioavailability and enhance indices of mitochondrial function and signalling of 

HUVECs. 

 

 
Figure 4. 1 Schematic of the cellular and molecular processes investigated in this study. 
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4.3 Methodology 

4.3.1 Cell culture and treatment 

Human umbilical endothelial vein endothelial cells (HUVECs; Thermo Fisher Scientific, 

Waltham, MA, USA) were purchased from), at passages 3-7 were used in this study. HUVECs 

were not passaged more than 8 times because changes in HUVEC phenotype can occur with 

multiple population doublings, that ultimately lead to cell senescence (Chang et al., 2005; 

Cheung, 2007; Grillari et al., 2000). For standardised cell culture procedures, see section 2.4. 

Following the plating of cells onto appropriate well-plates in complete endothelial cell growth 

medium (EGM; Cell Applications Inc, San Diego, CA, USA), ~80% confluent HUVECs were 

washed twice with D-PBS and switched to pre-warmed (37°C) EGM in the absence, or 

presence of specific concentrations of Q, EGCG and EPI (0-20 µM) over 24 h (cell viability, 

ROS production, NO bioavailability, gene expression, respiration and western blotting) and 48 

h (gene expression) with Q, EGCG and EPI (0-20 µM). Gene expression was quantified over 

48 h to understand whether repeated flavonoid doses over a longer time course would alter 

mRNA levels, which would somewhat mimic the repeated ingestion of cocoa flavanols over 

days in Chapter 3. 

 

4.3.2 Cell viability assay 

The fluorescent CyQUANT® Proliferation Assay kit was used to determine cell viability. 

HUVECs were grown to 60-70% confluency in Endothelial Cell Growth Medium (EGM) (Cell 

Applications Inc, San Diego, USA) in 96-well plates. Cells were dosed for 24 h in EGM +/- Q, 

EGCG or EPI at 0-20 µM. After 24 h, wells were aspirated, washed twice with Dulbecco's 

phosphate-buffered saline (D-PBS), and then frozen immediately at -80°C. On the day of the 

assay, plates were thawed at room temperature and 100 µL CyQUANT® GR dye/cell-lysis 
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buffer was added to each well. Plates were gently mixed on an orbital shaker (80 rpm) for 5 

minutes protected from light. Sample fluorescence was measured using a CLARIOStar Plate 

Reader (BMG Labtech, Ortenberg, Germany) with Excitation 485-12 and Emission EM520 

filters in bottom reading, well scanning mode. 

 

4.3.3 MitoSOX assay 

Mitochondrial derived superoxide was detected in adherent HUVECs using MitoSOX (Thermo 

Fisher Scientific, Waltham, USA), a hydroethidine probe which is targeted to the mitochondria 

by a conjugated triphenyl-phosphonium moiety. In the presence of mitochondrial superoxide, 

and to some extent hydrogen peroxide (Robinson et al., 2006; Zielonka & Kalyanaraman, 

2010), MitoSOX is oxidised to fluorescent products which are readily detected 

fluorometrically. HUVECs were seeded at 3 × 104 cells/mL in 12-well microplates and at ~80% 

confluence (typically 48 h later), washed in Krebs-Ringer buffer (KRH; 135 mM NaCl, 3.6 

mM KCl, 10 mM HEPES (pH 7.4), 0.5 mM MgCl2, 1.5 mM CaCl2, 0.5 mM NaH2PO4, 2 mM 

glutamine and 5 mM D(+)-glucose) prior to incubation at 37ºC for 30 minutes, with or without 

15 µM of the complex III inhibitor antimycin A (AA) as a positive control. Next, AA-

containing KRH was removed and MitoSOX was loaded into cells in fresh pre-warmed KRH 

to a final concentration of 2.5 µM. Plates were immediately transferred to a multimode plate 

reader (ClarioStar, BMG Labtech), and fluorescence was monitored continuously at 30-sec 

intervals over 30 min. Fluorescent MitoSOX oxidation products were excited at 510 nm and 

light emission was detected at 580 nm. The plate reader’s focal height and gain were optimised 

and fixed between different experiments. Since MitoSOX is primarily oxidised by 

mitochondrial superoxide, the rate at which mitochondrial superoxide was produced could be 

determined from the slope of the resultant progress curve over the 30-minute period post 

MitoSOX loading. Upon completion of the 30-min reading, plates were immediately fixed for 
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the determination of cell density by the SRB assay (see section 2.14), which was used to 

normalise obtained fluorescence values. 

 

4.3.4 CellROX Assay 

Cellular reactive oxygen species (ROS) were detected using the CellROX® Deep Red reagent 

by spectrophotometry. The cell-permeant dye is non-fluorescent while in a reduced state and 

exhibits bright fluorescence upon oxidation by cellular ROS. Briefly, HUVECs were seeded at 

3 × 104 cells/mL into 12-well microplates and at ~80% confluence treated with flavonoids for 

24 h. After treatment, HUVECs were washed in Krebs-Ringer buffer (KRH) with or without 

15 µM antimycin A (AA) and incubated at 37ºC for 30 minutes, prior to KRH removal and 

CellROX loading using fresh, pre-warmed KRH buffer, to a final concentration of 2.5 µM. 

Following 30 minutes CellROX incubation, cells were washed 2 × with D-PBS and 

immediately transferred to a plate reader (ClarioStar, BMG Labtech), where fluorescent 

CellROX oxidation products were excited at 640 nm and light emission detected at 665 nm. 

The plate reader’s focal height and gain were optimised and fixed between experiments. Upon 

completion of the reading, plates were immediately fixed for the determination of cell density 

by the SRB assay (see section 2.14, Chapter 2), which was used to normalise obtained 

fluorescence values. 

 

4.3.5 DAF-FM (Nitric oxide detection) 

For the determination of intracellular NO bioavailability, HUVECs were plated in gelatin-

coated 12-well plates in EGM and incubated (37°C, 5% CO2) until ~80% confluency. Once 

confluent, cells were treated with 0, 5 or 10 µM Q, EGCG or EPI for 24 h. After treatment, 

HUVECs were washed 2 × with D-PBS and loaded with DAF-FM™ diacetate (4-amino-5-

methylamino- 2′,7′-difluorofluorescein diacetate; Molecular Probes, Invitrogen). Cells were 
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loaded with DAF-FM™ to a final concentration of 1 µM in KRH buffer and incubated at 37°C 

for 45 minutes protected from light. Following dye loading, cells were washed 2 × with D-PBS 

and immediately trypsinised prior to pelleting and resuspension in D-PBS, before measuring 

sample fluorescence by flow cytometry (BD Accuri C6, BD Biosciences, Wokingham, UK). 

Data were recorded from 5,000 events. 

 

4.3.6 RT-qPCR – Gene expression quantification 

HUVECs were lysed in 125 uL TRIzol and total RNA was then extracted using the phenol-

chloroform method (see section 2.12.1). RNA concentration (300.5 ± 101.1 ng/uL; n=3, in 

duplicate, per condition) and purity (1.96 ± 0.14 A260/A280) were determined by 

spectrophotometry (NanoDrop™ 2000, Thermo Fisher Scientific, Waltham, USA). Samples 

were diluted in nuclease-free H2O to a concentration of 7.95 ng/μL, enabling the addition of 

35 ng RNA per PCR. Total reaction volume equalled 10 μL/sample, which contained 5.6 μL 

of master mix (5 μL QuantiFast Sybr® Green, 0.5 μL primer, 0.1 μL reverse transcriptase) and 

4.4 μL RNA sample. Specific primers used in each PCR are outlined in Table 4.1. After 

preparation, reaction tubes (Qiagen, UK) were transferred to a Rotor-Gene Q PCR thermal 

cycler for product amplification using a one-step protocol (QuantiFast SYBR® Green RT-PCR 

Kit, Qiagen, UK). The amplification protocol was as follows: reverse transcription (10 minutes 

at 50°C), transcriptase inactivation and initial denaturation (95°C for 5 min) followed by 40 × 

amplification cycles consisting of: 95°C for 10 s (denaturation) and 60°C for 30 s (annealing 

and extension); followed by melt curve detection. Critical threshold (CT) values were derived 

from setting a threshold of 0.09 for all genes (see Figure 2.8). The amplification efficiencies 

were analysed for all reactions (90.0 ± 4.7%) and values between 80-100% were accepted as 

efficient. To quantify gene expression, CT values were used to quantify relative gene expression 

using the comparative Delta Delta CT (2-ΔΔCT) equation (Livak & Schmittgen, 2001), whereby 
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the expression of the gene of interest was determined relative to the internal reference gene 

(RPL13a) in the treated sample, compared with the untreated zero-hour control.  

 

Table 4. 1 Primer sequences for homo sapiens with product length. All primers were used 

under the same cycling conditions. 

Gene Accession 
Sequence 

Forward/Reverse or Anchor Nucleotide 

Product 
length 
(bp) 

RPL13a NM_012423.4  

 

F: GGCTAAACAGGTACTGCTGGG  
R: GGAAAGCCAGGTACTTCAACT  
 

104 

CAT NM_001752 AN: 1649 134 

SOD2 NM_000636 AN: 194 132 

DNM1L 
(DRP1) 

NM_012062.5 F: CACCCGGAGACCTCTCATTC 
R: CCCCATTCTTCTGCTTCCAC 

99 

MFN2 NM_014874.4 F: CCCCCTTGTCTTTATGCTGATGT 
R: TTTTGGGAGAGGTGTTGCTTATT 

168 

PPARGC1A 
(PGC-1α) 

NM_001330751.2 F: TGCTAAACGACTCCGAGAA  
R: TGCAAAGTTCCCTCTCTGCT 

67 

SIRT1 NM_012238 
 

AN: 1382 109 

TFAM NM_003201 AN: 462 143 

NOS3 (eNOS) NM_000603.5 F: AACTATTTCCTGTCCCCGGC  
R: AGGATTGTCGCCTTCACTCG 

173 

CYBB 
(NOX2) 

NM_000397.4 F: GGGCTGTTCAATGCTTGTGG 
R: GGCCCATCAACCGCTATCTT 

80 

NOX4 NM_016931.5 F: CAGTCCTTCCGTTGGTTTGC  
R: CAAAAGTTTCCACCGAGGACG 

189 

PRKN 
(PARKIN) 

NM_004562 
 

AN: 747 91 

GABPA 
(NRF2) 

NM_002040.4 F: AAATTGAGATTGATGGAACAGAGAA 
R: TATGGCCTGGCTTACACATTCA 

95 
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4.3.7 Mitochondrial Bioenergetics 

Mitochondrial respiration was measured in adherent HUVECs using a Seahorse XFe24 

Analyzer (Agilent, Santa Clara, CA, USA). HUVECs (passages 4-6) were seeded in XFe24 

well plates (Agilent, Santa Clara, CA, USA) at 30,000 cells per well in 200 µL EGM over 48 

h for measurements. After 48 h, HUVECs were washed twice with D-PBS and replaced with 

fresh EGM containing 0, 5 and 10 µM of Q, EGCG or EPI for 24 hours. Sensor cartridges for 

the XFe24 Analyzer were hydrated by loading each well with 1 mL XF Calibrant (Agilent, 

Santa Clara, CA, USA) solution at 37°C in a non-CO2 incubator in the 24 h preceding the assay.  

 

On the day of the assay, HUVECs were washed with 500 µL pre-warmed unbuffered 

Dulbecco's Modified Eagle Medium (DMEM) (Agilent, Santa Clara, CA, USA), pH 7.4. The 

cells were incubated in this buffer for 45 minutes at 37°C in a non-CO2 incubator and then 

transferred to a Seahorse XFe24 extracellular flux analyser (maintained at 37°C). After an 

initial 10-minute calibration, oxygen consumption rates (OCR) were measured by a 3-4 loop 

cycle consisting of a 1-min mix, 2-min incubate and 3-min measure to record cellular basal 

respiration. After measuring basal respiration, 2 mM oligomycin was added to selectively 

inhibit the mitochondrial ATP synthase. Subsequently, 3 µM BAM15 and a mixture of 2 µM 

rotenone and 2 µM antimycin A were added sequentially to, respectively, 1. uncouple oxygen 

consumption rates with ATP synthesis rates to determine maximal respiration or 2. inhibit 

complex I and III of the electron transport chain to determine non-mitochondrial respiration. 

Rates of oxygen consumption and extracellular acidification (ECAR) were expressed relative 

to the cell number of the appropriate well. Three independent experiments were performed to 
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assess mitochondrial respiration, each containing at least two technical replicates. The Wave 

software native to the XF Analyzer was used to extract OCR’s and ECAR. 

 

4.3.8 SDS-PAGE and immunoblotting 

Total protein and phosphoprotein levels were detected in HUVECs by Western blot (see 

section 2.13 for further details). Following treatment (vehicle CTRL or 5 µM EPI), HUVECs 

were lysed and scraped in ice-cold 1x radioimmunoprecipitation assay (RIPA) buffer 

containing: 25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate and 

0.1% SDS, supplemented with 1x Protease Inhibitor Cocktail Set V (Merck Life Science, UK). 

Cell lysates were centrifuged for 15 minutes at 18,000 × g (4°C) and the supernatant was stored 

at -80°C before analyses for total protein. Protein concentrations of samples were determined 

by the Pierce BCA™ assay (section 2.15), and samples were subsequently resuspended in 4x 

Laemmli buffer (Bio-Rad laboratories, Hertfordshire, UK) containing reducing agent (1x 

working concentration: 31.5 mM Tris-HCl [pH 6.8], 10% glycerol, 1% SDS, 0.005% 

Bromophenol Blue and 355 mM 2-mercaptoethanol). Samples (22.5 μg) were loaded and 

electrophoresed on 10% SDS-stain-free polyacrylamide gels. Semi-dry transfer of proteins to 

a nitrocellulose membrane was performed using the Trans-Blot® Turbo™ Transfer System. 

Following blocking for 1-hour in Tris-buffered saline Tween-20 (TBS-T) containing 5% non-

fat dried milk (NFDM), membranes were incubated overnight with rabbit anti-phosphorylated 

or total antibodies: CaMKII, pThr286-CaMKII, AMPKα, pThr172-AMPK, p44/42 MAPK, 

pThr202/Tyr204-p44/42 MAPK, eNOS and pSer1177-eNOS, at a dilution of 1:500-1:4000 

(see table 4.2; all antibodies were tested at different dilutions for optimisation purposes before 

the experimental gels were run) in 5% bovine serum albumin (BSA) made up in TBS-T (Cell 

Signaling Technology, London, UK). After overnight incubation, the membrane was washed 

3 times in TBS-T for 5 minutes and incubated for 1 hour in HRP-conjugated anti-rabbit 
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antibodies (Cell Signaling Technology, London, UK) at dilution of 1:5000-1:10,000, following 

appropriate optimisation. Proteins were visualised by enhanced chemiluminescence (Thermo 

Fisher Scientific inc, Waltham, USA) and quantified by densitometry (ChemiDoc™ MP 

imaging system, Bio-Rad Laboratories, Inc. CA, USA). Stain-free image bands were measured 

for total lane protein levels so that bands of targeted proteins could be normalised to total 

protein in the relevant lane. Detected phosphorylated proteins were normalised to their total 

protein expression before being compared between experimental conditions.  

 

Table 4. 2 List of antibodies and dilutions used. 
Antibody Primary Ab Dilution Secondary Ab Dilution Company 

CaMKII 1:1000 1:5000 Cell Signaling Technology 

pThr286-CaMKII 1:500 1:5000 Cell Signaling Technology 

AMPKα 1:1000 1:5000 Cell Signaling Technology 

pThr172-AMPK 1:1000 1:10,000 Cell Signaling Technology 

p44/42 MAPK 1:2000 1:10,000 Cell Signaling Technology 

pThr202/Tyr204-
p44/42 MAPK 1:2000 1:10,000 Cell Signaling Technology 

eNOS 1:500 1:5000 Cell Signaling Technology 

pSer1177-eNOS 1:500 1:5000 Cell Signaling Technology 

 

4.3.9 Statistical analysis 

One-way ANOVAs were performed for specific flavonoids separately, using dose as the main 

factor. Two-way ANOVAs were performed to determine statistical significance when using 

two main independent factors in the following experiments: ROS production, with dose and 

antimycin A as factors; RT-qPCR, using dose and time as factors; and western blotting, where 

treatment and time were the main factors. Multiple comparisons were performed to determine 

differences between experimental conditions by adjusting for multiple tests, using Dunnett’s 
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or Sidak’s test where appropriate. All data are presented as mean ± SEM and significance 

accepted when P<0.05. 

 
 
4.4 Results 

4.4.1 Flavonoids do not impair vascular endothelial cell viability 

Firstly, a cell number standard curve was generated to convert sample fluorescence values into 

cell numbers, where the coefficient of correlation (R2) was 0.988 (see Figure 4.2). 

 

Figure 4. 2 Standard curve generated for HUVECs using CyQUANT® Cell Proliferation 

Assay. Cells were seeded at densities of 0-50,000 cells per well and grown in EGM for 48 h 

before performing the assay. 

 

After 24 h dietary flavonoid treatments (0-20 µM dose responses), no main effect of dose was 

found on cell viability (measured by cell density) in the presence of Q (P=0.095) and EGCG 

(P=0.142; Figure 4.3). However, in the presence of EPI, there was a significant main effect of 

dose on cell viability (P=0.018). Multiple comparisons revealed that only 0.5 µM Q increased 

cell viability 37% compared to CTRL conditions (P=0.03). Given that the flavonoid doses 

tested did not cause cell toxicity, along with the knowledge of attainable in vivo flavonoid 
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concentrations (up to 10 µM), subsequent experiments were conducted with doses of 5 and 10 

µM.  

 

Figure 4. 3 Vascular endothelial cell viability is not impaired by acute flavonoid treatment. 

HUVECs were treated with 0-20 µM A) Quercetin, B) EGCG or C) EPI for 24 h. Data are 

means±SEM, representative of 3 independent repeats with 3 replicates of each condition. 

Statistical significance was tested for by one-way ANOVA and Dunnett’s test for multiple 

comparisons. *P<0.05. a Significant main effect of dose (P<0.05). 

 

 

4.4.2 Mitochondrial ROS production is differentially impacted by flavonoids in vascular 

endothelial cells 
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Having ascertained that physiological flavonoid concentrations do not cause toxicity to 

vascular endothelial cells, experiments were performed to investigate whether flavonoids, in 

the absence or presence of the complex III inhibitor Antimycin A (AA), regulate vascular 

endothelial cell ROS emission. These experiments were performed with the knowledge dietary 

flavonoids may have antioxidant properties that contribute to their health benefits in vivo.  

 

4.4.2.1 Quercetin dose-dependently modulates mitochondrial ROS production 

There was a significant main effect of dose (P<0.0001) and AA (P<0.0001) on rates of 

MitoSOX oxidation in Q treated endothelial cells, and a significant dose × AA interaction 

(P<0.0001). Post-hoc tests revealed that AA significantly increased the rate of MitoSOX 

oxidation under CTRL conditions (-AA: 8.1×10-5 ± 0.2×10-5 vs. +AA: 35.4×10-5 ± 0.5×10-5 

RFU/sec-1/cell-1; P<0.0001). In the absence of AA, 5 and 10 µM Q significantly decreased and 

increased MitoSOX oxidation, respectively, compared to -AA CTRL (CTRL: 8.1×10-5 ± 

0.2×10-5; 5 µM Q: 3.7×10-5 ± 0.2×10-5; 10 µM Q: 30.7×10-5 ± 0.4×10-5 RFU/sec-1/cell-1; 

P<0.0001; see Figure 4.4B). In the presence of AA, rates of MitoSOX oxidation were 

significantly increased with 5 and 10 µM Q versus +AA CTRL (CTRL: 35.4×10-5 ± 0.49×10-5 

RFU/sec-1/cell-1; 5 µM Q: 38.1×10-5 ± 0.4×10-5; 10 µM Q: 56.1×10-5 ± 0.8×10-5; P=0.0005 and 

P<0.0001, respectively).  

 

4.4.2.2 EGCG attenuates mitochondrial ROS production 

There was a significant main effect of dose (P<0.0001) and AA (P<0.0001) on rates of 

MitoSOX oxidation in EGCG treated endothelial cells, and a significant dose × AA interaction 

(P<0.0001). In EGCG treated endothelial cells, MitoSOX oxidation rates were attenuated 
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across conditions with and without AA (see Figure 4.4B). In the absence of AA, MitoSOX 

oxidation rates were significantly lower with 5 and 10 µM EGCG versus -AA CTRL (5 µM 

EGCG: 0.6×10-5 ± 0.1×10-5 and 10 µM EGCG: 0.7×10-5 ± 0.1×10-5 vs. CTRL: 4.5×10-5 ± 

0.1×10-5 RFU/sec-1/cell-1; P<0.0001 and P<0.0001, respectively). Similarly, in the presence of 

AA, MitoSOX oxidation rates was significantly lowered with 5 and 10 µM EGCG versus +AA 

CTRL (5 µM EGCG: 14.2×10-5 ± 0.3×10-5 and 10 µM EGCG: 6.3×10-5 ± 0.2×10-5 vs. CTRL: 

24.5×10-5 ± 0.3×10-5 RFU/sec-1/cell-1; P<0.0001 and P<0.0001, respectively).  

 

4.4.2.3 EPI dose-dependently modulates mitochondrial ROS production 

There was a significant main effect of dose (P<0.0001) and AA (P<0.0001) on rates of 

MitoSOX oxidation in EPI treated endothelial cells, and a significant dose × AA interaction 

(P<0.0001). Post-hoc comparisons revealed that, in the absence of AA, 5 and 10 µM EPI 

significantly increased and decreased rates of MitoSOX oxidation compared to -AA CTRL, 

respectively (CTRL: 8.1×10-5 ± 0.2×10-5; 5 µM EPI: 10.7×10-5 ± 0.2×10-5; 10 µM EPI: 3.8×10-

5 ± 0.2×10-5 RFU/sec-1/cell-1; P<0.0001). In the presence of AA, 5 µM EPI did not affect 

MitoSOX oxidation versus +AA CTRL (5 µM EPI: 35.4×10-5 ± 0.4×10-5 vs. CTRL: 35.4×10-5 

± 0.5×10-5 RFU/sec-1/cell-1; see Figure 4.4C). Whereas 10 µM EPI significantly increased rates 
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Figure 4. 4 Dietary flavonoids differentially impact the rate of mitochondrial ROS production 

in vascular endothelial cells. MitoSOX oxidation rates were determined in HUVECs in the 

absence of presence of Q, EPI or EGCG. Cells were treated for 24 h with 0, 5 and 10 µM Q, 

EGCG or EPI. After 24 h, cells were incubated with or without antimycin A for 30 minutes, 

before MitoSOX was loaded into cells (2.5 µM final concentration). Rates of MitoSOX 

oxidation were measured in 30 second intervals over 30 minutes in a plate reader and 

normalised to cell density. A) Q treated; B) EGCG treated and C) EPI treated. Data are means 

± SEM of three independent repeats with two replicates per treatment. Statistical significance 

was tested for by a two-way ANOVA, with dose and antimycin A as factors: a Significant main 

effect of dose; d Significant main effect of AA (P<0.05). ***P<0.001 and **** P<0.0001. 
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4.4.3 Non-mitochondrial specific ROS production is not impacted by flavonoid 

treatment  

Following the findings that rates of MitoSOX oxidation were differentially impacted by 

flavonoid treatment, the emission of cellular ROS (not mitochondrial-specific) was determined 

with and without dietary flavonoids. In Q treated endothelial cells, there was no main effect of 

dose, but a significant main effect of AA (P=0.0003; see Figure 4.5A). Whilst there was an 

upward trend in ROS production in the presence of 10 µM Q and AA versus AA alone, this 

did not reach statistical significance (CTRL +AA: 6.32 ± 0.70 vs. Q 10 µM + AA: 9.27 ± 2.15 

RFU/Cell-1; P=0.073). With EGCG treatment, there was a main effect of dose (P=0.030) and 

AA (P<0.0001). Multiple comparisons revealed no significant main effect of EGCG treatment 

on ROS production between conditions (see Figure 4.5B). In EPI treated cells, there was a 

significant main effect of AA only (P<0.0001).  
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Figure 4. 5 Dietary flavonoids do not regulate ROS production in vascular endothelial cells. 

CellROX oxidation was determined in HUVECs in the absence of presence of A) Q, B) EGCG 

or C) EPI. Cells were treated over 24 h with 0, 5 and 10 µM Q, EGCG or EPI After 24 h, cells 

were incubated with or without antimycin A for 30 minutes, before CellROX was loaded into 

cells (2.5 µM final concentration). CellROX oxidation was measured at 640/665 nm (Ex/Em) 

in a plate reader and normalised to cell density. Data are means ± SEM of three independent 

repeats with two replicates per treatment. Statistical significance was tested for by a two-way 

ANOVA, with dose and antimycin A as factors for each flavonoid individually: a Significant 

main effect of dose; d Significant main effect of AA (P<0.05). 

 

 

Together, these findings demonstrate divergent effects of flavonoids on the rate of 

mitochondrial ROS production, and further, demonstrate no role for flavonoids in the emission 

of cellular ROS. Of the flavonoids tested, Q and EPI demonstrated dose-dependent effects on 

ROS production in the absence of AA. Whereas EGCG lowered the rate of mitochondrial ROS 

production, regardless of dose and the presence of AA. 

  

4.4.4 Flavonoids differentially impact the production of nitric oxide in vascular 

endothelial cells 
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After describing the effects of flavonoids on (mitochondrial and non-mitochondrial specific) 

ROS emission, NO production was investigated with and without flavonoid treatment. There 

was no main effect of Q dose on NO levels (see Figure 4.6). Although, there was a significant 

main effect of dose on NO levels in EGCG and EPI treated vascular endothelial cells (P=0.035 

and P=0.003, respectively). Multiple comparisons revealed no significant impact of EGCG 

treatment on NO levels (see Figure 4.6). Whilst 5 µM EPI did not impact NO production (5 

µM EPI: 2.78×105 ± 0.20×105 vs. CTRL: 3.02×105 ± 0.18×105 AU; P=0.784), 10 µM EPI 

significantly increased NO production compared to CTRL conditions (10 µM EPI: 4.38×105 ± 

0.43×105 vs. CTRL: 3.02×105 ± 0.18×105 AU; P=0.010). 

 

Figure 4. 6 Flavonoid supplementation distinctly affects intracellular nitric oxide in vascular 

endothelial cells. NO levels (DAF-FM oxidation) were determined in HUVECs in the absence 

and presence of Q, EGCG and EPI. Cells were treated with 0, 5 and 10 µM of flavonoids for 

24 h. After 24 h, cells were trypsinised and resuspended in PBS. Median fluorescence intensity 

was determined with background signal (cell-free signal) subtracted. Data are presented as 

means ± SEM of three independent repeats with two replicates per experimental condition. 

Statistical significance was tested for by one-way ANOVA for each flavonoid separately, and 

multiple comparisons by Dunnett’s multiple comparison test. *P<0.05 significant versus 

CTRL. 
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4.4.5 Dietary flavonoids differentially impact the expression of genes associated with 

energy metabolism in vascular endothelial cells 

In light of findings that flavonoids distinctly impact the rate of mitochondrial ROS emission 

and NO production, experiments were performed to resolve whether flavonoids regulate genes 

linked with mitochondrial function and the antioxidant response in vascular endothelial cells. 

 

 

Figure 4. 7 Heatmap representation of vascular endothelial cell mRNA responses in the 

absence of presence of flavonoids. Fold changes (2-ΔΔCT) in gene expression over 48 h 

presented as heat map. 

 

 

A visual overview of the mRNA responses to flavonoid treatment can be seen in Figure 4.7. 

Firstly, the expression of genes associated with the antioxidant response were quantified. There 

was no effect of dose or time on catalase expression in Q and EPI treated endothelial cells (see 

Figure 4.8A). Though, a main effect of time on catalase expression was found in EGCG treated 

cells (P=0.032). Multiple comparisons revealed a 5 µM ECGG increased catalase expression 

2.4-fold compared to CTRL conditions over 48 h (P=0.029). Similarly, a 2.6-fold increase in 
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catalase expression over 24 h was found with 5 µM EPI over versus CTRL conditions 

(P=0.045). No main effect of dose or time was observed on SOD2 mRNA abundance in Q and 

ECGG treated cells. Though, there was a significant effect of time on SOD2 expression in EPI 

treated cells only (P=0.024). Multiple comparisons revealed that SOD2 expression was 

increased 2.1-fold in the presence of 10 µM EPI versus CTRL conditions (P=0.040). There 

was no main effect of dose or time on eNOS expression in the presence of Q, EGCG or EPI. 

Multiple comparisons revealed that eNOS expression was decreased 1.9-fold with 5 µM EGCG 

compared to CTRL (P=0.032). There was a significant main effect of dose and time on NOX4 

expression in Q and EPI treated cells, respectively (P=0.015 and P=0.006). Over 48 h, 5 µM 

Q increased NOX4 expression 3.4-fold compared to CTRL (P=0.0190). A significant main 

effect of dose was found on NRF2 expression in the presence of EPI (P=0.0003), but not Q or 

EGCG (see Figure 4.8E). NRF2 mRNA abundance was increased 1.5-fold and 1.6-fold with 5 

and 10 µM EPI over 48 h when compared to CTRL (P=0.015 and P=0.001, respectively). 
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Figure 4. 8 Expression of genes associated with the antioxidant response in vascular 

endothelial cells following acute dietary flavonoid treatment. HUVECs were treated with 0, 5 

and 10 µM of Q, EPI or EGCG over 48 h and lysed for analysis of gene expression. A) CAT, 

B) SOD2, C) eNOS, D) NOX4 and E) NRF2. Data are means ± SEM from 3 independent 

experiments run in duplicate. Statistical significance was determined by a two-way ANOVA, 

with dose and time as factors. Multiple comparisons were performed by Dunnett’s test to 

determine differences in gene expression between conditions. a main effect of dose; b main 

effect of time (P<0.05); *P<0.05. 
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h. To investigate whether flavonoids impact mitochondrial remodelling at the level of 

transcription, gene expression was investigated with and without dietary flavonoids. 

 

Next, the expression of genes associated with mitochondrial function were quantified. In the 

presence of Q, there was no main effect of dose or time on DRP1 expression. There was a main 

effect of dose (P=0.025) and time (P<0.0001) on DRP1 expression in cells treated with EGCG 

(see Figure 4.9A), and a significant dose x time interaction (P=0.0004). Over 48 h, DRP1 

expression was increased 2.2-fold and 1.7-fold by 5 and 10 µM EGCG, respectively (P=0.0002 

and P=0.0188, respectively). In the presence of EPI, there was a significant main effect of dose 

(P=0.0180) and time (P=0.0016) on DRP1 expression. At 48 h, 10 µM EPI increased DRP1 

expression 2.2-fold compared to CTRL (P=0.010). There was a significant main effect of time 

on MFN2 expression in Q treated cells (P=0.026), and a main effect of dose on MFN2 in cells 

treated with EGCG and EPI (P=0.027 and P=0.035; see Figure 4.9B). At 24 h, 10 µM EGCG 

increased MFN2 expression 1.8-fold versus CTRL (P=0.0031). Whereas 10 µM EPI increased 

MFN2 expression 1.6-fold versus CTRL (P=0.0244). There was a significant main effect of 

time on PARKIN expression in cells cultured in the presence of Q, EGCG and EPI (P=0.001, 

P=0.015 and P=0.004, respectively). At 24 h, 5 µM EGCG increased PARKIN expression 1.3-

fold compared to CTRL (P=0.040). There was a significant main effect of dose on PGC-1α 

expression in cells cultured with Q and EGCG (P=0.023 and P<0.0001). Multiple comparisons 

revealed that PGC-1α expression was increased 2.8-fold and 2.0-fold over 24 h with 5 and 10 

µM EGCG, respectively (P<0.0001 and P=0.004, respectively). Over 48 h, PGC-1α was 

increased 2.9-fold and 2.0-fold in the presence of 5 and 10 µM EGCG compared to CTRL, 

respectively (P<0.0001 and P=0.0003, respectively). There was a significant main effect of 

dose on SIRT1 expression in cells cultured in the presence of EGCG (P=0.0007), and a 

significant dose × time interaction (P=0.0448). At 24 h, 10 µM EGCG increased SIRT1 
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expression 2.3-fold compared to CTRL (P=0.0001). There was a significant dose × time 

interaction (P=0.0013) on TFAM expression in cells cultured with Q. Multiple comparisons 

revealed no significant impact of flavonoid treatment on TFAM expression, regardless of the 

flavonoid tested. 

 
 

 
 

  

CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
0

2

4

6

8

D
RP

1 
2-Δ

Δ
 Ct

A

24 h 48 h

EGCG: a, b; a × b 
EPI: a, b

✱✱✱

✱

✱

CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
FN

2 
2-Δ

Δ
 Ct

B

24 h 48 h

Q: b
EGCG: a
EPI: a

✱✱

✱✱

CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
0

1

2

3

4

5

PA
RK

IN
 2

-Δ
Δ
 Ct

C

24 h 48 h

Q: b
EGCG: b
EPI: b

✱

CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
0

1

2

3

4

5

PG
C-

1α
  2

-Δ
Δ
 Ct

D

24 h 48 h

Q: a
EGCG: a

ns

✱✱

✱✱✱✱
✱✱✱✱

✱✱✱

Commented [CS240]: As above 



 

 164 

 
 

 

Figure 4. 9 Expression of genes associated with mitochondrial function in vascular endothelial 

cells following acute dietary flavonoid treatment. HUVECs were treated with 0, 5 and 10 µM 

of Q, EPI or EGCG over 48 h and lysed for analysis of gene expression. A) DRP1, B) MFN2, 

C) PARKIN, D) PGC-1α, E) SIRT1 and F) TFAM. Data are means ± SEM from 3 independent 

experiments run in duplicate. Statistical significance was determined by a two-way ANOVA, 

with dose and time as factors. Multiple comparisons were performed by Dunnett’s test to 

determine differences in gene expression between conditions. a main effect of dose; b main 

effect of time (P<0.05); *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

 
 
Overall, these data highlight that flavonoids are capable of increasing the expression of genes 

associated with mitochondrial function and the antioxidant stress response in vascular 

endothelial cells (see Figure 4.8). More specifically, Q increased NOX4 expression, which may 

relate to its pro-oxidant activity. On the other hand, EGCG increased the transcription of key 

genes associated with mitochondrial biogenesis and dynamics. Lastly, EPI enhanced NRF2 

expression concomitantly with increased expression of genes related to mitochondrial 

dynamics. 

 

4.4.6 Acute flavonoid treatment has limited impact on mitochondrial bioenergetics in 

vascular endothelial cells 
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Having described that flavonoids differentially impact RONS production and alter the 

expression of genes linked with mitochondrial remodelling, the impact of flavonoids on 

vascular endothelial cell bioenergetics were investigated. There was no significant main effect 

of flavonoid treatment on rates of basal respiration. Although 5 µM Q treatment caused a 34% 

reduction in basal respiration vs. CTRL, this did not reach statistical significance (P=0.096). 

Similarly, there was no main effect of treatment on maximal respiration or ADP 

phosphorylation, irrespective of the flavonoids tested (see Figure 4.10). Despite that 5 µM Q 

lowered maximal respiration and ADP phosphorylation by 26% and 37% versus CTRL, 

respectively, these did not reach statistical significance. There was no significant effect of 

treatment on proton leak, spare respiratory capacity (%) or coupling efficiency, regardless of 

the flavonoid tested. 

 

 

   

CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
0

5

10

15

20

pm
ol

 O
2/m

in
-1

/1
0,

00
0 

ce
lls

-1

Basal Respiration

P=0.096

A

CTRL

Q 5 
µM

Q 10
 µM

EGCG 5 
µM

EGCG 10
 µM

EPI 5
 µM

EPI 1
0 µ

M
0

10

20

30

40

50

pm
ol

 O
2/m

in
-1

/1
0,

00
0 

ce
lls

-1

Max RespirationB

Commented [DR243]: Your in vitro work is quite complex, 
here you introduce another stepwise approach. Therefore I 
would strongly advise you to introduce an overview figure 
what aspects you are going to study and how they are 
interrelated (introduction section) 

Commented [CS244]: Instead of Ns, put the actual P value 
in both graphs. 



 

 166 

  

  

 

 

Figure 4. 10 Mitochondrial bioenergetics of HUVECs following acute dietary flavonoid 

treatment. A) Basal respiration. B) Maximal respiration after FCCP addition. C) Proton leak. 
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D) ADP. phosphorylation. E) Spare respiratory capacity F) Spare respiratory capacity (%). G) 

Coupling efficiency (%). Data from 3 independent experiments are normalised to cell number 

(1x103) and presented as mean ± SEM. 

 

 

4.4.7 Acute dietary flavonoid treatment does not impact ATP production or proton 

efflux rates in vascular endothelial cells 

Following the examination of mitochondrial bioenergetics in the presence of dietary 

flavonoids, the impact of flavonoid treatment on JATPproduction and the contribution of JATPglyc 

and JATPox was investigated. In line with the mitochondrial respiration data, no significant 

impact of flavonoid treatment was found on absolute rates of ATPglyc production or ATPox 

production (see Figure 4.11). Likewise, there was no main effect of flavonoid treatment on 

proton production rates (see Figure 4.11B) or relative rates of ATP production (data not 

shown).  
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Figure 4. 11 ATP production and proton efflux rates in HUVECs following 24 h dietary 

flavonoid treatment. A) Rates of ATPglyc production B) ATPox production. C) Proton 

production rates. Data from 3 independent experiments are normalised to cell number (1x103) 

and presented as mean ± SEM. 

 

Overall, the findings indicate little significance of a role for dietary flavonoids in impacting 

indices of mitochondrial function in vascular endothelial cells, with similar observations at the 

level of ATP and proton production rates. 
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Figure 4.12). Accordingly, there was no main effect of treatment or time on total CaMKII 

levels, and no significant treatment × time interaction. The phosphorylation of CaMKII at 

Thr286 was not detectable in vascular endothelial cells under any conditions. The inclusion of 

positive controls confirmed the effectiveness of the antibody and substantiates the lack of 

phosphorylation of CaMKII at Thr286 (see Chapter 9, Figure 9.3).  

 

 

 
 
 
 
 

Figure 4. 12 CaMKII levels are not impacted by EPI treatment. A) Total CaMKII in HUVECs 

in the absence (-; clear bars) or presence (+; green bars) of EPI. B) Representative images of 

n=3 independent experiments. Cell lysates were analysed by SDS-PAGE and western blotting 

with indicated antibodies. Data are expressed as means ± SEM. 
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After obtaining data on CaMKII, the effects of EPI on the downstream kinase, AMPK, were 

subsequently investigated.  Following acute EPI treatment, there was a significant main effect 

of treatment (P<0.0001) and time (P<0.0001) on AMPK activity (see Figure 4.13), and a 

significant interaction (P<0.0001). Multiple comparisons revealed a significant increase in 

phosphorylation of AMPK at Thr172 at 1 h versus 0 h (1 h: 2.24 ± 0.22 vs. 0 h: 1.16 ± 0.19 

AU) under CTRL conditions (P=0.0057), whereas there was no significant change at 1 h versus 

0 h following EPI treatment (1 h: 0.47 ± 0.18 vs. 0 h: 1.16 ± 0.19 AU; P=0.157). Further, there 

was a significant reduction in activation in the presence of EPI vs. CTRL at 15 min (EPI: 0.35 

± 0.09 vs. CTRL: 1.86 ± 0.29 AU; P=0.0001) and 1 h (EPI: 0.47 ± 0.18 vs. CTRL: 2.24 ± 0.22 

AU; P<0.0001). From 3 hours, AMPK phosphorylation was suppressed under both control (3 

h: 0.54 ± 0.08 and 24 h: 0.39 ± 0.12 AU vs. 0 h: 1.16 ± 0.19 AU; P=0.046 and P=0.026, 

respectively) and treatment conditions compared to 0 h CTRL (3 h: 0.37 ± 0.08 and 24 h: 0.46 

± 0.08 AU vs. 0 h: 1.16 ± 0.19 AU; P=0.021 and P=0.049, respectively). 
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Figure 4. 13 AMPK phosphorylation at Thr172 is acutely blunted by EPI. A) AMPK 

phosphorylation at Thr172 in HUVECs in the absence (-; clear bars) or presence (+; green bars) 

of EPI. B) Representative images of n=3 independent experiments and associated stain free 

blot used for total lane protein normalisation.  Cell lysates were analysed by SDS-PAGE and 

western blotting with indicated antibodies. Representative images of n=3 independent 

experiments are shown. Data are expressed as means ± SEM; *P<0.05 and ***P<0.001. a 

significant main effect of treatment; b significant main effect of time (P<0.05). 

 

4.4.8.3 EPI temporally augments p44/42 MAPK (ERK1/2) signalling 

Having described how EPI impacts AMPK activation, the effects of EPI on ERK1/2 activity 

were investigated. Whilst ERK1/2 is not involved in the canonical CaMKII/AMPK/eNOS 

pathway, ERK1/2 signalling may be involved in mediating the effects of EPI on vascular 

endothelial cells. There was no significant main effect of treatment (P=0.141), but a significant 

main effect of time (P=0.039) for ERK1/2 activity (see Figure 4.14). There was also a 

significant treatment ´ time interaction (P=0.003). Under CTRL conditions, despite a 2.7-fold 

increase in ERK1/2 phosphorylation at 3 h, ERK1/2 phosphorylation did not reach significance 

vs. 0 h until 24 hours post treatment (0 h: 0.38 ± 0.10 vs. 24 h: 1.15 ± 0.28 AU; P=0.022). By 

contrast, EPI treatment resulted in a significant increase in ERK1/2 phosphorylation at 15 

minutes vs 0 h (15 min: 1.09 ± 0.24 vs. 0 h: 0.38 ± 0.10 AU; P=0.035), which was retained at 

1 hour (1 h: 1.22 ± 0.07 vs. 0 h: 0.38 ± 0.10 AU; P=0.011), before returning to baseline levels, 
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suggesting a change in the temporal pattern of ERK1/2 activation as a result of EPI treatment. 

Indeed at 1 hour, EPI treatment resulted in a 4.3-fold increase in ERK1/2 phosphorylation vs. 

CTRL at that time point (P=0.007). 

  

 

 

 

 

 

Figure 4. 14 EPI transiently stimulates ERK1/2 phosphorylation. A) ERK1/2 phosphorylation 

at Thr202/Tyr204 in HUVECs in the absence (-; clear bars) or presence (+; green bars) of EPI. 

B) Representative images of n=3 independent experiments and associated stain free blot used 

for total lane protein normalisation. Cell lysates were analysed by SDS-PAGE and western 

blotting with indicated antibodies. Data are expressed as means ± SEM; *P<0.05 and **P<0.01 

compared to CTRL. a significant main effect of treatment; b significant main effect of time 

(P<0.05). 

 

A 

0 h

15
 m

in 
-

15
 m

in 
+

1 h
  - 

1 h
 +

3 h
 -

3 h
 +

24
 h 

- 
24

 h 
+

0.0

0.5

1.0

1.5

2.0

Time

pT
hr

20
2/

Ty
r2

04
-p

44
/4

2 
M

A
PK

 / 
p4

4/
42

 M
A

PK

b;  a × b 

✱

✱✱

✱

✱
CTRL

EPI

B 



 

 173 

 
4.4.8.4 Epicatechins impact on ERK1/2 signalling is independent of eNOS activity in 

vascular endothelial cells 

To help further establish whether EPI elevated NO levels independent of the AMPK axis, 

eNOS phosphorylation was subsequently determined. There was no significant main effect of 

treatment (P=0.469) or time (P=0.515) on phosphorylation of eNOS at Ser1177 in endothelial 

cells (see Figure 4.15). Likewise, there was no significant treatment ´ time interaction 

(P=0.100). At 3 h, eNOS phosphorylation was ~60% higher under CTRL versus EPI conditions 

(CTRL: 0.38 ± 0.10 vs EPI: 1.15 ± 0.28 AU, P=0.038). 
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Figure 4. 15 EPI does not stimulate eNOS signalling in HUVECs. A) eNOS phosphorylation 

at Ser1177 in HUVECs in the absence (-; clear bars) or presence (+; green bars) of EPI. B) 

Representative images of n=3 independent experiments and associated stain free blot used for 

total lane protein normalisation. Cell lysates were analysed by SDS-PAGE and western blotting 

with indicated antibodies. Data are expressed as means ± SEM; *P<0.05, compared to CTRL. 

 
 
 
Together, these findings demonstrate that EPI, at the doses investigated, suppressed AMPK 

activation, was without impact on eNOS phosphorylation and elicited an altered temporal 

pattern of ERK1/2 activation, resulting in early and enhanced activation, in HUVECs. 

 

 
 
4.5 Discussion 

The aim of this study was to enhance mitochondrial function and attenuate ROS in vascular 

endothelial cells using dietary flavonoids. It was hypothesised that acute flavonoid treatment 

would attenuate ROS production, increase NO bioavailability and enhance indices of 

mitochondrial function. The main findings of this chapter were: 1) RONS emission are 

differentially impacted by flavonoid treatment, in a dose-dependent manner. 2) flavonoids do 

not significantly impact indices of mitochondrial function. 3) genes linked with mitochondrial 

remodelling and the antioxidant response were differentially expressed with acute flavonoid 

treatment, in a dose-dependent manner. 4) EPI transiently stimulates ERK1/2 signalling, 

independent of AMPK activity.  

 

4.5.1 Flavonoids differentially affect the production of mitochondrial ROS and NO  

Flavonoids possess antioxidant properties and may contribute to control of the redox state in-

vivo. Here, flavonoids evoked dose-dependent effects upon the production of mitochondrial 
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ROS. In conditions of elevated oxidative stress brought about by AA, Q acted in a pro-oxidant 

manner. Whereas under control conditions, higher Q doses (10 µM) were pro-, and lower doses 

anti-oxidant. Several studies have investigated the potential of Q to mitigate the production of 

vascular endothelial ROS in response to stressors like H2O2, high glucose, and palmitate. 

Despite using a range of doses (from nM to µM), these studies have repeatedly reported 

attenuated ROS production in vascular endothelial cells treated with Q (Chao et al., 2009; Chen 

et al., 2020; Guo et al., 2013; Yang et al., 2015). However, these studies used a non-targeted 

probe for the examination of ROS. By contrast, a mitochondrial targeted probe (MitoSOX) was 

used in the present study, which may partly explain the differences between the findings. 

Furthermore, Q (at 100 µM) has been shown to interact with commonly used cell culture media 

and acutely augment H2O2 production (Long et al., 2000), which may have also contributed to 

the observed increase in ROS production in the present study with higher micromolar doses. 

In the present study, EGCG attenuated rates of mitochondrial ROS production in vascular 

endothelial cells, with and without elevated oxidative stress. These data contrast previous 

findings reporting that 25-50 µM EGCG does not contribute to the regulation of angiotensin 

II-induced ROS production in HUVECs (Ahn et al., 2010). Further, the current findings do not 

support previous observations that low micromolar doses of EGCG stimulate intracellular ROS 

production and activate redox sensitive signalling pathways (Collins et al., 2007; Elbling et al., 

2010). Again, the inconsistencies in findings may relate to the methodological approaches 

employed to measure ROS production. The current study demonstrated EPI did not mitigate 

AA-induced ROS production, although, the rate of mitochondrial ROS production was 

attenuated under control conditions. Conversely, Keller and colleagues reported that 1 µM EPI 

blunted the production of mitochondrial superoxide in vascular endothelial cells after AA 

treatment (Keller et al., 2020). In this way, the antioxidant actions of EPI in vitro may be largely 

dependent upon the dose administered. Besides ROS, NO levels were also impacted by EPI 
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treatment in this study. At 10 µM, EPI increased NO production, which lends support to the 

premise that EPI is a potent stimulator of NO in cell, human and rodent models (Loke et al., 

2008b; Moreno-Ulloa, Mendez-Luna, et al., 2015a; Ramirez-Sanchez et al., 2011, 2018; 

Schroeter et al., 2006). Taken together, these findings emphasise the potential dose-dependent 

effects of flavonoids on RONS production and raise further questions about the underlying 

mechanisms of EPI’s antioxidant actions. Possibly, EPI’s mechanistic effects (increased NO 

and altered mitochondrial ROS) could translate to improved vascular endothelial function and 

increased O2 delivery to active muscle during exercise when ingested in vivo, thus providing a 

potential mechanism by which cocoa-flavanols sped phase II V̇O2 kinetics in Chapter 3. 

 

4.5.2 Flavonoids differentially modulate gene expression of vascular endothelial cells 

To help establish whether the effects of flavonoids on RONS production in vascular endothelial 

cells relates to the cellular adaptive response, the transcription of genes associated with energy 

metabolism was determined in the presence and absence of Q, EGCG and EPI. Coincubation 

of vascular endothelial cells with Q upregulated the expression of NOX4, at least over 48 h. 

NOX4 is one isoform of the NADPH oxidase family that generates cellular ROS (Montezano 

et al., 2011). Therefore, the apparent increase in NOX4 expression may provide some causal 

explanation for the pro-oxidative effects of Q reported in this study. In contrast to these data, 

other studies have demonstrated that Q lowers the expression of NADPH oxidase subunits in 

endothelial cells in the presence of elevated ROS (Hung et al., 2015; Jones et al., 2016; Luo et 

al., 2020; Sanchez et al., 2007; Wan et al., 2009). Aside from NOX4, PGC-1α and TFAM 

expression were not altered by Q treatment. This observation supports the respiration data 

reported, where Q did not significantly alter indices of mitochondrial function. Therefore, the 

transcriptional profiles of endothelial cells cultured with Q suggest altered ROS production, 

but no impact on mitochondrial functionality. It is currently thought that EGCG stimulates NO 
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production via phosphorylation of eNOS, and these effects occur independent of changes in 

eNOS content (Kim et al., 2007; Lorenz et al., 2004b). This premise is partially supported by 

findings of the present study, where eNOS mRNA was similar or decreased with EGCG 

supplementation when compared to control conditions. Therefore, EGCG may modulate NO 

production in vascular endothelial cells via a post-translational mechanism, rather than effects 

mediated at the level of transcription; this warrants further investigation. Mitochondrial 

remodelling involves the synthesis of mitochondrial proteins and concurrent changes in 

organelles dynamics, mediated by fusion and fission activities. Here, coincubation of 

endothelial cells with ECGG upregulated the expression of genes linked with mitochondrial 

remodelling, including PGC-1α, SIRT1, DRP1 and MFN2. This observation is consistent with 

previous studies reporting enhanced expression of molecular markers of mitochondrial 

biogenesis in skeletal muscle, brown adipose tissue and PC12 cells (Lee et al., 2017; Yan et 

al., 2012; Ye et al., 2012). Regarding the mechanism, the data suggest increased ROS 

production above basal conditions is not a prerequisite for the action of EGCG on 

mitochondrial adaptations. Although, increased CAT mRNA was observed with EGCG 

treatment, which could be indicative of augmented ROS, that may not have been captured by 

the techniques employed in this study. Of note, previous reports using specific ROS inhibitors 

have demonstrated that ROS are at least required for EGCG-induced mitochondrial biogenesis 

in hepatocytes and endothelial cells via AMPK (Collins et al., 2007; Kim et al., 2013). Thus, 

the precise mechanisms by which EGCG mediates transcription of vascular endothelial cells 

are yet to be fully elucidated. In the presence of EPI, vascular endothelial cells also exhibited 

increased expression of genes associated with mitochondrial dynamics. The elevated mRNA 

levels of MFN2 and DRP1 following EPI treatment suggests increased remodelling of 

endothelial mitochondria via fusion and fission activities. Along these lines, some studies have 

shown EPI (0.002 - 1 µM) augments markers of mitochondrial biogenesis in endothelial cells 
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(Moreno-Ulloa et al., 2013; Ramirez-Sanchez et al., 2018; Ramírez-Sánchez et al., 2016a), 

although others have reported reductions in HUVEC mitochondrial complex I and V 

abundance after acute EPI supplementation (0.1-1 µM) in the presence of AA and high glucose, 

respectively (Keller et al., 2020). The current study, therefore, seems to be the first to 

demonstrate that EPI may contribute to the remodelling of mitochondria at the level of 

transcription on genes associated with fusion and fission. Interestingly, EPI augmented the 

expression of the redox sensitive transcription factor NRF2 in the present study. There has been 

evidence for EPI mediated induction of NRF2, and its nuclear translocation, documented 

previously (Moreno-Ulloa, Nogueira, et al., 2015; Rowley et al., 2017a). Together, these data 

suggest that EPI may increase NRF2 activity in endothelial cells, although the exact underlying 

processes are not clear. In the presence of NO and ROS, modifications of cysteine residues on 

Keap1 relieve NRF2 inhibition, resulting in nuclear accretion of NRF2 and subsequent 

upregulation of antioxidant and mitochondrial related genes (Gao et al., 2020; Gureev et al., 

2019; Tebay et al., 2015). Considering the increased production of NO and altered 

mitochondrial ROS levels in the presence of EPI found in this study, induction of NRF2 

expression with EPI could be mediated by RONS. Evidently, further work is necessary to 

elucidate the potential signalling pathways by which EPI exerts its biological effects in vascular 

endothelial cells. 

 

4.5.3 Acute dietary flavonoid treatment does not modulate indices of mitochondrial 

function 

One main outcome of the present chapter was that dietary flavonoids do not directly impact 

indices of mitochondrial function in vascular endothelial cells, in the absence of additional 

stressors. In recent years, mitochondria have emerged as potential molecular targets of dietary 

flavonoids (Duluc et al., 2012). Here, the function of vascular endothelial mitochondria was 
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not directly impacted by physiological flavonoid concentrations. Although 5 µM Q lowered 

rates of basal respiration and oxidative ATP synthesis versus CTRL, this reduction was not 

significant. The observation that Q did not measurably impact mitochondrial bioenergetics 

supports a previous study reporting that Q doses up to 10 µM do not affect rates of oxygen 

consumption in rat brain and heart mitochondria (Lagoa et al., 2011). However, other research 

has provided evidence that Q may in-fact impair state 3 supported respiration, at least in 

isolated rat liver and heart mitochondria (Dorta et al., 2005; Trumbeckaite et al., 2006). In a 

similar way, the precise effects of EGCG on mitochondrial function are not entirely clear. 

Whilst some research has documented enhanced state 3 respiration/ADP supported respiration 

in rat cardiomyocytes treated with EGCG, others have reported negligible effects of 10 µM 

EGCG on respiration in isolated hepatocyte mitochondria (Kucera et al., 2015). The 

aforementioned discrepancies, between study outcomes, emphasise the potential cell-specific 

and dose-dependent effects of flavonoids on mitochondrial function. Studies on the effects of 

EPI on mitochondrial respiration in cells have also produced equivocal results. Whilst some 

studies have demonstrated increased state 3 respiration in rat beta cells following EPI (0.1-2.5 

µM) supplementation (Kener et al., 2018a; Rowley et al., 2017a), others have demonstrated 

inhibited/similar state 3 respiration rates with EPI, depending on the substrates provided during 

respirometry (Kopustinskiene et al., 2015b). Notably, one recent investigation examined the 

impact of EPI on mitochondrial function in vascular endothelial cells (HUVECs). Similar to 

the findings in the present study, the authors reported that 0.1 and 1 µM EPI supplementation 

over 2 hours had no impact on mitochondrial respiration as assessed by respirometry (Keller 

et al., 2020). Taken together, it seems that flavonoids do not directly impact indices of 

mitochondrial function when used in the low micromolar range (1-10 µM). Future studies 

could investigate whether nanomolar flavonoid concentrations impact vascular endothelial cell 
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bioenergetics, and also, study alternate modes of action that potentially converge on 

mitochondria. 

 

4.5.4 EPI transiently stimulates ERK1/2 signalling whilst supressing AMPK activity 

One important pathway upstream of mitochondria is the AMPK signalling axis. Interestingly, 

enhanced phosphorylation of AMPK has been reported in various tissues in the presence of 

EPI, though not including endothelial cells (Murase et al., 2009; Papadimitriou et al., 2014; Si 

et al., 2011). One recent study using HUVECs demonstrated 2 h EPI treatment (1 µM) had no 

effect upon the phosphorylation of AMPK (Keller et al., 2020). In a similar fashion, the data 

presented here demonstrate that AMPK phosphorylation at Thr172 is suppressed up to 1 h in 

the presence of 5 µM EPI, and up to 24 h, no impact of EPI was observed on AMPK activity. 

Aside from AMPK, the effects of EPI on vascular endothelial function could relate to the 

activation of ERK1/2 signalling. Accordingly, ERK1/2 phosphorylation at Thr202/Tyr204 was 

acutely increased following EPI supplementation here, supporting recent observations of 

increased ERK1/2 activity after 0.1 µM EPI treatment in bovine coronary artery endothelial 

cells, that may be associated with phosphorylation of CaMKII (Moreno-Ulloa, Mendez-Luna, 

et al., 2015a). Regarding CaMKII, it has been postulated that EPI may induce ergogenic effects 

via phosphorylation at Thr286 (Moreno-Ulloa, Mendez-Luna, et al., 2015a; Ramirez-Sanchez 

et al., 2010). However, the present investigation reported no phosphorylation of CaMKII at 

Thr286 in vascular endothelial cells. In this way, more research is necessary to better define 

the signalling mechanisms associated with EPI in vascular endothelial cells, but the data 

suggest that ERK1/2 activation is independent, at least of Thr286 phosphorylation of CaMKII 

in HUVECs. Downstream of the aforementioned kinases, there was no significant change in 

eNOS phosphorylation at Ser1177 in the presence of EPI. These data agree with the recent 

findings of Keller and colleagues (Keller et al., 2020), and dispute previous reports of increased 
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eNOS phosphorylation in vascular endothelial cells following EPI treatment at low micromolar 

doses (Carnevale et al., 2014; Ramirez-Sanchez et al., 2010, 2012, 2018; Ramírez-Sánchez et 

al., 2016b). Given that EPI was capable of augmenting NO production in this study, it is 

possible that EPI increased NO levels via inhibition of arginase (thus increasing the availability 

of L-arginine for NO synthesis) as opposed to acting via eNOS activity (Schnorr et al., 2008). 

These findings demonstrate that EPI augments ERK1/2 signalling in vascular endothelial cells 

independent of AMPK phosphorylation. However, it remains to be determined whether EPI’s 

acute activation of ERK1/2 signalling is a prerequisite for the induction of NRF2 in vascular 

endothelial cells.  

 

Figure 4. 16 Schematic of the potential mechanisms by which EPI exerts its biological effects 

in vascular endothelial cells. Dashed arrows represent no, or unknown activity of EPI on 

protein activity. Solid lines represent reported stimulatory or inhibitory effects of EPI. 

 

 

4.6 Limitations 
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Parent flavonoid compounds were used in this study rather than metabolites that typically reach 

circulation following the ingestion of flavonoid-containing foods/beverages or supplements 

(Ottaviani et al., 2016). Therefore, it is not known whether the reported effects of flavonoids 

on vascular endothelial cells in this study will be subsequently replicated using their associated 

metabolites. In this study, HUVECs were used a model vascular endothelial cell system. These 

cells are venous in nature and as such their physiology may not well reflect the arterial 

vasculature where flavonoids potentially exert their beneficial effects. Thus, caution should be 

taken when interpreting the results obtained with flavonoids in these cells. A noteworthy 

limitation of this study was that flavonoids were administered in some assays, without any 

additional cell stressor. Given that ageing is associated with perturbations to cellular function, 

it is possible that flavonoids may have evoked different effects to those observed upon gene 

expression and mitochondrial bioenergetics in the presence of additional cell stress. Whilst 

attempts were made to replicatively age HUVECs as part of this programme of work, the cells 

very rapidly become senescent and therefore no meaningful studies could be performed due to 

insufficient cell numbers. Finally, western blotting was used to determine relative protein 

phosphorylation in a semi-quantitative manner, which does not provide a direct measure of 

protein activity. 

 

4.7 Conclusion 

To summarise, this chapter demonstrates that dietary flavonoids, at the doses tested, do not 

directly impact mitochondrial bioenergetics, but rather modulate signalling and transcriptional 

activities of vascular endothelial cells. One key theme of this work was that flavonoids evoked 

dose-dependent effects upon energy metabolism. Interestingly, EPI evoked dose-dependent 

effects upon RONS production, which occurred in parallel with enhanced, transient ERK1/2 

signalling (see Figure 4.16). Moreover, all flavonoids tested evoked changes in gene 
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transcription indicative of mitochondrial remodelling and the stress response. Taken together, 

EPI may promote favourable mitochondrial adaptations in vascular endothelial cells through 

activation of stress response pathways and increases in NO, when ingested in vivo. With that 

said, dietary EPI supplementation in vivo may improve vascular endothelial function, and 

potentially, augment O2 delivery during physical activity. Future translational research will 

help define the exact mechanisms by which EPI regulates ERK1/2 activity, NRF2 induction, 

and mitochondrial remodelling. Further, clinical trials will help establish whether EPI 

supplementation can improve vascular endothelial function and increase exercise tolerance in 

sedentary older adult populations. 
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5.1 Abstract 

Introduction: The capacity for oxygen (O2) utilisation is compromised with advancing age, 

which contributes to exercise intolerance. Mitochondrial dysfunction is a feature of sedentary 

ageing, thought to be partly responsible for impairments in O2 utilisation, characterised by 

lowered respiratory capacity and lowered mitochondrial contents. Flavonoids have emerged as 

health promoting entities that may modulate mitochondrial function, but little is known how 

they impact ageing skeletal muscle mitochondria.  

Objective(s): The primary objectives were to determine whether replicative ageing and dietary 

flavonoids (quercetin [Q], epigallocatechin-gallate [EGCG] or (-)-epicatechin [EPI]) impacted 

mitochondrial function, nitric oxide (NO) bioavailability and gene expression using C2C12 

myoblasts as a model system. It was hypothesised that replicative ageing would cause 

mitochondrial dysfunction, lower NO bioavailability and blunt gene expression and that these 

effects would be mitigated by dietary flavonoid supplementation. 

Methods: Control and replicatively aged C2C12 myoblasts were treated in the absence (CTRL) 

or presence of micromolar concentrations of Q, EGCG or EPI for up to 48 h. Mitochondrial 

bioenergetics were investigated by respirometry after 24 h flavonoid treatment. Complex I 

activity was measured spectrophotometrically over 24 h. NO bioavailability was determined 

by DAF-FM oxidation using flow cytometry over 24 h. Genes related to mitochondrial 

remodelling and the antioxidant response were quantified by RT-qPCR over 48 h. 

Results: Indices of mitochondrial function, including basal respiration, proton leak and 

coupling efficiency were similar between control and aged myoblasts. Generally, flavonoids 

did not impact mitochondrial respiration, but EPI inhibited basal respiration by 27.6% (5 µM 

EPI: 1.31±0.14 vs. CTRL: 1.81±0.15 pmol O2/min-1/ng DNA-1; P=0.041). A downward trend 

in complex I activity (28.3%) was found in the presence of EPI (5 µM: 49.4±3.9 vs. CTRL: 

35.4±4.4 nmol/min-1/mg-1 protein; P=0.079) vs. CTRL in aged myoblasts. NO levels were 50% 

lower in aged versus control myoblasts (P=0.024) and were not impacted by flavonoids. 

Flavonoids augmented the expression of genes associated with mitochondrial remodelling and 

the antioxidant response, in a dose- and compound dependent manner. PARKIN and SOD2 

mRNA levels were 3.9-fold and 3.2-fold lower in aged vs. control myoblasts over 48 and 24 

h, respectively, but were not rescued by by flavonoids. NRF2 expression was upregulated by 

EPI treatment in control (1.6-fold increase over 24 h after 5 µM EPI vs. CTRL; P=0.045) and 

aged (1.6-fold increase with 5 µM EPI over 48 h vs. CTRL, P=0.032) myoblasts. 
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Conclusion(s): Replicative ageing does not impair indices of mitochondrial function but 

lowers NO bioavailability and attenuates mitochondrial (PARKIN and SOD2) gene expression 

in skeletal myoblasts. Generally, flavonoids did not modulate mitochondrial respiration, 

although EPI may inhibit respiration in aged myoblasts. Further, flavonoids did not mitigate 

age-related impairments to NO bioavailability. Flavonoids may instigate cell adaptations at the 

transcriptional level, partly via NRF2, that could be related to respiratory inhibition in the 

presence of EPI.  
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5.2 Introduction 

Advancing age and physical inactivity are strongly associated with a decline in tolerance of 

daily life activity, that is largely owed to reductions in maximal oxygen uptake (Fitzgerald et 

al., 1997; Paterson et al., 2007) and slowed pulmonary oxygen uptake (V̇O2) kinetics during 

submaximal exercise (DeLorey et al., 2004a; Dumanoir et al., 2010; George et al., 2018; B. 

Grassi, Porcelli, et al., 2011). The detrimental impact of sedentary ageing on V̇O2 kinetics is 

thought to be due to changes in the systems responsible for the delivery and utilisation of 

oxygen (O2). Oxygen utilisation during exercise is controlled by numerous factors, including 

pyruvate dehydrogenase (PDH) activation, phosphocreatine kinetics and mitochondrial 

functionality. Of these factors, the function (and content) and activation of skeletal muscle 

mitochondria may be of central importance in the kinetics of V̇O2, because these organelles 

house the molecular machinery required for ATP synthesis that is achieved through the 

generation of a proton motive force and consumption of molecular O2.  

 

Mitochondrial dysfunction is considered a major hallmark of ageing. Yet, the role of 

chronological ageing in regulating skeletal muscle mitochondrial function has been subject to 

much debate. Several in vitro studies have reported an age-related decline in maximal oxidation 

rates in isolated mitochondria from rodent skeletal muscle (Kumaran et al., 2005; Mansouri et 

al., 2006), and also in permeabilised fibres from human skeletal muscle tissue (Tonkonogi et 

al., 2003a). Similarly, the maximum capacity for ATP production in isolated mitochondria 

from rat and human skeletal muscle reportedly declines with older age (Drew et al., 2003a; 

Short et al., 2005), which could relate to lowered complex I activity (Boffoli et al., 1994; 

Cooper et al., 1992). In contrast, a handful of studies have found no age-related impairments 

to organelle functionality. For instance, mitochondria isolated from human vastus lateralis had 

comparable respiratory function in the presence of various metabolic substrates between young 
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and older individuals (Rasmussen et al., 2003). Moreover, rates of ADP-stimulated respiration 

were unchanged between young and old rat skeletal muscle tissue (Chabi et al., 2008b; Picard 

et al., 2010b). These inconsistent findings can partially be explained by potential artefacts 

introduced by the in vitro isolation procedures, that may affect mitochondrial function 

independent of the ageing process (Picard et al., 2010b). To circumvent the effects of 

mitochondrial isolation, mitochondrial respiratory function was examined in intact skeletal 

myoblasts in this chapter. 

 

Beyond functionality, older human skeletal muscle displays lowered mitochondrial contents 

compared to young (Rooyackers et al., 1996; Short et al., 2005), which may be due to blunted 

transcriptional responses to relevant stimuli. For example, the expression of peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), an important regulator of 

mitochondrial adaptations, is reportedly lower following exercise in older compared to younger 

adults (Ljubicic & Hood, 2009; Reznick et al., 2007b). Older adults also demonstrate 

diminished nitric oxide (NO) bioavailability in muscle tissue (Nyberg et al., 2012), which may 

exacerbate reductions in PGC-1α activation. Additionally, lower NO levels could attenuate the 

nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), and subsequently 

impair the transcription of several mitochondrial and antioxidant related genes. Organelle’s 

quality control processes, including mitophagy and mitochondrial dynamics, also play 

important roles in maintaining mitochondrial health. With ageing, both mitophagy and 

fusion:fission activities (ratio of mitofusin-1 (MFN2): dynamin-related protein 1 (DRP1) are 

reportedly dysregulated (Carter et al., 2018; Chen et al., 2018b; Iqbal et al., 2013), which may 

compromise mitochondrial functionality. Together, targeting molecular pathways that 

converge on mitochondria may offer promise in mitigating age- and (in)activity related 

declines in O2 utilisation, and ultimately may improve exercise tolerance. 
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Dietary flavonoids are increasingly recognised for their potential to modulate indices of 

mitochondrial function. Although evidence for direct flavonoid and skeletal muscle 

mitochondria interactions is lacking, flavonoids accumulate within the mitochondrial 

compartments of different cell types (Fiorani et al., 2010a; Mukai et al., 2016; Schroeder et al., 

2009). Some flavonoids have been reported to modulate mitochondrial respiration (Dorta et 

al., 2005; Rowley et al., 2017b; Vilella et al., 2020a), although data in skeletal muscle cells is 

very limited (Bitner et al., 2018). Moreover, flavonoids may stimulate pathways responsible 

for mitochondrial turnover in skeletal muscle (Davis et al., 2009b; Hüttemann et al., 2013; 

Moreno-Ulloa et al., 2018; Murase et al., 2009). Another reported role for flavonoids relates to 

the modulation of NO production. Several studies have documented that flavonoids and their 

associated metabolites stimulate NO production in vascular endothelial cells (Ramirez-

Sanchez et al., 2018; Shen et al., 2012), but more research is needed to establish whether these 

effects occur in skeletal muscle. Evidently, it remains to be determined whether flavonoids 

modulate mitochondrial function and NO bioavailability of skeletal muscle cells. 

 

One major utility of cell models lies in the non-invasive investigation of mechanisms that are 

associated with health and disease in vivo. Previously, a murine skeletal muscle cell model of 

ageing was established that somewhat recapitulates ageing muscle behaviour (Sharples et al., 

2011, Bigot et al 2008). Although this model has been characterised with respect to ageing 

muscle hypertrophy, it is not currently known how this model captures ageing human muscle 

behaviour as it relates to energy metabolism. Consequently, the main aim of the present study 

was to characterise how replicative ageing impact’s mitochondrial function, NO bioavailability 

and gene expression of aged vs. control skeletal myoblasts. The study objective was to 

determine whether replicative ageing and dietary flavonoids (quercetin [Q], epigallocatechin-
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gallate [EGCG] or (-)-epicatechin [EPI]) impact mitochondrial function, nitric oxide (NO) 

bioavailability and gene expression using C2C12 myoblasts as a model system. It was 

hypothesised that replicative ageing would cause mitochondrial dysfunction, lower NO 

bioavailability and blunted gene expression, and that these effects would be mitigated by 

dietary flavonoid supplementation. 

 

5.3 Methodology 

5.3.1 Cell culture and treatment 

Commercially available C2C12 murine skeletal myoblasts at passages 8-12 (referred to as 

‘control’) and passages 47-50 (replicative aged and referred to as ‘aged’, having undergone 

130-140 population doublings) were used in this study. For standardised cell culture 

procedures, see section 2.3. Following the plating of cells onto appropriate well-plates in 

growth medium (GM), confluent C2C12 cells were washed twice with phosphate-buffered saline 

(PBS) and switched to pre-warmed (37°C) differentiation medium (DM). For experiments in 

myoblasts, C2C12 cells were switched to DM in the absence, or presence of specific 

concentrations of Q, EGCG and EPI (0-20 µM) over 24 and 48 h.  

 

5.3.2 Cell viability assay 

Following generation of a standard curve (see section 2.7), cell viability was determined in 

response to acute dietary flavonoid treatment using the fluorescent CyQUANT® Proliferation 

Assay kit (ThermoFisher, Waltham, MA, USA). C2C12 myoblasts were grown to ~80% 

confluency in 96-well plates before being transferred to DM +/- flavonoids. Dose responses 

were performed with, Q, EGCG and EPI at 0-20 µM for 24 h, prior to aspiration, washing twice 

with PBS, and then freezing immediately at -80°C. On the day of the experiment, plates were 
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thawed at room temperature, and 100 µL of CyQUANT® GR dye/cell-lysis buffer was added 

to each sample well. Plates were gently mixed on an orbital shaker for 5 minutes protected 

from light. Sample fluorescence was measured using a CLARIOStar Plate Reader (BMG 

Labtech, Bucks, Great Britain) with Excitation 485-12 and Emission EM520 filters in bottom 

reading, well scanning mode.  

 

5.3.3 Nitric oxide availability 

For the determination of intracellular nitric oxide (NO) bioavailability, C2C12 myoblasts were 

plated in gelatin-coated 12-well plates in GM and incubated (37°C, 5% CO2) until ~80% 

confluency. Once confluent, cells were switched to DM, containing 0, 5 and 10 µM Q, EGCG 

or EPI, for 24 h. Next, myoblasts were washed 2 × with PBS and loaded with DAF-FM™ 

diacetate (4-amino-5-methylamino- 2′,7′-difluorofluorescein diacetate; Molecular Probes, 

Invitrogen). DAF-FM™ was loaded in myoblasts to a final concentration of 1 µM in pre-

warmed KRH buffer and incubated at 37°C for 30 minutes protected from light. Following dye 

loading, cells were washed 2 × with PBS and immediately trypsinised. After trypsin 

neutralisation, cells were pelleted and resuspended in PBS, before measuring sample 

fluorescence by flow cytometry (BD Accuri C6, BD Biosciences, Wokingham, UK). Data were 

recorded from 5,000 events. 

 

5.3.4 Mitochondrial Bioenergetics 

Mitochondrial respiration was measured in adherent C2C12 myoblasts using a Seahorse XFe96 

Analyzer (Agilent, Santa Clara, CA, USA). Control (passages 9-11) and replicatively aged 

(passages 47-50) C2C12 myoblasts were seeded in XFe96 well plates (Agilent, Santa Clara, CA, 

USA) at 5,000 cells per well in 100 µL of GM for 24 h to allow cell attachment. After 24 h, 
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C2C12 myoblasts were washed twice with PBS and transferred to DM. Myoblasts were dosed 

with specific concentrations (0, 1, 5 and 10 µM) of Q, EGCG and EPI in DM for 24 hours.  

 

Sensor cartridges for the XFe96 Analyzer were hydrated with deionised water at 37°C in a non-

CO2 incubator in the 24 h preceding the assay. On the day of the assay, C2C12 myoblasts were 

washed into 200 µL pre-warmed modified KRH at pH 7.4 (see table 2.1 for KRH composition). 

The cells were incubated in this buffer for 45 minutes at 37°C in a non-CO2 incubator and then 

transferred to a Seahorse XFe96 extracellular flux analyser (maintained at 37°C). Following 

10-minute calibration, oxygen consumption rates (OCR) were measured by a 3-4 loop cycle 

consisting of a 1-min mix, 2-min incubate and 3-min measure to record cellular basal 

respiration (Figure 2.6). After measuring basal respiration, 2 µM oligomycin was added to 

selectively inhibit the mitochondrial ATP synthase. Subsequently, 2 µM  carbonyl cyanide-4-

phenylhydrazone (FCCP) followed by a mixture of 2 µM rotenone and 2 µM antimycin A were 

added sequentially to, 1. uncouple oxygen consumption rates to ATP synthesis rates to 

determine maximal respiration or 2. inhibit complex I and III of the electron transport chain to 

determine non-mitochondrial respiration. Rates of oxygen consumption and extracellular 

acidification (ECAR) were expressed relative to the DNA content of the appropriate well (see 

section 5.3.6. Three independent experiments were performed to assess mitochondrial 

respiration, each containing four technical replicates. The Wave software native to the XF 

Analyzer was used to extract OCR’s and ECAR. 

 

5.3.5 ATP Production Rates 

A full description of the method used for calculation of total cellular ATP production rates 

from ECAR and OCR is in section 2.11, chapter 2. Briefly, to calculate JATPglyc, the ECAR was 

first converted to total proton production rate (PPR). The contribution of respiratory CO2 to 
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total PPR was subtracted to yield glycolytic rate of glucose catabolism terminating in lactate. 

This rate was multiplied by the ratio of ATP produced in glycolysis terminating in lactate per 

extracellular H+ (the P/H+ ratio). Additional glycolytic flux generating the pyruvate that is later 

fully oxidised in the mitochondria generates additional ATP and is represented in the 

mitochondrial respiration rate (see below). Mitochondrial respiration rate was multiplied by 

the ratio of ATP produced in glycolysis terminating in pyruvate per O2 consumed for each 

substrate (P/Oglyc). Glycolytic ATP production (JATPglyc) was calculated as the sum of these two 

rates. To calculate JATPox, mitochondrial respiration rate was isolated by subtracting from the 

total OCR any additional oxygen consumption in the presence of rotenone and antimycin A 

(OCRR/AA). Mitochondrial respiration rate was further divided into ATP-coupled and 

uncoupled respiration rates using the mitochondrial ATP synthase inhibitor oligomycin. The 

ATP-coupled respiration rate was multiplied by the portion of the P/O ratio attributable to the 

mitochondrial ATP synthase (P/OOXPHOS). To account for oxidative substrate-level 

phosphorylation in the TCA cycle, the mitochondrial respiration rate was multiplied by the P/O 

ratio attributable to succinyl CoA synthetase (P/OTCA). Oxidative ATP production (JATPox) was 

calculated as the sum of these two rates. Finally, JATPglyc and JATPox were summed to yield the 

total cellular ATP production rate, JATPproduction. 

 

5.3.6 Mitochondrial bioenergetics normalisation procedures 

5.3.6.1 CyQuant® Direct Cell Proliferation Assay 

The 2x detection reagent was made by combining KRH buffer (assay media) with CyQuant® 

Direct nucleic acid stain and CyQUANT® Direct background suppressor, prior to removal of 

assay media from each well of the Seahorse microplate, whilst ensuring to leave appropriate 

necessary volume (25 µL). To each well, 25 µL 2X detection reagent was added. Cells were 

incubated in the dark for 60 minutes at 37°C without CO2, prior to fluorescence measures being 
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captured using a FLUOstar Omega Plate Reader with Excitation 485-12 and Emission EM520 

filters in bottom reading, well scanning mode. DNA content in each sample was quantified by 

interpolating unknown X values by comparing RFU values with those on a standard curve of 

known DNA concentrations (see Figure 5.1). 

 

Figure 5. 1 DNA standard curve generated using CyQUANT® Cell Proliferation Assay. 

Bacteriophage λ DNA standards (0-1000 ng/mL) fluorescence was measured using a filter 

combination of 480 nm excitation and 520 nm emission and corrected for the background 

fluorescence determined for the no-DNA control. Data are from one independent experiment 

from 3 technical replicates. 

 

5.3.6.2 dsDNA PicoGreen 

QuantiT™ PicoGreen® dsDNA reagent (ThermoFisher, Waltham, MA, USA) was used as a 

fluorescent nucleic acid stain for quantifying dsDNA in solution. Upon completion of 

mitochondrial stress tests, C2C12 myotubes were immediately removed from the Seahorse 

Analyzer and existing assay media (KRH buffer) carefully removed, ensuring that ~25 µL 

remained. Subsequently, 200 µL RIPA buffer was added to each well of the 96-well plate and 

plates were shaken vigorously on an orbital shaker for 10 minutes. Plates were immediately 
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frozen at -80°C until further processing. On the day of the assay, 96-well plates were allowed 

to thaw at room temperature. Meanwhile, a 1X Tris-EDTA (TE) buffer (10 mM Tris-HCl (pH 

7.5), 1 mM EDTA) was prepared in DNase free H2O and left to reach room temperature. A 

working concentration of QuantiT™ PicoGreen® dsDNA reagent was prepared by making a 

200-fold dilution of the concentrated stock solution using TE buffer. To avoid the reagent 

absorbing to glass surfaces or being susceptible to photo degradation it was prepared in a plastic 

container and stored away from direct light. A 5-point high-range DNA standard curve was 

created using a 100 µg/mL Lambda DNA stock solution diluted in 1x TE buffer supplemented 

with 50 RIPA buffer (see Figure 5.2) .50 µL of each DNA standard (0, 2, 20, 200, 2000 ng/mL) 

was added to wells of a black solid-bottom 96-well microplate (Greiner Bio-One, 

Kremsmünster, Austria) in duplicate. Next, 50 µL of each sample was added to appropriate 

wells, followed by 50 µL 1x TE buffer. Finally, 100 µL PicoGreen reagent was added to each 

well. Following a 5-minute incubation at room temperature in the dark, endpoint fluorescence 

was measured by exciting fluorescent products at 485 nm and recording emitted light at 520 

nm using a multi-plate reader (OMEGA FluoSTAR, BMG Labtech). To ensure all sample 

readings remained in the detection range of the fluorometer, the gain was set to that of the 

sample containing the highest DNA concentration (i.e., the 2 µg/mL Lambda DNA stock). 

DNA content in each sample was quantified by interpolating unknown X values by comparing 

RFU values with those on a standard curve of known dsDNA concentrations. 
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Figure 5. 2 Standard curve of Lambda dsDNA detected with QuantiT™ PicoGreen® dsDNA 

reagent. Cell Proliferation Assay. Lambda DNA was diluted to create standards of known 

concentrations (0-2000 ng/mL) and were quantified using QuantiT™ PicoGreen® dsDNA 

reagent. Samples were excited at 480 nm and fluorescence emission intensity measured at 520 

nm. Relative fluorescent units were plotted as a function of dsDNA and fitted with linear 

regression. 

 

5.3.7 Complex I Activity 

Mitochondrial complex I catalyses NADH oxidation. Electrons are transferred from NADH 

through complex I to ubiquinone (CoQ10), which is reduced to ubiquinol. Complex I activity 

was measured as the rotenone-sensitive decrease in NADH at 340nm. Control and aged C2C12 

myoblasts were grown to ~80% confluence in 6-well plates before being washed twice with 

PBS and transferred to DM. Cells were allowed to differentiate for 24 h, +/- Q, EGCG and EPI 

at 0, 5 and 10 µM. After 24 h treatment, cells were washed twice with PBS and trypsinised for 

5 minutes at RT. Detachment was confirmed by microscopy, prior to the addition of fresh GM 

to neutralise the trypsin. The resultant cell suspension was aliquoted into Eppendorf tubes and 

centrifuged for 5 minutes at 230 × g. The supernatant was carefully aspirated, and cell pellets 

were resuspended in 100 µL PBS and immediately frozen at -80°C. On the day of the assay, 

cell suspensions were thawed and refrozen twice in liquid N2, to enable cell lysis, before being 
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diluted 1 in 5 in Milli-Q H2O and kept on ice prior to assay. Samples were assayed as follows 

(total cuvette volume 1 mL; Table 5.1):    

Table 5. 1 Cuvette contents to assay complex I activity 

 Sample (µL) Reference (µL) 

Phosphate buffer 800 800 
BSA 50 50 
NADH 30 30 
KCN 10 10 
Cell homogenate 20 20 
H2O 80 90 

 

 

Cuvette (Sigma-Aldrich, Poole, UK) contents were mixed gently and placed in a 

spectrophotometer (Uvikon 941 plus, NorthStar Scientific, Leeds, USA) for 1-2 minutes to 

reach 30ºC, prior to ubiquinone (10 µL) addition to non-reference samples, before gentle 

mixing and measuring absorbance every 30 seconds over 5 minutes at 340 nm. Samples were 

mixed in cuvettes by covering the top of the cuvette with parafilm and inverting three times. 

After 5 minutes, rotenone (20 µL) was added to each cuvette and gently mixed. After allowing 

2-3 minutes for the rotenone to take effect, measurements were continued at 340 nm for a 

further 5 minutes. Enzyme activity was determined using Equation 5.1:  

 

∆Α	 =  C × ε × b  C =	 ∆Α
b

     
 
 

Where C = enzyme concentration (Mole/min-1/L), A = absorbance in AU, ∆A = ∆A1 - ∆A2 

(∆A1 = change in absorbance/min-1 before rotenone addition and ∆A2 = change in 

absorbance/min-1 after rotenone addition); ε = extinction coefficient (Mole/cm-1), which is 6.81 
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x 103 M/cm-1 and b = path length in cm (1 cm). Complex I activity was normalised relative to 

protein content (see section 2.15). 

 
 

Equation 5. 1 Enzyme activity determination 

 

 

5.3.8 RT-qPCR – Gene expression Quantification 

C2C12 myoblasts were lysed in 250 uL TRIzol and total RNA was extracted using the phenol-

chloroform method (see section 2.12.1). RNA concentration of control and aged myoblasts 

(n=3, in duplicate per condition; Control myoblasts: 792.7 ± 120.8; Aged myoblasts: 1841.8 ± 

592 ng/uL) and purity (All samples 2.0 ± 0.0 A260/A280, respectively) was determined by 

spectrophotometry (NanoDrop™ 2000, Thermo Fisher Scientific, Waltham, USA). Samples 

were diluted in nuclease-free H2O to a concentration of 7.95 ng/μL, enabling the addition of 

35 ng RNA per PCR. Total reaction volume equalled 10 μL/sample, which contained 5.6 μL 

of master mix (5 μL QuantiFast Sybr® Green, 0.5 μL primer, 0.1 μL reverse transcriptase) and 

4.4 μL RNA sample. Specific primers used in each PCR are outlined in Table 5.2, and their 

associated function in Chapter 9, table 9.1. After preparation, reaction tubes (Qiagen, UK) were 

transferred to a Rotor-Gene Q PCR thermal cycler for product amplification using a one-step 

protocol (see section 2.12.4). The amplification protocol was as follows: reverse transcription 

(10 minutes at 50°C), transcriptase inactivation and initial denaturation (95°C for 5 min) 

followed by 40 × amplification cycles consisting of: 95°C for 10 s (denaturation) and 60°C for 

30 s (annealing and extension); followed by melt curve detection. Critical threshold (CT) values 

were derived from setting a threshold of 0.08 for all genes. The amplification efficiencies were 

analysed for all reactions (Control myoblasts: 92.5 ± 5.4; Aged myoblasts: 92.0 ± 6.0 %) and 

values between 80-100% were accepted as efficient. To quantify gene expression, CT values 
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were used to quantify relative gene expression using the comparative Delta Delta CT (2-ΔΔCT) 

equation (Livak & Schmittgen, 2001), whereby the expression of the gene of interest was 

determined relative to the internal reference gene (RP2β) in the treated sample, compared with 

the untreated zero-hour control. RP2β was selected as an internal reference gene because its 

expression was stable across experimental conditions (19.76 ± 0.69). 

 

Table 5. 2 Primer sequences for Mus musculus with product length. All primers were used 

under the same cycling conditions. 

Gene Accession 
Sequence 

Forward/Reverse or Anchor nucleotide 

Product 
length 
(bp) 

Polr2b 
(RP2β) 

NM_153798.2 
 

F: GGTCAGAAGGGAACTTGTGGTAT  
R: GCATCATTAAATGGAGTAGCGTC 

197 

CAT NM_009804 AN: 324 96 

SOD2 NM_013671 AN: 1769 103 

Dnm1 
(DRP1) 

NM_152816 AN: 1337 104 

MFN2 NM_113201 AN: 1709 93 

Ppargc1a 
(PGC-1α) 

NM_008904 AN: 4601 122 

Sirt1 NM_001159589.2 F: ACAATTCCTCCACCTGAG  
R: GTAACTTCACAGCATCTTCAA 

124 

Tfam NM_009360.4 F: TCTTGGGAAGAGCAGATGGC  
R: GTCTCCGGATCGTTTCACACT 

72 

eNOS NM_008713.4 F: GGTTGCAAGGCTGCCAATTT  
R: TAACTACCACAGCCGGAGGA 

106 

Nox2 NM_007807.5 F: CAGAACCAACACTTAACCTT 
R: CAACCACACCAGAATGAC 

84 

Nox4 NM_015760.5 F: TCCCTCCTATGGGCAATGTG  
R: TGCACATCAAGCCTGGACAA 

177 
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Prkn 
(PARKIN) 

NM_001317726.1 AN: 724 92 

Nrf2 NM_010902.4 F: GGACATGGAGCAAGTTTGGC 
R: CCAGCGAGGAGATCGATGAG 

164 

 

5.3.9 Statistical analysis 

To compare differences in outcome measures between control and aged cells only, independent 

t-tests were used. For the comparison of replicative ageing and flavonoid dose upon outcome 

measures, a two-way ANOVA was employed. A three-way ANOVA was used for comparisons 

of ageing, flavonoid dose and other factors such as time or antimycin A. When main effects 

and interactions were present, multiple comparisons were performed using Dunnett’s or 

Sidak’s test where appropriate. For within age comparisons, a one-way ANOVA was used. 

Data are presented as means ± SEM, and significance was accepted when P<0.05. 

 

 

5.4 Results 

5.4.1 Mitochondrial bioenergetics of control and aged skeletal muscle myoblasts 

Indices of mitochondrial function were compared between control and aged myoblasts under 

CTRL conditions. No significant differences were revealed in mitochondrial energetics of 

control vs. replicatively aged myoblasts (see Figure 5.3). Rates of basal respiration (Control: 

1.67±0.13 vs. Aged: 1.81±0.15 pmol/min-1/ng DNA-1, P=0.653), proton leak (Control: 

0.54±0.05 vs. Aged: 0.54±0.07 pmol/min-1/ng DNA-1, P>0.999), ADP phosphorylation 

(Control: 1.12±0.10 vs. Aged: 1.27±0.14 pmol/min-1/ng DNA-1, P=0.497) and coupling 

efficiency (%) (Control: 67.1±2.2% vs. Aged: 70.1± 1.3%, P=0.297) were similar between 

control and aged cells. 
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Figure 5. 3 Mitochondrial bioenergetics of control and aged C2C12 myoblasts. A) Non-

mitochondrial respiration, B) Basal respiration, C) Proton leak, D) ADP phosphorylation and 

E) Coupling efficiency (%). Data are mean±SEM, representative of 3 independent experiments 

and normalised to DNA content. Differences between groups determined by independent t-test. 
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5.4.2 Rates of ATP production: Control vs aged myoblasts 

In the absence of significant differences between control and aged myoblasts, in terms of 

mitochondrial function, it was hypothesised that no differences would prevail in the processes 

underpinning energy production. The glycolytic (JATPglyc), oxidative (JATPox) and total 

(JATPproduction) rates of ATP production were therefore calculated. Accordingly, there were no 

differences in absolute JATPproduction between control and aged myoblasts (mean±SEM; Control: 

16.97±2.23 vs. Aged: 15.90±2.75 pmol ATP/min-1/ng DNA-1, P=0.713). Along similar lines, 

the relative contribution of JATPglyc (Control: 66.6±4.2 vs. Aged: 60.1±4.2 %; P=0.337) and 

JATPox (Control: 33.4±4.2 vs. Aged: 39.9±4.2 %; P=0.337) to JATPproduction was similar between 

in control and aged cells (see Figure 5.4). Therefore, indices of mitochondrial function were 

similar between control and aged myoblasts, and both absolute and relative rates of JATPproduction 

were comparable between control and aged cells. Replicative ageing does not appear to alter 

pathways associated with energy metabolism in skeletal myoblasts. Overall, the mitochondrial 

respiration data indicate that aged myoblasts display comparable mitochondrial function when 

compared to control.  
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Figure 5. 4 ATP production rates of control and aged C2C12 myoblasts A) Absolute 

JATPproduction. B) Relative contribution of JATPglyc to JATPproduction and C) Relative contribution of 

JATPox to JATPproduction. Data from 3 independent experiments are presented as mean±SEM and 

normalised to DNA content. Differences between groups establish by independent t-test. 

 

 

After reporting that replicative ageing did not cause alterations to mitochondrial function or 

rates of ATP production in myoblasts, the rate of proton production in control and aged 

myoblasts was determined (see Figure 5.5). There were no differences in the proton production 

rate between control and aged myoblasts (Control: 11.92±2.14 vs. Aged: 10.28±2.45 pmol 

H+/min-1/ng DNA-1, P=0.640).  
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Figure 5. 5 Proton production rates in control and aged C2C12 myoblasts. Data from 3 

independent experiments are presented as mean±SEM and normalised to DNA content. 

Differences between groups determined by independent t-test. 

 

 
5.4.3 Mitochondrial bioenergetics of control and aged C2C12 skeletal myoblasts: Effects 

of dietary flavonoids 

Having established that mitochondrial bioenergetics are similar between control and aged 

myoblasts the next step was to examine whether physiological flavonoid concentrations would 

impact indices of mitochondrial function. Flavonoids may confer beneficial effects upon 

mitochondria, but little is known regarding their mode of action in skeletal muscle cells. Firstly, 

it was important to determine potential toxic effects of flavonoids in skeletal muscle cells. After 

24 h dietary flavonoid treatments (0-20 µM dose responses), there were no differences in cell 

number/viability (%) determined using the CyQUANT™ Cell Proliferation Assay between Q, 

EGCG or EPI treated cells vs. untreated control (see Figure 5.6). As a result, and for subsequent 

experiments, doses of 1, 5 and 10 µM were employed.  
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Figure 5. 6 Cell viability following 24 h differentiation +/- flavonoid treatment with A) 

Quercetin, B) EGCG and C) EPI. Data are means±SEM, representative of 3 independent 

repeats performed using 5 replicates of each condition. 

 

 

There was no main effect of age or dose on basal respiration in Q (1-10 µM) or EGCG (1-10 

µM) treated skeletal myoblasts (see Figure 5.7A). However, there was a significant main effect 

of dose on basal respiration in EPI (1-10 µM) treated myoblasts (P=0.0284). Multiple 

comparisons unveiled that basal respiration was significantly lower in aged myoblasts cultured 
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with 1, 5 and 10 µM EPI compared with CTRL (Aged CTRL: 1.81±0.15; 1 µM EPI: 1.22±0.13; 

5 µM EPI: 1.31±0.14; 10 µM EPI: 1.31±0.23 pmol O2/min-1/ng DNA-1; P=0.017, P=0.041 and 

P=0.044, respectively). There was a significant impact of age on proton leak in EPI treated 

myoblasts (P=0.0395) (see Figure 5.7B). However, no significant differences in proton leak 

were identified between conditions, regardless of the flavonoid type or dose studied. There was 

a significant main effect of dose on ATP production in EPI treated cells (P=0.0492). Multiple 

comparisons demonstrated a trend towards reduced oxygen consumption linked to ATP 

production in response to 1, 5 and 10 µM EPI in aged myoblasts (P=0.056, P=0.051, and 

P=0.051, respectively). Whereas levels of ATP-linked respiration were similar between 

conditions in control myoblasts. A significant main effect of age was found on coupling 

efficiency in myoblasts treated with Q, EGCG and EPI (P<0.0001). Coupling efficiency was 

typically greater in aged myoblasts when compared to control (see Figure 5.7D). Together, 

these findings demonstrate that Q and EGCG do not impact indices of mitochondrial of 

function. However, EPI may inhibit mitochondrial respiration in skeletal myoblasts. 
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Figure 5. 7 Mitochondrial bioenergetics of control and aged skeletal muscle cells in the 

absence and presence of dietary flavonoids. A) Basal respiration, B) Proton leak, C) ADP 

CTRL

Q 1 
µM

Q 5 
µM

Q 10
 µM

EGCG 1 
µM

EGCG 5 
µM

EGCG 10
 µM

EPI 1
 µM

EPI 5
 µM

EPI 1
0 µ

M
CTRL

Q 1 
µM

Q 5 
µM

Q 10
 µM

EGCG 1 
µM

EGCG 5 
µM

EGCG 10
 µM

EPI 1
 µM

EPI 5
 µM

EPI 1
0 µ

M
0.0

0.2

0.4

0.6

0.8

pm
ol

 O
2/m

in
-1

/n
g 

D
N

A
-1

Proton leak

c

B

Control Aged

c

CTRL

Q 1 
µM

Q 5 
µM

Q 10
 µM

EGCG 1 
µM

EGCG 5 
µM

EGCG 10
 µM

EPI 1
 µM

EPI 5
 µM

EPI 1
0 µ

M
CTRL

Q 1 
µM

Q 5 
µM

Q 10
 µM

EGCG 1 
µM

EGCG 5 
µM

EGCG 10
 µM

EPI 1
 µM

EPI 5
 µM

EPI 1
0 µ

M
0.0

0.5

1.0

1.5

2.0

pm
ol

 O
2/m

in
-1

/n
g 

D
N

A
-1

ADP Phosphorylation
C

ns

ns

ns

Control Aged

a

CTRL

Q 1 
µM

Q 5 
µM

Q 10
 µM

EGCG 1 
µM

EGCG 5 
µM

EGCG 10
 µM

EPI 1
 µM

EPI 5
 µM

EPI 1
0 µ

M
CTRL

Q 1 
µM

Q 5 
µM

Q 10
 µM

EGCG 1 
µM

EGCG 5 
µM

EGCG 10
 µM

EPI 1
 µM

EPI 5
 µM

EPI 1
0 µ

M
0

25

50

75

100

C
ou

pl
in

g 
ef

fic
ie

nc
y 

(%
)

Coupling efficiencyD

c

Control Aged



 

 208 

phosphorylation, D) Coupling efficiency (%). Data representative of 3 independent 

experiments (presented as mean±SEM) and normalised to DNA content. *P<0.05, significant 

vs. CTRL. a significant effect of dose. c significant main effect of age (P<0.05). 

 

5.4.4 Rates of ATP and proton production in skeletal myoblasts 

There was no significant impact of age or dose of flavonoids on absolute JATPglyc. Similarly, 

there was no significant effect of age on absolute JATPox production in myoblasts (see Figure 

5.8). However, there was a significant main effect of dose on JATPox production in EPI treated 

myoblasts (P=0.036). Both 1 and 10 µM EPI significantly lowered absolute JATPox production 

versus CTRL in aged myoblasts (Aged CTRL: 6.1±0.4 vs. 1 µM EPI: 4.3±0.3 and 10 µM EPI: 

4.4±0.9 pmol ATP/min-1/ng DNA-1; P=0.032 and P=0.043, respectively). There was no main 

effect of dose or age found on proton production rates in control and aged myoblasts, regardless 

of the flavonoid investigated (data not shown). 

 

 

Figure 5. 8 ATP production rates of control and aged myoblasts following acute dietary 

flavonoid treatment. Data from 3 independent experiments are presented as mean±SEM and 

normalised to DNA content. *P<0.05, significant vs. CTRL. a significant main effect of dose. 
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The prior findings demonstrate that flavonoids have a limited direct impact on indices of 

mitochondrial function. Although, EPI may acutely inhibit mitochondrial bioenergetics and 

rates of oxidative ATP synthesis in skeletal myoblasts.  

 

5.4.5 The impact of flavonoids on myoblast mitochondrial bioenergetics may relate to 

modulation of complex I activity  

Initial data established that EPI may inhibit mitochondrial respiration in control and aged 

skeletal myoblasts (section 5.4.3). To ascertain whether flavonoid-induced inhibition of 

mitochondrial bioenergetics was related to effects upon the electron transfer system, the 

activity of complex I was studied in the absence and presence of dietary flavonoids. There was 

a 1.3-fold increase in complex I activity, under basal untreated (CTRL) conditions in aged cells 

when compared to control (Aged: 49.4±3.9 vs. Control: 37.0±2.9 nmol/min-1/mg-1 protein), 

though this increase was not statistically significant (P=0.063). In Q and EGCG treated cells, 

there were no main effects of age or dose on complex I activity. However, there was a 

significant main effect of age on complex I activity in EPI treated cells (P=0.044). Multiple 

comparisons demonstrated no significant difference between conditions, irrespective of the 

flavonoid studied (see Figure 5.9). Although, there was a non-significant decrease in complex 

I activity with 5 µM EPI compared to CTRL conditions in aged muscle cells (P=0.079). 
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Figure 5. 9 Limited impact of flavonoid treatment on complex I activity in control and aged 

skeletal muscle cells. Control and aged skeletal muscle cells were cultured in the absence and 

presence of Q, EPI or EGCG for 24 h, at 0, 5 and 10 µM. After 24 h, cells were harvested and 

assayed for complex I activity by spectrophotometry. Immediately following analysis, the 

protein content of cell lysates was determined so that complex I activity could be normalised 

to cell lysate protein content. Data are means±SEM from 3 independent experiments. A two-

way ANOVA was performed with dose and age as factors to test for statistical significance 

between conditions, using Dunnett’s test for multiple comparisons. c significant main effect of 

age. Black and transparent grey solid circles represent control and aged myoblasts, 

respectively. 

 

5.4.6 Intracellular nitric oxide levels are not impacted by flavonoid treatment in control 

and aged skeletal muscle cells 

After determining the effects of flavonoids on mitochondrial respiration and complex I activity, 

the potential of flavonoids to contribute to NO production in control and aged muscle cells was 

investigated. First, NO production (measured by DAF-FM fluorescence) was compared 

between control and aged muscle cells under CTRL conditions. Replicative ageing reduced 

NO levels by 50% compared to control (P=0.024). The impact of flavonoids on NO levels in 
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control and aged muscle cells was then investigated. A significant main effect of age on DAF-

FM fluorescence intensity was observed in cells treated with Q, EGCG and EPI (P<0.0005). 

Multiple comparisons revealed that NO levels were similar between experimental conditions, 

irrespective of age (see Figure 5.10).  

 

 

Figure 5. 10 Flavonoid supplementation does not impact intracellular nitric oxide in control 

and aged skeletal muscle cells. DAF-FM oxidation was determined in control and replicatively 

aged skeletal muscle cells in the absence and presence of Q, EPI and EGCG. Cells were treated 

with 0, 5 and 10 µM of flavonoids for 24 h. After 24 h, cells were trypsinised and resuspended 

in PBS. Median fluorescence intensity was determined with background signal (cell-free 

signal) subtracted. Data are presented as means ± SEM of three independent repeats with two-

three replicates per experimental condition. Black and transparent grey solid circles represent 

control and aged myoblasts, respectively. Statistical significance was tested for by two-way 

ANOVA and multiple comparisons by Tukey’s test. c significant main effect of age (P<0.05). 

 

5.4.7 Gene expression of control and aged skeletal myoblasts under CTRL conditions 

Having described how replicative ageing and flavonoids impact mitochondrial bioenergetics 
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(TFAM, DRP1, SIRT1, MFN2 PGC-1α and PARKIN) and the antioxidant response (NRF2, 

CAT, SOD2, NOX4 and eNOS) were examined.  

 

To establish whether replicative ageing changes the expression of genes associated with 

mitochondrial function, comparisons were made between control and aged myoblasts under 

CTRL conditions. There was no significant main effect of age or time on DRP1, SIRT1 or 

TFAM expression (see Figure 5.11). A significant main effect of age (P=0.0005) and time 

(P<0.0001) was found on MFN2 expression in myoblasts, and a significant age × time 

interaction (P=0.0005; see Figure 5.11A). Multiple comparisons revealed MFN2 expression 

was 3.2-fold higher in aged myoblasts over 24 h (P<0.0001). A main effect of age (P=0.006) 

and time (P=0.021) was observed on PARKIN expression in myoblasts, and a significant age 

× time interaction (P=0.0003; see Figure 5.11C). Multiple comparisons revealed PARKIN 

expression was 3.9-fold higher in control compared to aged myoblasts (P<0.0001). A 

significant main effect of time (P=0.010) was found on PGC-1α expression, but no differences 

in PGC-1α expression were evident between control and aged myoblasts (see Figure 5.12D). 
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Figure 5. 11 Expression of genes associated with mitochondrial remodelling in control and 

aged skeletal myoblasts under CTRL conditions. C2C12 myoblasts were lysed over 0-48 h of 

differentiation for analysis of gene expression. A) DRP1, B) MFN2, C) PARKIN, D) PGC-1α, 

E) SIRT1 and F) TFAM. Data are means±SEM from 3 independent experiments run in 

duplicate. Statistical significance was determined by a two-way ANOVA, with age and time 

as factors. Multiple comparisons performed by Sidak’s test to determine differences in gene 

expression between ages within each time point. b main effect of time; c main effect of age. 

****P<0.0001. Control and aged myoblasts are denoted by solid black and grey bars, 

respectively. 

 

Next, control and aged myoblast gene expression profiles related to the antioxidant response 

were compared under CTRL conditions (see Figure 5.12). There was a significant main effect 

of age (P=0.016) on CAT expression in myoblasts, but multiple comparisons revealed no 

differences in CAT expression between ages or across time points (see Figure 5.12A). A main 
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effect of age (P=0.011) was found on SOD2 expression in myoblasts, and a significant age × 

time interaction (P=0.009). Over 24 h, SOD2 expression was 3.2-fold higher in control versus 

aged myoblasts (P=0.001; see Figure 5.12B). There was a significant main effect of age 

(P=0.0007) on eNOS expression, and an age × time interaction (P=0.007). eNOS expression 

was 2.9-fold higher over 24 h in aged myoblasts compared to control (P=0.0002). There was 

no main effect of age or time on NOX4 or NRF2 expression in control and aged myoblasts (see 

Figure 5.12). 
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Figure 5. 12 Expression of genes associated with the antioxidant response in control and aged 

skeletal myoblasts under CTRL conditions. C2C12 myoblasts were lysed over 0-48 h of 

differentiation for analysis of gene expression. A) CAT, B) SOD2, C) eNOS, D) NOX4 and E) 

NRF2. Data are means±SEM from 3 independent experiments run in duplicate. Statistical 

significance was determined by a two-way ANOVA, with age and time as factors. Multiple 

comparisons performed by Sidak’s test to determine differences in gene expression between 

ages within each time point. b main effect of time; c main effect of age. **P<0.01 and 

***P<0.001. Control and aged myoblasts are denoted by solid black and grey bars, 

respectively. 

 

5.4.8 Summary of the effects of replicative ageing on gene expression in myoblasts 

Overall, aged myoblasts presented higher and lower levels of MFN2 and PARKIN over 24 and 

48 h, respectively, when compared with control. Possibly, aged myoblasts have altered 

mitochondrial remodelling compared to control, through reduced mitophagy and a preference 

toward fusion. Furthermore, aged myoblasts have lower SOD2 and higher eNOS expression 

over 24 h compared with control, but these effects are not apparent over 48 h.  

 

5.4.9 Flavonoids modulate gene expression of control and aged skeletal myoblasts 

5.4.9.1 Expression of mitochondrial genes following Quercetin treatment in skeletal 

myoblasts 
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Having described how replicative ageing impacts the transcriptional responses of TFAM, 

DRP1, SIRT1, MFN2 PGC-1α, PARKIN, NRF2, CAT, SOD2, NOX4 and eNOS in myoblasts 

under CTRL conditions, the expression of these genes were quantified in the presence of Q, 

EGCG and EPI (see Figure 5.15 for heatmap representation). These genes were investigated to 

help amalgamate the mitochondrial bioenergetic data. There was a significant main effect of 

dose, time and age on DRP1 expression in Q treated myoblasts (P<0.0001). Post-hoc 

comparisons revealed DRP1 expression was similar between conditions in control and aged 

cells (see Figure 5.13A). There was a significant main effect of dose (P=0.0212) and time 

(P=0.0014) on MFN2 expression in Q treated myoblasts. Multiple comparisons revealed no 

significant effect of flavonoid treatment on MFN2 in control myoblasts (see Figure 5.13B). 

Though, in aged myoblasts, 5 and 10 µM Q lowered MFN2 expression compared to CTRL 

over 24 h (3-fold, P=0.0148; 4-fold, P=0.0051, respectively). There was no significant main 

effect of dose, time or age on PARKIN expression in Q treated myoblasts. Multiple 

comparisons revealed no impact of Q on PARKIN expression in control and aged myoblasts. 

There was no main effect of dose, time or age on PGC-1α expression in Q treated myoblasts. 

Post-hoc tests unveiled that PGC-1α expression was similar between conditions in control and 

aged myoblasts, regardless of dose (see Figure 5.13D). Although, there was a trend toward 

increased PGC-1α expression with 5 µM Q after 48 h when compared to CTRL (2-fold 

increase, P=0.058). Regarding SIRT1 expression, there was a significant main effect of dose 

in Q treated cells (P=0.0077), but no main effect of time or age. Multiple comparisons revealed 

that SIRT1 expression was similar between conditions in control myoblasts (see Figure 5.13E). 

In aged myoblasts, however, SIRT1 expression was significantly increased by 5 µM Q 

treatment over 48 h when compared to CTRL (1.5-fold, P=0.0221). There was no main effect 

of dose, time or age on TFAM expression in Q treated myoblasts. Collectively, Q may augment 
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genes associated with mitochondrial biogenesis in skeletal myoblasts, although this did not 

culminate in altered mitochondrial respiration. 

 

5.4.9.2 Expression of mitochondrial genes following EGCG treatment in skeletal 

myoblasts 

There was a significant main effect of dose, time and age on DRP1 expression in EGCG treated 

myoblasts (P<0.0001). Post-hoc comparisons revealed DRP1 expression was similar between 

conditions in control and aged cells, regardless of dose (see Figure 5.13A). In EGCG treated 

cells, there was a significant dose × time interaction (P=0.0004). Multiple comparisons 

revealed no significant effect of flavonoid treatment on MFN2 in control myoblasts (see Figure 

5.13B). Similarly, at 24 h, 10 µM EGCG lowered MFN2 expression 5.9-fold versus control 

(P=0.0013). In EGCG treated cells, a significant main effect of dose (P=0.0002), time 

(P=0.0008) and age (P<0.0001) on PARKIN was found, in addition to a significant dose × 

time × age interaction (P=0.0086). In control myoblasts, PARKIN expression was decreased 

over 48 h by 5 and 10 µM EGCG treatment (2.2-fold, P=0.0213 and 2.3-fold, P=0.0059, 

respectively). Compared to CTRL conditions in aged cells, PARKIN expression was decreased 

4.5-fold (P=0.001) and 3.4-fold (P=0.021) by 5 and 10 µM EGCG over 24 h, respectively. In 

EGCG treated cells, a significant main effect of time (P=0.016) was found, and a significant 

dose × time interaction (P=0.032). Post-hoc tests unveiled that PGC-1α expression was similar 

between conditions in control and aged myoblasts, regardless of dose (see Figure 5.13D). There 

was no main effect of time or age on SIRT1 expression in EGCG treated cells. Multiple 

comparisons revealed that SIRT1 expression was similar between conditions in control 

myoblasts (see Figure 5.13E). There was no main effect of dose, time or age on TFAM 

expression in EGCG treated myoblasts. However, there was a significant dose × time × age 

interaction in EGCG treated cells (P<0.05). Compared to CTRL, TFAM expression was 1.8-
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fold lower over 48 h in control myoblasts with 10 µM EGCG (P=0.0046). In aged myoblasts, 

TFAM expression was decreased 2-fold at 24 h by 10 µM ECGG compared to CTRL 

(P=0.0486). Overall, EGCG attenuated the expression of genes associated with mitochondrial 

remodelling in skeletal myoblasts, although this did not coincide with changes in mitochondrial 

function. 

 

5.4.9.3 Expression of mitochondrial genes following EPI treatment in skeletal myoblasts 

There was a significant main effect of dose, time and age on DRP1 expression in EPI treated 

myoblasts (P<0.0001). There was, however, a significant time × age interaction (P=0.019) in 

EPI treated myoblasts. Post-hoc comparisons revealed DRP1 expression was similar between 

conditions in control and aged cells, regardless of EPI dose (see Figure 5.13A). There was a 

main effect of time (P=0.0083) and age (P<0.0001) on MFN2 expression in EPI treated cells, 

as well as a dose × time interaction (P=0.021). Multiple comparisons revealed no significant 

effect of flavonoid treatment on MFN2 in control myoblasts (see Figure 5.13B). However, 

MFN2 levels were 2.5-fold higher in aged myoblasts at 48 h with 10 µM EPI compared to 

CTRL (P=0.032). There was a main effect of dose (P=0.034) on PARKIN expression in EPI 

treated cells, and a dose × age (P=0.014), and time × age (P=0.0009) interaction. PARKIN 

expression at 48 h in control cells was decreased 3.9-fold with 5 µM EPI versus CTRL 

(P=0.0005). There was also a main effect of time (P=0.0001) on PGC-1α expression in EPI 

treated cells, and a significant time × age interaction (P=0.025). Post-hoc tests unveiled that 

PGC-1α expression was similar between conditions in control and aged myoblasts, regardless 

of the flavonoid dose (see Figure 5.13D). There was no main effect of time or age on SIRT1 

expression in EPI treated cells. Multiple comparisons revealed that SIRT1 expression was 

similar between conditions in control myoblasts (see Figure 5.13E). There was no main effect 

of dose, time or age on TFAM expression in EPI treated myoblasts. However, there was a 
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significant dose × time × age interaction in EPI treated cells (P<0.05). TFAM expression was 

decreased 1.8-fold with 5 µM EPI versus CTRL conditions after 48 h (P=0.006). Overall, EPI 

attenuated the expression of genes associated with mitochondrial remodelling over 48 h in 

control skeletal myoblasts, which may not be associated with mitochondrial respiration.  
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Figure 5. 13 Expression of genes associated with mitochondrial function in control and aged 

skeletal myoblasts following acute dietary flavonoid treatment. Myoblasts were treated with 0, 

5 and 10 µM of Q, EPI or EGCG over 48 h and lysed for analysis of gene expression. A) DRP1, 

B) MFN2, C) PARKIN, D) PGC1a, E) SIRT1 and F) TFAM. Data are means±SEM from 3 

independent experiments run in duplicate. Statistical significance was determined by a three-

way ANOVA, with dose, time and age as factors. Multiple comparisons performed by 

Dunnett’s test, to determine within-age differences in gene expression between experimental 

conditions. a main effect of dose; b main effect of time; c main effect of age. *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001. Control and aged myoblasts are denoted by solid black and 

transparent circles, respectively. 
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fold compared to CTRL at 48 h (P=0.001). For SOD2 expression, there was a significant main 

effect of age, and time × age interaction in Q treated myoblasts (P<0.05). Levels of SOD2 were 

not impacted by flavonoid treatment in control myoblasts (see Figure 5.14B). Conversely, 

SOD2 expression was decreased 1.8-fold at 48 h following 10 µM Q compared to CTRL 

(P=0.034) in aged cells. There was a significant main effect of dose (P=0.0008), time 

(P=0.004) and age (P=0.0277) on eNOS expression in Q treated myoblasts, and a significant 

dose × age interaction (P=0.0386). At 48 h, eNOS expression in control myoblasts was 1.9-

fold lower with 5 µM Q versus CTRL (P=0.035). In aged myoblasts, 5 µM Q decreased eNOS 

expression 2-fold (P=0.0122) and 2.3-fold (P=0.0014) over 24 h and 48 h, respectively. 

Regarding NOX4 expression, there was no significant main effect of dose, time or age in Q 

treated cells (Figure 5.14D). There was a significant main effect of time (P=0.0032) and age 

(P=0.0008) on NRF2 expression in Q treated myoblasts, and a significant dose × time 

(P=0.0144) and time × age interaction (P=0.0237). In control myoblasts, 5 µM Q decreased 

NRF2 expression 2-fold versus CTRL (P=0.005). Overall, Q caused changes in the 

transcriptional activity of aged cells that imply increased cytosolic and lowered mitochondrial 

ROS, which, in the absence of changes in mitochondria function, warrants further 

investigation.  

 

5.4.9.5 Expression of antioxidant related genes following EGCG treatment in skeletal 

myoblasts 

There was a main effect of age (P<0.0001), and a dose × age interaction (P=0.0173) on catalase 

in EGCG treated cells. Multiple comparisons revealed no impact of EGCG treatment on 

catalase expression. For SOD2 expression, there was a significant main effect of age, and time 

× age interaction in EGCG treated myoblasts (P<0.05). Levels of SOD2 were increased 1.9-

fold (P=0.027) and decreased 2-fold (P=0.011) by 24 h and 48 h treatment with 5 µM EGCG, 
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respectively (Figure 5.14B). In EGCG treated cells, a main effect of dose (P=0.0002) and time 

(P<0.0001), and a significant dose × time × age interaction (P=0.0071) was found for eNOS 

expression. Over 24 h, eNOS expression was significantly lower in aged myoblasts after 5 and 

10 µM EGCG (2.9-fold, P=0.0027; 3.7-fold, P=0.0027). No differences in eNOS expression 

were observed in control cells after EGCG treatment (see Figure 5.14C). In EGCG treated 

cells, there was no main effect of dose, time or age on NOX4 expression but a significant time 

× age interaction was found (P=0.0003). In control cells, 5 µM EGCG increased NOX4 levels 

over 24 h and 48 h (1.8-fold, P=0.003; 1.6-fold, P=0.045, respectively). In EGCG treated cells, 

there was a main effect of dose (P=0.0037) and time (P=0.0162). Both 5 µM and 10 µM EGCG 

augmented control NRF2 levels 1.6-fold (P=0.028) and 1.5-fold (P=0.047) over 24 h and 48 

h, respectively (see Figure 5.14E). In aged myoblasts, 48 h EGCG (5 µM) increased NRF2 

levels 2.6-fold compared with CTRL (P=0.0157). Overall, EGCG upregulated the transcription 

of genes associated with the antioxidant response in myoblasts, suggesting pro-oxidant effects 

of EGCG in myoblasts, independent of changes in mitochondrial respiration. 

 

5.4.9.6 Expression of antioxidant related genes following EPI treatment in skeletal 

myoblasts 

There was a main effect of age on catalase expression in EPI treated cells (P<0.0001). Treating 

control myoblasts with 5µM EPI decreased catalase expression over 24 h versus CTRL (2.1-

fold; P=0.0027). Conversely, over 48 h catalase expression was augmented 1.5-fold versus 

CTRL with 5µM EPI (P=0.025) in aged cells (Figure 5.14A). On SOD2 expression, there was 

a significant main effect of age, and time × age interaction in EPI treated myoblasts (P<0.05). 

Multiple comparisons revealed no impact of EPI on SOD2 expression in control and aged 

myoblasts. There was a significant effect of dose (P=0.0033) and age (P<0.0001) on eNOS 

expression in response to EPI (P<0.0001), and a time × age interaction (P=0.0180). Over 48 h 
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in control myoblasts, EPI treatment (10 µM) lowered eNOS expression 2.1-fold compared to 

CTRL conditions (P=0.0017). In EPI treated myoblasts, there was a significant main effect of 

age (P=0.0201), and a time × age interaction (P=0.0014) on NOX4 expression. At 24 h, NOX4 

expression was 1.6-fold higher with 5 µM EPI compared to CTRL in control cells (P=0.020). 

NOX4 expression was similar between conditions in aged myoblasts (see Figure 5.14D). There 

was a significant effect of dose on NRF2 expression in EPI treated myoblasts (P=0.0035). At 

24 h, NRF2 expression was 1.6-fold higher in control myoblasts after 5 µM EPI treatment 

compared to untreated CTRL (P=0.045; see Figure 5.14E). Whereas after 48 h 5 µM EPI 

treatment of aged cells, NRF2 levels were 1.6-fold higher versus CTRL (P=0.032). In 

summary, acute EPI treatment increased antioxidant and stress responsive genes in aged 

myoblasts, that could relate to inhibition of mitochondrial bioenergetics.  
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Figure 5. 14 Expression of genes associated with the antioxidant response in control and aged 

skeletal muscle myoblasts following acute dietary flavonoid treatment. C2C12 myoblasts were 

treated with 0, 5 and 10 µM of Q, EPI or EGCG over 48 h and lysed for analysis of gene 

expression. A) CAT, B) SOD2, C) eNOS, D) NOX4 and E) NRF2. Data are means±SEM from 

3 independent experiments run in duplicate. Statistical significance was determined by a three-

way ANOVA, with dose, time and age as factors. Multiple comparisons performed by 

Dunnett’s test, to determine within-age differences in gene expression between experimental 

conditions. a main effect of dose; b main effect of time; c main effect of age. **P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001. Control and aged myoblasts are denoted by solid black 

and transparent circles, respectively. 
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mRNA responses may suggest pro-oxidant effects and stimulation of mitochondrial biogenesis. 

In the presence of EGCG, gene expression data indicate an augmented antioxidant response 

and reduced mitochondrial remodelling. Lastly, EPI treatment attenuated mitochondrial 

remodelling in control myoblasts, but initiated an increased antioxidant response in aged 

myoblasts.
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Figure 5. 15 Heatmap representation of myoblast mRNA responses in the absence of presence of flavonoids. Fold changes (2-ΔΔCT) in gene 

expression over 48 h presented as heat map. 
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5.5 Discussion 

In this chapter, experiments were performed to determine whether mitochondrial function, NO 

bioavailability and gene expression are affected by replicative ageing, and secondly, whether 

these measures are impacted by dietary flavonoids. The aim of these experiments was to 

determine the basal phenotype of control and aged myoblasts and to subsequently determine 

the impact on mitochondrial function, NO bioavailability and gene expression with flavonoid 

treatment in the myoblast model. It was hypothesised that replicative ageing would cause 

mitochondrial dysfunction, lower NO bioavailability and blunt gene expression, and that these 

effects would be mitigated by dietary flavonoid supplementation. Overall, this chapter 

demonstrates that replicative ageing does not impair mitochondrial function but lowers NO 

bioavailability and attenuates gene expression (PARKIN and SOD2) in myoblasts (Figure 

5.16). Interestingly, flavonoids evoked distinct effects on mitochondrial bioenergetics and 

transcription. EPI treatment increased NRF2 mRNA expression in control and aged myoblasts, 

but only inhibited respiration in aged myoblasts (see Figure 5.17). Therefore, EPI may act in a 

hormetic manner to promote beneficial adaptations via transcription. The data presented 

advance current knowledge of the mechanisms associated with flavonoids and their purported 

health benefits in skeletal muscle.    
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Figure 5. 16 Impact of replicative ageing upon skeletal myoblasts in this chapter. Replicative 

ageing does not impair indices of mitochondrial function but lowers NO bioavailability and 

alters gene expression (SOD2 and PARKIN lower and MFN2 and eNOS higher in aged vs. 

control myoblasts). 

 

5.5.1 Replicative ageing does not compromise mitochondrial function in myoblasts 

The main outcome from the current chapter was that replicative ageing does not impair 

mitochondrial function in cultured myoblasts, and flavonoids play a limited role in modulating 

mitochondrial respiration. Although advancing age has been linked with skeletal muscle 

mitochondrial dysfunction in rodents and humans (Gouspillou et al., 2014c; Porter et al., 2015; 

Tonkonogi et al., 2003a), a number of studies have documented comparable mitochondrial 

functionality between young and aged skeletal muscle (Gouspillou et al., 2014b; Hütter et al., 

2007; Picard et al., 2010a). This is especially the case when mitochondrial function is 

interrogated when controlling for levels of physical activity (Distefano et al., 2018; Gram et 

al., 2015). Using an in vitro model of replicative ageing, the findings presented demonstrate 

that cellular replicative ageing is not associated with mitochondrial dysfunction, at least in 

myoblasts.  
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5.5.2 Flavonoids do not cause alterations in myoblast mitochondrial respiration 

Here, parameters of mitochondrial function were not impacted by Q or EGCG. These findings 

agree with oxygen consumption data from rat brain and heart mitochondria in the presence of 

Q (Lagoa et al., 2011), but disagree with studies demonstrating blunted state-3 supported 

respiration in mitochondria dosed with Q (Dorta et al., 2005; Trumbeckaite et al., 2006). The 

lack of change in mitochondrial respiration in cells cultured with EGCG supports previous 

work showing no change in parameters of mitochondrial function in isolated hepatocytes 

treated with analogous concentrations (10 µM) of EGCG (Kucera et al., 2015). Although, other 

studies have reported EGCG administration augments state 3 respiration in human primary 

neurons (Castellano-González et al., 2016) and rat cardiomyocytes (Vilella et al., 2020b). 

Taken together, it seems that the effects of Q and EGCG on mitochondrial bioenergetics are 

highly cell specific. One possible explanation for differences in cell respiratory responses to Q 

and EGCG could relate to their potential accumulation within the mitochondrial fractions of 

cells. Both Q and EGCG accumulate within the organelles of T lymphocyte and neuronal cells 

(Fiorani et al., 2010b; Schroeder et al., 2009). However, to our knowledge, no studies have 

described whether Q and EGCG accrue within skeletal muscle mitochondria, and further 

research is required to help establish if this occurs both in vitro and in vivo. In contrast to Q 

and EGCG, EPI inhibited indices of mitochondrial function and oxidative ATP production in 

aged, but not control skeletal myoblasts. Consistent with the results in control myoblasts, one 

previous study reported that concentrations of EPI equivalent to those used here produced 

negligible effects upon C2C12 mitochondrial bioenergetics assessed during a mitochondrial 

stress test (Bitner et al., 2018). Furthermore, a study of isolated rat heart mitochondria in the 

presence of EPI unveiled 15% lower or similar state 3 respiration rates versus control when 

pyruvate/malate or succinate/amytal were used as substrates, respectively (Kopustinskiene et 
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al., 2015b). A handful of studies, however, have reported increased mitochondrial respiratory 

function with EPI treatment, albeit in rat beta-cells (Kener et al., 2018a; Rowley et al., 2017a). 

The underlying mechanism responsible for EPI-mediated respiratory inhibition in aged 

myoblasts is not entirely clear. However, in this study, a downward trend in complex I activity 

with EPI was observed in aged cells, which is consistent with data showing that complex I is a 

molecular target of EPI (Lagoa et al., 2011). Furthermore, EPI did not modulate NO levels in 

skeletal myoblasts, lending support to the idea that EPI-mediated inhibitions to mitochondrial 

respiration may be perpetuated by reductions in complex I activity and not increased NO. The 

physiological significance of acute respiratory inhibition with EPI is hard to reconcile, as it is 

not currently known what amounts (if any) of EPI reach mitochondria in vivo. Whilst chronic 

inhibitions to mitochondrial bioenergetics would likely be detrimental to cell function, acute 

respiratory inhibition could serve to stimulate a beneficiary cellular adaptive response through 

activation of stress signalling kinases (Garcia & Shaw, 2017; Mick et al., 2020), for example. 

In this manner, polyphenols (e.g. resveratrol and sulforaphane) have been proposed to act by 

the principle of hormesis, where these compounds stimulate stress response pathways and 

ultimately promote favourable adaptations (Calabrese & Baldwin, 2002; Calabrese et al., 2012; 

Martel et al., 2019), like that found in endothelial, neuronal and mesenchymal stem cells (J et 

al., 2006; Jang & Surh, 2003; Zanichelli et al., 2012). 

 

5.5.3 Flavonoids do not rescue impairments to NO bioavailability in replicatively aged 

myoblasts 

A second key finding of this chapter was that replicative ageing diminishes NO bioavailability, 

which is not rescued by flavonoid treatment. With older age, skeletal muscle NO levels 

reportedly decline due to reduced eNOS phosphorylation at Ser1177 (Donato et al., 2009a; 

Nyberg et al., 2012) and lowered nNOS expression at the mRNA and protein level (Samengo 
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et al., 2012). Similarly, the present study demonstrated that cellular ageing compromised NO 

bioavailability, which could be a consequence of increased ROS production (Bailey et al., 

2010; Stefano et al., 2001). The observed age-related decline in NO bioavailability persisted in 

spite of increased eNOS mRNA in aged myoblasts, which may have served as a compensatory 

mechanism (Donato et al., 2009b; Thijssen et al., 2016). Such detrimental effects of ageing on 

NO bioavailability can have major ramifications, not only for the matching of O2 delivery to 

O2  demand within contracting muscle, but also for molecular events reliant on NO such as 

mitochondrial biogenesis (Lira et al., 2010; Tengan et al., 2007). In this study, flavonoids did 

not augment NO bioavailability in control or aged skeletal myoblasts. At the mRNA level, 

flavonoids tended to attenuate eNOS expression of control and aged myoblasts, yet NO levels 

were maintained between treatment conditions. Together, these observations emphasise the 

complexity involved in the regulation of eNOS activity and highlight mRNA responses may 

not directly translate to enzyme activity. Of the flavonoids tested, EPI has repeatedly been 

shown to potently stimulate NO production in endothelial cells and adult mouse tissue, and 

across healthy and unhealthy human populations (type 2 diabetic and heart failure patients) 

(Nogueira et al., 2011; Ramirez-Sanchez et al., 2010; Ramírez-Sánchez et al., 2016a; Schroeter 

et al., 2006; Taub et al., 2012). However, the lack of EPI-mediated change in NO levels 

observed here might be explained by the time course of treatment, given that peak EPI-induced 

NO production occurs within 10 minutes, at least in vascular endothelial cells (Ramirez-

Sanchez et al., 2010). Taken together, the negligible impact of physiological concentrations of 

flavonoids on myoblast NO bioavailability suggests flavonoids may not afford adaptations that 

contribute to NO production or redox regulation in skeletal muscle myoblasts over the time-

course studied. 

 

5.5.4 Replicative ageing attenuates myoblast PARKIN and SOD2 mRNA expression 
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Another important finding of the present study was that replicative ageing culminated in 

changes to the expression of genes associated with energy metabolism. Accordingly, aged 

myoblasts exhibited lower expression of PARKIN, suggesting reduced capacity for organelle 

degradation that could result in reduced competence of the mitochondrial network (Gouspillou, 

et al., 2014a). These data, however, contrast findings in rodent models of ageing that report 

increased basal mitophagy in older animals (Carter et al., 2018; Yeo et al., 2019). Besides, the 

abundance of MFN2 was acutely upregulated in aged myoblasts, which lends support to studies 

demonstrating an increased ratio of fusion:fission related proteins in ageing skeletal muscle (et 

al., 2013b; Leduc-Gaudet et al., 2015; Mercken et al., 2017). On the contrary, a number of 

studies have reported that ageing skeletal muscle mitochondria preferentially undergo fission 

(Iqbal et al., 2013; Joseph et al., 2012). The potential for hyper-fusion in aged myoblasts 

reported here would likely contribute to abnormal morphology of the mitochondrial network 

(Terman et al., 2009). Aged myoblasts also presented lower SOD2 expression, which supports 

work demonstrating that SOD2 protein content is significantly reduced in active and inactive 

older adults when compared to younger counterparts (Safdar et al., 2010). A reduced capacity 

to deal with mitochondrial superoxide by SOD2 would likely contribute to increased oxidative 

stress and subsequent damage to DNA and/or proteins (Dirks et al., 2006). 

 

5.5.5 Flavonoids modulate the expression of genes associated with mitochondrial 

remodelling and the antioxidant response 

To test whether flavonoids regulate transcription activities in control and aged myoblasts, the 

expression of genes associated with energy metabolism were assessed in their absence and 

presence. Of the genes studied associated with the antioxidant response, CAT demonstrated 

differential regulation by flavonoid treatment. In the presence of Q, control and aged myoblasts 

upregulated CAT mRNA expression, suggesting Q may act in a prooxidant manner in skeletal 
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myoblasts. Whereas CAT mRNA was respectively decreased and increased in control and aged 

cells cultured with 5 µM EPI. Therefore, EPI’s induction of CAT may depend on cellular ROS 

(H2O2) levels, although this study did not establish whether ROS are elevated in aged 

myoblasts. Mitochondrial SOD mRNA expression was significantly lowered by 5 µM EGCG 

over 48 h in myoblasts. Given that SOD2 serves to dispense of mitochondrial superoxide, 

EGCG may act as an antioxidant at the level of mitochondria (Pan et al., 2015); but whether 

these (potential) antioxidant effects are perpetuated via an enzymatic or non-enzyamtic 

mechanism remains to be established. These data conflict with findings showing increased 

SOD2 mRNA expression and protein content following EGCG administration in L6 myocytes 

and embryonic fibroblasts, respectively (Casanova et al., 2014; Zhang et al., 2019), although 

supraphysiological concentrations (25 µM) of flavonoids were employed. In contrast to SOD2, 

NOX4 mRNA was increased in the presence of EGCG. NOX4 plays a key role in generating 

cytosolic ROS (Sakellariou et al., 2013; Serrander et al., 2007), and therefore, it is possible that 

the effects of EGCG on intracellular ROS are dependent on the sub cellular compartment. 

Together, these findings suggest that flavonoids may distinctly contribute to control of the 

myoblast redox state through the induction of enzymatic antioxidant systems. 

 

The transcriptional co-activator, PGC-1α, seems to play an important role in mediating 

mitochondrial adaptations to external stimuli like exercise and nutritional intervention 

(Lagouge et al., 2006; Lin et al., 2002; Wright et al., 2007). Together with PGC-1α, SIRT1 

functions to stimulate mitochondrial biogenesis via its deacetylase activity (Dumke et al., 

2009). The increased expression of PGC-1α and SIRT1 in myoblasts following 5 µM Q 

supports previous work showing increased mitochondrial biogenesis following Q 

supplementation in humans and rodents (Davis et al., 2009b; Henagan et al., 2015; Nieman et 

al., 2010; Sharma et al., 2015b). Whilst Q appears capable of stimulating mitochondrial 
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biogenesis, micromolar doses of EGCG and EPI did not alter PGC-1α mRNA levels in 

myoblasts. These data conflict with previous findings demonstrating blunted mitochondrial 

adaptations in human skeletal muscle and murine skeletal muscle cells following EPI and 

EGCG supplementation, respectively (Schwarz et al., 2018; Wang et al., 2016). Additionally, 

the lack of change in PGC-1α with EGCG and EPI disagrees with studies documenting 

augmented markers of mitochondrial biogenesis with EPI and EGCG (Hüttemann et al., 2013; 

Lee et al., 2017; Moreno-Ulloa, Nogueira, et al., 2015; Taub et al., 2016). Although EGCG did 

not impact PGC-1α mRNA expression, myoblasts cultured in the presence of EGCG exhibited 

lower TFAM mRNA, suggesting reduced potential for transcription of mitochondrial encoded 

proteins. Considering EGCG’s apparent antioxidant action at the level of transcription in the 

mitochondria, it is plausible that the blunted TFAM expression with EGCG occurred due to 

lowered ROS and blunted activation of transcription factors, such as NRF2. Maintenance of 

mitochondrial health also involves targeted mitochondrial degradation (mitophagy), as well as 

fusion/fission activities that govern organelles dynamics. Evidence for reduced mitophagy in 

EGCG treated myoblasts was provided by decreased PARKIN expression, which may result 

in a more fragmented network (Bernard et al., 2007). Interestingly, aged myoblast 

mitochondrial fusion was differentially regulated by flavonoids. Whilst Q and EGCG 

attenuated MFN2 mRNA expression, EPI enhanced MFN2 mRNA in aged myoblasts. 

Therefore, EPI supplementation may facilitate coordinated mitochondrial membrane 

remodelling activities in muscle cells, with potential implications for mitochondrial function 

(Eisner et al., 2014; Glancy et al., 2015).  

 

As a redox-sensitive transcription factor, NRF2 governs the transcription of multiple proteins 

including antioxidant enzymes and subunits of the ETS through its binding to antioxidant 

response elements (Gao et al., 2020; Yamamoto et al., 2018). Surprisingly, EGCG and EPI 
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robustly enhanced NRF2 transcription across control and aged myoblasts. Induction of NRF2 

expression and activity by flavonoids is a well-documented phenomena (Huang et al., 2019; 

Kim et al., 2015; Li et al., 2016; Moreno-Ulloa, Nogueira, et al., 2015; Rowley et al., 2017a; 

Wu et al., 2006; Yang et al., 2015; Zheng et al., 2012), and together these findings raise 

questions about the process of flavonoid-induced NRF2 mRNA upregulation in skeletal muscle 

cells. Theoretically, flavonoids could promote NRF2 activation either directly, or by the 

formation of RONS (McMahon et al., 2010; Zhang & Hannink, 2003), via dissociation of 

NRF2 from its repressor Kelch-like ECH-associated protein 1 (Keap1), or even by a Keap1 

independent mechanism (Gao et al., 2020). Considering that flavonoids did not impact NO 

production in the present study, it is plausible that a Keap1-independent mechanism was 

responsible for the upregulation of NRF2 mRNA, such as that afforded by signalling kinases 

such as AMPK (Joo et al., 2016), but this requires further investigation. 

 

Figure 5. 17 Schematic of the potential mechanisms by which flavonoids exert their biological 

effects in skeletal myoblasts. Genes differentially expressed by Q, EGCG and EPI treatment 

are highlighted in purple, red and green, respectively. 
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5.6 Limitations 

A murine skeletal muscle cell line (C2C12) was used in this study to examine the effects of 

(replicative) ageing and flavonoids on aspects of energy metabolism in myoblasts. The findings 

generated using the C2C12 myoblast model should be translated with caution given their failure 

to fully mimic human skeletal muscle cells with repsect to metabolism (Abdelmoez et al., 

2019). A second limitation of this study was the use of the fluorescent DAF-FM probe to assess 

NO bioavailability in muscle cells. Indeed, DAF-FM oxidation may not solely reflect NO 

levels but could also reflect the presence of other one electron species (Namin et al., 2013). 

Other key limitations were the lack of measures of protein content and localisation and/or 

enzyme activity, and reliance on mRNA levels to infer cellular and molecular adaptations. Like 

Chapter 4, this study utilised parent flavonoid compounds rather than their related in vivo 

metabolites, which may limit the translatability of the findings. Another limitation of this study 

was the failure to obtain information on the maximal respiratory capacities of control and aged 

myoblasts when using the Seahorse Analyzer to investigate mitochondrial function. Further 

insights into the maximal and spare respiratory capacities of myoblasts may have shed light on 

dysfunction that was not apparent with the measures used between control and aged cells. The 

respiratory data in this chapter were normalised to cell DNA content, rather than mitochondrial 

mass, and therefore should be interpreted with caution.  

 

5.7 Conclusion 

The novel findings in this chapter demonstrate that replicative ageing does not cause 

mitochondrial dysfunction but attenuates NO bioavailability and alters the expression of genes 

associated with energy metabolism in skeletal myoblasts. Further, this study provides evidence 

that the flavonoids tested did not directly impact mitochondrial function, with the exception 

that EPI may inhibit respiration in aged myoblasts. In addition, flavonoids did not rescue age-
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related impairments to NO bioavailability, but they may indirectly regulate mitochondrial 

function via increased transcriptional activity in a compound- and dose-dependent manner. Of 

the flavonoids tested, EPI robustly induced NRF2 mRNA expression, that could relate to the 

inhibition of mitochondrial respiration. The reported effects of flavonoids on myoblast 

transcriptional responses occurred in the physiological range, suggesting that these compounds 

may confer favourable mitochondrial adaptations, on myoblasts, when ingested in vivo. Taken 

together, flavonoid (EGCG and EPI) supplementation may help defend against the perils of 

sedentary ageing by acting through the mechanism of hormesis to enhance mitochondrial 

health. Experimental evidence of NRF2 (in)activation and its associated signalling events is 

required in the presence of relevant kinase inhibitors to validate flavonoids proposed 

mechanism of action in skeletal myoblasts. 
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6.1 Abstract 

Introduction: Sedentary ageing is associated with impaired pulmonary oxygen uptake (V̇O2) 

kinetics and exercise tolerance, that may be attributable to mitochondrial dysfunction and 

increased ROS production. Flavonoids are acknowledged as health promoting compounds that 

may impact mitochondrial function and modulate ROS production, but their effects on ageing 

skeletal muscle mitochondria are yet to be described.  

Objective(s): 1) To determine the effect of replicative ageing on mitochondrial function, ROS 

production and cell signalling of C2C12 myotubes. 2) Investigate the impact of flavonoid 

(quercetin [Q], epigallocatechin-gallate [EGCG] or (-)-epicatechin [EPI]) supplementation on 

indices of mitochondrial function, ROS production and cell signalling of control and aged 

myotubes. It was hypothesised that replicative ageing would cause mitochondrial dysfunction, 

augment ROS production and blunt cell signalling, and that these effects would be mitigated 

by dietary flavonoid supplementation. 

Methods: Control and aged C2C12 myotubes were treated with low micromolar concentrations 

of Q, EGCG or EPI for up to 48 h. Mitochondrial bioenergetics were investigated by 

respirometry after 24 h. Mitochondrial and non-mitochondrial specific ROS were measured in 

the absence and presence of antimycin A (AA; positive control). Genes related to mitochondrial 

remodelling and the antioxidant response were quantified by RT-qPCR over 48 h. Cell 

signalling responses were examined over 24 h +/- EPI by western blotting. 

Results: Mitochondrial coupling efficiency (Control: 79.5 vs. Aged: 70.3%, P=0.006) and 

relative oxidative ATP synthesis (Control: 48.6 vs. Aged: 31.7%, P=0.022) were higher in 

control vs. in aged myotubes, but mitochondrial ROS production was lower (Control:2.4×10-5 

± 0.4 × 10-5 vs. Aged: 9.7×10-5 ± 1.6×10-5 RFU/sec-1/cell-1; P=0.035). Age-related 

mitochondrial dysfunction and ROS production were not rescued by flavonoid treatment. 

However, flavonoid treatment augmented the expression of genes associated with 

mitochondrial remodelling, in a dose- and compound dependent manner. NRF2 expression was 

upregulated by flavonoid treatment in control myotubes (~1.8-fold increase over 24 h after 5 

µM and 10 µM EPI vs. CTRL; P=0.022 and P=0.029, respectively) and aged myotubes (1.7-

fold increase with 5 µM EPI over 48 h vs. CTRL, P=0.012). In the presence of EPI, NRF2 

induction appears downstream of AMPK signalling (1.9- and 2.1-fold increase with EPI over 

1 h and 24 h vs. 0 h CTRL; P=0.039 and P=0.012, respectively). 

Conclusion(s): Replicative ageing inhibits indices of mitochondrial function and increases 

mitochondrial ROS production in myotubes. Flavonoids do not rescue age-related impairments 
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to ROS production and mitochondrial function. However, flavonoids may instigate cell 

adaptations at the transcriptional level, partly via NRF2, that could be related to AMPK 

activation in the presence of EPI.  
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6.2 Introduction 

In Chapter 5 of this thesis, replicative ageing did not compromise mitochondrial function in 

C2C12 skeletal myoblasts. However, it is not known whether replicative ageing captures ageing 

sedentary human muscle behaviour in skeletal myotubes, which is relevant because 

differentiated myotubes may better reflect human skeletal muscle in vivo. Sedentary ageing is 

associated with reductions in mitochondrial respiratory function (Tonkonogi et al., 2003a; 

Lyons et al., 2006), increased ROS production (Holloway et al., 2018) and lower mitochondrial 

contents (Rooyackers et al., 1996; Short et al., 2005; Zahn et al., 2006). One explanation for 

the observed reductions in mitochondrial content with sedentary ageing is blunted cell 

signalling and transcriptional responses to relevant stimuli. For example, activation of the 

energy sensitive AMP-activated protein kinase (AMPK) is lower after endurance exercise in 

aged compared to young rat muscle (Hardman et al., 2014; Reznick et al., 2007b). Further, the 

expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-

1α), an important regulator of mitochondrial adaptations, is reportedly lower following exercise 

in older compared to younger adults (Ljubicic & Hood, 2009; Reznick et al., 2007b). Overall, 

targeting mitochondria and their associated metabolic pathways may help alleviate age- and 

(in)activity related declines in O2 utilisation, and ultimately improve exercise tolerance. 

 

Flavonoids are acknowledged for their potential to interact with mitochondria. Indeed, 

flavonoids accumulate within the mitochondrial compartments of different cell types (Fiorani 

et al., 2010a; Mukai et al., 2016; Schroeder et al., 2009), hinting that these compounds may 

afford beneficial effects at the level of organelles. Some flavonoids have been reported to 

modulate mitochondrial respiration (Bitner et al., 2018; Dorta et al., 2005; Rowley et al., 

2017b; Vilella et al., 2020a), although findings from Chapter 5 suggest a limited role for 

flavonoids in directly modulating respiration in C2C12 myoblasts. Additionally, flavonoids 
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stimulate pathways responsible for mitochondrial turnover in skeletal muscle (Davis et al., 

2009b; Hüttemann et al., 2013; Moreno-Ulloa et al., 2018; Murase et al., 2009). Another 

reported role for flavonoids relates to the modulation of cellular ROS production. Previous 

studies employing high micromolar doses of flavonoids have repeatedly shown antioxidant 

effects in skeletal muscle, brain and liver tissue (Bouitbir et al., 2012; Dorta et al., 2008; Meng 

et al., 2008; Rowley et al., 2017a; Shaki et al., 2017; L. Wang et al., 2016), although these 

doses are likely supraphysiological in vivo (Manach et al., 2005a). Evidently, it remains to be 

determined whether flavonoids modulate skeletal muscle cell mitochondria and ROS 

production. 

 

Consequently, the main aims of the present study were to determine the basal phenotype of 

control and aged myotubes and to use dietary flavonoids to manipulate mitochondrial function, 

ROS production and cell signalling of aged myotubes. The study objectives were two-fold: 1) 

Determine the effect of replicative ageing on mitochondrial function, ROS production and cell 

signalling of C2C12 myotubes. 2) Investigate the impact of flavonoid (quercetin [Q], 

epigallocatechin-gallate [EGCG] or (-)-epicatechin [EPI]) supplementation on indices of 

mitochondrial function, ROS production and cell signalling of control and aged myotubes. It 

was hypothesised that replicative ageing would cause mitochondrial dysfunction, augment 

ROS production and blunt cell signalling, and that these effects would be mitigated by dietary 

flavonoid supplementation. 

 

6.3 Methodology 

6.3.1 Cell culture and treatment  

Commercially available C2C12 murine skeletal myoblasts at passages 8-12 (referred to as 

‘control’) and passages 47-50 (replicative aged and referred to as ‘aged’, having undergone 
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130-140 population doublings) were used in this study. For standardised cell culture 

procedures, see section 2.3 (Chapter 2). Following the plating of cells onto appropriate well-

plates in growth medium (GM), confluent C2C12 myoblasts were washed twice with phosphate-

buffered saline (PBS) and switched to pre-warmed (37°C) differentiation medium (DM). After 

switching myoblasts to DM, they were allowed to differentiate for 72-96 h, before dosing over 

24 and 48 h with Q, EGCG and EPI (0-20 µM). 

 

6.3.2 Mitochondrial ROS production  

Mitochondria derived superoxide was detected in C2C12 myotubes using the targeted MitoSOX 

probe. C2C12 cells were seeded at 3 × 104 cells/mL into 12-well microplates, and at ~80% 

confluence, switch to DM. After 72 h differentiation, myotubes were dosed with 0, 5 and 10 

µM Q, EGCG or EPI, for 24 h in DM. Next, myotubes were washed 2 × in PBS, and switched 

into pre-warmed KRH, with or without 15 µM antimycin A, an inhibitor of the mitochondrial 

electron transport chain (AA; serving as positive control), and incubated at 37ºC for 30 

minutes. Next, AA-containing KRH was removed, and MitoSOX was loaded into cells in fresh 

pre-warmed KRH to a final concentration of 2.5 µM. Plates were immediately transferred to a 

CLARIOStar plate reader (BMG Labtech, Bucks, Great Britain), and fluorescence was 

monitored continuously at 30-sec intervals over 30 min. Fluorescent MitoSOX oxidation 

products were excited at 510 nm and light emission was detected at 580 nm. The plate reader’s 

focal height was set at 3.3 mm and gain was fixed between different experiments. Upon 

completion of the 30-min reading, plates were immediately fixed for the determination of 

protein content (see section 2.14). 

 

6.3.3 Cellular ROS 
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Cellular reactive oxygen species (ROS) were detected using the CellROX® Deep Red reagent 

by spectrophotometry. Briefly, C2C12 myoblasts were seeded at 3 × 104 cells/mL into 12-well 

microplates, and at ~80% confluence, switch to DM. After 72 h differentiation, myotubes were 

dosed with 0, 5 and 10 µM Q, EGCG or EPI, for 24 h in DM. Next, myotubes were washed 2x 

in PBS, and switched into pre-warmed KRH, with or without 15 µM antimycin A (AA), and 

incubated at 37ºC for 30 minutes. Next, KRH was removed, and CellROX was loaded into 

myotubes in fresh, pre-warmed KRH buffer, to a final concentration of 2.5 µM. Following 30 

minutes incubation with the reagent, cells were washed 2 × with PBS and immediately 

transferred to a plate reader (BMG Labtech, Bucks, Great Britain), where fluorescent CellROX 

oxidation products were excited at 640 nm and light emission detected at 665 nm. The plate 

reader’s focal height was set at 3.3 mm and gain was optimised and fixed between experiments. 

Upon completion of the reading, plates were immediately fixed for the determination of cell 

density by the SRB assay (see section 2.14, Chapter 2), which was used to normalise obtained 

fluorescence values. 

 

6.3.4 Mitochondrial Bioenergetics 

Mitochondrial respiration was measured in adherent C2C12 myotubes using a Seahorse XFe96 

Analyzer (Agilent, Santa Clara, CA, USA). Control (passages 9-11) and replicatively aged 

(passages 47-50) C2C12 myoblasts and myotubes were seeded in XFe96 well plates (Agilent, 

Santa Clara, CA, USA) at 10,000 cells per well in 100 µL of GM for 24 h to allow cell 

attachment. After 24 h, C2C12 myoblasts were washed twice with PBS and transferred to DM. 

Myotubes were allowed to form over 96 h in DM, with fresh media replacement at 48 h. At 96 

h, when myotube formation was evident, myotubes were dosed with Q, EGCG and EPI (0, 1, 

5 and 10 µM) in DM for a further 24 hours. 
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Sensor cartridges for the XFe96 Analyzer were hydrated with deionised water at 37°C in a non-

CO2 incubator in the 24 h preceding the assay. On the day of the assay, C2C12 myoblasts and 

myotubes were washed into 200 µL pre-warmed modified Krebs Ringer buffer (KRH) at pH 

7.4. See table 2.1 (Chapter 2) for KRH composition. The cells were incubated in this buffer for 

45 minutes at 37°C in a non-CO2 incubator and then transferred to a Seahorse XFe96 

extracellular flux analyser (maintained at 37°C). Following 10-minute calibration, oxygen 

consumption rates (OCR) were measured by a 3-4 loop cycle consisting of a 1-min mix, 2-min 

incubate and 3-min measure to record cellular basal respiration (see Figure 2.6, Chapter 2). 

After measuring basal respiration, 2 µM oligomycin was added to selectively inhibit the 

mitochondrial ATP synthase. Subsequently, 2 µM  carbonyl cyanide-4-phenylhydrazone 

(FCCP) followed by a mixture of 2 µM rotenone and 2 µM antimycin A were added 

sequentially to, 1. uncouple oxygen consumption rates to ATP synthesis rates to determine 

maximal respiration or 2. inhibit complex I and III of the electron transport chain to determine 

non-mitochondrial respiration. Rates of oxygen consumption and extracellular acidification 

(ECAR) were expressed relative to the DNA content of the appropriate well (see section 6.3.6). 

Three independent experiments were performed to assess mitochondrial respiration, each 

containing four technical replicates. The Wave software native to the XF Analyzer was used 

to extract OCR’s and ECAR. 

 

6.3.5 ATP Production Rates 

A full description of the method used for calculation of total cellular ATP production rates 

from ECAR and OCR is in section 2.11 (Chapter 2). Briefly, to calculate JATPglyc, the ECAR 

was first converted to total proton production rate (PPR). The contribution of respiratory CO2 

to total PPR was subtracted to yield glycolytic rate of glucose catabolism terminating in lactate. 

This rate was multiplied by the ratio of ATP produced in glycolysis terminating in lactate per 
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extracellular H+ (the P/H+ ratio). Additional glycolytic flux generating the pyruvate that is later 

fully oxidised in the mitochondria generates additional ATP and is represented in the 

mitochondrial respiration rate (see below). Mitochondrial respiration rate was multiplied by 

the ratio of ATP produced in glycolysis terminating in pyruvate per O2 consumed for each 

substrate (P/Oglyc). Glycolytic ATP production (JATPglyc) was calculated as the sum of these two 

rates. To calculate JATPox, mitochondrial respiration rate was isolated by subtracting from the 

total OCR any additional oxygen consumption in the presence of rotenone and antimycin A 

(OCRR/AA). Mitochondrial respiration rate was further divided into ATP-coupled and 

uncoupled respiration rates using the mitochondrial ATP synthase inhibitor oligomycin. The 

ATP-coupled respiration rate was multiplied by the portion of the P/O ratio attributable to the 

mitochondrial ATP synthase (P/OOXPHOS). To account for oxidative substrate-level 

phosphorylation in the TCA cycle, the mitochondrial respiration rate was multiplied by the P/O 

ratio attributable to succinyl CoA synthetase (P/OTCA). Oxidative ATP production (JATPox) was 

calculated as the sum of these two rates. Finally, JATPglyc and JATPox were summed to yield the 

total cellular ATP production rate, JATPproduction. 

 

6.3.6 Mitochondrial bioenergetics normalisation procedures 

6.3.6.1 dsDNA PicoGreen 

QuantiT™ PicoGreen® dsDNA reagent (ThermoFisher, Waltham, MA, USA) was used as a 

fluorescent nucleic acid stain for quantifying dsDNA in solution. Upon completion of 

mitochondrial stress tests, C2C12 myotubes were immediately removed from the Seahorse 

Analyzer and existing assay media (KRH buffer) carefully removed, ensuring that ~25 µL 

remained to avoid cell contact. Subsequently, 200 µL RIPA buffer was added to each well of 

the 96-well plate and plates were shaken vigorously on an orbital shaker for 10 minutes. Plates 
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were immediately frozen at -80°C until further processing. On the day of the assay, 96-well 

plates were allowed to thaw at room temperature. Meanwhile, a 1x Tris-EDTA (TE) buffer (10 

mM Tris-HCl (pH 7.5), 1 mM EDTA) was prepared in DNase free H2O and left to reach room 

temperature. A working concentration of QuantiT™ PicoGreen® dsDNA reagent was prepared 

by making a 200-fold dilution of the concentrated stock solution using TE buffer. To avoid the 

reagent absorbing to glass surfaces or being susceptible to photo degradation it was prepared 

in a plastic container and stored away from direct light. A 5-point high-range DNA standard 

curve was created using a 100 µg/mL Lambda DNA stock solution diluted in 1x TE buffer 

supplemented with 50 RIPA buffer (see Figure 6.1). 50 µL of each DNA standard (0, 2, 20, 

200, 2000 ng/mL) was added to wells of a black solid-bottom 96-well microplate (Greiner Bio-

One, Kremsmünster, Austria) in duplicate. Next, 50 µL of each sample was added to 

appropriate wells, followed by 50 µL 1x TE buffer. Finally, 100 µL PicoGreen reagent was 

added to each well. Following a 5-minute incubation at room temperature in the dark, endpoint 

fluorescence was measured by exciting fluorescent products at 485 nm and recording emitted 

light at 520 nm using a multi-plate reader (OMEGA FluoSTAR, BMG Labtech). To ensure all 

sample readings remained in the detection range of the fluorometer, the gain was set to that of 

the sample containing the highest DNA concentration (i.e., the 2 µg/mL Lambda DNA stock). 

DNA content in each sample was quantified by interpolating unknown X values by comparing 

RFU values with those on a standard curve of known dsDNA concentrations. 
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Figure 6. 1 Standard curve of Lambda dsDNA detected with QuantiT™ PicoGreen® dsDNA 

reagent. Cell Proliferation Assay. Lambda DNA was diluted to create standards of known 

concentrations (0-2000 ng/mL) and were quantified. Samples were excited at 480 nm and 

fluorescence emission intensity measured at 520 nm. Relative fluorescent units were plotted as 

a function of dsDNA and fitted with linear regression. 

 

 

6.3.7 RT-qPCR – Gene expression Quantification 

C2C12 myotubes were lysed in 250 uL TRIzol and total RNA was extracted using the phenol-

chloroform method (see section 2.12.1, Chapter 2). RNA concentration of control and aged 

myotubes (n=3, in duplicate per condition; Control myotubes: 1045.1 ± 186.2; Aged myotubes: 

941.2 ± 248.2 ng/uL) and purity (All samples 2.0 ± 0.0 A260/A280, respectively) was determined 

by spectrophotometry (NanoDrop™ 2000, Thermo Fisher Scientific, Waltham, USA). 

Samples were diluted and prepared for PCR as described in section 5.3.8. Critical threshold 

(CT) values were derived from setting a threshold of 0.08 for all genes, that are outlined in 

Table 6.1. The amplification efficiencies were analysed for all reactions (Control myotubes: 

92.6 ± 5.5; Aged myotubes: 92.1 ± 5.7 %) and values between 80-100% were accepted as 

efficient. To quantify gene expression, CT values were used to quantify relative gene expression 
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using the comparative Delta Delta CT (2-ΔΔCT) equation (Livak & Schmittgen, 2001), whereby 

the expression of the gene of interest was determined relative to the internal reference gene 

(RP2β) in the treated sample, compared with the untreated zero-hour control. RP2β was 

selected as an internal reference gene because its expression was stable across experimental 

conditions (19.77 ± 0.60). 

 

Table 6. 1 Primer sequences for Mus musculus with product length. All primers were used 

under the same cycling conditions. 

Gene Accession 
Sequence 

Forward/Reverse or Anchor nucleotide 

Product 
length 
(bp) 

Polr2b 
(RP2β) 

NM_153798.2 
 

F: GGTCAGAAGGGAACTTGTGGTAT  
R: GCATCATTAAATGGAGTAGCGTC 

197 

CAT NM_009804 AN: 324 96 

SOD2 NM_013671 AN: 1769 103 

Dnm1 
(DRP1) 

NM_152816 AN: 1337 104 

MFN2 NM_113201 AN: 1709 93 

Ppargc1a 
(PGC-1α) 

NM_008904 AN: 4601 122 

Sirt1 NM_001159589.2 F: ACAATTCCTCCACCTGAG  
R: GTAACTTCACAGCATCTTCAA 

124 

Tfam NM_009360.4 F: TCTTGGGAAGAGCAGATGGC  
R: GTCTCCGGATCGTTTCACACT 

72 

eNOS NM_008713.4 F: GGTTGCAAGGCTGCCAATTT  
R: TAACTACCACAGCCGGAGGA 

106 

Nox2 NM_007807.5 F: CAGAACCAACACTTAACCTT 
R: CAACCACACCAGAATGAC 

84 

Nox4 NM_015760.5 F: TCCCTCCTATGGGCAATGTG  
R: TGCACATCAAGCCTGGACAA 

177 
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Prkn 
(PARKIN) 

NM_001317726.1 AN: 724 92 

NRF2 NM_010902.4 F: GGACATGGAGCAAGTTTGGC 
R: CCAGCGAGGAGATCGATGAG 

164 

 

6.3.8 SDS-PAGE and immunoblotting – Cell signalling 

Total protein and phosphoproteins levels were detected in control and aged C2C12 myotubes by 

Western blot (see section 2.13 (Chapter 2) for full details). Following treatment (vehicle control 

[CTRL] or 5 µM EPI), C2C12 myotubes were lysed and scraped in ice-cold 1x 

radioimmunoprecipitation assay (RIPA) buffer containing: 25 mM Tris-HCl pH 7.6, 150 mM 

NaCl, 1% NP-40, 1% sodium deoxycholate and 0.1% SDS, supplemented with 1x Protease 

Inhibitor Cocktail Set V (Merck Life Science, UK). Cell lysates were centrifuged for 15 

minutes at 18,000 × g (4°C) and the supernatant was stored at -80°C before analysis for total 

protein. Protein concentrations of samples were determined by the Pierce™ BCA assay 

(section 2.15, Chapter 2), and samples were subsequently resuspended in 4x Laemmli buffer 

(Bio-Rad laboratories, Hertfordshire, UK) containing reducing agent (1x working 

concentration: 31.5 mM Tris-HCl [pH 6.8], 10% glycerol, 1% SDS, 0.005% Bromophenol 

Blue and 355 mM 2-mercaptoethanol). Samples were loaded (25 μg) and electrophoresed on 

10% SDS-stain-free polyacrylamide gels. Semi-dry transfer of proteins to a nitrocellulose 

membrane was performed using the Trans-Blot® Turbo™ Transfer System. Following 

blocking for 1-hour in Tris-buffered saline Tween-20 (TBS-T) containing 5% non-fat dried 

milk (NFDM), membranes were incubated overnight with rabbit anti-phosphorylated or total 

antibodies: CaMKII, pThr286-CaMKII, AMPKα, pThr172-AMPK, p44/42 MAPK, 

pThr202/Tyr204-p44/42 MAPK, eNOS and pSer1177-eNOS, at a dilution of 1:500-1:4000 

(see Table 6.2; all antibodies were tested at different dilutions for optimisation purposes before 

the experimental gels were run) in 5% bovine serum albumin (BSA) made up in TBS-T (Cell 
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Signaling Technology, London, UK). After overnight incubation, the membrane was washed 

3 times in TBS-T for 5 minutes and incubated for 1 hour in HRP-conjugated anti-rabbit 

antibodies (Cell Signaling Technology, London, UK) at dilution of 1:5000-1:10,000, following 

appropriate optimisation (see Chapter 9, section 9.8-9.11). Proteins were visualised by 

enhanced chemiluminescence (Thermo Fisher Scientific inc, Waltham, USA) and quantified 

by densitometry (ChemiDoc™ MP imaging system, Bio-Rad Laboratories, Inc. CA, USA). 

 

Table 6. 2 List of antibodies and dilutions used 

Antibody Primary Ab Dilution Secondary Ab Dilution Company 

CaMKII 1:1000 1:5000 Cell Signaling Technology 

pThr286-CaMKII 1:500 1:5000 Cell Signaling Technology 

AMPKα 1:1000 1:5000 Cell Signaling Technology 

pThr172-AMPK 1:1000 1:10,000 Cell Signaling Technology 

p44/42 MAPK 1:2000 1:10,000 Cell Signaling Technology 

pThr202/Tyr204-
p44/42 MAPK 1:4000 1:5,000 Cell Signaling Technology 

pSer1177-eNOS 1:500 1:5000 Cell Signaling Technology 

eNOS 1:1000 1:5000 Cell Signaling Technology 

 

 

6.3.9 Statistical analysis 

To compare differences in outcome measures between control and aged cells only, independent 

t-tests were used. For the comparison of replicative ageing and flavonoid dose upon outcome 

measures, a two-way ANOVA was employed. A three-way ANOVA was used for comparisons 

of ageing, flavonoid dose and other factors such as time or antimycin A. When main effects 

and interactions were present, multiple comparisons were performed using Dunnett’s or 
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Sidak’s test where appropriate. For within age comparisons, a one-way ANOVA was used. 

Data are presented as means ± SEM, and significance was accepted when P<0.05. 

 

 

6.4 Results 

6.4.1 Mitochondrial bioenergetics of control and aged skeletal muscle myotubes 

Having determined the absence of an impact of serial passaging on myoblast mitochondrial 

bioenergetics (Chapter 5, section 5.4.1) in the absence of exogenous stressors, rates of non-

mitochondrial O2 consumption (Control: 0.15±0.02 vs. Aged: 0.14±0.05, P=0.840), basal 

respiration (Control: 0.37±0.03 vs. Aged: 0.33±0.0.05 pmol/min-1/ng DNA-1, P=0.543), proton 

leak (Control: 0.07±0.01 vs. Aged: 0.10±0.02 pmol/min-1/ng DNA-1, P=0.304), and ADP 

phosphorylation (Control: 0.29±0.02 vs. Aged: 0.23±0.03 pmol/min-1/ng DNA-1, P=0.183) 

were examined and determined to be comparable between control and aged myotubes (see 

Figure 6.2). By contrast, maximal respiration (Control: 0.93±0.07 vs. Aged: 0.35±0.05 

pmol/min-1/ng DNA-1, P=0.002), spare respiratory capacity (Control: 0.56±0.06 vs. Aged: 

0.04±0.02 pmol/min-1/ng DNA-1, P=0.001) and coupling efficiency (Control: 79.5±1.0% vs. 

Aged: 70.3±1.4%, P=0.006) were all higher in control vs. aged myotubes, suggesting that 

maximal respiration, spare respiratory capacity and coupling control decline in aged vs control 

myotubes, but not myoblasts. Together, the data suggest that in aged myotubes, altered 

metabolic pathways may be required for the provision of energy as a consequence of 

mitochondrial dysfunction.  
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Figure 6. 2 Mitochondrial bioenergetics of control and aged C2C12 myotubes. A) Non-

mitochondrial respiration, B) Basal respiration, C) Maximal respiration, D) Proton leak, E) 

ADP phosphorylation, F) Spare respiratory capacity G) Coupling efficiency (%). Data are 

mean±SEM, representative of 3 independent experiments and normalised to DNA content. 

**P<0.01, significance between groups by independent t-test. 

 

 

6.4.2 Rates of ATP production: Control vs. aged myotubes 

After describing differences in mitochondrial function between control and aged myotubes, 

rates of ATP production in myotubes were subsequently assessed. In contrast to myoblasts 

(Chapter 5, section 5.4.2), the relative contribution of JATPglyc (Control: 51.4±3.2 vs. Aged: 

68.3±3.4 %) and JATPox (Control: 48.6±3.2 vs. Aged: 31.7±3.4 %) to JATPproduction were now 

significantly higher and lower (P=0.022), in aged vs. control myotubes, respectively (see 

Figure 6.3). Overall, aged myotubes had impaired maximal respiratory capacity and reduced 

coupling efficiency compared to control, in parallel with a greater reliance on glycolysis for 

the synthesis of ATP. 
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Figure 6. 3 ATP production rates of control and aged C2C12 myotubes. A) Absolute 

JATPproduction. B) Relative contribution of JATPglyc to JATPproduction and C) Relative contribution of 

JATPox to JATPproduction. Data from 3 independent experiments are presented as mean±SEM and 

normalised to DNA content. *P<0.05, significant between groups by independent t-test. 

 

6.4.3 Proton production rates: Control vs. aged myotubes 

Following the observation that replicative ageing caused alterations to indices of mitochondrial 

function, and a shift towards glycolytic ATP production in myotubes, the rate of proton 

production in control and aged myotubes was determined (see Figure 6.4). Although not 

statistically significant, rates of proton production were ~64% higher in aged vs. control 

myotubes (Control: 1.67±0.59 vs. Aged: 2.75±1.43 pmol H+/min-1/ng DNA-1, P=0.292).  
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Figure 6. 4 Proton production rates in control and aged C2C12 myoblasts and myotubes. Data 

from 3 independent experiments are presented as mean±SEM and normalised to DNA content. 

Differences between groups determined by independent t-test. 

 

 

Overall, the mitochondrial respiration data indicate that aged myotubes display hallmarks of 

mitochondrial dysfunction when compared to control. These age-related impairments to 

mitochondria are associated with a shift in preference away from oxidative, and towards 

glycolytic processes for ATP synthesis 

 

 
6.4.4 Mitochondrial bioenergetics of control and aged skeletal myotubes: Impact of 

dietary flavonoids 

Following the data obtained in myoblasts (Chapter 5), the potential of flavonoids to mitigate 

age-related impairments to mitochondrial bioenergetics in myotubes was investigated. No main 

effect of age or dose was determined for non-mitochondrial O2 consumption in control and 

aged myotubes (figure not shown). There was no main effect of age or dose on basal respiration 

in Q and EPI treated myotubes (see Figure 6.5A). Although, a significant main effect of age on 
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basal respiration in EGCG treated myotubes (P=0.0352) was observed. Multiple comparisons 

revealed that basal respiration was similar between conditions, regardless of the flavonoid 

studied. There were no main effects of dose or age on proton leak in Q, EGCG or EPI treated 

myotubes. In Q treated myotubes, there were no main effects of age or dose on ADP 

phosphorylation. However, there was a significant main effect of age in EGCG and EPI treated 

myotubes (P=0.0009 and P=0.0463, respectively). Rates of O2 consumption linked with ADP 

phosphorylation were typically lower in aged myotubes compared with control (see Figure 

6.5C). There was a significant main effect of age on coupling efficiency in Q, EGCG and EPI 

treated cells (P<0.0001). Multiple comparisons revealed that coupling efficiency was similar 

between conditions, irrespective of the flavonoid studied. Overall, flavonoids had no detectable 

impact on mitochondrial bioenergetics in control and aged skeletal myotubes. 
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Figure 6. 5 Mitochondrial bioenergetics of control and aged skeletal myotubes following 96 h 

differentiation and 24 h dietary flavonoid treatment. A) Basal respiration, B) Proton leak, C) 

ADP phosphorylation, D) Coupling efficiency (%). Data representative of 3 independent 

experiments and are normalised to DNA content and presented as mean±SEM. c significant 

main effect of age (P<0.05). 

 

 
6.4.5 Rates of ATP and proton production in skeletal myotubes with flavonoid 

treatment 

After reporting that replicative ageing impaired indices of mitochondrial function that were not 

rescued by flavonoid treatment, calculations were made to corroborate these data with rates of 

ATP and proton production, with and without flavonoids. There was a significant effect of age 

on absolute JATPglyc production in Q and EGCG treated myotubes (P=0.022 and P=0.015, 

respectively), but no main effect of dose was observed for all compounds tested. There was a 

significant effect of age on absolute rates of JATPox production in EGCG myotubes (P=0.0018). 

In relative terms, rates of JATPglyc production to total ATP were therefore significantly higher 

overall in aged vs. control myotubes (P<0.001). No significant impact of flavonoid treatment 

was observed on absolute and relative rates of JATPglyc and JATPox production in control and aged 

myotubes (data not shown). There was a significant main effect of age on rates of proton 

production (P<0.05), though no main effect of dose was found in control and aged myotubes, 

regardless of the flavonoid investigated (data not shown). Similar to the negligible impact of 

flavonoids on mitochondrial respiration, flavonoids had no effect upon rates of ATP production 

or proton production in myotubes. 

 

6.4.6 Replicative ageing augments the production of mitochondrial reactive oxygen 

species 
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Previous findings emphasised flavonoids failed to rescue age-related impairments of 

mitochondrial respiration in myotubes. To further investigate the potential of flavonoids mode 

of action, rates of mitochondrial ROS production were examined in the presence and absence 

of flavonoids. Firstly, rates of mitochondrial ROS production were determined in control and 

aged myotubes under CTRL conditions (see Figure 6.6). A significant main effect of antimycin 

A (P<0.0001) and age (P<0.0001) was found on rates of MitoSOX oxidation, and a significant 

antimycin A × age interaction (P=0.0308). In the absence of antimycin A, MitoSOX oxidation 

rates were higher in aged myotubes compared to control (Control: 2.4×10-5 ± 0.4 × 10-5 vs. 

Aged: 9.7×10-5 ± 1.6×10-5 RFU/sec-1/cell-1; P=0.035). Likewise, aged myotubes demonstrated 

greater rates of MitoSOX oxidation compared to control when cultured in the presence of 

antimycin A (Control +AA: 15.7×10-5 ± 4.1×10-5 vs. Aged +AA: 31.0×10-5 ± 2.9×10-5 RFU/sec-

1/cell-1; P<0.0001).  

  
 

Figure 6. 6 Replicative ageing increases the rate of mitochondrial ROS production in skeletal 

muscle cells. MitoSOX oxidation rates were determined in control and replicatively aged 

skeletal myotubes in the absence of presence of antimycin A. Cells were incubated with or 

without antimycin A for 30 minutes, prior to the immediate loading of MitoSOX (2.5 µM final 

concentration). Rates of MitoSOX oxidation were immediately measured in 30 second 
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intervals over 30 minutes. Data are means ± SEM of three independent repeats with twelve 

replicates per condition. Statistical significance of mean differences was tested for by two-way 

ANOVA and adjusted for multiple comparisons: c main effect of age (P<0.05); d main effect 

of Antimycin A (P<0.05); *P<0.05, **P<0.01, *** P<0.001 and **** P<0.0001. 

 

6.4.7 Quercetin does not attenuate antimycin A-induced mitochondrial ROS in control 

and aged myotubes  

Having reported that ageing increases the rate of mitochondrial ROS production in myotubes, 

the impact of acute flavonoid treatment on mitochondrial ROS production was determined. 

Firstly, Q’s effect upon MitoSOX oxidation was investigated. There was a significant main 

effect of antimycin A on rates of MitoSOX oxidation (P<0.0001), and a significant dose × age 

× antimycin A interaction (P=0.014). Post-hoc tests revealed that Q treatment did not impact 

MitoSOX oxidation in myotubes cultured in the absence of antimycin A (see Figure 6.7). 

Although, rates of MitoSOX oxidation were significantly higher in control myotubes cultured 

in the presence of antimycin A and 10 µM Q compared to antimycin A alone (CTRL: 15.7×10-

5 ± 4.1 × 10-5 vs. 10 µM Q: 46.1×10-5 ± 11.7×10-5 RFU/sec-1/cell-1; P=0.0363). Therefore, Q 

may act in a pro-oxidant manner in control myotubes. 
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Figure 6. 7 Quercetin supplementation increases the rate of mitochondrial ROS production in 

control skeletal muscle cells. MitoSOX oxidation rates were determined in control and 

replicatively aged skeletal myotubes in the absence of presence of dietary flavonoids. Cells 

were treated with 0, 5 and 10 µM Q for 24 h. After 24 h, antimycin A was added to cells for 

30 minutes, before 2.5 µM MitoSOX was loaded into cells in KRB. Rates of MitoSOX 

oxidation were measured in 30 second intervals over 30 minutes. Data are means ± SEM of 

three independent repeats with two replicates per treatment. Statistical significance of mean 

differences was tested for by two-way ANOVA: a Significant main effect of dose; c Significant 

main effect of age; d Significant main effect of AA. 

 
 
6.4.8 EGCG does not impact mitochondrial ROS production in control or aged 

myotubes 

 
In EGCG treated myotubes, there was a significant main effect of age (P<0.0001) and 

antimycin A (P<0.0001) on rates of MitoSOX oxidation. Post-hoc tests revealed that MitoSOX 

oxidation rates were similar between conditions in control and aged myotubes (see Figure 6.8), 

suggesting no role for EGCG in modulating mitochondrial ROS emission. 
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Figure 6. 8 EGCG supplementation does not impact the rate of mitochondrial ROS production 

in control or aged skeletal muscle cells. MitoSOX oxidation rates were determined in control 

and replicatively aged skeletal myotubes in the absence of presence of dietary flavonoids. Cells 

were treated with 0, 5 and 10 µM EGCG for 24 h. After 24 h, antimycin A was added to cells 

for 30 minutes, before 2.5 µM MitoSOX was loaded into cells in KRB. Rates of MitoSOX 

oxidation were measured in 30 second intervals over 30 minutes. Data are means ± SEM of 

three independent repeats with two replicates per treatment. Statistical significance of mean 

differences was tested for by two-way ANOVA: c Significant main effect of age; d Significant 

main effect of AA. 

 
 

6.4.9 EPI does not attenuate age-related increases in mitochondrial ROS production  

There was a significant main effect of dose (P=0.041), age (P<0.0001) and antimycin A 

(P<0.0001) on rates of MitoSOX oxidation in EPI treated cells, and a significant dose × age × 

antimycin A interaction (P=0.042). Post-hoc tests revealed that 10 µM EPI treatment increased 

the rate of MitoSOX oxidation compared to CTRL in control myotubes cultured with antimycin 

A (CTRL: 15.7×10-5 ± 4.1 × 10-5 vs. 10 µM EPI: 32.3×10-5 ± 6.0×10-5 RFU/sec-1/cell-1; 

P=0.043). However, rates of MitoSOX oxidation were similar between treatment conditions in 

aged myotubes. (see Figure 6.9) At 10 µM, EPI may act in a pro-oxidant manner in control 

myotubes. 
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Figure 6. 9 EPI supplementation does not impact the rate of mitochondrial ROS production in 

control or aged skeletal muscle cells. MitoSOX oxidation rates were determined in control and 

replicatively aged skeletal myotubes in the absence of presence of dietary flavonoids. Cells 

were treated with 0, 5 and 10 µM EPI for 24 h. After 24 h, antimycin A was added to cells for 

30 minutes, before 2.5 µM MitoSOX was loaded into cells in KRB. Rates of MitoSOX 

oxidation were measured in 30 second intervals over 30 minutes. Data are means ± SEM of 

three independent repeats with two replicates per treatment. Statistical significance of mean 

differences was tested for by two-way ANOVA: a Significant main effect of dose; c Significant 

main effect of age; d Significant main effect of AA. 

 
 
6.4.10 No role for dietary flavonoids in mitigating age-related increases in cellular ROS 

Having ascertained a non-apparent role for flavonoids in regulating mitochondrial-specific 

ROS production, the effects of ageing and flavonoid treatment on general cellular ROS 

production (not specific to mitochondria) was studied. Under CTRL conditions, there was a 

significant main effect of age (P=0.003), but not antimycin A (P=0.752). Replicative ageing 

significantly increased CellROX oxidation when compared to control (Control: 7.8 ± 0.8 vs. 

Aged: 12.1 ± 1.5 RFU/cell-1; P=0.0226). The presence of antimycin A did not significantly 

increase CellROX oxidation in control or aged skeletal muscle cells (see Figure 6.10), 
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providing evidence that CellROX oxidation primarily represents cytosolic, as opposed to 

mitochondrial derived ROS. 

 

Figure 6. 10 Replicative ageing increases ROS production in skeletal muscle cells. CellROX 

oxidation was measured in control and replicatively aged skeletal myotubes in the absence of 

presence of antimycin A. Cells were incubated with or without antimycin A for 30 minutes, 

prior to the loading of CellROX (2.5 µM final concentration) for 30 minutes. Rates of CellROX 

oxidation were subsequently measured at 640/665 nm (Ex/Em) in a plate reader. The gain was 

kept constant between independent experiments. Data are means ± SEM of three independent 

repeats with two replicates per condition. Statistical significance was determined by a two-way 

ANOVA with age and antimycin A as factors. Multiple comparisons were corrected for using 

Sidak’s test. c main effect of age (P<0.05). *P<0.05. 

 

 

Next, the effects of acute flavonoid treatment on CellROX oxidation (with and without 

antimycin A) were determined. A significant main effect of age was observed on CellROX 

oxidation in the presence of Q, EGCG and EPI (P<0.0001). Multiple comparisons revealed no 

impact of Q, EGCG or EPI treatment on CellROX oxidation in both control and aged skeletal 

muscle cells (see Figure 6.11). Collectively, replicative ageing augments the production of 

cellular and mitochondrial-specific ROS emission, which is not rescued by flavonoid 

treatment.  
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Figure 6. 11 Dietary flavonoids do not regulate ROS production in control and aged skeletal 

muscle cells. CellROX oxidation was determined in control and replicatively aged skeletal 

myotubes in the absence of presence of Q, EPI or EGCG. Cells were treated over 24 h with 0, 

5 and 10 µM Q, EPI or EGC. After 24 h, cells were incubated with or without antimycin A for 

30 minutes, before CellROX was loaded into cells (2.5 µM final concentration). CellROX 

oxidation was measured at 640/665 nm (Ex/Em) in a plate reader and normalised to cell 

density. A) Q treated; B) EPI treated and C) EGCG treated. Data are means ± SEM of three 
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independent repeats with two replicates per treatment. Statistical significance was tested for by 

a three-way ANOVA, with dose, age and antimycin A as factors: c main effect of age (P<0.05). 

 

 

6.4.11 Flavonoids differentially modulate gene expression of control and aged skeletal 

myotubes 

Having ascertained that replicative ageing comprises mitochondrial function and increases 

ROS production in myotubes, further experiments were performed. To gain more knowledge 

of the molecular regulation of mitochondrial function and ROS production in control and aged 

myotubes (in the absence and presence of flavonoids), the expression of relevant genes was 

determined (see Table 9.1 Chapter 9 for description of genes studied and their known function 

and section 1.27, Chapter 1). 

 

To establish whether replicative ageing changes the expression of genes associated with 

mitochondrial remodelling, comparisons were made between control and aged myotubes under 

CTRL conditions. There was no significant main effect of age or time on DRP1 expression in 

myotubes (see Figure 6.12). A significant main effect of time (P=0.005) was found on MFN2 

expression in myotubes. Multiple comparisons revealed MFN2 expression was 2-fold higher 

in aged myotubes over 48 h versus control (P=0.024). Although there was a main effect of age 

(P=0.045) found on PARKIN expression in myotubes, multiple comparisons revealed that no 

significant differences in PARKIN expression were found between control and aged myotubes, 

regardless of the timepoint. A significant main effect of age (P=0.015) was found on PGC-1α 

expression in myotubes, and PGC-1α expression was 3-fold higher in control myotubes over 

24 h (P=0.027). There was a significant main effect of age on SIRT1 expression in myotubes 

(P=0.006). Over 48 h, SIRT1 expression was 2.1-fold higher in aged myotubes versus control 
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(P=0.003). A main effect of age was found on TFAM expression in myotubes (P=0.012). 

TFAM expression was 2.1-fold higher in aged myotubes compared with control (P=0.013). 

Under basal CTRL conditions, aged myotubes may have reduced capacity for mitochondrial 

biogenesis. 
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Figure 6. 12 Expression of genes associated with mitochondrial remodelling in control and 

aged skeletal muscle myotubes under CTRL conditions. C2C12 myotubes were lysed over 72-

120 h for analysis of gene expression. A) DRP1, B) MFN2, C) PARKIN, D) PGC-1α, E) SIRT1 

and F) TFAM. Data are means±SEM from 3 independent experiments run in duplicate. 

Statistical significance was determined by a two-way ANOVA, with age and time as factors. 

Multiple comparisons performed by Sidak’s test to determine differences in gene expression 

between ages within each time point. c main effect of age. *P<0.05 and **P<0.01. Control and 

aged myotubes are denoted by solid black and grey bars, respectively. 

 

 

After determining the expression of genes associated with mitochondrial remodelling between 

control and aged myotubes under CTRL conditions, genes associated with the antioxidant 

response were compared. There was no significant main effect of age or time on CAT and 

SOD2 expression in myotubes (see Figure 6.13A/B). A significant main effect of age 

(P=0.0001) and time (P<0.0001) was found on eNOS expression in myotubes, and an age × 

time interaction (P<0.0001). Multiple comparisons revealed eNOS expression was 4.1-fold 

higher in aged myotubes over 48 h versus control (P<0.0001). There was a main effect of age 

(P=0.0006) and time (P=0.047) for NOX4 expression in myotubes, and an age × time 

interaction (P=0.025). NOX4 expression increased 2.6-fold over 48 h in control myotubes 

versus aged (P<0.0001). A main effect of age (P=0.049) and time (P=0.048) was found on 
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NRF2 expression in myotubes see (Figure 6.13E), as well as an age × time interaction 

(P=0.0006). NRF2 expression was increased 2.8-fold in control versus aged myotubes over 48 

h (P=0.0006). Under basal CTRL conditions, aged myotube mRNA responses are indicative 

of reduced NO bioavailability and lowered induction of ROS sensitive transcripts. 
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Figure 6. 13 Expression of genes associated with the antioxidant response in control and aged 

skeletal muscle myotubes under CTRL conditions. C2C12 myotubes were lysed over 72-120 h 

for analysis of gene expression. A) CAT, B) SOD2, C) eNOS, D) NOX4 and E) NRF2. Data 

are means±SEM from 3 independent experiments run in duplicate. Statistical significance was 

determined by a two-way ANOVA, with age and time as factors. Multiple comparisons 

performed by Sidak’s test to determine differences in gene expression between ages within 

each time point. b main effect of time; c main effect of age. ***P<0.001 and ****P<0.0001. 

Control and aged myotubes are denoted by solid black and grey bars, respectively. 

 

 

6.4.12 Summary of replicative ageing’s impact upon gene expression in control and 

aged myotubes 

Overall, aged myotubes presented higher fold changes of MFN2, SIRT1 and TFAM mRNA 

over 48 h when compared with control. However, aged myotubes also had reduced PGC-1α 

expression versus control, although basal PGC-1α expression was higher in aged vs. control 

myotubes. In addition, aged myotubes presented lower levels of NOX4 and NRF2 over 48 h, 

suggesting reduced stress compared with control. Aged myotubes may fail to instigate 

mitochondrial biogenesis due to lowered PGC-1α and NRF2 expression. 
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6.4.13 Mitochondrial-related gene expression following Quercetin treatment in skeletal 

myotubes 

Once the effects of replicative ageing upon myotube gene expression were defined, the 

expression of genes associated with mitochondrial function and remodelling were quantified 

with and without dietary flavonoids. These genes were investigated to help consolidate the 

mitochondrial bioenergetic data. There was a significant main effect of age on DRP1 

expression in Q treated cells (P=0.0002). Post-hoc comparisons revealed DRP1 expression was 

2.6-fold lower at 48 h following 5 µM Q in control myotubes (P=0.0054). There was a 

significant main effect of dose (P=0.0358) on MFN2 expression, and a dose × time interaction 

(P=0.0391) in Q treated myotubes. Multiple comparisons revealed no significant effect of Q 

treatment on MFN2 in control myotubes (see Figure 6.14B). Yet, in aged myotubes, 5 and 10 

µM Q lowered MFN2 expression at 48 h compared to CTRL (4.3-fold, P=0.0021; 3.8-fold, 

P=0.0027, respectively). There was a significant main effect of age (P<0.0001) on PARKIN 

expression in Q treated myotubes, and a significant dose × time interaction (P=0.0085). 

Multiple comparisons revealed no impact of Q on PARKIN expression in control and aged 

myotubes. There was a significant main effect of age (P<0.0001) on PGC-1α expression in Q 

treated myotubes. However, multiple comparisons revealed that PGC-1α expression was 

similar between conditions in control and aged myotubes (see Figure 6.14D). Regarding SIRT1 

expression, there was a significant main effect of age in Q treated cells (P<0.001). Multiple 

comparisons revealed that SIRT1 expression was similar between conditions in control 

myotubes (see Figure 6.14E). There was a significant main effect of age on TFAM expression 

in Q treated myotubes (P<0.0001). Compared to CTRL, TFAM expression was 1.7-fold lower 

over 24 h in control myotubes with 10 µM Q (P=0.0177). However, TFAM expression was 

similar between conditions in aged myotubes. Overall, Q attenuated the expression of genes 

associated with mitochondrial remodelling, including MFN2, DRP1 and TFAM. Commented [CS470]: nice 
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6.4.14 Mitochondrial-related gene expression following EGCG treatment in skeletal 

myotubes 

In EGCG treated cells there was a significant main effect of age on DRP1 expression 

(P=0.001), and a dose × age interaction (P=0.002). Over 24 h of 10 µM EGCG treatment, there 

was a trend towards increased DRP1 expression in control myotubes (1.8-fold, P=0.0575), 

although this did not reach statistical significance. In EGCG treated cells, there was a 

significant dose × time × age interaction (P=0.033) for MFN2 expression. Multiple 

comparisons revealed no significant effect of EGCG treatment on MFN2 in control myotubes 

(see Figure 6.14B). Over 48 h, 5 and 10 µM EGCG lowered MFN2 expression 4-fold and 3.2-

fold versus CTRL conditions in aged myotubes (P=0.0006 and P=0.032, respectively). In 

EGCG treated cells, a significant main effect of age (P=0.0006) on PARKIN was found, in 

addition to a significant dose × time (P=0.004), and time × age interaction (P=0.046). In control 

myotubes, PARKIN expression was decreased 2.4-fold over 24 h by 10 µM EGCG treatment 

(P=0.021; see Figure 6.14C). No differences in PARKIN expression were found between 

conditions in aged myotubes. In EGCG treated cells, a significant main effect of age 

(P=0.0010) was found on PGC-1α, as well as a significant dose × time (P=0.0109) and time × 

age interaction (P=0.025). Post-hoc tests unveiled that PGC-1α expression was 2.6-fold lower 

at 48 h in control myotubes after 10 µM EGCG compared to CTRL (P=0.002). Regarding 

SIRT1 expression, there was a significant main effect of age in EGCG treated cells (P<0.001). 

Further, there was a significant dose × age interaction in EGCG treated cells (P=0.012). 

Multiple comparisons revealed that SIRT1 expression was similar between conditions in 

control myotubes (see Figure 6.14E). In aged myotubes, however, SIRT1 expression was 

significantly increased by 10 µM EGCG treatment over 48 h when compared to CTRL (1.7-

fold, P=0.026). There was a significant main effect of age on TFAM expression in EGCG 
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treated myotubes (P<0.0001). However, TFAM expression was similar between conditions in 

control and aged myotubes (see Figure 6.14D). Together, ECGG tended to attenuate the 

expression of genes associated with mitochondrial biogenesis (PGC-1α) and degradation 

(PARKIN) in myotubes.  

 

6.4.15 Mitochondrial-related gene expression following EPI treatment in skeletal 

myotubes 

There was a significant effect of age (P=0.0037), and a dose × time × age interaction in EPI 

treated myotubes (P=0.0015). In aged myotubes, 10 µM EPI increased DRP1 expression 1.6-

fold over CTRL at 48 h (P=0.0147), with no effect found in control myotubes (see Figure 

6.14A). There was a main effect of age on MFN2 expression in EPI treated cells (P=0.0020). 

Multiple comparisons revealed no significant effect of EPI treatment on MFN2 in control and 

aged myotubes (see Figure 6.14B). There was a main effect of age (P=0.0005) on PARKIN 

expression in EPI treated cells, and a time × age interaction (P=0.0370). PARKIN expression 

was similar between conditions in control and aged myotubes dosed with EPI (see Figure 

6.14C). There was a main effect of age (P=0.0013) on PGC-1α expression in EPI treated cells, 

and a significant dose × age interaction (P=0.0298). In control myotubes, PGC-1α expression 

was 2.3-fold and 2.4-fold lower at 24 and 48 h following 10 µM EPI versus CTRL (P=0.0265 

and P=0.0128, respectively). PGC-1α expression was 1.3-fold higher in aged myotubes after 

24 h with 5 µM EPI compared to CTRL (P=0.0203). Likewise, at 48 h PGC-1α mRNA was 

1.6-fold and 1.8-fold lower versus CTRL with 5 and 10 µM EPI (P=0.0352 and P=0.0161, 

respectively; see Figure 6.14D). Regarding SIRT1 expression, there was a significant main 

effect of age in EPI treated cells (P<0.001). Multiple comparisons revealed that SIRT1 

expression was similar between conditions in control myotubes (see Figure 6.14E). There was 

a significant main effect of age on TFAM expression in EPI treated myotubes (P<0.0001). A 
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significant time × age interaction (P=0.009) was also found in EPI treated myotubes. However, 

TFAM expression was similar between conditions in control and aged myotubes (see Figure 

6.14F). Overall, EPI lowered PGC-1α expression in aged myotubes only.  
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Figure 6. 14 Expression of genes associated with mitochondrial function in control and aged 

skeletal muscle myotubes following acute dietary flavonoid treatment. Myotubes were treated 

with 0, 5 and 10 µM Q, EPI or EGCG over 48 h and lysed for analysis of gene expression. A) 

DRP1, B) MFN2, C) PARKIN, D) PGC-1α, E) SIRT1 and F) TFAM. Data are means±SEM 

from 3 independent experiments run in duplicate. Statistical significance was determined by a 

three-way ANOVA, with dose, time and age as factors. Multiple comparisons performed by 

Dunnett’s test, to determine within-age differences in gene expression between experimental 

conditions. a main effect of dose; b main effect of time; c main effect of age. *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001. Control and aged myotubes are denoted by solid black and 

transparent triangles, respectively. 

 

6.4.16 Antioxidant-related transcriptional responses following Quercetin treatment in 
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After describing how flavonoids impact genes linked with mitochondrial remodelling, genes 

associated with the antioxidant response were examined in the absence and presence of 

flavonoids. These were investigated to help consolidate ROS production data (see section 

6.4.6-6.4.10). There was a significant main effect of dose (P=0.030) and age (P<0.0001) on 
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24 h, respectively. At 48 h, catalase expression increased 1.6-fold versus CTRL in control cells 

with 10 µM Q (P=0.046). Levels of catalase mRNA in aged myotubes were similar between 

conditions, irrespective of the flavonoid tested. For SOD2 expression, there was no main effect 

of dose, time or age in Q treated cells (see Figure 6.15B). Although, SOD2 mRNA levels were 

similar between treatment groups in control myotubes. There was a significant main effect of 

dose (P<0.0001) and time (P=0.002) on eNOS expression in Q treated myotubes, and a 

significant dose × age, and time × age interaction (P=0.0283 and P=0.031, respectively). At 48 

h, eNOS expression in control and aged myotubes was lower with 5 (Control: 3.3-fold; Aged: 

19-fold, P<0.0001) and 10 µM Q (Control: 6.2-fold; Aged: 19-fold; P<0.0001) versus CTRL 

(see Figure 6.15C). Regards NOX4 expression, there was a significant main effect of dose 

(P=0.025), time (P=0.029) and age (P<0.0001) in Q treated cells. Multiple comparisons 

revealed no difference in NOX4 expression between conditions in control myotubes (see 

Figure 6.15D). Yet, in aged myotubes, 24 h of 5 µM Q treatment increased NOX4 expression 

1.8-fold versus CTRL (P=0.041). In the presence of Q, there was a significant main effect of 

dose (P=0.046) on NRF2 expression (see Figure 6.15E), and a significant dose × time 

interaction (P<0.0001). In control myotubes, 10 µM Q increased NRF2 expression 2.1-fold, 

and decreased NRF2 1.3-fold in aged myotubes, over 24 h and 48 h versus CTRL, respectively 

(P=0.002 and P=0.044, respectively). Overall, Q upregulated genes (CAT, NOX4 and NRF2) 

associated with the antioxidant response in skeletal myotubes. 

 

6.4.17 Antioxidant-related transcriptional responses following ECGG treatment in 

skeletal myotubes 

In EGCG treated cells, there was a main effect of age (P=0.023) on catalase expression, though 

post-hoc tests revealed that catalase expression was similar between conditions in control and 

aged myotubes (see Figure 6.15A). There was a significant main effect of dose (P=0.020) and 
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time (P=0.005) on SOD2 expression in EGCG treated myotubes. Although, SOD2 mRNA 

levels were similar between treatment groups in control myotubes (see Figure 6.15B). In aged 

myotubes, SOD2 expression 1.2-fold lower at 48 h with 10 µM EGCG when compared to 

CTRL (P=0.002). In EGCG treated cells, a significant main effect of dose, time and age was 

found (P<0.0001), as well as a significant dose × time × age interaction (P=0.003). Over 48 h, 

eNOS expression was significantly lower in control myotubes after 5 and 10 µM EGCG (2.1-

fold, P=0.009; 3.9-fold, P<0.0001). Similarly, eNOS expression was decreased 4.8-fold 

(P<0.0001) and 15-fold (P<0.0001) at 48 h in aged myotubes after 5 and 10 µM EGCG 

treatment, respectively (see Figure 6.15C). There was a main effect of time (P=0.002) and age 

(P<0.0001) on NOX4 expression in EGCG treated cells. Multiple comparisons revealed no 

difference in NOX4 expression between conditions in control and aged myotubes (see Figure 

6.15D). In EGCG treated cells, there was a main effect of dose (P=0.048) and time (P<0.0001) 

on NRF2 expression. NRF2 mRNA levels were not impacted by ECGG treatment in control 

myotubes (see Figure 6.15E). In aged myotubes, 48 h EGCG (5 µM) treatment increased NRF2 

levels 2-fold compared with CTRL (P=0.008). Collectively, EGCG attenuated SOD2 and 

eNOS expression, whilst increasing NRF2 in aged skeletal myotubes. 

 

6.4.18 Antioxidant-related transcriptional responses following EPI treatment in skeletal 

myotubes 

There was a main effect of time (P=0.0098) on catalase expression, and a dose × age interaction 

(P=0.039) in EPI treated cells. Treating control myotubes with 5 µM EPI decreased catalase 

expression over 24 h versus CTRL (1.6-fold; P=0.038). In EPI treated myotubes, there was a 

significant time × age interaction (P=0.030) on SOD2. Although, SOD2 mRNA levels were 

similar between treatment groups in control myotubes (see Figure 6.15B). There was a 

significant effect of dose (P=0.032), time (P<0.0001) and age (P<0.0001) on myotube eNOS 
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expression in response to EPI. At 48 h in control myotubes, 5 and 10 µM EPI treatment lowered 

eNOS expression 2.6-fold (P=0.001) and 6.2-fold (P<0.0001) compared to untreated CTRL. 

Whereas eNOS mRNA levels were similar between conditions in aged myotubes (see Figure 

6.15C). In EPI treated cells, there was a significant main effect of age (P<0.001), and a time × 

age interaction (P=0.015). Multiple comparisons revealed no difference in NOX4 expression 

between conditions in in control and aged myotubes (see Figure 6.15D). There was a significant 

effect of dose (P=0.007) and time (P=0.0005) on NRF2 expression (see Figure 6.15E), and a 

significant dose × time interaction in EPI treated myotubes (P=0.008). At 24 h, NRF2 

expression was ~1.8-fold higher in control myotubes after 5 µM and 10 µM EPI compared to 

CTRL (P=0.022 and P=0.029, respectively). In aged myotubes, 5 µM EPI treatment over 48 h 

increased NRF2 levels 1.7-fold versus CTRL (P=0.012). Overall, EPI lowered the expression 

of genes associated with antioxidant activity, whilst concurrently increasing levels of NRF2 

mRNA.  
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Figure 6. 15 Expression of genes associated with the antioxidant response in control and aged 

skeletal myotubes following acute dietary flavonoid treatment. Myotubes were treated with 0, 

5 and 10 µM Q, EPI or EGCG over 48 h and lysed for analysis of gene expression. A) CAT, 

B) SOD2, C) eNOS, D) NOX4 and E) NRF2. Data are means±SEM from 3 independent 

experiments run in duplicate. Statistical significance was determined by a three-way ANOVA, 

with dose, time and age as factors. Multiple comparisons performed by Dunnett’s test, to 

determine within-age differences in gene expression between experimental conditions. a main 

effect of dose; b main effect of time; c main effect of age. *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001. Control and aged myotubes are denoted by solid black and transparent 

triangles, respectively. 

 

6.4.19 Summary of flavonoid effects upon the transcriptional responses of skeletal 

myotubes 

Together, skeletal myotubes cultured in the presence of dietary flavonoids exhibit altered 

transcriptional profiles that are indicative of mitochondrial remodelling and changes in 

antioxidant capacity (see Figure 6.16). After Q treatment, genes associated with antioxidant 

stress were increased, including CAT, NOX4 and NRF2. EGCG attenuated genes associated 

with mitochondrial biogenesis (PGC-1α and SIRT1), whilst blunting eNOS expression. 

Finally, EPI lowered PGC-1α expression in control myotubes, and simultaneously increased 
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NRF2 expression. These findings provide fundamental insight into the potential differential 

effects of flavonoids on cellular behaviour, basally and under ageing conditions. 
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Figure 6. 16 Heatmap representation of myotube mRNA responses in the absence of presence of flavonoids. Fold changes (2-ΔΔCT) in gene 

expression over 48 h presented as heat map. 
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6.4.20 The effects of EPI on CaMKII protein content in control and aged myotubes 

Having ascertained that EPI may inhibit indices of mitochondrial respiration (in myoblasts) 

and can augment the expression of NRF2 at the transcriptional level (independent of changes 

in ROS emission in myotubes), further study of EPI’s impact on skeletal myotubes was 

conducted by assessing the canonical AMPK signalling axis. This pathway plays a central role 

in regulating energy metabolism. First, the potential of EPI to regulate CaMKII activity, a 

known upstream regulator of AMPK, was investigated. The phosphorylation of CaMKII at 

Thr286 was not detectable in control and aged muscle cells. There was a significant main effect 

of age on total CaMKII in skeletal muscle cells (P<0.0001). Multiple comparisons revealed 

that total CaMKII was similar across time points and between conditions in control and aged 

cells (see Figure 6.17).  
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Figure 6. 17 EPI treatment does not impact CaMKII levels in control and aged muscle cells. 

A) Total CaMKII in control and aged myotubes in the absence (-; clear bars) or presence (+; 

green bars) of EPI. B) Representative images of n=3 independent experiments and associated 

stain free blot image. Cell lysates were analysed by SDS-PAGE and western blotting with 

indicated antibodies. Data are expressed as means ± SEM; c significant main effect of age. 

 

 

6.4.21 Acute EPI treatment augments AMPK phosphorylation in control and aged 

myotubes 

In control and aged cells treated with EPI, there was a significant main effect of treatment 

(P=0.0015), time (P=0.0316) and age (P<0.0001), as well as a significant time × treatment 

interaction (P=0.0082). Multiple comparisons revealed a significant increase in 

phosphorylation of AMPK at Thr172 at 1 h (1 h: 1.03 ± 0.17 vs. 0 h: 0.54 ± 0.09 AU; P=0.039) 

and 24 h (24 h: 1.11 ± 0.06 vs. 0 h: 0.54 ± 0.09 AU; P=0.012), versus 0 h CTRL with EPI in 

control cells. At 24 h, there was an upward trend in AMPK phosphorylation between CTRL 

and EPI conditions (CTRL: 0.66 ± 0.15 vs. EPI: 1.11 ± 0.07 AU; P=0.0524). In aged cells, 

post-hoc tests revealed no significant difference in AMPK phosphorylation across time 

amongst conditions (see Figure 6.18). However, the fold change in AMPK phosphorylation 

was greater in aged myotubes versus control in the presence of EPI (see Figure 6.18C). 
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Figure 6. 18 AMPK phosphorylation at Thr172 in control and aged skeletal muscle cells. A) 

AMPK phosphorylation at Thr172 in control and aged myotubes in the absence (-; clear bars) 

or presence (+; green bars) of EPI. B) Representative images of n=3 independent experiments 
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and associated stain free blot image. C) Fold change in AMPK phosphorylation with EPI vs. 

CTRL condition over 24 h. Cell lysates were analysed by SDS-PAGE and western blotting 

with indicated antibodies. Data are expressed as means ± SEM; *P<0.05 compared to 0 h 

CTRL. a significant main effect of treatment; b significant main effect of time; c significant main 

effect of age. 

 

6.4.22 EPI does not impact p44/42 MAPK (Erk1/2) phosphorylation in skeletal 

myotubes 

Having described how EPI impacts AMPK activation, the effects of EPI on Erk1/2 

phosphorylation were investigated (see Figure 6.19). There was a significant main effect of 

time (P=0.0062), and age (P<0.0001) on Erk1/2 phosphorylation, and a time × age interaction 

(P=0.0244). Post-hoc comparisons revealed Erk1/2 phosphorylation in control cells was 

significantly increased at 1 hour (0 h: 1.15 ± 0.39 vs.1 h: 1.98 ± 0.11 AU; P=0.0375) and 15 

min (0 h: 1.15 ± 0.39 vs. 15 min: 3.12 ± 0.73 AU; P=0.0341) versus 0 h under CTRL and EPI 

conditions, respectively. However, there was no difference in Erk1/2 phosphorylation between 

CTRL and EPI conditions both at 15 min (CTRL: 1.98 ± 0.11 vs. EPI: 3.19 ± 0.73 AU; 

P=0.409) or 1 h (CTRL: 3.12 ± 0.75 vs. EPI: 2.61 ± 0.38 AU; P=0.946). In aged cells, multiple 

comparisons revealed a significant difference between CTRL and EPI conditions at 15 min 

(CTRL: 1.30 ± 0.08 vs. EPI: 0.37 ± 0.07 AU; P=0.020).  Commented [CS482]: Interesting that all signalling 
molecules thus far are suppressed basally in ageing – linked 
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Figure 6. 19 Erk1/2 phosphorylation is not enhanced by EPI in control cells and aged muscle 

cells. A) ERK1/2 phosphorylation at Thr202/Tyr204 in control and aged myotubes in the 

absence (-; clear bars) or presence (+; green bars) of EPI. B) Representative images of n=3 

independent experiments and associated stain free blot image. C) Fold change in ERK1/2 
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phosphorylation with EPI vs. CTRL condition over 24 h. Cell lysates were analysed by SDS-

PAGE and western blotting with indicated antibodies. Data are expressed as means ± SEM; 

*P<0.05 compared to 0 h CTRL. b significant main effect of time; c significant main effect of 

age. 

 
 
 
 
6.4.23 EPI treatment does not augment eNOS phosphorylation in control and aged 

skeletal myotubes 

Total eNOS was not detectable under experimental conditions in myotubes (see Chapter 9, 

Figure 9.4) and therefore pSer1177 eNOS was relativised to total lane protein. There was a 

significant main effect of age on phosphorylation of eNOS at Ser1177 (P=0.0002). Overall, 

eNOS phosphorylation was increased in aged versus control myotubes (see Figure 6.20). In 

control muscle cells, eNOS phosphorylation was non-significantly increased at 1 hour (CTRL: 

1.96×107 ± 2.68×106 vs. EPI: 1.27×107 ± 1.21×106 AU; P=0.05) under CTRL conditions. 

Multiple comparisons revealed no significant impact of EPI supplementation on eNOS 

phosphorylation in control or aged muscle cells (Figure 6.20). Increased eNOS 

phosphorylation at Ser1177 may serve to compensate for reductions in NO bioavailability. 



 

 293 

 

 

 

Figure 6. 20 eNOS phosphorylation is not impacted by EPI treatment. A) eNOS 

phosphorylation at Ser1177 in control and aged myotubes in the absence (-; clear bars) or 

presence (+; green bars) of EPI. B) Representative images of n=3 independent experiments and 

associated stain free blot image. C) Fold change in eNOS phosphorylation with EPI vs. CTRL 

condition over 24 h. Cell lysates were analysed by SDS-PAGE and western blotting with 

indicated antibodies. Data are expressed as means ± SEM. c significant main effect of age. 
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6.4.24 Summary of the impact of dietary flavonoids upon control and aged skeletal 

myotubes 

In summary, dietary flavonoids have no direct impact on indices of mitochondrial function and 

ROS emission in control and aged skeletal myotubes. However, flavonoid treatment promotes 

changes in the transcriptional activity of myotubes that may reflect initiation of mitochondrial 

remodelling and changes in the cellular redox state. Of note, EPI augments the phosphorylation 

of AMPK, independent of CaMKII, in skeletal myotubes. 

 

6.5 Discussion 

In this chapter, experiments were performed to determine if indices of mitochondrial function, 

ROS production and cell signalling are affected by replicative ageing, and, whether these 

measures are impacted by dietary flavonoids. The aim of these experiments was to determine 

the basal phenotype of control and aged myotubes and to subsequently enhance mitochondrial 

function, lower ROS production and enhance cell signalling with flavonoid treatment in the 

myotube model. It was hypothesised that replicative ageing would cause mitochondrial 

dysfunction, increase ROS production and lower cell signalling, and flavonoid treatment would 

mitigate these effects. Overall, this chapter demonstrates that replicative ageing impairs indices 

of mitochondrial function and increases mitochondrial ROS production in myotubes, that are 

not rescued by flavonoids. Nevertheless, flavonoids evoke distinct effects on transcription, and 

EPI may afford beneficial adaptations through the induction of NRF2 and AMPK signalling in 

control and aged myotubes. The data presented advance current knowledge of the mechanisms 

associated with flavonoids and their purported health benefits in skeletal muscle.    

 

6.5.1 Flavonoids do not rescue age-related impairments to mitochondrial function 
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The main outcome from the current chapter was that replicative ageing elicits impairments to 

mitochondrial function in cultured myotubes, that are not rescued by dietary flavonoids. 

Advancing age has repeatedly been linked with skeletal muscle mitochondrial dysfunction in 

rodents and humans (Gouspillou et al., 2014c; Porter et al., 2015; Tonkonogi et al., 2003a), 

although it is thought that reductions in physical activity with older age, and mitochondrial 

isolation procedures are major confounding factors on measures of mitochondrial function 

(Conley et al., 2013; Distefano et al., 2018; Gram et al., 2015; Picard et al., 2010a). Using an 

in vitro model of replicative ageing, the findings presented demonstrate that ageing is 

associated with mitochondrial dysfunction in myotubes, as evidenced by reductions in coupling 

efficiency and changes in pathways responsible for ATP synthesis (see Figure 6.21). Thus, 

replicatively aged skeletal myotubes appear to recapitulate features of human skeletal muscle 

ageing beyond muscle regeneration (Bigot et al., 2008; Sharples et al., 2011b), extending to 

mitochondrial dysfunction (Marcinek et al., 2005; Porter et al., 2015; Tonkonogi et al., 2003b). 

One important caveat on the use of replicatively aged cells to mimic metabolic features of 

human skeletal muscle is the lack of fusion under basal conditions (Sharples et al., 2011b). 

Therefore, the observed mitochondrial deficits in aged myotubes may reflect a lack of myotube 

formation, rather than mitochondrial dysfunction per se.  

 

Commented [CS487]: This is nice 0 succinct, yet powerful 
observation 

Commented [CS488]: Do the blast and tube data within 
aged differ?  If not, then this holds true – if so, then you can 
counter this argument. 

Commented [SD489R488]: Cant directly compare seahorse 
data from blasts and tubes due to normalisation 
differences… could check non-normalised raw values and 
examine. Needed for defence 



 

 296 

 

Figure 6. 21 Impact of replicative ageing upon mitochondrial form and function of skeletal 

myotubes. 

 

In the present study, micromolar concentrations of Q, EGCG and EPI did not impact indices 

of mitochondrial function. These findings agree with oxygen consumption data from rat brain 

and heart mitochondria in the presence of Q (Lagoa et al., 2011), but disagree with studies 

demonstrating blunted state-3 supported respiration in mitochondria dosed with Q (Dorta et al., 

2005; Trumbeckaite et al., 2006). Similar to the findings with ECGG, previous studies have 

reported no change in parameters of mitochondrial function in isolated hepatocytes treated with 

similar concentrations (10 µM) of EGCG (Kucera et al., 2015). However, evidence that EGCG 

increases state 3 respiration in human primary neurons (Castellano-González et al., 2016) and 

rat cardiomyocytes (Vilella et al., 2020b) has been documented. In line with the negligible 

effects of EPI on myotube mitochondrial respiration reported here, one study demonstrated 

analogous concentrations of EPI had no impact upon C2C12 mitochondrial bioenergetics (Bitner 

et al., 2018). Moreover, isolated rat heart mitochondria exhibit similar state 3 respiration rates 

in the presence of EPI when succinate/amytal were used as substrates (Kopustinskiene et al., 

2015b). On the other hand, some studies have documented improved mitochondrial respiratory 
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function with EPI treatment, albeit in rat beta-cells (Kener et al., 2018a; Rowley et al., 2017a). 

Taken together, it seems that the effects of flavonoids on mitochondrial bioenergetics are 

highly cell specific. One possible explanation for differences in cell respiratory responses to 

flavonoids could relate to their potential accumulation within the mitochondrial compartment. 

Whilst Q and EGCG accumulate within the organelles of T lymphocyte and neuronal cells 

(Fiorani et al., 2010b; Schroeder et al., 2009) no studies have described whether flavonoids 

accrue within skeletal muscle mitochondria. Overall, it seems that flavonoids do not alter 

mitochondrial respiration over the time-course studied. 

 

6.5.2 Flavonoids do not mitigate age-related increases in ROS production 

A second key finding of this chapter was that replicative ageing increased ROS production, 

which was not mitigated by flavonoid treatment. Ageing has been associated with increased 

H2O2 production (Chabi et al., 2008b; Vasilaki et al., 2006) in isolated rodent skeletal muscle 

mitochondria, and is also linked with elevated ROS emission in human skeletal muscle when 

physiological concentrations of ADP are employed (Holloway et al., 2018). The present 

findings support the idea that (cellular) ageing is associated with increased ROS production in 

skeletal muscle cells. Notably, the data imply that age-related increases in ROS are both 

mitochondrial and cytosolic in origin. Evidence for this premise comes from studies 

demonstrating ageing augments the production of ROS from mitochondria (Brand et al., 2013) 

and from extramitochondrial enzymes such as the NADPH oxidases (Pearson et al., 2014; 

Sullivan-Gunn & Lewandowski, 2013). Together, these findings provide considerable 

evidence that replicative ageing augments ROS production in skeletal myotubes.  

 

The antioxidant properties of dietary flavonoids have long been acknowledged, and are owed 

to hydroxyl substitutions in their molecular structure (Bors et al., 1990; Hodnick et al., 1988; 
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Silva et al., 2002). Yet, the data presented here suggest that flavonoids do not contribute to the 

regulation of ROS production in skeletal muscle cells. Previous research has shown that 

flavonoids including Q, EGCG and EPI exert potent antioxidant effects in multiple tissues, 

including skeletal muscle, liver and the brain (Bouitbir et al., 2012; Dorta et al., 2008; Meng et 

al., 2008; Rowley et al., 2017a; Shaki et al., 2017; L. Wang et al., 2016). The inconsistencies 

between these findings and those presented might be explained by differences in the dose of 

flavonoids administered, or the time course of treatments. Indeed, many of the studies that have 

reported antioxidant effects of polyphenols in vitro have employed doses that fall within the 

10-100 µM range (Sandoval-Acuña et al., 2014), which may not be realistically attained in 

vivo. In addition, the direct scavenging action of flavonoids on ROS is likely to be rapid 

(Nijveldt et al., 2001), and therefore, measuring ROS production 24 h after flavonoid treatment 

may have missed any potential acute changes in the emission of ROS in muscle cells. The 

negligible impact of physiological flavonoid concentrations on myotube ROS production 

suggests flavonoid treatment may not afford adaptations that contribute to redox regulation in 

skeletal muscle cells over the time-course studied. 

 

6.6 Flavonoids distinctly alter the expression of genes associated with energy 

metabolism 

Another important finding of the present study was that replicative ageing culminated in 

changes to the expression of genes associated with energy metabolism. The abundance of 

MFN2 was acutely upregulated in aged myotubes, which lends support to studies 

demonstrating an increased ratio of fusion:fission related proteins in ageing skeletal muscle 

(Joseph et al., 2013b; Leduc-Gaudet et al., 2015; Mercken et al., 2017). Similarly, aged 

myotubes presented increased abundance of TFAM, which serves to increase the synthesis of 

OXPHOS subunits. Some (Lezza et al., 2001), but not all (Welle et al., 2003) studies have also 
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reported increased expression of TFAM in older skeletal muscle tissue. Elevations in TFAM 

expression in aged myotubes might function to increase the transcription of OXPHOS subunits 

and compensate for impairments in mitochondrial function. In spite of increased TFAM 

expression, aged myotubes had less abundance of PGC-1α and NRF2 mRNA, which implies 

reduced capacity for mitochondrial biogenesis with replicative ageing. Similar results have 

been documented at the transcriptional level in ageing skeletal muscle in vivo (Ghosh et al., 

2011; Shavlakadze et al., 2019; Su et al., 2015), suggesting aged myotubes may present lower 

mitochondrial content. 

 

To test whether flavonoids regulate transcriptional responses in control and aged myotubes, 

the expression of genes associated with energy metabolism were assessed in their absence and 

presence. Of those genes studied associated with the antioxidant response, CAT demonstrated 

differential regulation by flavonoid treatment. In the presence of Q, control myotubes 

upregulated CAT expression, suggesting Q may act in a prooxidant manner through actions on 

H2O2 in myotubes. Although, rates of ROS emission were not augmented in the presence of Q. 

Mitochondrial SOD expression was significantly lowered by 10 µM EGCG over 48 h in 

myotubes, in a similar manner to that in myoblasts (see Chapter 5). SOD2 plays an important 

role in quenching mitochondrial superoxide, and therefore, EGCG may attenuate  

mitochondrial superoxide (Pan et al., 2015). Of note, these data conflict with findings showing 

increased SOD2 mRNA expression and protein content following EGCG administration in L6 

myocytes and embryonic fibroblasts, respectively (Casanova et al., 2014; Zhang et al., 2019), 

although supraphysiological concentrations (25 µM) of flavonoids were employed. Together, 

these findings suggest that flavonoids may distinctly contribute to control of the cell redox state 

through the induction of enzymatic antioxidant systems. 
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Previous reports suggest Q augments mitochondrial biogenesis via activation of PGC-1α in 

humans and rodents (Davis et al., 2009b; Henagan et al., 2015; Nieman et al., 2010; Sharma et 

al., 2015b). Yet, Q did not alter PGC-1α or SIRT1 expression in myotubes, which could reflect 

differences in the dose of Q administered or failure of the myotube model to capture in vivo 

muscle tissue. Micromolar doses of EGCG and EPI actually decreased PGC-1α mRNA levels 

in control myotubes. These data support previous findings demonstrating blunted 

mitochondrial adaptations in human skeletal muscle and murine skeletal muscle cells following 

EPI and EGCG supplementation, respectively (Schwarz et al., 2018; Wang et al., 2016). 

However, other studies have documented augmented markers of mitochondrial biogenesis with 

EPI and EGCG (Hüttemann et al., 2013; Lee et al., 2017; Moreno-Ulloa, et al., 2015; Taub et 

al., 2016). Considering the antioxidant potential of these flavonoids (Ze Xu et al., 2004a), it is 

possible that impaired PGC-1α transcription in control myotubes was due to attenuated 

signalling through redox sensitive pathways (Gomez-Cabrera et al., 2008; Ristow et al., 2009). 

Maintenance of mitochondrial health also involves fusion/fission activities that govern 

organelles dynamics. Evidence for reduced fusion in Q and EGCG treated aged myotubes was 

provided by decreased MFN2 expression, which may exacerbate the age-related mitochondrial 

dysfunction (Sebastián et al., 2016). In the presence of EPI, aged cells demonstrated increased 

potential for fission by increased DRP1, with potential implications for respiratory function 

(Eisner et al., 2014; Glancy et al., 2015). Therefore, flavonoids may regulate organelles 

dynamics at the transcriptional level. However, given the negligible impact of flavonoids on 

respiratory function reported, it is not exactly clear how altered dynamics may impact 

mitochondrial health.  

 

The transcription factor NRF2 governs the replication of antioxidant enzymes and subunits of 

the electron transport chain, through its binding to antioxidant response elements (Gao et al., 
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2020; Yamamoto et al., 2018). Interestingly, all flavonoids tested enhanced NRF2 transcription 

across control and aged myotubes, which supports previous findings from Chapter 5 and others 

showing flavonoids are potent activators of NRF2 (Huang et al., 2019; Kim et al., 2015; Li et 

al., 2016; Moreno-Ulloa al., 2015; Rowley et al., 2017a; Wu et al., 2006; G. Z. Yang et al., 

2015). On the mechanism, induction of NRF2 could be attributed to the formation of ROS 

(McMahon et al., 2010; Zhang & Hannink, 2003), by dissociation of NRF2 from its repressor 

Kelch-like ECH-associated protein 1 (Keap1). Alternatively, upregulation of NRF2 may occur 

by an Keap1 independent mechanism (Gao et al., 2020). Here, flavonoids did not contribute to 

the regulation of ROS production, and therefore it is possible that a Keap1-independent 

mechanism was primarily responsible for the induction NRF2. One signal that may control 

NRF2 (independent of Keap1) in response to flavonoids is AMPK activity (Joo et al., 2016).  

 

6.6.1 EPI augments AMPK activity in skeletal muscle cells, independent of Erk1/2 

To help consolidate the findings that NRF2 expression is enhanced in parallel with dose-

dependent effects on ROS emission in the presence of EPI, cell signalling responses were 

interrogated to help identify potential regulatory pathways. In disagreement with the 

hypothesis, replicatively aged myotubes displayed similar AMPK signalling responses 

compared to control under basal conditions. Similarly, AMPKα phosphorylation is unaffected 

by age at rest in rat gastrocnemius and tibialis anterior tissue (Hardman et al., 2014). Aside 

from AMPK, eNOS phosphorylation at Ser1177 was similar between control and aged 

myotubes under basal conditions, which fits with previous work demonstrating comparable 

eNOS phosphorylation in skeletal muscle between young and older sedentary adults (Nyberg 

et al., 2012). Therefore, under basal conditions, AMPK signalling may not be impaired with 

older age. Yet, it’s possible that the activation of AMPK in response to external stimuli like 

nutrition may be compromised with ageing. 
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Here, EPI treatment induced AMPK activity in control myotubes, indicating that the action of 

EPI on NRF2 is potentially reliant upon AMPK and independent of Keap1 (Joo et al., 2016). 

Although AMPK signalling was enhanced with EPI in control myotubes, this effect was 

blunted in aged myotubes. This observation supports the premise that ageing diminishes the 

plasticity of skeletal muscle mitochondria due to blunted signalling responses to a given 

stimulus (Ljubicic et al., 2009). Activation of AMPK with EPI aligns with studies 

demonstrating increased AMPK activity with EPI supplementation using cultured cells, 6-

week old male mice or sedentary middle-aged adults as models (Murase et al., 2009; Si et al., 

2011; Taub et al., 2016). AMPK is a known metabolic governor of NRF2 activity, through its 

phosphorylation at Ser50 (Joo et al., 2016), and its activation is controlled by numerous factors, 

including the ADP/ATP ratio, Ca2+ levels and RONS (Auciello et al., 2014; Gowans & Hardie, 

2014; Jensen et al., 2007). Although NO is known to stimulate AMPK activity (Nisoli et al., 

2003; Wadley & McConell, 2007), this study found no role for EPI in regulating eNOS 

phosphorylation, pointing to an alternate mechanism of AMPK activation. Two regulatory 

kinases upstream of AMPK include CaMKII and LKB1, and evidence suggests EPI can alter 

the activity of both of these proteins (Moreno-Ulloa, Mendez-Luna, et al., 2015b; Murase et 

al., 2009). However, no impact of EPI supplementation was found on CaMKII activity, at least 

measured by phosphorylation at Thr286. Furthermore, the effect of EPI on NRF2 induction 

appears to be independent of Erk1/2 activity. Taken together, EPI-induced AMPK signalling 

may trigger NRF2 induction, and these effects are likely not mediated upstream by CaMKII, 

but rather LKB1 (see Figure 6.22). The exact pathways leading to activation of AMPK and 

NRF2 require further investigation. 
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Figure 6. 22 Schematic of the potential mechanisms by which EPI exerts its biological effects 

in skeletal myotubes. 

 

 

6.7 Limitations 

Like Chapter 5, this study used a murine skeletal muscle cell line (C2C12) to examine the effects 

of (replicative) ageing and flavonoids on aspects of energy metabolism. Although widely used 

to study mechanisms of muscle adaptation, and despite being highly practical versus primary 

muscle cell culture, C2C12 cells are both transcriptionally and metabolically dissimilar to 

primary skeletal muscle cells (Abdelmoez et al. 2019). Moreover, cultured myotubes lack the 

intra- and extracellular environment that is present in vivo (Aas et al. 2013). In this way, 

findings generated using the C2C12 model should be interpreted with caution. To study the 

effects of skeletal muscle ageing in this study, a replicative ageing model was employed. Whilst 

replicative ageing may indeed capture some features of ageing human skeletal muscle (Bigot 
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et al. 2008; Sharples et al. 2011), this model will not capture all aspects of human skeletal 

muscle tissue. Furthermore, replicatively aged myoblasts do not appropriately exit the cell 

cycle to differentiate like control myoblasts (Sharples et al. 2011). Thus, effects of replicative 

ageing in myotubes could reflect a lack of myotube formation as opposed to detrimental effects 

of ageing per se. Similar to Chapters 4 and 5, this study used parent flavonoid compounds 

rather than their related in vivo metabolites. Thus, care should be taken translating the data 

obtained with these compounds in vitro. Another limitation of this study was the failure to 

obtain information on the maximal respiratory capacities (and consequently spare respiratory 

capacities) of control and aged myotubes in the presence of flavonoids when using the Seahorse 

Analyzer to investigate mitochondrial function. This additional data would have provided 

greater resolution on how ageing and flavonoids impact indices of mitochondrial function. 

Finally, the use of semi-quantitative western blotting techniques to confer protein activity is a 

limitation. 

 
 
6.8 Conclusion 

The novel findings in this chapter demonstrate that replicative ageing causes mitochondrial 

dysfunction and increases mitochondrial ROS production in myotubes. Similar to older human 

skeletal muscle, replicative ageing reduced mitochondrial coupling efficiency, impaired 

mitochondrial biogenesis and lowered reliance on OXPHOS for ATP synthesis. Notably, the 

data suggest flavonoids do not rescue age-related impairments to mitochondrial bioenergetics 

and ROS production in replicatively aged C2C12 myotubes, but flavonoids may activate AMPK 

signalling and transcriptional events (in a compound-dependent manner) that converge on 

mitochondria in C2C12 myotubes. Of the flavonoids tested, Q evoked an antioxidant response 

at the mRNA level, whereas EPI robustly induced NRF2 expression downstream of increased 

AMPK signalling. Importantly, the observed impact of flavonoids on cell adaptations occurred 
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in the physiological range, suggesting that these compounds may confer favourable 

mitochondrial adaptations when ingested in vivo. Therefore, EPI supplementation may help 

defend against the perils of sedentary ageing by acting through the mechanism of hormesis to 

indirectly enhance mitochondrial health. Further study of NRF2 activity in the presence of 

relevant inhibitors is necessary to fully describe EPI’s mechanism of action in skeletal muscle 

cells. 
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7.1 Introduction 

Originally proposed by Oliver and colleagues in 1998, metabolomics is a powerful 

investigational tool that can be used to determine the phenotype of a biological sample through 

analysis of its present metabolites (Oliver et al., 1998). As small molecules (<1500 Daltons), 

metabolites are substrates or end products of enzyme-mediated reactions (Dunn et al., 2011). 

For fundamental reasons, the collection of metabolites within a biological sample (i.e. the 

metabolome) is expected (Kell, 2004), and is indeed found (Raamsdonk et al., 2001), to 

amplify changes observed in the transcriptome and proteome. Therefore, studying the 

metabolome can provide crucial insights into the molecular phenotype of a biological system 

in response to specific stimuli. Another asset of metabolomic investigations is that metabolites 

are highly conserved across mammalian species. In this way, metabolite-level information 

obtained from non-human species may well have relevance and translatability to human 

populations. 

 

Metabolite profiling is typically performed using 1H nuclear magnetic resonance (NMR) or 

liquid-chromatography mass spectrometry (LC/MS). Given that most biomolecules contain 

hydrogens, and the proton (1H) has nearly 100% natural abundance and high sensitivity, 1H-

NMR is well suited for fast non-discriminative quantitative profiling based on a single internal 

quantification reference compound (Weljie et al., 2006; Xu et al., 2006). Briefly, 1H-NMR is 

based on the interaction of nuclei of 1H atoms with an external magnetic field. Following the 

application of a pulse of electromagnetic radiation at a specific “resonance” frequency, nuclei 

undergo ‘excitation’ and ‘relaxation’ when the radiation pulse stops. During relaxation, nuclei 

emit the radiofrequency waves absorbed during the excitation phase, thus generating 

radiofrequency peaks in a frequency spectrum (also called NMR spectrum) after Fourier’s 

transformation. 
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A handful of studies have investigated the impact of ageing on the plasma/serum and muscle 

metabolome in rodents and humans (Fazelzadeh et al., 2016; Garvey et al., 2014; Johnson et 

al., 2018; Uchitomi et al., 2019; Wilkinson et al., 2020). These studies have provided crucial 

insights into the metabolic pathways impacted by chronological ageing and highlighted 

potential targets for therapeutic intervention. Yet, the metabolic signature of cellular 

(replicative) ageing has seldom been investigated in skeletal muscle cells. Such information 

may help explain similarities and differences in indices of mitochondrial function between 

control and aged myoblasts (Chapter 5) and myotubes (Chapter 6), respectively. Developing 

knowledge of the metabolic pathways linked with cellular ageing will not only help establish 

whether in vitro models are useful for capturing features of skeletal muscle ageing in vivo, but 

will also enable the study of whether interventions, such as dietary agents, regulate cell function 

at the level of metabolites.  

 

Flavonoid intake has long been associated with cardiometabolic health benefits (Buijsse et al., 

2006; Desideri et al., 2012; Hertog et al., 1993a). Over half a century since flavonoid 

mechanistic research begun, it is now accepted that flavonoids interact with processes 

associated with energy metabolism, but many questions remain unanswered. One way in which 

flavonoids modulate energy metabolism is through actions on mitochondrial respiration and 

signalling pathways typically associated with endurance exercise (Davis et al., 2009a; Dorta et 

al., 2005; Hüttemann et al., 2013; Lagoa et al., 2011; Lee et al., 2015). Similarly, Chapters 5 

and 6 of this thesis demonstrated flavonoids may modulate the transcription of mitochondrial 

and antioxidant associated genes in C2C12 myoblasts and myotubes, which was potentially 

downstream of increased AMPK signalling. In recent years, metabolomics has been employed 

to further understand the molecular metabolic processes by which flavonoids perpetuate their 
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positive health effects. From these limited studies, evidence is emerging that flavonoid 

supplementation regimes contribute to changes in the cell metabolome (Chitturi et al., 2019; 

Chu et al., 2018; Mendes et al., 2019; Si et al., 2019a). For instance, quercetin altered the 

abundance of metabolites involved in the TCA cycle, antioxidant processes and membrane 

remodelling in human macrophages. To date, little information is available on whether dietary 

flavonoids impact skeletal muscle cells at the metabolite level. Considering the current gaps in 

knowledge regarding cellular ageing and flavonoids in skeletal muscle cells, the objective of 

this study was two-fold: 1) Explore how replicative ageing impacts the metabolome of skeletal 

muscle myoblasts and myotubes; 2) Determine whether dietary flavonoids impact the 

metabolic signatures of control and replicatively aged myoblasts and myotubes. This study was 

explorative by nature and therefore would potentially generate hypotheses to test in future 

research. 

 

7.2 Materials and methods  

7.2.1 Cell culture 

C2C12 mouse skeletal muscle cells (ATCC, Rockville, MD, USA) at passages 9-11 (referred to 

as ‘control’) and passages 47-50 (replicative aged and herein referred to as ‘aged’; [130-140 

population doublings]) were used in this study. C2C12 myoblasts were resuscitated from liquid 

nitrogen (LN2) in 2 mL cryovials at a cell density of 1 x 106. Cryovials were rapidly warmed 

and once thawed were plated onto T75 flasks that were pre-gelatinised with 5 mL, 0.2 % 

gelatin. The gelatin was incubated on the flasks at room temperature (RT) for 20 minutes, 

before excess gelatin was aspirated. Growth medium (GM) was added (15 mL) to the pre-

gelatinised T75s, prior to addition of 1 x 106 resuscitated cells. The flasks were agitated front-

back and side-side to spread the cells evenly over the plate. To facilitate cell growth flasks were 

incubated in a humidified 5% CO2 atmosphere at 37°C for up to 72 h.  
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Once the cells were 80 % confluent, they were washed twice with PBS to remove any excess 

serum, which is an inhibitor of trypsin. Once washed, 1 mL trypsin/T75 was added and 

incubated for 5 minutes at 37°C to enable cell dissociation. Following confirmation of 

dissociation, by microscopy, trypsin was neutralised by adding 4 mL GM (5 mL total) to the 

dish. To prevent cell clumping, the cells were homogenised, by slowly drawing the cell solution 

up and down using a syringe and 21-gauge needle. The cell suspension was prepared for cell 

counting in a 1:1 dilution in 0.4 % trypan blue stain (Bio Whittaker, Wokingham, UK). The 

cell suspension/trypan blue mix was dispensed onto a Neubauer haemocytometer (Assistent, 

Sondheim, Germany). Once cells were counted, they were seeded onto pre-gelatinised 6-well 

plates (Nunc, Roskilde, Denmark) at 40,000 cells/mL.  

 

7.2.2 Flavonoid treatments and controls 

Cell culture experiments were started (timepoint 0 h) by transitioning cells from proliferation 

to differentiation, by changing GM to low serum (2%) DM. In order to investigate metabolite 

changes in early and late differentiation, two separate dosing protocols were employed: 1) Cells 

were washed twice with PBS prior to switching to DM in the presence of Quercetin, EGCG or 

EPI at 0, 5 and 10 µM for 24 h. 2) Cells were washed twice with PBS prior to switching to DM 

for 72 h. After 72 h differentiation, cells were again washed twice with PBS prior to dosing 

with DM in the presence of Quercetin, EGCG or EPI at 0, 5 and 10 µM for 24 h. After 24 h 

treatment of myoblasts and myotubes, cells were washed three times with PBS. Following 

thorough aspiration of wells, plates were immediately transferred to -80°C for storage. The 

culture media and supplement batch were kept constant for the entire experiment. Each 

experimental condition was performed three times in duplicate. To control for any molecular 

signature arising from the pre-gelatinised 6-well plates, extra wells within the experiment were 
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cultured without cells. To control for the intraplate variance care was taken to design the 

experiment so that multiple plates contained the same conditions (see Figure 7.1). 

 

 

 

 

 

 

 

Figure 7. 1 Two plates were prepared per condition per dose (see figure) for both myoblast 

and myotube cultures for seven groups: 1) – DM only, 2) – Quercetin 5 µM, 3) – EGCG 5 µM, 

4) – Epicatechin 5 µM, 5) – Quercetin 10 µM, 6) – EGCG 10 µM, 7) – Epicatechin 10 µM, 

and one plate for the cell free control group 8 – No cells, matrix only. Each plate contained 3x 

wells of “control” and 3x wells of “aged” cells = 6 samples in total for each condition. Two 

control plates (24 h and 96 h, for myoblast and myotube timeframes, respectively) contained 

replicates of cell-free media with and without 0.1% DMSO. 

 

 

7.2.3 Sample preparation for 1H NMR acquisition 

Plates were thawed from -80°C and immediately placed on ice before 500 µL ice-cold 

acetonitrile:H2O (50:50 v/v) solvent was pipetted into each well (see Figure 7.2). Wells were 

immediately scraped with a pipette tip and the cell slurry was pipetted into Eppendorf tubes. 

Samples were then immediately subjected to sonication at 50 KHz, 20% amplitude for 3 × 30 

s bursts on ice. Sonicated samples were then vortexed for 20 s and centrifuged at 21,500 × g 

for 5 minutes @ 4°C. The supernatants were then aliquoted into fresh Eppendorf tubes before 

being snap frozen in LN2. Samples were subsequently lyophilised overnight before being sealed 
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and stored at -80°C until further processing (2 weeks maximum). Plates were extracted in 

batches of 24 samples and randomised to enable appraisal of any batch effects. Immediately 

prior to NMR acquisition, 200 µL of sodium phosphate buffer was added to each lyophilised 

sample, before centrifugation (12,000 g for 2 minutes). The sodium phosphate buffer contained 

100µM Trimethylsilyl propionate (TSP) (d6 deuterated, Sigma), 99.9 % 2H2O (Sigma), and 

100mM Na2HPO4:NaH2PO4 pH 7.4 (Thermo-Fisher). Finally, 190 µL of sample was pipetted 

into 3mm (outer diameter) glass SampleJet NMR tubes (Bruker).  

 

 

Figure 7. 2 Method of extraction from stored samples. The extraction required addition of 

solvent, followed by an incubation over ice to ensure solvent penetration through the sample. 

Homogenisation was critical for the separation of protein and small molecules. Homogenised 

samples were centrifuged to separate the debris and precipitants (this allowed the solution of 

metabolites to be extracted). The supernatant was lyophilized and metabolites were either 

immediately stored or prepared for analysis. Dry pellets were mixed with the appropriate buffer 

(see section 7.2.3) prior to acquisition. 

 

 

Solvent added to cells Sonication Centrifuge Separate extract 

Transfer to NMR tube Mix dried sample with 
NMR buffer Acquisition & Analysis of NMR data 

Lyophiliser 
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7.2.4 1H NMR acquisition and sample processing  

High resolution 1D 1H NMR was acquired using 3mm outer diameter tubes in 700MHz Avance 

IIIHD Bruker spectrometer equipped with a TCI cryoprobe and chilled autosampler 

(SampleJet). A one-dimensional 1H Carr-Purcell-Meiboom-Gill (CPMG) experiment (vendor 

supplied cpmgpr1d) was used for all spectra acquisition was used to attenuate peaks from large 

molecules such as proteins along with standard 1D 1H NOESY presat (vendor supplied 

noesypr1d) to check sample quality. Spectra were evaluated for quality control (QC) by 

ensuring consistent water suppression, baseline correction, and peak line width of reference 

TSP signal according to best practice set out by the Metabolomics Standards Initiative (MSI) 

(Considine & Salek, 2019; Sumner et al., 2007). Initially, out of 180 samples, 168 passed QC 

criteria. The failed samples were re-run and all, but one subsequently passed QC criteria. 

Afterwards, the spectra were divided into ‘buckets’ or ‘bins’ using TameNMR software 

(github: https://github.com/PGB-LIV/tameNMR) and a ‘pattern’ file was created associating 

metabolites with spectral peaks. Both identified and unknown metabolites were part of the 

pattern file. Later, ‘binning’ of metabolites was reviewed using TameNMR software (accessed 

via galaxy.liv.ac.uk within University of Liverpool VPN). Peaks were binned using TameNMR 

through integration of each spectral region defined in the pattern file to yield a table of peak 

integrals that corresponded to each metabolite abundance. 

 

7.2.5 Metabolite annotation and identification    

Metabolite annotation and identification is necessary for the conversion of raw NMR spectra 

peaks into a biological frame of reference (e.g., relative metabolite abundances). Therefore, 

NMR spectra were subjected to metabolite annotation using Chenomx NMR suite 8.2 

(Chenomx, CA). The software enabled the matching of 1D-1H NMR spectra of metabolite 
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standards to an experimental spectrum using various matching algorithms. Where appropriate 

identities were confirmed using an in-house library of standards.  

 

7.2.6 Spectral Normalisation 

Initially two different methods were compared to determine optimal normalisation of the 

dataset. First, metabolites/bins were removed from the TameNMR generated spreadsheet and 

used in RStudio for one of two normalisation methods: 1) Total area (TotArea) and 2) 

Probabilistic quotient normalisation (PQN). After normalisation, both TotArea and PQN 

methods (Figure 7.3B and 7.3C, respectively) produced similar results. However, PQN was 

selected to be the most robust method and therefore was used in all subsequent statistical 

analysis (Dieterle et al., 2006). PQN is a widely used method in the NMR field that normalises 

each spectrum by a reference spectrum, which in this case, was the median spectrum. 
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Figure 7. 3 Raw and normalised data using TotArea and PQN methods. Representative of 168 

NMR spectra. A) Raw data – no normalisation. B) TotArea normalisation. C) PQN. Visual 

inspection of the NMR spectra revealed a tighter clustering of all samples after both 

normalisation procedures compared to no normalisation.  

 

 

7.2.7 Data scaling and centring  

Scaling was performed on each variable (e.g. metabolite) across the entire dataset to enable 

metabolite comparisons and to minimise biological variation confounding the results (Craig et 

al., 2006). Two scaling methods were performed on normalised data: 1) Auto - mean centring 

and scaling by the standard deviation of the bin 2) ‘Pareto’- mean centring and scaling by the 

square root of the standard deviation of the bin (Eriksson et al., 1999). The chosen method was 

pareto scaling. Pareto scaling was found to be the most robust method for subsequent statistical 

analysis as it did not appreciably increase the amount of noise in the spectra to the same degree 

as with auto scaling (see Figure 7.4). 
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Figure 7. 4 Comparison of scaling methods. A) Normalisation by TotArea and Auto-scaling. 

B) Normalisation by TotArea and Pareto scaling. 

 

7.2.8 Statistical Analysis 

A flowchart of the statistical analysis performed in this study is shown in Figure 7.5. Following 

the aforementioned QC procedures, spectra were collated into a dataset for analysis. All further 

analytical steps were undertaken using a combination of published and custom-made scripts in 

R Studio (R Team, 2019), in addition to MetaboAnalyst (https://www.metaboanalyst.ca). The 

scaled dataset was subjected to multivariate analysis using a combination of principal 

component analysis (PCA) and partial least square – discriminant analysis (PLS-DA) (see 

section 7.2.9 and 7.2.10, respectively). Variable importance of the projection (VIP) was used 

to select important features from the PLS-DA models. Representative bins for the selected 

features were identified via correlation reliability score, (CRS, see further description in section 

7.2.12). Differences in select metabolites between groups were determined by univariate tests 

(t-test/ANOVA-Tukey’s HSD depending on number of groups to contrast). Two-way ANOVA 
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was performed to determine differences between control and aged groups in the presence of 0, 

5 and 10 µM of each flavonoid (i.e., age and dose and main factors). Finally, pathway analysis 

was performed via metabolite set enrichment analysis (MSEA; see section 7.2.14). 

 

 

 

 

 

Figure 7. 5 Overview of quality control and statistical analysis workflow employed. 

 

 

7.2.9 Principal component analysis 

PCA is an orthogonal data transformation that returns unobserved (latent) variables named 

principal components (PC). Each PC is the linear combination of the original variables in such 

a way that the first PC explains the most variance in the data. The second component explains 

the most variance unexplained by the first PC and is orthogonal and uncorrelated to the first. 

Subsequent PCs follow the same procedure. This transformation results in a dataset where the 

original variables are replaced by uncorrelated PCs. In this new dataset of PCs only the first 

few (typically) PCs are required to explain the majority of the variance in the dataset, thus 

reducing the high number of starting variables with minimal information loss. In this study, 



 

 318 

PCA was preferred as a data exploration tool to reveal and observed the hidden structures in 

the data. On a PCA scores plot, each point represents a sample and can gives information about 

the (dis)similarities between samples. This is elucidated from the distances between points on 

the scores plot. Furthermore, the observed structures in the PCs can be linked to the original 

variables (metabolites) by observing the associated loadings plot, although, selecting 

metabolites of interest in such datasets is often more nuanced.  

 

7.2.10 Partial least square discriminant analysis (PLS-DA)  

Partial least square - discriminant analysis (PLS-DA) is a variation of partial least square (PLS) 

regression. PLS is a supervised statistical model applied to multivariate datasets in order to 

make predictive models between two matrices (Barker & Rayens, 2003). A PLS model requires 

a matrix of input data (predictors) and a secondary matrix (response) where the output of the 

model is recorded. PLS projects both of these matrices (predictors and response) into two new 

matrices where the covariance between the two are minimised. PLS and PCA are somewhat 

similar because both create latent (unobserved) variables by using projections into new spaces. 

However, while PCA is an unsupervised method that projects maximum variance in latent 

variables called PCs, PLS is supervised (information on sample groupings retained) and 

projects predicted and observable variables using a linear regression model in latent variables 

called variates or components. PLS-DA variation uses a nominal vector as the response which 

allows the building of models for classification problems. PLS models are particularly suitable 

for data with multicollinearity in predictors such as NMR data, where a single metabolite can 

be represented by multiple peaks depending on its molecular structure. In this study, PLS-DA 

was used to build predictive models between experimental groups. PLS-DA model 

performance was assessed by using a 5-fold cross-validation over 50 repetitions. Classification 

errors were used to determine the optimal model complexity parameter (number of 
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components). From the refined model, representative metabolites could be selected to reveal 

those driving the differences between experimental groups.  

 

7.2.11 Variable importance of the projection (VIP) 

Bin (variable) selection from a statistical model is a crucial step for most metabolomics studies 

in order to extract biologically relevant information. PLS-DA and its derivative methods are 

designed to transform the data and make predictions. However, variable (bin) selection is not 

integrated into the model building process. Variable importance of the projection (VIP) scores 

is a method that is often preferred with datasets with multicollinearity. VIP scores in essence 

are weighted sum of squares of PLS weights (calculated during PLS-DA model building) 

which also take explained variance in PLS variates. This method is designed to be used for 

multivariate datasets where there is correlation between variables as well as a higher number 

of variables than samples. Once VIP scores are calculated, a cut-off threshold needs to be 

defined in order to include or exclude variables. VIP scores are calculated as such that average 

of all VIP scores squared is 1 (Akarachantachote et al., 2014). Hence, a cut-off of 1 was used 

to select variables with above average influence in the PLSDA model. Due to the nature of 

NMR-derived data, metabolites with multiple signals will present multiple entries in VIP 

scores. Therefore, additional steps were undertaken to select the most representative bin per 

metabolite to take forward on the analysis pipeline (see section 7.2.12).  

 

7.2.12 Correlation reliability score 

Depending upon their molecular structure, some metabolites may have multiple NMR signals. 

To address the problem of selecting an appropriate representative bin for a specific metabolite, 

a correlation reliability score (CRS) method was employed. Multiple signals arising from a 

single metabolite should theoretically yield a high correlation score. However, some areas of 
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the NMR spectra are populated by peaks belonging to multiple metabolites. Therefore, some 

bins may be more representative markers for a metabolite than others. Given this challenge, 

bins of the same metabolite were correlated and scored to determine their reliability to report 

on the assigned metabolite. The CRS score is determined using the following algorithm: 

 

1. Calculate Pearson correlation matrix for all the identified bins per metabolite. 

2. For each unique metabolite extract individual bin correlation values. 

3. Calculate the mean for each individual bin of the unique metabolite. 

4. Multiply each score by 100 to present the percentage. 

 

To separate candidate representative bins from non-candidate bins, previously calculated CRS 

scores were used to generate a passing score in the following manner: 

 

1. Exclude all bins with a 100% CRS (single peak metabolites) 

2. Calculate median and standard deviation with the remaining scores. 

3. CRSpass = median - standard deviation 

4. A CRS above the threshold represents a high correlation of the bin to the rest of the 

signals of the same metabolite.  

 

Finally, highest CRS scores of non-overlapping bins (where applicable) were selected so that 

representative metabolites were used for univariate and pathway analyses. 

 

7.2.13 Univariate analysis  

Univariate analyses were performed using Welch’s t-test or two-way analysis of variance 

(ANOVA) where appropriate in order to compare the means of selected metabolites. To 
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account for type-I errors arisen from multiple hypothesis testing, P-values were corrected via 

Benjamini & Hochberg (BH) (Benjamini & Hochberg, 1995) method unless otherwise stated. 

Post hoc analysis was performed using two-way ANOVA adjusted for multiple tests to 

establish the group(s) responsible for any differences identified by the ANOVA.  To visualise 

the significant changes in metabolites between experimental groups, boxplots were plotted.  

 

7.2.14 Metabolite set enrichment analysis (MSEA) and interpretation 

Upon the selection of metabolites through PLS-DA modelling, a qualitative metabolic set 

enrichment analysis (MSEA) was used based on a Fisher’s exact test (Xia & Wishart, 2010). 

MSEA provides a probability measure for a set of metabolites likelihood of representing a 

pathway in a system. Given both the qualitative nature of this analysis and metabolomics 

showing a 'metabolic snapshot', it is not possible to annotate a pathway as being 

increased/decreased or up- regulated/down-regulated. MSEA's sole purpose is to provide 

possible leads on pathways which are to be explored and discussed further in light of 

complimentary data and/or further research. In this study pathway analysis was performed 

using metabolite sets from the KEGG database. Identified metabolite names were used to 

calculate the probability of individual pathways via a one-sided Fisher’s exact test. Resulting 

P-values were adjusted for Type I errors with BH adjustment, and pathways with P-values less 

than 0.05 were presented as significant and discussed further. 

 

 

7.3 Results 

7.3.1 Age-specific differences in skeletal myoblasts  

To establish potential effects of ageing in skeletal myoblasts, control and replicatively aged 

myoblasts were compared. PCA was performed to observe the major variances between all 
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samples (Figure 7.6A). PCA scores plot of PC1 (48.36%) against PC2 (16.57%) revealed 

strong clustering of age in terms of separation. PC1 and PC2 explain a cumulative variance of 

64.93%. Meanwhile a total of 6 components were required to explain 95% of variance in the 

data. When the overall metabolic profile of myoblasts is considered, control myoblasts are 

clustered more tightly compared to aged myoblasts on PC1. This indicates that control 

myoblasts have less variation compared to aged myoblasts.  

 

 
Figure 7. 6 Multivariate analyses of control and aged skeletal myoblasts. Panel A) PCA scores 

of control vs. aged myoblasts, coloured by age (control cells in ED black circles, n=6; aged 

cells in ED grey circles, n=6). Brackets report the percentage variance explained by the PC. 

Six PCs were required to achieve 95% explained variance. Only PC1 and PC2 are shown for 

simplicity/clarity. Ellipses represent 95% confidence region. Panel B) PLS-DA density plot to 

verify metabolite selection in myoblasts discriminated by age (control = 6 and aged = 6). Model 

complexity of one variate (32.87% explained variance) was determined to be optimal. 
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To further identify differences in the metabolic profiles of control and aged skeletal myoblasts, 

the differences between age were enhanced using a cross-validated PLS-DA model (Figure 

7.6B). Optimal model complexity was found to be a single-variate model. Similar to the PCA 

plot (Figure 7.6A), a tight clustering of groups can be observed. Using VIP scoring as a 

criterion, metabolites influential in such discrimination were extracted.  

 

 

 

 

 

Figure 7. 7 VIP scores of PLS-DA model (ROC = 1) built on age-dependent differences in 

skeletal myoblasts. A lower threshold of 1 was used on latent variable one to select metabolites 

from the model. The top 20 representative metabolites/bins are presented for clarity. 

 

Upon observation of the VIP scores (see Figure 7.7), metabolites most influential in explaining 

age-specific differences in myoblasts were selected for further analyses (see Table 9.2, Chapter 

9). Metabolite levels were compared via BH adjusted t-test to gain metabolite level information 

on age-specific differences (see Figure 7.8). The metabolite level comparison of control and 

aged myoblasts revealed Guanidoacetic acid, cis-Aconitic acid/L-Acetylcarnitine, Choline, 

Acetone, Acetic acid, Trimethylamine N-oxide, Isopropyl alcohol, L-Tyrosine, 

Phosphorylcholine, L-Alanine, Taurine and L-Aspartic acid were lower in aged versus control 
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myoblasts. The presence of isopropyl alcohol may be an artefact of cell extraction procedures. 

In Chapter 5 of this thesis, replicative ageing did not compromise mitochondrial function in 

C2C12 skeletal myoblasts. However, it is not known whether replicative ageing captures ageing 

human muscle behaviour as it relates to energy metabolism in the myotube model. Conversely, 

Carnosine, 5-Methoxyindoleacetate, Acetylcholine, Dihydrothymine, 3-Methylhistidine, 

Glycerophosphocholine, Uridine diphosphate glucuronic acid, L-Threonine, N-

Acetylornithine, Pantothenic acid, L-Tryptophan, Histamine, L-Phenylalanine, Malic acid, L-

Valine, Glycylproline, L-Isoleucine, L-Leucine and L-Glutamine were significantly higher in 

aged over control myoblasts. 
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Figure 7. 8 Selected metabolite boxplots of control (black fill, n=6) and aged (grey fill, n=6) 

skeletal myoblasts. ** and *** represent P-value less than 0.01 and 0.001 respectively. * in the 

boxplot title represent denotes overlapping bin. 

 

Selected metabolites for control and aged skeletal myoblasts were subjected to metabolite set 

enrichment analysis (MSEA) to extract further metabolic pathway level information. Table 9.2 

(Chapter 9) summarises all metabolites selected for both control and aged cells. MSEA was 

performed on selected metabolites using a database curated from the KEGG pathways (Mus 

musculus (mouse) [KEGG organism code: mmu]), using Fisher’s exact test with EASE 

correction and BH P-value adjustment for multiple testing. Ten significantly over-represented 

pathways were identified for control and aged skeletal myoblasts (see Table 7.1). Out of the 

ten pathways, metabolites present in three particular pathways including aminoacyl-tRNA 

biosynthesis, valine, leucine and isoleucine biosynthesis, phenylalanine, and arginine 

metabolism were predominately higher in aged versus control skeletal myoblasts. Overall, the 

metabolic signature of skeletal myoblasts is distinct between control and replicatively aged 

cells.  
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Table 7. 1 Pathway analysis results for control and aged skeletal myoblasts. Reporting raw & 

BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in green and red are higher and lower versus control cells, respectively. Metabolites in 
black are not significantly different between control and aged cells.           
 

 

 

Pathway Raw P-
value BH P-value Hits Impact Matches 

Aminoacyl-
tRNA 
biosynthesis 

<0.0001 <0.0001 12 0.17 

L-Phenylalanine; L-
Tryptophan; L-Aspartic 
acid; L-Serine, L-Valine; 
L-Alanine, L-Leucine; L-
Threonine, L-Tyrosine; L-
Glutamate; L-Glutamine; 
L-Isoleucine 

Valine, leucine 
and isoleucine 
biosynthesis 

<0.0001 0.0009 4 0.00 

L-Threonine; L-Leucine; 
L-Isoleucine; L-Valine 
 

Alanine, 
aspartate and 
glutamate 
metabolism 

<0.0001 0.0012 6 0.62 
N-Acetyl-L-aspartate; L- 
Aspartic acid; L-Alanine; 
L-Glutamate; Pyruvate 

Glyoxylate and 
dicarboxylate 
metabolism 

0.0001 0.0020 6 0.07 
cis-Aconitate; L-Serine; L-
Glutamate; Acetate; 
Pyruvate; L-Glutamine 

Glycine, serine 
and threonine 
metabolism 

0.0001 0.0023 6 0.30 

L-Serine; Choline; Betaine; 
Guanidinoacetate; L-
Threonine; Pyruvate 
 

Arginine 
biosynthesis 

0.0003 0.0040 4 0.12 

L-Glutamate; N-
Acetylornithine; L-
Aspartic acid; L-Glutamine 

Histidine 
metabolism 

0.0005 0.0061 4 0.28 
L-Glutamate; Carnosine; 
Histamine; L-Aspartic acid 

Ascorbate and 
aldarate 
metabolism 

0.0016 0.0165 3 0.25 

myo-Inositol; UDP-
glucose; D-
Glucuronolactone; UDP-
glucuronate 

Phenylalanine 
metabolism 

0.0028 0.0260 3 0.36 

L-Phenylalanine; 
Phenylacetic acid; L-
Tyrosine 

Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

0.0036 0.0303 2 1.00 
L-Phenylalanine; L-
Tyrosine  
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7.3.2 Age-specific differences in skeletal myotubes 

After describing how replicative ageing impacts the metabolic signature of skeletal myoblasts, 

the effects of ageing on the metabolome of myotubes were investigated. To establish potential 

effects of ageing in myotubes, control and replicatively aged myotubes were compared. PCA 

was performed to observe the major variances in the data. PCA scores plot of PC1 (48.27%) 

against PC2 (28.82%) showed moderate clustering of age in terms of separation (Figure 7.9A). 

PC1 and PC2 explains a cumulative variance of 77.09%. Meanwhile a total of 6 components 

were required to explain 95% of variance in the data. When the overall metabolic profile of 

aged cells is considered, clustering suggests control and aged myotubes display similar 

variance albeit with one clearly distinct sample in the aged group. 

 

Figure 7. 9 Multivariate analyses of control and aged myotubes. Panel A) PCA scores of 

control vs. aged myotubes, coloured by age (control cells, black triangles in LD n=6 and aged 

cells, grey triangles in LD n=5). Brackets report the variance explained by the PC. Six PCs 

were required to achieve 95% explained variance. Only PC1 and PC2 are show in the Figure 
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for simplicity/clarity. Ellipses represent 95% confidence region.  Panel B) PLS-DA density 

plot to verify metabolite selection in myotubes discriminated by age (control, n=6 and aged, 

n=5). Model complexity of one variate (34.30% explained variance) was determined to be 

optimal. 

 
 

To further identify differences in the metabolic profiles of control and aged skeletal myotubes, 

the differences between age were enhanced using a cross-validated PLS-DA model (Figure 

7.9B). Optimal model complexity was found to be a single-variate model. Similar to the PCA 

plot, a tight clustering of groups can be observed. Using VIP scoring as a criterion, metabolites 

influential in such discrimination were extracted (see Figure 7.10).  

 

 
 
 

Figure 7. 10 VIP scores of PLS-DA model (ROC = 1) built on age-dependent differences in 

skeletal myotubes. A lower threshold of 1 was used on latent variable one to select metabolites 

from the model. The top 20 representative metabolites/bins are presented for clarity. 
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Upon observation of the VIP scores (Figure 7.10), metabolites most influential in explaining 

age-specific differences in myotubes were selected for further analyses. Metabolite levels were 

compared via BH adjusted t-test to gain metabolite level information on age-specific 

differences (see Figure 7.11). The metabolite level comparison of control and aged myotubes 

revealed that, Pantothenic acid, L-Carnitine, Glycerophosphocholine, L-Leucine, N-

Acetylornithine, L-Alanine, 1-Methylhistidine, L-Isoleucine, Taurine, L-Tryptophan, cis-

Aconitic acid/L-Acetylcarnitine and N,N-Dimethylformamide were significantly lower in aged 

versus control skeletal myotubes. On the other hand, myo-Inositol, Dimethylglycine, Oxidized 

glutathione, Trimethylamine, Tyramine, Choline, Glycolic acid, L-Valine, L-Tyrosine, N-

Alpha-acetyllysine and Pyruvic acid were significantly higher in aged versus control skeletal 

myotubes. 
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Figure 7. 11 Selected metabolite boxplots of control (black outline, n=6) and aged (grey 

outline, n=5) skeletal myotubes. *, **, *** and **** represent P-value less than 0.05, 0.01, 

0.001 and 0.0001, respectively. * in the boxplot title represent denotes overlapping bin. 

 
 
 

Selected metabolites for control and aged skeletal myotubes were subjected to metabolite set 

enrichment analysis (MSEA) to extract further metabolic pathway level information. Table 9.3 

(Chapter 9) summarises all metabolites selected for MSEA. MSEA was performed on 

metabolites using a database curated from the KEGG pathways (Mus musculus (mouse) 

[KEGG organism code: mmu]), using Fisher’s exact test with EASE correction and BH P-

****

**

**

**

**

*

**

****

**

**

**

***

*

*

**

**

**
1−Methylhistidine Acetylcholine L−Isoleucine Creatinine Glycolic acid

L−Leucine N−Acetylornithine L−Alanine L−Valic Acid Choline

Oxidized glutathione N−Nitrosodimethylamine Trimethylamine Glycerophosphocholine Tyramine

myo−Inositol Dimethylglycine Pantothenic acid L−Carnitine Dihydrothymine

0

100

0

100

200

100

200

300

−250

0

250

500

750

−100

0

100

200

−50

0

50

100

150

−50

0

50

0

100

200

300

0

200

400

−50
0

50
100
150
200
250

−100

0

100

−100

0

100

200

0

100

200

−200

0

200

0

100

−100

−50

0

50

0

200

400

600

−100

0

100

200

−50

0

50

100

150

−50

0

50

100

150

Re
la

tiv
e 

A
bu

nd
an

ce

Control myotubes Aged myotubes



 

 331 

value adjustment for multiple testing. Three significantly over-represented pathways were 

identified for control and aged skeletal myotubes (see Table 7.2). Out of the three pathways, 

metabolites present in two pathways including aminoacyl-tRNA biosynthesis and valine, 

leucine and isoleucine biosynthesis were predominately lower in aged versus control skeletal 

myotubes.  

 
 
 
Table 7. 2 Pathway analysis results for control and aged skeletal myotubes. Reporting raw & 

BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in red are lower in aged versus control, whereas those in black are similar between control and 

aged myotubes.       

 

 

7.3.3 Control vs. aged myoblasts and myotubes section summary 

Following the analysis of age-specific metabolic signatures of skeletal muscle myoblasts and 

myotubes, it is clear that control and aged myoblasts/myotubes diverge at the metabolite level. 

Moreover, the age-specific differences in metabolites vary with the stage of differentiation. In 

skeletal myoblasts, 31 metabolites were significantly different between control and aged 

groups, whereas in skeletal myotubes, 26 metabolites were significantly different between 

control and aged groups (see Appendix Table 9.2 and 9.3, respectively). Twenty-one 

Pathway Raw P-
value 

BH P-
value Hits Impact Matches 

Aminoacyl-tRNA 
biosynthesis 

<0.0001 0.0006 8 0 

L-Phenylalanine; L-Glutamine; L-
Valine; L-Alanine; L-Leucine; L-
Isoleucine; L-Tryptophan; L-Tyrosine;  

Valine, leucine 
and isoleucine 
biosynthesis 

0.0006 0.0250 3 0 L-Valine; L-Leucine; L-Isoleucine 

Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

0.0031 0.0856 2 1 L-Phenylalanine; L-Tyrosine 
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metabolites were common between myoblasts and myotubes in control and aged comparisons 

(see Figure 7.12). Notably, the aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine 

biosynthesis and phenylalanine, tyrosine and tryptophan biosynthesis pathways were 

significantly over-represented in both skeletal myoblasts and myotubes. Therefore, these 

pathways may capture important metabolic features of cellular ageing. 

 

 
 
 
 

Figure 7. 12 Venn diagram reporting metabolites with VIP scores >1 between control and aged 

myoblasts and myotubes comparisons. 

 

 

 

 

 

7.3.4 Quercetin effects in control and aged skeletal myoblasts  

Replicative ageing evoked profound changes in the metabolome of skeletal muscle myoblasts 

and myotubes. Considering the potential of flavonoids to modulate cellular energy metabolism, 

the effects of flavonoids on the metabolic signature of myoblasts and myotubes were 

investigated. Control and replicatively aged myoblasts were compared following 0, 5 and 10 
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µM Q treatment. PCA was performed to observe the major variances between all samples 

(Figure 7.13A). PCA scores plot of PC1 (36.09%) against PC2 (17.77%) revealed strong 

clustering of dose in terms of separation. PC1 and PC2 explains a cumulative variance of 

53.86%. Meanwhile a total of 10 components were required to explain 95% of variance in the 

data. When the overall metabolic profile of myoblasts is considered, 10 µM Q treated cells are 

clustered more tightly compared to 5 µM Q on PC1 and PC2. This suggests cells treated with 

5 µM Q have larger variation compared to those treated with 10 µM. Employing a supervised 

PLS-DA method, metabolites responsible for the metabolic profile differences can be 

extracted. 

Figure 7. 13 Multivariate analysis of control and aged myoblasts +/- Q treatment. A) PCA 

scores of control and aged myoblasts coloured by dose. A total of ten principal components 

were required to achieve 95% explained variance. Brackets report the variance explained by 
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the PC. Only PC1 and PC2 are shown in the Figure for simplicity/clarity. Ellipses represent 

95% confidence region. B) PLS-DA scores of control- and C) aged-myoblasts coloured by 

dose. A model complexity of two variates was employed for control and aged myoblasts. 

Closed and open circles represent control and aged cells, respectively. 

 
 

In order to identify distinctions in the metabolic profiles, the differences between treatments 

were enhanced in control and aged cells using a cross-validated PLS-DA model. Optimal 

model complexity was found to be a two-variate model for control and aged myoblasts. Figure 

7.13B and 7.13C shows the scores of these models with variate-1 plotted against variate-2 for 

simplicity. Similar to the PCA plot (Figure 7.13A), a tight clustering of groups can be observed. 

The PLS-DA model achieved a better separation between 5 µM Q and CTRL groups in aged 

cells. To examine the metabolite level information, VIP scores of the PLS-DA model were 

calculated (see Figure 7.14). 
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Figure 7. 14 VIP scores of PLS-DA model built on Q treatment-dependent differences in A) 

control- and B) aged- skeletal myoblasts. AUC scores for control myoblasts were 0.986, 0.972 

and 0.486, and 1.0, 0.5 and 1.0 for aged myoblasts for 0 µM vs. others, 5 µM vs. others and 10 

µM vs. others, respectively. A lower threshold of 1 was used on latent variable one and two to 

select metabolites from the model. The top 20 metabolites/bins are presented for clarity. 

 

Upon metabolite selection of treatment-specific differences, metabolite levels of control and 

aged myoblasts in response to 0, 5 and 10 µM Q were compared via two-way ANOVA, 

followed by a Tukey’s HSD pairwise test and shown via boxplots (Figure 7.15). Statistical 

analyses of the metabolite-level comparisons can be found in Table 9.16 (Chapter 9). From the 

metabolite-level comparison in control cells, Glycine, Dimethylglycine, Trimethylamine, L-

Lactic acid and Beta-Alanine were significantly higher following 5 and 10 µM Q treatment 
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versus CTRL conditions. Whereas L-Aspartic acid, Citric acid and myo-Inositol were 

significantly lower following 5 and 10 µM Q treatment versus CTRL. In aged cells, L-Lactic 

acid and Beta-Alanine were significantly higher after 5 and 10 µM Q compared with CTRL. 

On the other hand, Ethanol, Citric acid and myo-Inositol were significantly lower after 5 and 

10 µM Q versus CTRL conditions. 

 

 

Figure 7. 15 Selected metabolite boxplots of control and aged skeletal myoblasts following 0, 

5 and 10 µM Quercetin treatment. *, **, *** and **** represent P-value less than 0.05, 0.01, 

0.001 and 0.0001, respectively. * in the boxplot title represent denotes overlapping bin. 
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Selected metabolites for Q-treated control and aged skeletal myoblasts were subjected to 

MSEA to extract further metabolic pathway level information. Tables 7.3-7.4 summarises the 

metabolites selected for Q-treated control and aged myoblasts, respectively. MSEA was 

performed on selected metabolites using a database curated from the KEGG pathways (Mus 

musculus (mouse) [KEGG organism code: mmu]). MSEA was performed using Fisher’s exact 

test with EASE correction and BH P-value adjustment for multiple testing. Two and four 

significantly over-represented pathways were identified for control and aged skeletal 

myoblasts, respectively (Table 7.3 and 7.4, respectively). Out of the significant pathways, 

glycine, serine and threonine metabolism and glyoxylate and dicarboxylate metabolism were 

common amongst control and aged myoblasts.  

 

Table 7. 3 Pathway analysis results for control skeletal muscle myoblasts treated with Q. 

Reporting raw & BH adjusted P values, number of hits, pathway impact and matches.  

Metabolites in green and red are higher and lower (with both 5 and 10 µM Q) versus CTRL conditions, 
respectively. Metabolites in black are not significantly different between conditions (consistently with 
5 and 10 µM Q vs. CTRL).           

       

 

 

 

 

Pathway Raw P-value BH P-value Hits Impact Matches 

Glycine, serine and 

threonine 

metabolism 

<0.0001 0.0007 6 0.62 
L-Serine; Choline; Betaine; 
N,N-Dimethylglycine; 
Glycine; L-Threonine  

Glyoxylate and 

dicarboxylate 

metabolism 

0.0013 0.0557 4 0.20 cis-Aconitate; Citrate; L-
Serine; Glycine 
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Table 7. 4 Pathway analysis results for aged skeletal muscle myoblasts treated with Q. 

Reporting raw & BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in red are lower (with both 5 and 10 µM Q) versus CTRL conditions, respectively. 
Metabolites in black are not significantly different between conditions (consistently with 5 and 10 µM 
Q vs. CTRL).           

      
 

7.3.5 Quercetin effects in control and aged skeletal myotubes 

To establish potential effects of quercetin treatment in myotubes, control and replicatively aged 

myotubes were compared. PCA was performed to observe the major variances between all 

samples (Figure 7.16A). PCA scores plot of PC1 (37.04%) against PC2 (14.75%) revealed 

strong clustering of dose in terms of separation. PC1 and PC2 explains a cumulative variance 

of 51.79%. Meanwhile a total of 12 components were required to explain 95% of variance in 

the data. When the overall metabolic profile of myotubes is considered, 5 µM Q treatment 

Pathway Raw P-
value 

BH P-
value Hits Impact Matches 

Aminoacyl-

tRNA 

biosynthesis 

<0.0001 0.0032 6 0.00 Glycine; L-Valine; L-Alanine; L-
Leucine; L-Threonine; L-Glutamate 

Valine, leucine 

and isoleucine 

biosynthesis 

0.0001 0.0061 3 0.00 L-Threonine; L-Leucine; L-Valine 

Alanine, 

aspartate and 

glutamate 

metabolism 

0.0006 0.0156 4 0.20 L-Alanine; L-Glutamate; Citrate; 
Pyruvate 

Glyoxylate and 

dicarboxylate 

metabolism 

0.0009 0.0197 4 0.14 Glycine; Citrate; L-Glutamate; 
Pyruvate; 

Glycine, serine 

and threonine 

metabolism 

0.0012 0.0200 4 0.34 Glycine; Betaine; L-Threonine; 
Pyruvate 
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resulted in tighter clustering compared to CTRL on PC1 and PC2. This suggests untreated 

CTRL myotubes have greater variation compared to the 5 µM Q condition. Employing a 

supervised PLS-DA method, metabolites responsible for the metabolic profile differences can 

be extracted. 

 

Figure 7. 16 Multivariate analysis of control and aged cells myotubes +/- Quercetin treatment. 

A) PCA scores of control and aged myotubes coloured by dose. A total of twelve principal 

components were required to achieve 95% explained variance. Brackets report the variance 

explained by the PC. Only PC1 and PC2 are shown in the Figure for simplicity/clarity. Ellipses 

represent 95% confidence region. B) PLS-DA scores of control- and C) aged-myotubes 

coloured by dose. A model complexity of two variates was employed for control and aged 

myotubes. Closed and open triangles represent control and aged cells, respectively. 
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In order to identify differences in the metabolic profiles, the differences between treatments in 

control and aged cells were enhanced using a cross-validated PLS-DA model. Optimal model 

complexity was found to have two- and four-components for control and aged myotubes, 

respectively. Figure 7.16B and 7.16C shows the scores of this model with component-1 plotted 

against component-2 for simplicity. Compared to the PCA plot (Figure 7.16A), a tighter 

clustering of groups can be observed. A clearer separation of Q treatment from CTRL can be 

seen along a diagonal of component-1 and component-2. Therefore, the supervised PLS-DA 

model was able to discriminate between treatments in control and aged myotubes, but this was 

not comparable to PCA. Using VIP scoring as a criterion, metabolites influential in such 

discrimination were extracted (see Figure 7.17). 

 

Figure 7. 17 VIP scores of PLS-DA model built on Q treatment-dependent differences in A) 

control- and B) aged- skeletal myotubes. AUC scores for control myotubes were 1.0, 0.583 and 
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0.912, and 0.917, 0.576 and 0.955 for aged myotubes for 0 µM vs. others, 5 µM vs. others and 

10 µM vs. others, respectively. A lower threshold of 1 was used on latent variable one and two 

to select metabolites from the model. The top 20 metabolites/bins are presented for clarity. 

 

Upon metabolite selection of treatment-specific differences, metabolite levels of control and 

aged myotubes in response to 0, 5 and 10 µM Q were compared via two-way ANOVA, 

followed by a Tukey’s HSD pairwise test and shown via boxplots (Figure 7.18). Statistical 

analyses of the metabolite-level comparisons can be found in Table 9.17 (Chapter 9). From the 

metabolite-level comparison in control myotubes, Glycine, Isopropyl alcohol and L-Tyrosine 

were significantly higher following 5 and 10 µM Q compared to untreated CTRL. Whereas 

Phosphorylcholine was significantly lower following 5 and 10 µM Q versus CTRL. In CTRL 

aged myotubes, L-Tyrosine was significantly higher, whilst Phosphorylcholine and myo-

Inositol were significantly lower after 5 and 10 µM Q treatment. 
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Figure 7. 18 Selected metabolite boxplots of control and aged myotubes following 0, 5 and 10 

µM Quercetin treatment. *, ** and *** represent P-value less than 0.05, 0.01 and 0.001, 

respectively. * in the boxplot title represent denotes overlapping bin. 
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7.6, respectively). Out of the significant pathways, alanine, aspartate and glutamate 

metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism and 

glycine, serine and threonine metabolism were common amongst control and aged myotubes 

after Q treatment. 

 

 
 
Table 7. 5 Pathway analysis results for control skeletal muscle myotubes treated with Q. 

Reporting raw & BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in green are higher (with both 5 and 10 µM Q) versus CTRL conditions. Metabolites in 
black are not significantly different between conditions (consistently with 5 and 10 µM Q vs. CTRL).           
 

Pathway Raw P-value BH P-value Hits Impact Matches 

Aminoacyl-tRNA 

biosynthesis 
<0.0001 <0.0001 10 0.00 

L-Glutamine; Glycine; L-
Aspartate; L-Valine; L-
Alanine; L-Isoleucine; L-
Leucine; L-Threonine; L-
Tryptophan; L-Tyrosine 

Valine, leucine and 

isoleucine 

biosynthesis 

<0.0001 0.0001 4 0.00 
L-Threonine; L-
Leucine; L-Isoleucine; L-
Valine  

Alanine, aspartate 

and glutamate 

metabolism 

0.0001 0.0063 5 0.34 L-Aspartate; L-Alanine; L- 
L-Glutamine; Citrate; 
Pyruvate 

Glyoxylate and 

dicarboxylate 

metabolism 

0.0002 0.0122 5 0.16 cis-Aconitate; Citrate; 
Glycine; Pyruvate; L-
Glutamine 

Arginine 

biosynthesis 
0.0015 0.1174 3 0.00 N-Acetylornithine; L-

Aspartate; L-Glutamine 

Glycine, serine and 

threonine 

metabolism 

0.0023 0.1801 4 0.34 Betaine; Glycine; L-
Threonine; Pyruvate 

Citrate cycle (TCA 

cycle) 
0.0043 0.3346 3 0.19 cis-Aconitate; Citrate; 

Pyruvate 
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Table 7. 6 Pathway analysis results for aged skeletal muscle myotubes treated with Q. 

Reporting raw & BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in black are not significantly different between conditions (consistently with 5 and 10 µM 
Q vs. CTRL).           

       
 

 

7.3.6 Summary of Q effects upon the metabolome of control and aged myoblasts and 

myotubes 

Acute Q treatment evoked shared and distinct changes in the metabolome of control and aged 

myoblasts. Pathways commonly impacted by Q between control and aged myoblasts included 

glycine, serine and threonine metabolism and glyoxylate and dicarboxylate metabolism. In 

Pathway Raw P-value BH P-value Hits Impact Matches 

Alanine, aspartate 

and glutamate 

metabolism 

<0.0001 0.0027 5 0.40 N-Acetyl-L-aspartate; L-
Alanine; L-Glutamate; L-
Glutamine; Citrate 

Aminoacyl-tRNA 

biosynthesis 
0.0005 0.0196 5 0.17 

L-Glutamine; L-Serine; L-
Alanine; L-Threonine; L-
Glutamate 

Glyoxylate and 

dicarboxylate 

metabolism 

0.0009 0.0249 4 0.07 Citrate; L-Serine; L-
Glutamate; L-Glutamine 

Glycine, serine and 

threonine 

metabolism 

0.0012 0.0249 4 0.23 L-Serine; Choline; L-
Threonine; Creatine 

Glycerophospholipid 

metabolism 
0.0015 0.0249 4 0.08 

Choline phosphate; 
Choline; Acetylcholine; sn-
Glycero-3-phosphocholine 

Nitrogen metabolism 0.0030 0.0354 2 0.00 L-Glutamate; L-Glutamine 
D-Glutamine and D-

glutamate 

metabolism 

0.0030 0.0354 2 0.50 L-Glutamate; L-Glutamine 
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control and aged myotubes, pathways commonly impacted by Q treatment included alanine, 

aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and 

dicarboxylate metabolism and glycine, serine and threonine metabolism. Four metabolites 

commonly represented in control and aged myoblast and myotubes in the presence of Q were 

Citric acid, L-Threonine, myo-Inositol and Phosphorylcholine (see Figure 7.19). 

 

 

Figure 7. 19 Venn diagram reporting metabolites with VIP scores >1 between control and aged 

myoblasts and myotubes following Q treatment. Four metabolites were commonly represented 

between ages and differentiation stage (myoblast vs. myotube). 

 

 

 

7.3.7 EGCG effects in control and aged skeletal myoblasts  

To establish potential effects of EGCG treatment in myoblasts, control and replicatively aged 

cells were compared. PCA (Figure 7.20A) was performed to observe the major variances 

between all samples. PCA scores plot of PC1 (40.94%) against PC2 (16.04%) revealed 

moderate clustering of dose in terms of separation. PC1 and PC2 explains a cumulative 

Citric acid 
L-Threonine 
myo-Inositol 
Phosphorylcholine 
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variance of 56.98%. Meanwhile a total of 12 components were required to explain 95% of 

variance in the data. When the overall metabolic profile of EGCG treated myoblasts is 

considered, 10 µM EGCG-treated control cells were clustered tighter on PC1, but less on PC2, 

compared to CTRL and 5 µM conditions. This suggests dose-dependent effects of EGCG on 

metabolic profiles of control myoblasts. Employing a supervised PLS-DA method, metabolites 

responsible for the metabolic profile differences can be extracted. 

 

Figure 7. 20 Multivariate analysis of control and aged myoblasts +/- EGCG treatment. A) PCA 

scores of control and aged myoblasts coloured by dose. A total of twelve principal components 

were required to achieve 95% explained variance. Brackets report the variance explained by 

the PC. Only PC1 and PC2 are shown in the Figure for simplicity/clarity. Ellipses represent 

95% confidence region. B) PLS-DA scores of control- and, C) aged-myoblasts, coloured by 

dose. A model complexity of three- and two-components was employed for of control and aged 

myoblasts, respectively. Closed and open circles represent control and aged cells, respectively. 
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In order to identify differences in the metabolic profiles, the differences between conditions 

were enhanced using a cross-validated PLS-DA model. Optimal model complexity was found 

to be three and two-variates for control and aged myoblasts, respectively. Figure 7.20B and 

7.20C shows the scores of this model with component-1 plotted against component-2 for 

simplicity. As expected, the supervised model exhibits a tighter clustering of groups compared 

to the PCA plot (Figure 7.20A). The PLS-DA model achieved a better separation between 

CTRL and EGCG treatment groups in control and aged myoblasts, but this was not comparable 

to PCA. Using VIP scoring as a criterion, metabolites influential in such discrimination were 

extracted (see Figure 7.21).  

 

 Variate−1 Variate−2
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Figure 7. 21 VIP scores of PLS-DA model built on EGCG treatment-dependent differences in 

A) control- and B) aged- skeletal myoblasts. AUC scores for control myoblasts were 0.944, 

0.889 and 0.556, and 0.972, 0.625 and 0.847 for aged myoblasts for 0 µM vs. others, 5 µM vs. 

others and 10 µM vs. others, respectively. A lower threshold of 1 was used on latent variable 

one and two to select metabolites from the model. The top 20 representative metabolites/bins 

are presented for clarity. 

 

Upon metabolite selection of treatment-specific differences, metabolite levels of control and 

aged myoblasts in response to 0, 5 and 10 µM EGCG were compared via two-way ANOVA, 

followed by a Tukey’s HSD pairwise test and shown via boxplots (Figure 7.22). Statistical 

analyses of the metabolite-level comparisons can be found in Table 9.17 (Chapter 9). From the 

metabolite-level comparison in control myoblasts, Phosphorylcholine, L-Lactic acid, D-

Maltose and myo-Inositol were significantly higher with 5 and 10 µM EGCG treatment 

compared with CTRL. Whereas 1-Methylhistidine and L-Threonine abundance were 

significantly lower with 5 and 10 µM EGCG compared to untreated CTRL. When comparing 

metabolite levels in aged myoblasts, L-Lactic acid and Citric acid were significantly higher 

and lower compared to CTRL with 5 and 10 µM EGCG, respectively. 
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Figure 7. 22 Selected metabolite boxplots of control and aged skeletal myoblasts following 0, 

5 and 10 µM EGCG treatment. *, ** and *** represent P-values less than 0.05, 0.01 and 0.001, 

respectively. * in the boxplot title represent denotes overlapping bin. Closed and open circles 

represent control and aged cells, respectively. 

 

Selected metabolites for EGCG-treated control and aged skeletal myoblasts were subjected to 

MSEA to extract further metabolic pathway level information. Table 7.7-7.8 summarises the 

metabolites selected for EGCG-treated cells in early differentiation. MSEA was performed on 

selected metabolites using a database curated from the KEGG pathways (Mus musculus 

(mouse) [KEGG organism code: mmu]). MSEA was performed using Fisher’s exact test with 

EASE correction and BH P-value adjustment for multiple testing. Three and one significantly 

over-represented pathway(s) were identified for control and aged skeletal myoblasts, 
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respectively (Table 7.7 and 7.8). Out of the pathways, none were commonly represented 

amongst EGCG treated control and aged myoblasts.  

 

Table 7. 7 Pathway analysis results for control skeletal myoblasts treated with EGCG. 

Reporting raw & BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in black are not significantly different between conditions (consistently with 5 and 10 µM 
EGCG vs. CTRL).           
 

 

 

Table 7. 8 Pathway analysis results for aged skeletal myoblasts treated with EGCG. Reporting 

raw & BH adjusted P values, number of hits, pathway impact and matches. 

Pathway Raw P-value BH P-value Hits Impact Matches 

Aminoacyl-tRNA 

biosynthesis 
<0.0001 0.0008 8 0.17 

L-Phenylalanine; L-
Serine; L-Valine; L-
Isoleucine; L-Leucine; L-
Threonine; L-Tryptophan; 
L-Tyrosine 

Valine, leucine and 

isoleucine 

biosynthesis 

<0.0001 0.0008 4 0.00 L-Threonine; L-Leucine; 
L-Isoleucine; L-Valine 

Glycine, serine and 

threonine 

metabolism 

0.0011 0.0315 5 0.34 
L-Serine; Betaine; N,N-
Dimethylglycine; L-
Threonine; Creatine 

Phenylalanine 

metabolism 
0.0026 0.0542 3 0.36 L-Phenylalanine; 

Phenylacetic acid; L-
Tyrosine 

Phenylalanine, 

tyrosine and 

tryptophan 

biosynthesis 

0.0034 0.0574 2 1.00 L-Phenylalanine; L-
Tyrosine 

Pathway Raw P-value BH P-value Hits Impact Matches 

Alanine, aspartate 

and glutamate 

metabolism 
0.0003 0.0213 5 0.29 

N-Acetyl-L-aspartate; L-
Alanine; L-Glutamate; 
Citrate; Fumarate 
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Metabolites in red are lower (with both 5 and 10 µM EGCG) versus CTRL conditions. Metabolites in 
black are not significantly different between conditions (consistently with 5 and 10 µM EGCG vs. 
CTRL).           

        
 

 
7.3.8 EGCG effects in control and aged skeletal myotubes 

To establish potential effects of EGCG treatment myotubes, control and replicatively aged 

myotubes were compared. PCA (Figure 7.23A) was performed to observe the major variances 

between all samples. PCA scores plot of PC1 (27.19%) against PC2 (19.04%) revealed 

moderate clustering of dose in terms of separation. PC1 and PC2 explains a cumulative 

variance of 46.23%. Meanwhile a total of 11 components were required to explain 95% of 

variance in the data. When the overall metabolic profile of myotubes treated with EGCG is 

considered, 5 µM EGCG treatment resulted in tighter clustering on PC2 compared to 10 µM. 

This suggests 5 µM EGCG resulted in less variation compared to 10 µM EGCG in myotubes. 

Employing a supervised PLS-DA method, metabolites responsible for the metabolic profile 

differences can be extracted. 
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Figure 7. 23 Multivariate analysis of control and aged myotubes +/- EGCG treatment. A) PCA 

scores of control and aged myotubes coloured by dose. A total of eleven principal components 

were required to achieve 95% explained variance. Brackets report the variance explained by 

the PC. Only PC1 and PC2 are shown in the Figure for simplicity/clarity. Ellipses represent 

95% confidence region. B) PLS-DA scores of control myotubes and C) aged myotubes, 

coloured by dose. A model complexity of three variates was employed. Closed and open 

triangles represent control and aged cells, respectively. 

 

 

In order to identify differences in the metabolic profiles, the differences between conditions 

were enhanced using a cross-validated PLS-DA model. Optimal model complexity was found 

to be three-variates for control and aged myotubes. Figure 7.23B and 7.23C shows the scores 

of this model with variate-1 plotted against variate-2 for simplicity. Compared to the PCA plot 
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(Figure 7.23A), a tighter clustering of groups can be observed. The PLS-DA model achieved a 

better separation between CTRL and EGCG treatment, especially in control myotubes, but this 

was not comparable to PCA. Notably, EGCG treatment was not fully decoupled from untreated 

CTRL in aged cells, indicating the higher degree of similarity between these conditions. Using 

VIP scoring as a criterion, metabolites influential in discrimination between groups were 

extracted (see Figure 7.24). 

 

Figure 7. 24 VIP scores of PLS-DA model built on EGCG treatment-dependent differences in 

A) control- and B) aged- skeletal myotubes. AUC scores for control myotubes were 0.931, 

0.583 and 0.843, and 0.750, 0.727 and 0.955 for aged myotubes for 0 µM vs. others, 5 µM vs. 

others and 10 µM vs. others, respectively. A lower threshold of 1 was used on latent variable 

one and to select metabolites from the model. The top representative 20 metabolites/bins are 

presented for clarity. 
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Upon metabolite selection of treatment-specific differences, metabolite levels of control and 

aged myotubes in response to 0, 5 and 10 µM EGCG were compared via two-way ANOVA, 

followed by a Tukey’s HSD pairwise test and shown via boxplots (Figure 7.25). Statistical 

analyses of the metabolite-level comparisons can be found in Table 9.19 (Chapter 9). From the 

metabolite-level comparison in control myotubes, Trimethylamine, 1-Methyhistidine, L-

Threonine and Tyramine were significantly lower following 5 and 10 µM EGCG when 

compared with CTRL. In aged myotubes, Isopropyl alcohol abundance was significantly 

lowered with 10 µM EGCG versus CTRL. 

 

Figure 7. 25 Selected metabolite boxplots of control and aged skeletal myotubes following 0, 

5 and 10 µM EGCG treatment. *, ** and *** represent P-values less than 0.05, 0.01 and 0.001, 

respectively. * in the boxplot title represent denotes overlapping bin. Closed and open triangles 

represent control and aged cells, respectively. 
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Selected metabolites for EGCG-treated control and aged skeletal myotubes were subjected to 

MSEA to extract further metabolic pathway level information. Table 7.9-7.10 summarises the 

metabolites selected for EGCG-treated cells in late differentiation. MSEA was performed on 

selected metabolites using a database curated from the KEGG pathways (Mus musculus 

(mouse) [KEGG organism code: mmu]). MSEA was performed using Fisher’s exact test with 

EASE correction and BH P-value adjustment for multiple testing. Four and one significantly 

over-represented pathway(s) were identified for control and aged skeletal myotubes, 

respectively (Table 7.9 and 7.10). Out of the significant pathways, aminoacyl-tRNA 

biosynthesis was commonly represented between EGCG treated control and aged myotubes.  

 

Table 7. 9 Pathway analysis results for control skeletal myotubes treated with EGCG. 

Reporting raw & BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in red are lower (with both 5 and 10 µM EGCG) versus CTRL conditions. Metabolites in 
black are not significantly different between conditions (consistently with 5 and 10 µM EGCG vs. 
CTRL).           
           

Pathway Raw P-value BH P-value Hits Impact Matches 

Aminoacyl-tRNA 

biosynthesis 
0.0001 0.0061 7 0.00 

L-Phenylalanine; L-Valine; 
L-Isoleucine; L-Leucine; 
L-Threonine; L-
Tryptophan; L-Tyrosine 

Valine, leucine and 

isoleucine 

biosynthesis 

0.0006 0.0242 3 0.00 L-Threonine; L-Leucine; 
L-Isoleucine 

Glycine, serine and 

threonine 

metabolism 

0.0009 0.0242 5 0.16 Betaine; Guanidinoacetate; 
N,N-Dimethylglycine; L-
Threonine; Creatine 

Phenylalanine 

metabolism 
0.0022 0.0461 3 0.36 L-Phenylalanine; 

Phenylacetic acid; L-
Tyrosine 

Phenylalanine, 

tyrosine and 

tryptophan 

biosynthesis 

0.0031 0.0514 2 1.00 L-Phenylalanine; L-
Tyrosine 
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Table 7. 10 Pathway analysis results for aged skeletal myotubes treated with EGCG. Reporting 

raw & BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in black are not significantly different between conditions (consistently with 5 and 10 µM 
EGCG vs. CTRL).           

           
 

7.3.9 Summary of EGCG effects upon the metabolome of control and aged myoblasts 

and myotubes 

Acute EGCG treatment evoked changes in the metabolite signatures of control and aged 

myoblasts and myotubes. No pathways were overrepresented with EGCG treatment in control 

and aged myoblasts. However, metabolites involved in energy metabolism were significantly 

changed with EGCG treatment in control and aged myoblasts. In control and aged myotubes, 

one pathway commonly represented after EGCG treatment was aminoacyl-tRNA biosynthesis. 

Three metabolites commonly represented in control and aged myoblast and myotubes in the 

presence of ECGG were Fumaric acid, L-Isoleucine and 5-Methoxyindoleacetate (see Figure 

7.26). 

 

 

Pathway Raw P-value BH P-value Hits Impact Matches 

Aminoacyl-tRNA 

biosynthesis 
<0.0001 0.0009 8 0.00 

L-Phenylalanine; L-
Glutamine; Glycine; L-
Alanine; L-Isoleucine; L-
Threonine; L-Tryptophan; 
L-Tyrosine 
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Figure 7. 26 Venn diagram reporting metabolites with VIP scores >1 between control and aged 

myoblast and myotubes following EGCG treatment. Three metabolites were commonly 

represented between ages and differentiation stage (myoblast vs. myotube). 

 
 
 
 
 
 
 
 

7.3.10 Epicatechin effects in control and aged skeletal myoblasts  

To establish potential effects of EPI treatment in myoblasts, control and replicatively aged 

myoblasts were compared. PCA (Figure 7.27A) was performed to observe the major variances 

between all samples. PCA scores plot of PC1 (34.52%) against PC2 (17.67%) revealed 

moderate clustering of dose in terms of separation. PC1 and PC2 explains a cumulative 

variance of 52.19%. Meanwhile a total of 13 components were required to explain 95% of 

variance in the data. When the overall metabolic profile of myoblasts is considered, cells 

treated with 5 and 10 µM EPI are clustered more widely on PC1 compared to respective CTRL 

conditions. This suggests EPI treated myoblasts have greater variation compared to CTRL. 
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Employing a supervised PLS-DA method, metabolites responsible for the metabolic profile 

differences can be extracted. 

 

Figure 7. 27 Multivariate analysis of control and aged myoblasts +/- EPI treatment. A) PCA 

scores of control and aged myoblasts coloured by dose. A total of thirteen principal components 

were required to achieve 95% explained variance. Brackets report the variance explained by 

the PC. Only PC1 and PC2 are shown in the Figure for simplicity/clarity. Ellipses represent 

95% confidence region. B) PLS-DA scores of control- and C) aged-myoblasts coloured by 

dose. A model complexity of two-variates was employed for control and aged myoblasts. 

Closed and open triangles represent control and aged cells, respectively. 

 

In order to identify distinctions in the metabolic profiles, the differences between treatments 

were enhanced in control and aged myoblasts using a cross-validated PLS-DA model. Optimal 

model complexity was found to be a two-variate model for control and aged myoblasts. Figure 
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7.27B/C shows the scores of these models. Unlike the PCA plot (Figure 7.27A), a tight 

clustering of groups can be observed. The PLS-DA model achieved a better separation between 

5/10 µM EPI and CTRL groups in both control and aged cells, but this was not comparable to 

PCA. To examine the metabolite level information, VIP scores of the PLS-DA model were 

calculated (see Figure 7.28). 

 

 

Figure 7. 28 VIP scores of PLS-DA model built on EPI treatment-dependent differences in A) 

control- and B) aged- skeletal myoblasts. AUC scores for control myoblasts were 1.0, 0.653 

and 0.847, and 0.986, 0.903 and 0.583 for aged myoblasts for 0 µM vs. others, 5 µM vs. others 

and 10 µM vs. others, respectively. A lower threshold of 1 was used on latent variable one and 

two to select metabolites from the model. The top 20 representative metabolites/bins are 

presented for clarity. 
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Upon metabolite selection of treatment-specific differences, metabolite levels of control and 

aged myoblasts in response to 0, 5 and 10 µM EPI were compared via two-way ANOVA, 

followed by a Tukey’s HSD pairwise test and shown via boxplots (Figure 7.29). Statistical 

analyses of the metabolite-level comparisons can be found in Table 9.20 (Chapter 9). From the 

metabolite level comparison in control myoblasts, Phosphorylcholine and L-Glutamic acid 

were higher after 5 and 10 µM EPI compared to CTRL. Whereas 1-Methylhistidine abundance 

was significantly lower after 5 and 10 µM EPI compared to CTRL. In aged myoblasts, L-

Lactic acid was lower after 5 and 10 µM EPI compared to CTRL. Conversely, Ethanol and 

Citric acid were significantly lower with 5 and 10 µM EPI compared to CTRL. 
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Figure 7. 29 Selected metabolite boxplots of control and aged skeletal myoblasts following 0, 

5 and 10 µM EPI treatment. *, ** and *** represent P-values less than 0.05, 0.01 and 0.001, 

respectively. * in the boxplot title represent denotes overlapping bin. Closed and open circles 

represent control and aged cells, respectively. 

 

 

Selected metabolites for EPI-treated control and aged skeletal myoblasts were subjected to 

MSEA to extract further metabolic pathway level information. Table 7.11 summarises the 

metabolites selected for EPI-treated control myoblasts. MSEA was performed on selected 

metabolites using a database curated from the KEGG pathways (Mus musculus (mouse) 

[KEGG organism code: mmu]). MSEA was performed using Fisher’s exact test with EASE 

correction and BH P-value adjustment for multiple testing. Two significantly over-represented 

pathways were identified for control skeletal myoblasts only (Table 7.11). No significant over-

represented pathways were observed for aged skeletal myoblasts. Pathways represented in 

control myoblasts included alanine, aspartate and glutamate metabolism and glyoxylate and 

dicarboxylate metabolism.  

 

Table 7. 11 Pathway analysis results for control skeletal myoblasts treated with EPI. Reporting 

raw & BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in green higher (with both 5 and 10 µM EPI) versus CTRL conditions, respectively. 
Metabolites in black are not significantly different between conditions (consistently with 5 and 10 µM 
EPI vs. CTRL).           

       

Pathway Raw P-value BH P-value Hits Impact Matches 

Alanine, aspartate 
and glutamate 
metabolism 

0.0005 0.0205 5 0.16 
L-Aspartate; L-Alanine; L-
Glutamate; Citrate; N-
Carbamoyl-L-aspartate 

Glyoxylate and 

dicarboxylate 

metabolism 

0.0003 0.0205 5 0.42 cis-Aconitate; 
Citrate; Glycine; L-
Glutamate; Formate 

Commented [CS580]: Interesting – so generally a lower 
response of the cells to Epi vs Q in terms of metabolite 
analyses? Why? 

Commented [MMP581]: Again you could add colours for 
those treatments that show the same trend with respect to 
control 



 

 362 

7.3.11 Epicatechin effects in control and aged skeletal myotubes 

To establish potential effects of EPI treatment in myotubes, control and replicatively aged 

myotubes were compared. PCA (Figure 7.30A) was performed to observe the major variances 

between all samples. PCA scores plot of PC1 (34.46%) against PC2 (22.87%) revealed 

moderate clustering of dose in terms of separation. PC1 and PC2 explains a cumulative 

variance of 57.33%. Meanwhile a total of 10 components were required to explain 95% of 

variance in the data. When the overall metabolic profile of EPI treated myotubes is considered, 

control myotubes are clustered tighter compared to aged myotubes on PC1. This suggests 

control myotubes have less variation compared to aged myotubes. Employing a supervised 

PLS-DA method, metabolites responsible for the metabolic profile differences can be 

extracted. 
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Figure 7. 30 Multivariate analysis of control and aged myotubes +/- EPI treatment. A) PCA 

scores of control and aged myotubes coloured by dose. A total of ten principal components 

were required to achieve 95% explained variance. Brackets report the variance explained by 

the PC. Only PC1 and PC2 are shown in the Figure for simplicity/clarity. Ellipses represent 

95% confidence region. B) PLS-DA scores of control myotubes and C) aged myotubes 

coloured by dose. A model complexity of two- variates was employed for control and aged 

myotubes. Closed and open triangles represent control and aged cells, respectively. 

 

In order to identify distinctions in the metabolic profiles, the differences between conditions 

were enhanced using a cross-validated PLS-DA model. Optimal model complexity was found 

to be two-variates for control and aged myotubes. Figure 7.30B/C shows the scores of this 

model with variate-1 plotted against variate-2 for simplicity. Compared to the PCA plot (Figure 

7.30A), a tighter clustering of groups can be observed. The PLS-DA model achieved a better 

separation between CTRL and 10 µM EPI groups in control and aged myotubes, but this was 

not comparable to PCA. However, 5 µM EPI was not fully decoupled from CTRL, indicating 

the higher degree of similarity between these conditions. To examine the metabolite level 

information, VIP scores of the PLS-DA model were calculated (see Figure 7.31). 
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Figure 7. 31 VIP scores of PLS-DA model built on EPI treatment-dependent differences in A) 

control- and B) aged- skeletal myotubes. AUC scores for control myoblasts were 0.847, 0.583 

and 0.931, and 0.850, 1.0 and 0.682 for aged myoblasts for 0 µM vs. others, 5 µM vs. others 

and 10 µM vs. others, respectively. A lower threshold of 1 was used on latent variable one and 

two to select metabolites from the model. The top 20 metabolites/bins are presented for clarity. 

 

 

Upon metabolite selection of treatment-specific differences, metabolite levels of control and 

aged myotubes in response to 0, 5 and 10 µM EPI were compared via two-way ANOVA, 

followed by a Tukey’s HSD pairwise test and shown via boxplots (Figure 7.32). Statistical 

analyses of the metabolite-level comparisons can be found in Table 9.21 (Chapter 9). From the 

metabolite-level comparison in control myotubes, levels of Dimethylglycine, Trimethylamine, 

ADP and 1-Methylhistidine were significantly lower after 5 and 10 µM EPI compared to 
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CTRL. In aged myotubes, cis-Aconitic acid/L-Acetylcarnitine and L-Carnitine were 

significantly higher, whilst 1-Methylhistidine and myo-Inositol were significantly lower 

following 5 µM EPI compared to CTRL. 

 

Figure 7. 32 Selected metabolite boxplots of control and aged skeletal myotubes following 0, 

5 and 10 µM EPI treatment. *, ** and *** represent P-values less than 0.05, 0.01 and 0.001, 

respectively. * in the boxplot title represent denotes overlapping bin. Closed and open triangles 

represent control and aged cells, respectively. 

 

 

Selected metabolites for EPI-treated control and aged skeletal myotubes were subjected to 

MSEA to extract further metabolic pathway level information. Table 7.12-7.13 summarises the 
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metabolites selected for EPI-treated cells in late differentiation. MSEA was performed on 

selected metabolites using a database curated from the KEGG pathways (Mus musculus 

(mouse) [KEGG organism code: mmu]). MSEA was performed using Fisher’s exact test with 

EASE correction and BH P-value adjustment for multiple testing. Three and five significantly 

over-represented pathways were identified for control and aged skeletal myotubes, respectively 

(Tables 7.12-7.13). Out of the significant pathways, aminoacyl-tRNA biosynthesis and valine, 

leucine and isoleucine biosynthesis were common amongst EPI treated control and aged 

myotubes. 

 
 
 

Table 7. 12 Pathway analysis results for control skeletal myotubes treated with EPI. Reporting 

raw & BH adjusted P values, number of hits, pathway impact and matches. 

Metabolites in black are not significantly different between conditions (consistently with 5 and 10 µM 
EPI vs. CTRL).           

          
 
 
 
Table 7. 13 Pathway analysis results for aged skeletal myotubes treated with EPI. Reporting 

raw & BH adjusted P values, number of hits, pathway impact and matches. 

Pathway Raw P-value BH P-value Hits Impact Matches 

Aminoacyl-tRNA 

biosynthesis 
0.0001 0.0114 6 0 L-Valine; L-Alanine; L-

Isoleucine; L-Threonine; L-
Tryptophan; L-Tyrosine 

Valine, leucine and 

isoleucine 

biosynthesis 

0.0003 0.0114 3 0 L-Threonine; L-Valine; L-
Isoleucine 

Ascorbate and 

aldarate metabolism 
0.0006 0.0159 3 0.25 myo-Inositol; UDP-

glucose; UDP-glucuronate 

Pathway Raw P-value BH P-value Hits Impact Matches 
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Metabolites in black are not significantly different between conditions (consistently with 5 and 10 µM 
EPI vs. CTRL).           
 
 
 
 
7.3.12 Summary of EPI effects upon the metabolome of control and aged myoblasts and 

myotubes 

Acute EPI treatment evoked changes in the metabolite signatures of control and aged myoblasts 

and myotubes. Pathways overrepresented with EPI treatment in control myoblasts included 

alanine, aspartate and glutamate metabolism and glyoxylate and dicarboxylate metabolism, 

whereas none were overrepresented in aged myoblasts. Nevertheless, metabolites involved in 

energy metabolism were significantly changed with EPI treatment. In control and aged 

myotubes, pathways commonly impacted by EPI treatment include aminoacyl-tRNA 

biosynthesis and valine, leucine and isoleucine biosynthesis. Five metabolites commonly 

represented in control and aged myoblast and myotubes in the presence of EPI were 1-

Aminoacyl-tRNA 

biosynthesis 
<0.0001 <0.0001 10 0.00 

L-Phenylalanine; Glycine; 
L-Aspartate; L-Valine; L-
Alanine; L-Isoleucine; L-
Leucine; L-Threonine; L-
Tryptophan; L-Tyrosine 

Valine, leucine and 

isoleucine 

biosynthesis 

<0.0001 0.0002 4 0.00 L-Threonine; L-Leucine; L-
Isoleucine; L-Valine 

Glycine, serine and 

threonine 

metabolism 

0.0003 0.0082 5 0.36 
Choline; N,N-
Dimethylglycine; 
Glycine; L-Threonine; 
Creatine 

Phenylalanine 

metabolism 
0.0011 0.0238 3 0.36 

 
L-Phenylalanine; 
Phenylacetic acid; L-
Tyrosine 

Phenylalanine, 

tyrosine and 

tryptophan 

biosynthesis 

0.0020 0.0329 2 1.00 L-Phenylalanine; L-
Tyrosine Commented [CS585]: Again, worth adding a summary 

paragraph of key findings before emoving on and contrasting 
the data with Q? Not a discussion, just key info./take home 
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Methylhistidine, ADP, cis-Aconitic acid, L-Acetylcarnitine and myo-Inositol (see Figure 

7.33). 

 

Figure 7. 33 Venn diagram reporting metabolites with VIP scores >1 between control and aged 

myoblasts and myotubes following EPI treatment. Five metabolites were commonly 

represented between ages and differentiation stage (myoblast vs. myotube). 

 
 
 
 
7.4 Discussion 

The purpose of this study was to explore how (replicative) ageing and dietary flavonoids impact 

the metabolome of murine skeletal muscle myoblasts and myotubes. Using an untargeted NMR 

metabolomics approach, the primary outcomes were 1) replicative ageing distinctly alters the 

metabolome of skeletal muscle myoblasts and myotubes, that somewhat reflects ageing human 

muscle; 2) flavonoids elicit compound and dose-dependent effects at the metabolite level in 

myoblasts and myotubes and 3) flavonoid treatment partly mitigates some, but not all age-

related perturbations to the metabolome in muscle cells.  

 

7.4.1 Control vs. aged myoblast comparisons (untreated CTRL conditions) 

1-Methylhistidine 
ADP 
cis-Aconitic acid 
L-Acetylcarnitine 
myo-Inositol 
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In skeletal muscle myoblasts (early differentiation), there were several major differences in 

metabolic signatures between control and replicatively aged cells (see Figure 7.34). The 

increase in aminoacyl-tRNA biosynthesis-related and BCAA metabolites in aged myoblasts 

suggests enhanced capacity for translation and protein synthesis. Although somewhat 

counterintuitive, these data support in vivo research demonstrating chronically activated 

mammalian target of rapamycin complex 1 (mTORC1) signalling, increased ribosomal protein 

S6 kinase beta-1 phosphorylation and elevated muscle protein synthesis in aged versus young 

skeletal muscle tissue (Fredriksson et al., 2008; Joseph et al., 2019; Kimball et al., 2004). 

Alternatively, aged myoblasts may possess greater rates of protein breakdown as seen in older 

adults (Trappe et al., 2004), which would help explain the elevated levels of BCAAs in aged 

cells. During net protein breakdown, amino acids are metabolised to precursors of the 

tricarboxylic acid (TCA) cycle intermediates, including glutamate that can be converted to 

glutamine (Wagenmakers, 1998). Compared to control myoblasts, glutamine levels were 

elevated in aged myoblasts, adding further evidence that protein breakdown and anaplerosis 

were increased compared to control. In the present study, the abundance of TCA cycle 

intermediates cis-Aconitate and Malic acid were lower and higher in aged versus control 

myoblasts, respectively. Thus, it is not clear to what extent replicative ageing impacts flux 

through the TCA cycle in skeletal myoblasts. When considered alongside the lack of observed 

mitochondrial dysfunction in aged myoblasts in Chapter 5, it is possible ageing does not impair 

aerobic energy metabolism in the C2C12 myoblast model. 

 

One distinguishing feature between control and aged myoblasts was the levels of 

Dihydrothymine, a possible marker of DNA damage (Dawidzik et al., 2004), which were 

markedly increased with ageing. Interestingly, this finding is consistent with a recent 

metabolomics study of human skeletal muscle ageing (Wilkinson et al., 2020), adding support 



 

 370 

to the idea that Dihydrothymine may represent a novel marker of cellular ageing. Another 

metabolite that increased with replicative ageing was Tryptophan. Levels of tryptophan were 

also reportedly increased in the gastrocnemius and soleus of aged Fischer 344 x Brown Norway 

male rats when compared to young. However, it is not currently clear what role tryptophan 

plays in the context of cellular ageing. The abundance of histamine was increased in aged 

myoblasts, which agrees with recent observations in aged human skeletal muscle (Wilkinson 

et al., 2020). A related metabolite in histidine metabolism, carnosine, was also elevated in aged 

myoblasts. In recent years, carnosine has been demonstrated to be a potent scavenger of free 

radicals such as methylglyoxal (Aldini et al., 2002; Hipkiss & Chana, 1998), thus providing a 

potential reason for its elevation in aged cells.  

 

Phospholipids play an important role in regulating cell function and energy metabolism (van 

der Veen et al., 2017), and phosphatidylcholine accounts for ∼50% of the total phospholipid 

pool (Takagi, 1971). Glycerophosphocholine is formed in the breakdown of 

phosphatidylcholine, whereas choline is essential for phosphatidylcholine synthesis by the 

Kennedy pathway (Kennedy & Weiss, 1956; Moessinger et al., 2014). Here, levels of 

acetylcholine and glycerophosphocholine were higher in aged myoblasts compared to control, 

whereas choline and phoshorylcholine were lower. Taken together these findings suggest 

increased degradation and reduced synthesis of phospholipids in aged myoblasts, which could 

lead to membrane fragility and cell apoptosis (Da Costa et al., 2004). 
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Figure 7. 34 Schematic representation of metabolic signatures of control and aged myoblasts. 

Metabolites in green and red are higher and lower in aged versus control, respectively. 

Metabolites in black are similar between control and aged. 

 

 

7.4.2 Control vs. aged myotube comparisons (untreated CTRL conditions) 

Similar to the effects of ageing observed in myoblasts, the metabolic signatures of control and 

aged myotubes (late differentiation) were profoundly different. Unlike myoblasts, the 

abundance of aminoacyl-tRNA and BCAA biosynthesis-related metabolites in aged myotubes 

was lower compared with control. These data imply a lowered potential for translation and 

protein synthesis in aged myotubes that may contribute to their reduced fusion capacity. 

Although, an important consideration when interpreting these data is that metabolite 

abundances were not relativised to total cellular protein. Given the fusion potential of aged 

myoblasts is diminished compared to control cells, we cannot exclude the possibility that 

metabolite abundances are conflated in control myotubes due to differences in protein content. 

With that said, recent dynamic proteomic profiling of control and replicatively aged myotubes 
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revealed that the fractional synthetic rate of mixed proteins was 82% lower in aged versus 

control myotubes (unpublished Brown et al., 2021), supporting the metabolite-level data 

presented here. 

 

One major hallmark of cellular ageing is mitochondrial dysfunction (López-Otín et al., 2013), 

but the effects of (replicative) ageing in vitro on mitochondria are not well described. 

Congruent with the idea that cellular ageing causes disruptions to mitochondria, levels of cis-

Aconitate and L-Carnitine were lower in aged versus control myotubes (see Figure 7.35). These 

data suggest lowered metabolic flux through the TCA cycle and a reduced capacity for fatty 

acid oxidation, respectively. These findings lend support to the notion that replicative ageing 

impairs mitochondrial function in cultured myotubes, as found in Chapter 6. Along similar 

lines, pantothenic acid levels were lower in aged myotubes when compared to control. Given 

the importance of this metabolite in coenzyme A (CoA) synthesis, the age-related reduction in 

pantothenic acid supports the notion that cellular ageing disrupts pathways associated with 

mitochondrial energy metabolism.  

 

As theorised in early work (Mitchell, 1966), the gradual accumulation of oxidative cellular 

damage is thought to play an important, but limited role in age-related tissue dysfunction 

(López-Otín et al., 2013). Glutathione is a potent cellular antioxidant, with decreases in the 

ratio of reduced to oxidised glutathione being indicative of increased oxidative stress. The 

reported increase in abundance of oxidised glutathione in aged myotubes supports previous 

studies showing elevated oxidative stress in aged skeletal muscle cells (Beccafico et al., 2007; 

Drew et al., 2003b; Fulle et al., 2005; Marrone et al., 2018b; Mecocci et al., 1999; Vasilaki et 

al., 2006), which may be due to reduced activity of glutathione-dependent enzymes and the 

accumulation of hydrogen peroxide (Fulle et al., 2005). 
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Phospholipids play an important role in regulating cell function and energy metabolism (van 

der Veen et al., 2017), and phosphatidylcholine accounts for ∼50% of the total phospholipid 

pool (Takagi, 1971). Glycerophosphocholine is formed in the breakdown of 

phosphatidylcholine, whereas choline is essential for phosphatidylcholine synthesis by the 

Kennedy pathway (Kennedy & Weiss, 1956; Moessinger et al., 2014). Though speculative, our 

findings in myotubes could reflect lowered phosphatidylcholine turnover with cellular ageing, 

that may be related to lowered remodelling of the mitochondrial network (Vance, 2015). 

Another metabolite involved in phospholipid metabolism is myo-inositol (Holub, 1986), which 

has also recently been implicated in skeletal muscle ageing. Indeed, myo-inositol was reported 

to promote anti-ageing effects through its stimulatory effects on phosphatase and tensin 

homolog (PTEN)-dependent mitophagy in worm and mouse skeletal muscle (Shi et al., 2020). 

Therefore, it is possible that increased myo-inositol levels in aged myotubes is indicative of a 

compensatory mechanism to maintain mitochondrial health, although this purely speculative. 

 

Similar to myoblasts, aged myotubes presented decreased levels of taurine in comparison to 

control. In skeletal muscle, taurine is involved in the control of ion channel function, membrane 

stability and calcium homeostasis (Camerino et al., 2004). During ageing, levels of taurine 

gradually decline (Pierno et al., 1998), which among many potential implications, may cause 

inadequate β-oxidation due to decreased pH buffering capacity (Hansen et al., 2015). Having 

described how replicative ageing impacts the metabolome of skeletal muscle myoblasts and 

myotubes, we next sought to determine how flavonoid treatment would affect the metabolic 

profiles of control and aged cells.  
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Figure 7. 35 Schematic representation of metabolic signatures of control and aged myotubes. 

Metabolites in green and red are higher and lower in aged versus control, respectively. 

Metabolites in black are similar between control and aged. 

 

 

7.4.3 Quercetin effects on the metabolome of skeletal myoblasts 

Following acute Q treatment, levels of citrate were lowered in both control and aged myoblasts. 

This observation hints that Q may lower the potential for generation of reducing equivalents 

through the TCA cycle. Along these lines, L-Lactic acid levels were significantly increased in 

response to Q treatment, suggesting elevated glycolysis as a compensatory effect for reduced 

energy production via OXPHOS. Yet, levels of the end product of glycolysis, pyruvate, were 

lower in response to Q treatment in control cells. Together these data suggest Q shifts 

metabolism heavily in favour of glycolysis, possibly due to impairments in pathways that 

converge upon the mitochondria. In this regard, previous work has demonstrated that Q 

accumulates within the mitochondria of Jurkat cells (Fiorani et al., 2010a) and inhibits ATP 

synthase in rat, bovine and porcine tissue (Di Pietro et al., 1975; Lang & Racker, 1974b; Zheng Commented [CS595]: What tissue? 
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& Ramirez, 2000b). However, negligible effects of Q on mitochondrial respiration were found 

on myoblast and myotubes in Chapters 5 and 6, respectively. The potential impediment to the 

phosphorylation of ADP to ATP by this compound may help explain a preference towards 

glycolysis to meet cellular energy demands. However, we observed a lowering of ADP levels 

in control myoblasts cultured with 10 µM Q treatment, which is difficult to reconcile given the 

possible concurrent inhibition of OXPHOS. Further research is necessary to establish whether 

Q inhibits mitochondrial bioenergetics in murine skeletal muscle cells, as this will help explain 

the underlying processes of its therapeutic effects. 

 

The glycine, serine and threonine metabolism pathway was overrepresented in control and aged 

myoblasts cultured in the presence of Q (see Figure 7.36A/B). Glycine is a non-essential amino 

acid that regulates homeostasis, partly via is intracellular metabolism (Koopman et al., 2017). 

Many macromolecules depend upon glycine availability for their synthesis, including the 

antioxidant glutathione (Wang et al., 2013). Indeed, glycine is required for glutathione 

synthesis to help maintain physiological levels of ROS (L’Honoré et al., 2018). In older 

humans, levels of intracellular glycine are known to be diminished, especially in frail 

individuals (Fazelzadeh et al., 2016). Data showing increased cellular glycine with 10 µM Q 

may be a compensatory effect to cope with elevated oxidative stress, though further 

experimentation is required to establish whether this is the case.  

 

Beta-alanine is formed by the degradation of carnosine and anserine in skeletal muscle and 

may also be synthesised from aspartic acid. As a non-essential amino acid, beta-alanine is an 

indispensable component for CoA and plays a role in intramyocellular buffering (Derave et al., 

2010). Exogenous supplementation of beta-alanine has improved the physical capacity of older 

adults (Furst et al., 2018). Given the reported decline in levels of anserine and aspartic acid 
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with parallel increases in beta-alanine, it is possible Q treatment increases the requirement for 

beta-alanine in skeletal muscle cells. More research is needed to elucidate why Q treatment 

increases beta-alanine abundance in skeletal muscle cells. 

 

 

 

 

Figure 7. 36 Schematic representation of metabolic signatures in A) control and B) aged 

myoblasts, in the presence of 0, 5 and 10 µM Q. Metabolites in green and red are higher and 

lower with Q treatment vs. untreated CTRL. Metabolites in bold are significantly different vs. 

B 

A 
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CTRL with 5 and 10 µM Q, whereas metabolites in regular font are only different vs. CTRL 

at one Q dose. Metabolites in black are similar between treatment conditions. 

 

 

 

7.4.4 Quercetin effects on the metabolome of skeletal myotubes 

Treatment of myotubes with Q culminated in measurable differences in metabolic signatures 

when compared to control conditions. Similar to the effects observed in myoblasts, Q treatment 

appeared to shift energy metabolism towards glycolysis and away from OXPHOS. This 

apparent change in fuel preference was evidenced by increased L-Lactic acid and reduced citric 

acid levels, at least in control myotubes. Notably, this effect was only observed with the higher 

dose of Q (10 µM), implying that the effects of Q on metabolites involved in energy 

metabolism are largely dose dependent. Consistent with a shift in metabolic preference, prior 

research has demonstrated quercetin treatment reduces O2 consumption and cellular ATP 

concentrations in both rat liver mitochondria and HEK293 cells (Dorta et al., 2005; Hawley et 

al., 2010b), although such an effect was not found in myoblasts and myotubes (Chapters 5 and 

6, respectively) in this thesis. The ability of Q to interact with mitochondrial respiration may 

be related to its chemical structure (Dorta et al., 2005), which favours molecular interactions 

with components of the ETC, including ATP synthase (Di Pietro et al., 1975; Lang & Racker, 

1974a; Zheng & Ramirez, 2000b). Together, these data imply that Q’s impact on the 

metabolome is dose dependent, and may be related to its capacity to inhibit OXPHOS, with 

implications for downstream energy-sensitive signalling pathways (Hardie et al., 2011). 

 

When looking at the effects of Q on phosphorylcholine, a dose dependent reduction in 

phosphorylcholine content was observed in both control and aged myotubes (see Figure 

7.37A/B). Considering the importance of phosphorylcholine in the synthesis 
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phosphatidylcholine, our data suggest myotube phospholipid synthesis could be impeded in 

the presence of Q, regardless of age. This idea is supported by reduced levels of choline after 

Q treatment, at least in control myotubes. Phospholipids make up essential components of cell 

membranes, including the energy producing organelle that is the mitochondrion. The findings 

are in line with studies showing interactions between Q and cell membranes, and support those 

reporting blunted phospholipid synthesis in Q-treated hepatocytes (Gnoni et al., 2009; Saija et 

al., 1995). 

 

Interestingly, quercetin treatment lowered the age-associated increase in myo-inositol 

abundance in myotubes, although not to levels comparable to control. Whilst the precise role 

of myo-inositol in cellular ageing is not well understood, it may contribute to the PTEN-

dependent upregulation of mitophagy in the context of ageing (Shi et al., 2020). Therefore, 

quercetin may provide nutritional means to modulate myo-inositol levels in the context of 

cellular ageing. From what is currently known about myo-inositol, it is possible that quercetin 

may impact membrane phospholipid formation and signal transduction (Holub, 1986), or 

potentially attenuate mitophagy (Shi et al., 2020), although this requires further study. 

 

Micromolar concentrations of Q reduced levels of control myotube metabolites involved in 

glycine, serine and threonine metabolism, including threonine and pyruvate. On the other hand, 

control myotube glycine levels were increased in the presence of Q, whilst serine remained 

similar between conditions. Previously it was shown that compromised mitochondrial function 

increases the production of glycine and augments pathways associated with glutathione 

synthesis (Ost et al., 2015). Collectively, these findings suggest that Q might augment control 

myotube glycine production in response to impediments to mitochondrial respiration and 

increased ROS production, but this requires further investigation. 

Commented [CS601]: In both con and aged? Specify 

Commented [SD602R601]: Threonine pyruvate reduced in 
control tubes; threonine reduced aged blasts 

Commented [CS603]: In both aged and con?  Tis does not 
make sense, why would both be compromised?  Intro your 
seahorse data into this argument also. 



 

 379 

 

Tyrosine abundance was significantly increased in response to 5 and 10 µM Q, in both control 

and aged myotubes. Interestingly, levels of tyrosine were lower in aged compared to control 

myotubes, which supports a previous metabolomics study of human plasma across the lifespan 

(Darst et al., 2019). Therefore, Q may be efficacious in raising tyrosine levels in the context of 

cellular ageing, although it is not currently known how elevated tyrosine could mitigate the 

deleterious effects of ageing.  
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Figure 7. 37 Schematic representation of metabolic signatures in A) control and B) aged 

myotubes, in the presence of 0, 5 and 10 µM Q. Metabolites in green and red are higher and 

lower with Q treatment vs. untreated CTRL. Metabolites in bold are significantly different vs. 

CTRL with 5 and 10 µM Q, whereas metabolites in regular font are only different vs. CTRL 

at one Q dose. Metabolites in black are similar between treatment conditions. 

 

 

7.4.5 EGCG effects in control and aged myoblasts 

The predominant catechin derivative found in tea, EGCG, is known to have potent antioxidant 

effects and impact processes related to energy metabolism (Casanova et al., 2014; Most et al., 

2015b; Wang et al., 2016; Ze Xu et al., 2004b). Here, control and aged myoblasts cultured in 

the presence of ECGG had significantly higher levels of L-Lactic acid, pointing to an increased 

reliance on glycolysis rather than OXPHOS for ATP synthesis. In support of this idea, EGCG 

treatment significantly reduced levels of citric acid and fumaric acid in control and aged 

myoblasts, respectively, suggesting reduced flux through the TCA cycle. The apparent 

inhibitory effects of EGCG on oxidative metabolism can be reconciled by previous work 

demonstrating reduced OXPHOS and decreased ATP levels in cancer cells cultured in the 
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presence of EGCG (Valenti et al., 2013). However, not all studies have reported inhibitory 

effects of EGCG on mitochondrial respiration in vitro (Mezera et al., 2016; Pal et al., 2020a; 

Pournourmohammadi et al., 2017; Santamarina et al., 2015; Weng et al., 2014; Xiong et al., 

2018), including the data from this thesis (Chapters 5 and 6). The discrepancies between 

findings are possibly explained by the cell types studied or the differences in dose administered.  

 

Two major pathways essential for protein synthesis, aminoacyl-tRNA biosynthesis and BCAA 

biosynthesis, were both implicated in the effects of ECGG on the metabolome. Accordingly, 

levels of L-Leucine, L-Isoleucine and L-Threonine were reduced in control myoblasts cultured 

with physiological ECGG concentrations. These data lend support to the idea that EGCG 

reduced protein synthesis in skeletal myoblasts, which may be associated with increased 

energetic stress. Why EGCG had no impact on metabolites related to protein synthesis in aged 

cells remains to be determined, though it could relate to greater basal rates of protein 

degradation or other factors intrinsic to the aged myoblast.  

 

One notable change found in control and aged myoblasts following ECGG treatment was 

increased levels of phosphorylcholine (see Figure 7.38A/B). Given the key role of 

phosphorylcholine in the synthesis of phosphatidylcholine, it is possible that EGCG interacts 

with the synthesis of phospholipids, which is facilitated by its inherent molecular structure 

(Sirk et al., 2009; Tamba et al., 2007). Further evidence for this idea is afforded by the observed 

increase in myo-inositol abundance in control and aged myoblasts. One previous study 

examined the effects of EGCG supplementation on the metabolome of vascular endothelial 

cells, and in line with the present findings, showed increased levels of metabolites associated 

with the synthesis of membrane lipids (Chu et al., 2018). Together, these findings highlight 
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that the interaction of EGCG with phospholipid metabolism may underly its associated health 

benefits. 

Figure 7. 38 Schematic representation of metabolic signatures in A) control and B) aged 

myoblasts in the presence of 0, 5 and 10 µM EGCG. Metabolites in green and red are higher 

and lower with EGCG treatment vs. untreated CTRL. Metabolites in bold are significantly 

different vs. CTRL with 5 and 10 µM EGCG, whereas metabolites in regular font are only 
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different vs. CTRL at one EGCG dose. Metabolites in black are similar between treatment 

conditions. 

 

 

7.4.6 EGCG effects in control and aged myotubes 

In cultured myotubes, the impact of EGCG on metabolic signatures was somewhat limited (see 

Figure 7.39A/B). One pathway over-represented amongst control and aged myotubes was 

aminoacyl-tRNA biosynthesis. In this pathway, L-Threonine was significantly lower in 

response to ECGG, although only in control cells. Threonine plays an important role in protein 

synthesis and can also be enzymatically catabolised to produce key intermediates of energy 

metabolism, such as acetyl-CoA. Therefore, a decrease in Threonine abundance with EGCG 

may reflect suppressed protein synthesis and/or increased catabolism to support the generation 

of acetyl-CoA for energy production. 

 

NAD is an essential co-factor that participates in several metabolic pathways, including beta-

oxidation, glycolysis, and the TCA cycle. With advancing age, NAD levels are known to 

decline, highlighting this a potential therapeutic target to ameliorate age-related metabolic 

impairments (Gomes et al., 2013). Here, we report that 10 µM ECGG attenuates NAD levels 

in control skeletal myotubes, with concurrent reductions in levels of ADP. Taken together, 

these data suggest that micromolar concentrations of EGCG may evoke unfavourable 

adaptations at the cellular level, at least in control myotubes. The effects of EGCG, and 

flavonoids more generally, are known to be highly dose dependent (Mattson & Cheng, 2006). 

Nano-micromolar concentrations of EGCG have been shown to stimulate mitochondrial 

respiration in rat cardiomyocytes and human foetal osteoblasts (Pal et al., 2020b; Vilella et al., 

2020b), whereas supraphysiological doses (>10 µM) of EGCG impair indices of mitochondrial 

function and increase mitochondrial ROS (James et al., 2018; Kucera et al., 2015; Li et al., 
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2010). This apparent biphasic response of beneficial stimulation at low doses, but toxic or null 

activity promoted at higher concentrations, termed hormesis, may be critical in explaining the 

effects of dietary flavonoids on cellular metabolites and function (Calabrese, 2008). 

 

Other metabolites lowered by EGCG treatment in control myotubes were tyramine and 1-

methylhistidine. Tyramine is a derivative of the metabolite tyrosine and is catabolised by a 

family of enzymes known as the monoamine-oxidases, which subsequently increases H2O2 

generation and DNA damage (Hauptmann et al., 1996). Only a handful of studies have 

investigated how flavonoids impact monoamine-oxidase activity, with some reporting 

inhibitory effects of flavonoids (Bandaruk et al., 2012; Lin et al., 2010). Therefore, it is not 

entirely clear why EGCG decreased tyramine abundance in the present study and further 

research is necessary to explore this further. One-methylhistidine is formed from the splitting 

of anserine by carnosinase, and increased levels of this metabolite in skeletal muscle are 

indicative of drug-induced cytotoxicity (Aranibar et al., 2011a). On the other hand, in a rodent 

model of hypothyroidism, 1-methylhistidine levels were reduced in male and female rats versus 

control groups (Gołyński et al., 2016). With this said, reduced levels of methylhistidine with 

EGCG may be due to improved muscle cell viability, but this remains to be elucidated. 
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Figure 7. 39 Schematic representation of metabolic signatures in A) control and B) aged 

myotubes in the presence of 0, 5 and 10 µM EGCG. Metabolites in green and red are higher 

and lower with EGCG treatment vs. untreated CTRL. Metabolites in bold are significantly 

different vs. CTRL with 5 and 10 µM EGCG, whereas metabolites in regular font are only 

different vs. CTRL at one EGCG dose. Metabolites in black are similar between treatment 

conditions. 
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7.4.7 EPI effects in control and aged myoblasts 

In the present study, physiological concentrations of EPI simultaneously increased levels of 

cis-Aconitic acid and decreased levels of citric acid in aged myoblasts. Thus, it may be that 

EPI facilitated the conversion of citric acid to cis-Aconitic acid in aged cells, although this is 

purely hypothetical. Alternatively, reduced citrate levels could reflect increased export of 

citrate from the mitochondria to the cytosol by the mitochondrial citrate transporter protein, 

where it has numerous metabolic fates, including supporting fatty acid and cholesterol 

biosynthesis (Gnoni, Priore, et al., 2009). In fact, a recent study provided evidence that EPI 

supplementation increased the expression of the mitochondrial citrate transporter protein in 

aged mice to levels observed in young animals (Si et al., 2019b). Besides changes in the 

abundance of TCA cycle intermediates, EPI treatment increased lactic acid production in aged 

myoblasts. Given the concurrent reduction in citric acid with EPI treatment, it is possible that 

EPI acutely inhibited mitochondrial respiration in aged myoblasts, resulting in augmented 

glycolysis. Accordingly, EPI inhibited mitochondrial respiration in aged myoblasts in Chapter 

5. 

 

One-methylhistidine abundance was lowered in control and aged cells by EPI treatment when 

compared to untreated conditions (see Figure 7.40A/B). At the present moment, there is no 

consensus on whether 1-methylhistidine plays a regulatory role in cellular ageing, though it 

has been reported as a urinary biomarker of drug-induced muscle toxicity (Aranibar et al., 

2011b). The formation of 1-methylhistidine is achieved from the splitting of anserine by 

carnosinase. In spite of decreased levels of 1-methylhistidine in the presence of EPI, levels of 

anserine and beta-alanine remained unchanged. Therefore, the reasons for the observed 

reductions in 1-methylhistidine after EPI treatment are not clear and require further study. 

 



 

 387 

Glutamic acid levels were increased in control myoblasts cultured in the presence of EPI. Two 

of the many important roles played by glutamic acid is the synthesis of glutathione (GSH) 

(Tapiero et al., 2002) and α-ketoglutarate to support the replenishment of TCA cycle 

intermediates by anaplerosis (Mourtzakis et al., 2008). Therefore, the reported changes in 

glutamic acid may reflect a response to an altered redox state and/or increased requirement for 

replenishment of TCA cycle intermediates. More research is required to delineate the potential 

antioxidant and metabolic role of EPI in skeletal muscle cells.  
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Figure 7. 40 Schematic representation of metabolic signatures in A) control and B) aged 

myoblasts in the presence of 0, 5 and 10 µM EPI. Metabolites in green and red are higher and 

lower with EPI treatment vs. untreated CTRL. Metabolites in bold are significantly different 

vs. CTRL with 5 and 10 µM EPI, whereas metabolites in regular font are only different vs. 

CTRL at one EPI dose. Metabolites in black are similar between treatment conditions. 

 

 

 

7.4.8 EPI effects in control and aged myotubes 

The generation of cellular ATP is achieved by OXPHOS, a conserved mechanism that is 

dependent upon reducing equivalents generated by the TCA cycle and b-oxidation. Levels of 

cis-Aconitic acid were increased in aged myotubes cultured in the presence of EPI, suggesting 

increased oxidative metabolism. This finding in the data is in line with some (Kener et al., 

2018b; Panneerselvam et al., 2013; Rowley et al., 2017b), but not all (Bitner et al., 2018; Keller 

et al., 2020; Kopustinskiene et al., 2015b) studies showing enhanced state 3 supported 
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mitochondrial respiration following EPI supplementation in cell and rodent models. One key 

rate-limiting metabolite in fatty acid oxidation, carnitine, facilitates the import of long-chain 

fatty acids (LCFA) across the inner mitochondrial membrane (Fritz & Yue, 1963). In aged 

myotubes, we demonstrated increased L-Carnitine levels in the presence of EPI. Similar results 

have been reported previously, where adult male mice receiving a flavanol supplement 

(containing predominately EPI) over 14 days elevated the capacity for LCFA transport in the 

gastrocnemius and soleus muscles (Watanabe et al., 2014). Collectively, the reported changes 

in metabolites associated with oxidative metabolism suggests EPI may evoke favourable 

adaptations at the level of mitochondria in aged skeletal myotubes (see Figure 7.41A/B). 

 

The ratio of ADP/ATP reflects the cellular energetic state, with increased ADP/ATP being 

indicative of metabolic stress, and more severely, cell death. Levels of ADP were lowered in 

response to EPI treatment in control, but not aged myotubes. Thus, considering the similarity 

in levels of ATP between experimental conditions, it is possible that EPI brought about a 

reduced ADP/ATP ratio, and subsequently, a more favourable metabolic milieu. Further work 

is required to help explain the observed changes in ADP in response to EPI, and what the 

potential implications of a lowered ADP/ATP ratio may be for cellular adaptation. 

 

Other metabolites impacted by EPI, not directly related to energy metabolism were myo-

inositol and methylhistidine. In response to EPI, levels of myo-inositol, which were elevated 

in aged myotubes, decreased towards values observed in control myotubes. Although more 

research is necessary to determine the role of myo-inositol in cellular ageing, this metabolite 

appears to be involved in phospholipid synthesis and act as a secondary messenger in signal 

transduction (Berridge, 2009; Chakraborty et al., 2010). Thus, our findings hint that one 

mechanism by which EPI may elicit health benefits is via modulation of phospholipid synthesis 
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and/or Ca2+ or Akt cell signalling in skeletal muscle cells. Concerning 1-methylhistidine, 

reduced levels of this metabolite were found in control and aged myotubes cultured in the 

presence of EPI. From the current literature, it is not clear what the cellular implications of 

reduced 1-methylhistidne levels are, though they may relate to improved cell viability 

(Aranibar et al., 2011a). An alternative derivative of histidine, 3-methylhistidine, was 

significantly lowered in aged myotubes cultured with 10 µM EPI. Unlike its related metabolite, 

3-methyhistidine is a robust indicator of increased actin and myosin degradation (Thompson 

et al., 1996; Vesali et al., 2004). Thus, our data suggest that micromolar concentrations of EPI 

may reduce muscle protein degradation in aged cells. Evidence for such an effect comes from 

a recent study, where muscle atrophy 30 days after spinal cord injury was reduced from ~50% 

to 25% with daily EPI supplementation in female rats (Gonzalez-Ruiz et al., 2020). Clearly, 

further research is required to delineate the mechanisms by which EPI may regulate muscle 

protein degradation. 
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Figure 7. 41 Schematic representation of metabolic signatures in A) control and B) aged 

myotubes in the presence of 0, 5 and 10 µM EPI. Metabolites in green and red are higher and 

lower with EPI treatment vs. untreated CTRL. Metabolites in bold are significantly different 

vs. CTRL with 5 and 10 µM EPI, whereas metabolites in regular font are only different vs. 

CTRL at 5 µM EPI dose. Metabolites in black are similar between treatment conditions. 

 

7.5 Limitations 

A number of limitations are present in this study that limit its translatability. Firstly, despite 

the low micromolar doses of flavonoids used in this in vitro study, they may still be above the 

concentrations realistically attained in skeletal muscle tissue after ingestion of flavonoids in-

vivo (Manach et al., 2005b). However, the plasma concentrations of compounds used in this 

study have been shown to reach up to 10 µM after oral ingestion in vivo (Williamson & 

Manach, 2005). Secondly, flavonoids undergo extensive metabolism in the gastrointestinal 

tract and liver after ingestion in vivo which produces secondary metabolites that may elicit 
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distinct biological effects to those of the parent compound. Currently, flavonoid metabolites 

are not widely commercially available, and therefore the feasible approach was to use parent 

flavonoid compounds. Future work should try and establish whether flavonoid metabolites 

promote similar adaptations to those found with the parent compounds in the present study. 

The use of a non-targeted metabolomics approach here resulted in identification of multiple 

unknown metabolites, which highlights one major problem in the field of metabolomics, where 

(limited) metabolite annotation and accuracy is an issue for biological contextualisation 

(Nagana Gowda & Raftery, 2015). Finally, we used a murine skeletal muscle cell line (C2C12) 

to study the effects of flavonoids on the cell metabolome. This cell-based approach will not 

recapitulate all features of human skeletal muscle tissue and it’s possible regulation by dietary 

compounds. However, the apparent metabolite-level differences between cells cultured in the 

absence and presence of flavonoids illuminates key changes that may be common to murine 

and human skeletal muscle cells. 

 

7.6 Conclusion 

Altogether, the findings presented in this chapter reveal novel effects of replicative ageing and 

dietary flavonoids on murine skeletal muscle cells at the metabolite level. In myoblasts and 

myotubes, replicative ageing caused profound changes in the cell metabolome, highlighting 

novel mechanisms of (replicative) ageing in vitro. Flavonoids are widely known for their 

potential to elicit health benefits, but the prospect that these dietary compounds may impact 

metabolic signatures has often been overlooked. Here, we demonstrate compound- and dose- 

dependent effects of flavonoids on the cellular metabolome, thus advancing our understanding 

of their known mechanisms of action. The fact that flavonoids evoked dose-dependent changes 

in metabolites in control and aged muscle cells emphasises that flavonoids may be valuable in 

promoting health benefits in older skeletal muscle. Further research is warranted to shed light 
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on the cellular adaptations brought about by flavonoids that are reflected at the level of 

metabolites. 
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8.1 Realisation of Aims  

The major aims of this thesis were two-fold: 1) speed pulmonary V̇O2 kinetics and enhance 

exercise tolerance in physically inactive middle-aged adults by cocoa-flavanol 

supplementation (Chapter 3). 2) simultaneously enhance mitochondrial function, cell 

signalling and attenuate ROS production in (replicatively) aged skeletal muscle and human 

vascular endothelial cells using dietary flavonoids, in vitro (Chapter 4, 5 and 6). 

 

To realise these aims, the studies in this thesis addressed the following objectives: 

1. Investigate the impact of acute cocoa-flavanol supplementation on pulmonary V̇O2 

kinetics and exercise tolerance in physically inactive middle-aged adults. 

2. Examine whether flavonoids modulate ROS production, mitochondrial function and 

cell signalling using human vascular endothelial cells as a model system. 

3. Determine whether replicative ageing and dietary flavonoids impact NO 

bioavailability, mitochondrial function and gene expression using C2C12 myoblasts as 

a model system. 

4. Investigate the effects of replicative ageing and flavonoids on mitochondrial function, 

ROS production and cell signalling using C2C12 myotubes as a model system. 

5. Explore how replicative ageing and dietary flavonoids impact the metabolome of 

murine skeletal muscle myoblasts and myotubes. 
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Objective 1: Investigate the impact of cocoa-flavanol supplementation on pulmonary V̇O2 

kinetics and exercise tolerance in physically inactive middle-aged adults.  

Objective one was addressed in Chapter 3. The hypothesis that cocoa-flavanols would speed 

pulmonary V̇O2 kinetics and enhance exercise tolerance in physically inactive middle-aged 

adults was only partially accepted. Acute cocoa-flavanol supplementation sped phase II V̇O2 

kinetics by ~6 seconds compared to placebo during exercise in the moderate intensity domain. 

However, cocoa-flavanol supplementation did not alter the phase II V̇O2 kinetics during severe-

intensity exercise and did not enhance exercise tolerance as assessed by time-to-exhaustion.  

 

Objective 2: Examine whether flavonoids modulate ROS production, mitochondrial function 

and cell signalling using human vascular endothelial cells as a model system. 

This objective was addressed in Chapter 4. The hypothesis that flavonoids would attenuate 

ROS production and enhance indices of mitochondrial function and cell signalling in human 

vascular endothelial cells was partially accepted/rejected. Although specific flavonoids 

attenuated ROS production in the absence and presence of antimycin A, these effects were 

largely dependent on the compound and dose administered. Therefore, flavonoids may act in a 

pro-oxidant manner at some doses, but in an antioxidant manner at others in vascular 

endothelial cells. In this study, flavonoids did not measurably impact indices of mitochondrial 

functionality. However, flavonoids did regulate the transcription of genes associated with 

mitochondrial remodelling and the antioxidant response. Moreover, EPI transiently activated 

ERK1/2 signalling and increased NO bioavailability, which occurred in parallel with induction 

of NRF2. 
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Objective 3: Determine whether replicative ageing and dietary flavonoids impact NO 

bioavailability, mitochondrial function and gene expression using C2C12 myoblasts as a model 

system. 

In chapter 5, objective three was tackled. It was hypothesised that replicative ageing would 

cause mitochondrial dysfunction, attenuate NO production and blunt gene expression in 

myoblasts, and these effects would be alleviated by flavonoid treatment. The hypothesis was 

partially accepted and rejected, in that control and aged myoblasts presented comparable 

indices of mitochondrial function. However, replicative aging diminished NO bioavailability 

and lowered the expression of genes like PARKIN and SOD2. In disagreement with the 

hypothesis, flavonoids did not modulate mitochondrial respiration, but EPI blunted respiration 

in aged myoblasts. Further, flavonoids did not rescue the age-related decline in NO, but did 

augment the expression of genes associated with mitochondrial remodelling and the 

antioxidant response, including NRF2. 

 

Objective 4: Investigate the effects of replicative ageing and flavonoids on mitochondrial 

function, ROS production and cell signalling using C2C12 myotubes as a model system. 

In Chapter 6 it was hypothesised that replicative ageing would impair mitochondrial function, 

increase ROS production and blunt cell signalling in myotubes. Secondly, it was hypothesised 

that flavonoids would mitigate mitochondrial dysfunction, lower ROS production and enhance 

cell signalling in replicatively aged myotubes. Hypothesis one was partially accepted and 

rejected. Replicative ageing impaired coupling efficiency and oxidative phosphorylation and 

increased the production of ROS. However, cell signalling was not significantly altered by 

ageing. In contrast to the second hypothesis, flavonoids did not mitigate the age-related decline 

in mitochondrial function or increase in ROS emission. Nevertheless, flavonoids did confer 

Commented [CS619]: This contradicts your hypothesis 
written above 

Commented [SD620R619]: Does ‘partially accepted’ 
address this or not appropriate? 



 

 398 

beneficial cell adaptations at the level of transcription and AMPK signalling (see general 

findings section 8.2). 

 

Objective 5: Explore how replicative ageing and dietary flavonoids impact the metabolome of 

murine skeletal muscle myoblasts and myotubes.  

This objective was addressed in Chapter 7. Using an untargeted NMR metabolomics approach, 

metabolic signatures of control and aged skeletal myoblasts and myotubes were determined, in 

the absence and presence of dietary flavonoids. The metabolome of replicatively aged skeletal 

myoblasts revealed elevated BCAA metabolism compared to control. However, BCAA 

metabolism was downregulated with ageing in myotubes. Metabolites involved in oxidative 

metabolism like L-carnitine and cis-Aconitic acid were also attenuated in aged myotubes 

compared to control. Besides, novel metabolites (dihydrothymine and myo-inositol) 

demonstrated a potential important role in cellular ageing. Moreover, and in partial agreement 

with hypothesis two, flavonoids partially alleviated some age-related perturbations to 

metabolite signatures in myoblast and myotubes. EPI increased L-carnitine levels in aged 

myotubes, but not to levels reported in control. In addition, flavonoid treatment typically 

increased lactate abundance, suggesting inhibitions to oxidative metabolism with specific 

flavonoids and doses.  

 

8.2 General findings 

In Chapter 3, the effects of an acute cocoa-flavanol supplementation regime upon V̇O2 kinetics 

and exercise tolerance were investigated. This study demonstrated that cocoa-flavanols speed 

phase II V̇O2 kinetics in the moderate intensity exercise domain but did not enhance exercise 
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tolerance. Although this study could not directly explain what mechanisms were responsible 

for the faster phase II V̇O2 kinetics after CF supplementation, the potential cellular and 

molecular actions of flavonoids were investigated in subsequent chapters (4, 5, 6 and 7). Given 

the sensitivity of phase II V̇O2 kinetics to changes in O2 delivery (blood flow and distribution) 

and utilisation (O2 consumption within mitochondria), the following chapters investigated 

whether flavonoids affect vascular endothelial and skeletal muscle function in vitro. 

 

The therapeutic potential of flavonoids was investigated in vitro, in the vascular endothelial 

cell. The vascular endothelial cell was used as a model cell type because of its importance in 

regulating blood flow and distribution during exercise, thus enabling a precise coupling of O2 

delivery to metabolic demand. The findings in this chapter demonstrated flavonoids do not play 

a significant role in modulating mitochondrial respiration. However, flavonoids dose-

dependently regulated the production of mitochondrial derived ROS in vascular endothelial 

cells. In addition, EPI increased NO bioavailability and upregulated NRF2 expression. 

Interestingly, EPI also transiently augmented ERK1/2 signalling, independent of AMPK. 

Taken together, EPI induced NRF2 expression, increased NO bioavailability and dose-

dependently regulated mitochondrial ROS production, in what seems an ERK1/2 dependent 

manner. Therefore, EPI may act through the mechanism of hormesis to promote beneficial 

adaptations in vascular endothelial cells. 

 

Having ascertained how flavonoids modulate mitochondrial function, ROS production and 

signalling in the vascular endothelial cell, the next step was to investigate whether (replicative) 

ageing and flavonoids impact skeletal muscle cell energy metabolism.  Therefore, Chapter 5 
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and 6 examined the impact of replicative ageing upon mitochondrial function, ROS production 

and cell signalling in C2C12 myoblasts and myotubes. The data in these chapters demonstrated 

that ageing inhibits indices of mitochondrial function (coupling efficiency and OXPHOS), 

augments the production of mitochondrial ROS, and blunts cell signalling in myotubes.  

 

With the understanding that ageing compromises myotube mitochondrial integrity and ROS 

emission, Chapter 6 further elucidated whether flavonoids could mitigate age-related 

impairments to mitochondrial function, ROS production and cell signalling. The data in this 

chapter demonstrated that flavonoids do not rescue age-related impairments to mitochondrial 

respiration. Further, EPI may inhibit indices of mitochondrial respiration (basal respiration and 

OXPHOS) in aged myoblasts. It was also determined that flavonoids do not play a significant 

role in regulating mitochondrial ROS emission, although, they do modulate the transcriptional 

responses of muscle cells. One transcript commonly upregulated by flavonoid treatment, in 

both muscle cell models, was NRF2, a transcription factor responsible for the regulation of 

multiple antioxidant and mitochondrial related genes. Study of EPI’s potential upstream 

signalling effects revealed augmented AMPK signalling, independent of NO bioavailability, 

which may contribute to induction of NRF2 in the presence of EPI. Notably, EPI evoked 

distinct signalling responses to those found in Chapter 4, implying cell-type specific effects of 

flavonoids. This observation implies that skeletal muscle and vascular endothelial cell models 

may possess different transporters or enzymes capable of facilitating flavonoid metabolism or 

transport into the cell. Alternatively, these cell types may or may not possess specific cell 

membrane receptors that perpetuate the downstream signalling effects of EPI in vitro. Either 

way, the findings in this chapter suggest that flavonoids, and EPI especially, may act through 

the mechanism of hormesis to promote favourable cell adaptations. 
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Metabolites represent the most basic level of biological regulation. To gain further knowledge 

of whether ageing and flavonoids are capable of modulating features of metabolism in vitro, 

Chapter 7 profiled metabolites of control and aged skeletal muscle cells in the absence and 

presence of flavonoids. The primary outcomes of this study highlighted that (replicative) 

ageing significantly alters the metabolome of control and aged skeletal myoblasts and 

myotubes. Metabolites involved in BCAA synthesis were increased in myoblasts by replicative 

ageing, whereas they were lowered in aged myotubes. Other metabolites involved in oxidative 

metabolism such as cis-Aconitate and L-carnitine were lower in aged vs. control myotubes, 

providing support to the idea that replicatively aged myotubes exhibit mitochondrial 

dysfunction. Interestingly, novel metabolites including dihydrothymine and myo-inositol 

demonstrated age-dependent regulation. Flavonoids were only partially capable of alleviating 

some of the age-related perturbations to the metabolome. For example, 5 µM EPI augmented 

L-carnitine abundance and attenuated myo-inositol levels in aged myotubes, but not to levels 

comparable to control. In spite of this, flavonoids evoked distinct, compound- and dose-

dependent effects on the muscle cell metabolome. Thus, even from a metabolite level 

perspective, cellular ageing and dietary flavonoids are capable of regulating energy 

metabolism.  

 

8.3 Future Directions  

8.3.1 Chapter 3: 

A number of avenues for future research are present following the findings in this study. Given 

the speeding of phase II V̇O2 kinetics with CF supplementation, future studies should 

investigate whether CFs modulate blood flow and muscle oxygenation in a similar 
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demographic. Additional studies investigating CFs impact upon V̇O2 kinetics should include 

acute, invasive measures of blood and/or muscle biomarkers after CF ingestion to help 

determine the mechanisms contributing to changes in V̇O2 kinetics. Considering that the 

ergogenic effect of CFs was exercise-intensity domain dependent, research is necessary to 

determine a potential fibre-type dependency mode of action of CFs on physiological responses 

to exercise. One noteworthy observation of this study was that V̇O2 kinetics were markedly 

faster during severe-intensity than moderate-intensity exercise. This observation contrasts 

expected responses to exercise in the moderate and severe-intensity domains and suggests that 

prior moderate-intensity exercise could prime phase II V̇O2 kinetics of severe-intensity 

exercise in physically inactive middle-aged adults. Evidently, this hypothesis should be tested 

in subsequent research efforts by assessing phase II V̇O2 kinetics during severe-intensity 

exercise following a priming bout of moderate-intensity exercise on separate occasions (to 

enhance the signal-to-noise ratio and avoid the confounding effects of prior severe-intensity 

exercise on phase II V̇O2 kinetics). 

 

8.3.2 Chapter 4: 

In light of the data obtained in this study, future studies could strive to replicate the findings in 

human arterial and/or microvascular endothelial cells, especially from sedentary older 

individuals. This would help establish whether flavonoids can induce similar endothelial 

adaptations in a more relevant cell type. One next research objective could be to determine 

whether flavonoids regulate the production of mitochondrial ROS, using more direct, 

sophisticated techniques. For instance, electron magnetic resonance spectroscopy (EPR) could 

be valuable in confirming whether flavonoids exert antioxidant effects in vascular endothelial 

cells. This technique enables precise and specific superoxide measurements to delineate 
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superoxide concentrations of mitochondrial origin (Sergey et al., 2007). In addition, further 

research efforts could consider whether flavonoids regulate the activity of antioxidant enzymes 

in vascular endothelial cells, which would help explain changes in ROS emission. Research 

could also investigate how flavonoids are transported in and out of the vascular endothelial 

cell, as very little information is available on their transportation. Moreover, research is 

necessary to investigate how EPI regulates ERK1/2 activity in vascular endothelial cells, and 

what potential downstream proteins are involved. Finally, further research is required to 

establish the mechanism by which EPI induces NRF2 expression, and whether the reported 

change in NRF2 gene expression is also associated with increased NRF2 activity. These studies 

would significantly advance knowledge of EPI’s mode of action and shed light on its potential 

therapeutic value in the context of health and disease. 

 

8.3.3 Chapter 5: 

One future step following the findings in this chapter could be to try and replicate the reported 

findings in cells that better reflect in vivo muscle tissue, such as primary human skeletal muscle 

cells. Another potential direction for future research is the use of transcriptomics to determine 

differences between control and replicatively aged myoblasts and myotubes at the 

transcriptional level. This would afford in depth, genome-wide insights into the molecular 

regulatory processes associated with cellular ageing, which were limited to a handful of genes 

in this thesis. One consideration for successive research is the use of more sophisticated 

techniques, such as EPR, to study the production of mitochondrial ROS in replicatively aged 

cells at greater resolution. This will add further credence to the findings reported here using a 

fluorescent probe. Finally, the objective of this study was to determine the effects of replicative 

ageing in two models, the myoblast and myotube. Future endeavours could compare 
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mitochondrial function and ROS production between these two models, which could highlight 

important considerations for subsequent research intending on using the C2C12 myoblast model. 

 

8.3.4 Chapter 6: 

Several steps could be taken following the findings obtained in this study. One first step could 

be to try and replicate the reported findings in cells that better reflect in vivo muscle tissue, 

such as primary human skeletal muscle cells, or cell co-culture systems (such as endothelial, 

adipose and skeletal muscle cells). Future studies could consider using flavonoid metabolites, 

rather than their parent compounds, to investigate flavonoid metabolite-dependent regulation 

of mitochondrial bioenergetics. Aside from using flavonoid metabolites, further research could 

also investigate whether nanomolar flavonoid concentrations impact muscle mitochondrial 

function as these concentrations may more likely be attained after consumption of flavonoid-

containing foods and beverages. This is supported by the dose-dependent effects of flavonoids 

reported here and in the published literature. Additional research could decipher whether 

skeletal muscle cells metabolise flavonoids in vitro and in vivo, and also, investigate how 

flavonoids are transported in and out of the muscle cell. Furthermore, it is also not currently 

known to what extent flavonoids reach skeletal muscle tissue after ingestion in vivo. 

Subsequent research using NMR or LC/MS metabolomics may reveal whether flavonoid 

metabolites accumulate in muscle tissue and at what concentrations, which would help guide 

further efforts at describing the efficacy of flavonoids in contributing to the maintenance of 

skeletal muscle health. One final possible avenue for subsequent research is the use of 

flavonoid cocktails, where multiple compounds are administered to cells in one bolus. This 

cocktail of flavonoids may better represent the pool of potential compounds reaching target 

tissues in vivo after the ingestion of flavonoid containing foods or beverages. 
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8.3.5 Chapter 7: 

This study was primarily exploratory in nature. Given the hypothesis-generating potential of 

the untargeted metabolomics pipeline, multiple avenues for future research have emerged. 

Firstly, it would be interesting to investigate whether the metabolome of young and aged 

primary human skeletal muscle cells diverges in a similar manner to that observed in control 

and replicatively aged murine skeletal muscle cells. Secondly, a handful of metabolites, 

including myo-inositol and dihydrothymine, demonstrated age-dependent effects in myoblast 

and myotube models. Given the scarcity of data available on these metabolites in the context 

of ageing skeletal muscle, further research will help describe the potential role for these 

metabolites in contributing to the ageing phenotype in skeletal muscle.  Following the observed 

changes in metabolite profiles with flavonoid treatment, further research is necessary to 

describe the potential regulation of specific metabolic pathways by flavonoids in skeletal 

muscle cells. For example, flavonoids tended to augment lactate abundance, which may be 

indicative of increased glycolysis and reduced reliance on OXPHOS. Further, some 

metabolites that showed age-dependent regulation were also modulated by flavonoid treatment. 

For example, Q and EPI attenuated the age-related increase in myo-inositol. Whereas only EPI 

partially alleviated the decline in L-carnitine observed in aged myotubes. Future research 

should resolve how flavonoid treatment changes the levels of the aforementioned metabolites, 

as this knowledge will help clarify the therapeutic value of flavonoids in alleviating age-related 

perturbations to energy metabolism. Besides these experimental leads, further research 

employing a similar study design using in vivo flavonoid metabolites would help decipher 

whether the flavonoid metabolites in circulation equally impact the metabolome of muscle 

tissue/cells. Moreover, future studies should determine whether nanomolar flavonoid 
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concentrations impact the metabolic signatures of skeletal muscle cells. Additionally, 

metabolite profiling of primary skeletal muscle cells in the absence and presence of flavonoids 

will help enhance the translatability of this research. An important consideration for future 

endeavours is the use of complementary analyses like metabolic flux analysis. Such an 

approach combines stable isotope tracing of metabolites with MS or NMR spectroscopy to help 

depict metabolic reaction capacities. This affords greater mechanistic insight into the dynamics 

of molecular metabolic reactions that may help explain differences in metabolite profiles found 

between experimental groups (Xu et al., 2020). Finally, it would be interesting to study whether 

changes in the metabolome in response to ageing or dietary flavonoids are coupled with higher 

levels of biological regulation, including the transcriptome and proteome. These insights would 

provide information on what might occur within a biological system in response to flavonoids, 

beyond a snapshot of what is currently happening or has happened at the metabolite level. 

 

8.4 Thesis Implications and conclusion 

Physical inactivity and advancing age are two major causes of poor health outcomes and non-

communicable diseases (Lim et al., 2012; Peterson et al., 2009). Strategies combatting the 

deleterious effects of inactivity and advancing age are vital for preserving functional capacity 

and independence into later life. One such strategy has been the use of bioactive nutritional 

compounds to enhance indices of cardiometabolic heath. Dietary flavonoids are considered 

essential for maintaining health across the life course, yet knowledge of their health effects is 

incomplete. This thesis has contributed original knowledge to the known health effects and 

modes of action associated with flavonoid supplementation. flavonoids demonstrably 

enhanced skeletal muscle and vascular endothelial cell function, at the level of metabolites, 

protein phosphorylation and mRNA expression. Given the potential for activation of cellular 
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signalling pathways and transcriptional activities in the presence of these naturally occurring 

compounds, flavonoids may hold therapeutic value in the context of sedentary ageing. Beyond 

ageing, flavonoids may also promote beneficial health benefits in younger individuals, as there 

were clear benefits reported in non-aged cells. These findings have raised exciting possibilities 

about flavonoids as signalling molecules at the cellular level, which requires further study. 

Furthermore, the data presented emphasise cell-dependent modes of action of flavonoids in 

vitro, which could reflect important differences in the potential efficacy of these compounds in 

different tissues in vivo. Aside from exciting mechanistic advancement, this thesis has 

demonstrated the potential power of flavonoid supplementation (cocoa-flavanols) in speeding 

phase II V̇O2 kinetics during moderate-intensity activity in physically inactive middle-aged 

adults. Therefore, flavonoid supplementation may help enhance the tolerance of daily life 

activities with sedentary ageing and ultimately improve quality of life. The challenge remains 

to fully describe flavonoid mechanisms of action, and their potential to alleviate the burden of 

physical inactivity and older age. 
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Table 9. 1 Genes of interest investigated and their known function. 

 

 
 
 
 

 

Figure 9. 1 Baseline CT values of genes of interest in control and aged muscle A) myoblasts 

and B) myotubes. Control and aged myoblast/myotube are denoted by solid black and grey 

bars, respectively. *P<0.05.
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Gene Function 
CAT Protect cells from the toxic effects of hydrogen peroxide 

DRP1 Mediates mitochondrial membrane fission 

eNOS Produces NO 

MFN2 Mediates mitochondrial clustering and fusion 

NOX4 Generates superoxide intracellularly upon formation of a complex with CYBA/p22phox 

NRF2 Transcription factor that plays a key role in the response to oxidative stress 

PGC-1α Transcriptional coactivator that regulates genes involved in energy metabolism 

PRKN Component of a multiprotein E3 ubiquitin ligase complex that mediates the targeting of 
substrate proteins for proteasomal degradation 

RPL13a Associated with ribosomes but is not required for canonical ribosome function 
(housekeeping gene) 

RP2ß  Encodes the second largest subunit of RNA polymerase II (housekeeping gene) 

SIRT1 NAD-dependent deacetylase that links transcriptional regulation to intracellular energetics 

SOD2 Destroys mitochondrial superoxide anion radicals 

TFAM Binds to the mitochondrial light strand promoter and functions in mitochondrial 
transcription regulation 
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Figure 9. 2 Heatmap representation of myotube mRNA responses (without eNOS) in the absence of presence of flavonoids. Fold changes (2-

ΔΔCT) in gene expression over 48 h presented as heat map. 
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Figure 9. 3 Phosphorylation of CaMKII at Thr286 is not detectable under control conditions 

in C2C12 myotubes and HUVECs. Representative images of pThr286-CaMKII (60, 50 kDa) in 

control and aged C2C12 myotubes and HUVECs under control conditions, alongside positive 

control (mouse brain extract prepared from whole brain tissue of adult mice intended for use 

as a positive control and supplied by Cell Signaling Technology). 

 
 
 

 

Figure 9. 4 Total eNOS is not detectable under control conditions in C2C12 myotubes. 

Representative images of eNOS (140 kDa) in control and aged C2C12 myotubes and HUVECs 

under control conditions, alongside positive control (Bovine arterial endothelial cells + 

vascular endothelial growth factor). 



 

 412 

 
Figure 9. 5 pThr172-AMPKα and AMPKα primary and secondary antibody optimisation 

under control conditions in HUVECs. Representative image of pThr172-AMPKα and AMPKα 

(62 kDa) with primary dilution 1:500 to 1:4,000 and secondary dilution 1:2,000 to 1:10,000. 

 
 
 

 
Figure 9. 6 pThr202/Tyr204-p44/42 MAPK and p44/42 MAPK primary and secondary 

antibody optimisation under control conditions in HUVECs. Representative image of 

pThr202/Tyr204-p44/42 MAPK and p44/42 MAPK (44/42 kDa) with primary dilution 1:1000 

to 1:8,000 and secondary dilution 1:2,000 to 1:10,000. 
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Figure 9. 7 pSer1177-eNOS and eNOS primary and secondary antibody optimisation under 

control conditions in HUVECs. Representative image of pSer1177-eNOS and eNOS (140 kDa) 

with primary dilution 1:500 to 1:4,000 and secondary dilution 1:2,000 to 1:10,000. 

 
 
 
 
 

 
Figure 9. 8 CaMKII primary and secondary antibody optimisation under control conditions in 

C2C12 myotubes. Representative image of CaMKII (60, 50 kDa) with primary dilution 1:500 

to 1:4,000 and secondary dilution 1:2,000 to 1:10,000. 
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Figure 9. 9 pThr172-AMPKα and AMPKα primary and secondary antibody optimisation 

under control conditions in C2C12 myotubes. Representative image of pThr172-AMPKα and 

AMPKα (62 kDa) with primary dilution 1:500 to 1:4,000 and secondary dilution 1:2,000 to 

1:10,000. 

 
 

 
 
Figure 9. 10 pThr202/Tyr204-p44/42 MAPK and p44/42 MAPK primary and secondary 

antibody optimisation under control conditions in C2C12 myotubes. Representative image of 

pThr202/Tyr204-p44/42 MAPK and p44/42 MAPK (44/42 kDa) with primary dilution 1:1000 

to 1:8,000 and secondary dilution 1:2,000 to 1:10,000. 
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Figure 9. 11 pSer1177-eNOS and eNOS primary and secondary antibody optimisation under 

control conditions in C2C12 myotubes. Representative image of pSer1177-eNOS and eNOS 

(140 kDa) with primary dilution 1:500 to 1:4,000 and secondary dilution 1:2,000 to 1:10,000. 
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Table 9. 2 Metabolites with VIP scores >1 and entered for pathway analysis for comparison of 

control and aged skeletal myoblasts under CTRL conditions.  

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change vs. control 

HMDB0000407 2-Hydroxy-3-methylbutyric acid 355/356 - 
HMDB0004096 5-Methoxyindoleacetate 40 ↑ 

HMDB0000042 Acetic acid 305 ↓ 
HMDB0001659 Acetone 281 ↓ 
HMDB0000034 Adenine 18/20 - 
HMDB0000043 Betaine 180 - 
HMDB0000033 Carnosine 46 ↑ 

HMDB0000097 Choline 186 ↓ 
HMDB0000072 cis-Aconitic acid 182 ↓ 
HMDB0000122 D-Glucose 108 - 

HMDB0000079 Dihydrothymine 336* ↑ 
HMDB0000086 Glycerophosphocholine 184 ↑ 
HMDB0000721 Glycylproline 303 ↑ 
HMDB0000128 Guanidoacetic acid 120 ↓ 
HMDB0000870 Histamine 33 ↑ 
HMDB0000161 L-Alanine 319 ↓ 
HMDB0000191 L-Aspartic acid 222 ↓ 

HMDB0000148 L-Glutamic acid 296 - 
HMDB0000641 L-Glutamine 258 ↑ 
HMDB0000172 L-Isoleucine 359 ↑ 
HMDB0000687 L-Leucine 308 ↑ 
HMDB0000159 L-Phenylalanine 36 ↑ 
HMDB0000187 L-Serine 98 - 
HMDB0000167 L-Threonine 144 ↑ 
HMDB0000929 L-Tryptophan 44 ↑ 
HMDB0000158 L-Tyrosine 45 - 
HMDB0000883 L-Valine 354 ↑ 
HMDB0000744 Malic acid 274 ↑ 
HMDB0000211 myo-Inositol 141 - 
HMDB0000812 N-Acetyl-L-aspartic acid 301 - 
HMDB0006029 N-Acetylglutamine 297 - 
HMDB0003357 N-Acetylornithine 312 ↑ 
HMDB0000446 N-Alpha-acetyllysine 313/314 - 
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↑ significantly higher and ↓ significantly lower in aged vs. control cells (P<0.05). – similar 

between control and aged. 

 

 
 

Table 9. 3 Metabolites with VIP scores >1 and entered for pathway analysis for comparison of 

control and aged skeletal myotubes under CTRL conditions. 

HMDB0031419 N-Nitrosodimethylamine 120/190 - 
HMDB0000210 Pantothenic acid 360 ↑ 
HMDB0000209 Phenylacetic acid 42 - 
HMDB0000243 Pyruvic acid 273 - 
HMDB0000251 Taurine 159 ↓ 
HMDB0000925 Trimethylamine N-oxide 180 ↓ 
HMDB0000286 Uridine diphosphate glucose 60 - 

HMDB0000935 
Uridine diphosphate glucuronic 
acid 31 ↑ 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change vs. 

control 
HMDB0000001 1-Methylhistidine 29 ↓ 
HMDB0000407 2-Hydroxy-3-methylbutyric acid 355/356 - 
HMDB0004096 5-Methoxyindoleacetate 40 - 
HMDB0000895 Acetylcholine 285/286 - 
HMDB0001890 Acetylcysteine 210 - 

HMDB0000034 Adenine 18/20 - 

HMDB0000097 Choline 186 ↑ 
HMDB0000072 cis-Aconitic acid 182 ↓ 
HMDB0000064 Creatine 103 - 

HMDB0000562 Creatinine 198 - 
HMDB0000079 Dihydrothymine 336/337 - 
HMDB0000092 Dimethylglycine 212 ↑ 
HMDB0000086 Glycerophosphocholine 184 ↓ 
HMDB0000115 Glycolic acid 101 ↑ 
HMDB0001273 Guanosine triphosphate 62/69 - 

HMDB0000201 L-Acetylcarnitine 182 - 

HMDB0000161 L-Alanine 319 ↓ 
HMDB0000062 L-Carnitine 266 ↓ 
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↑ significantly higher and ↓ significantly lower in aged vs. control cells (P<0.05). – similar 

between control and aged. 

 

 
Table 9. 4 Metabolites with VIP scores >1 and entered for pathway analysis for comparison of 

Q treated control skeletal myoblasts.   

HMDB0000641 L-Glutamine 258 - 
HMDB0000172 L-Isoleucine 359 ↓ 
HMDB0000687 L-Leucine 308 ↓ 
HMDB0000159 L-Phenylalanine 36 - 
HMDB0000929 L-Tryptophan 44 ↓ 
HMDB0000158 L-Tyrosine 45 ↑ 
HMDB0000883 L-Valine 354 ↑ 
HMDB0000211 myo-Inositol 141 ↑ 
HMDB0003357 N-Acetylornithine 312 ↓ 
HMDB0000446 N-Alpha-acetyllysine 313/314 ↑ 
HMDB0031419 N-Nitrosodimethylamine 120/190 - 
HMDB0001888 N,N-Dimethylformamide 200 ↓ 
HMDB0003337 Oxidized glutathione 282 ↑ 
HMDB0000210 Pantothenic acid 360 ↓ 
HMDB0000243 Pyruvic acid 273 ↑ 
HMDB0000251 Taurine 159 ↓ 
HMDB0000906 Trimethylamine 213 ↑ 

HMDB0000306 Tyramine 209 ↑ 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 

HMDB0000407 2-Hydroxy-3-methylbutyric 
acid 355/356 ↓ - 

HMDB0001659 Acetone 281 - - 
HMDB0000895 Acetylcholine 285/286 - - 
HMDB0001890 Acetylcysteine 210 - - 
HMDB0000532 Acetylglycine 129* ↓ - 
HMDB0000194 Anserine 129* ↓ ↓ 
HMDB0000056 Beta-Alanine 250 ↑ ↑ 
HMDB0000043 Betaine 105/180 - - 
HMDB0000097 Choline 186 ↓ - 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 

 
 
 
 
Table 9. 5 Metabolites with VIP scores >1 and entered for pathway analysis for comparison of 

Q treated aged skeletal myoblasts. 

HMDB0000072 cis-Aconitic acid 182 - - 
HMDB0000094 Citric acid 223 ↓ ↓ 
HMDB0000122 D-Glucose 108 ↓ - 
HMDB0000092 Dimethylglycine 212 ↑ ↑ 
HMDB0000123 Glycine 146 ↑ ↑ 
HMDB0000115 Glycolic acid 101 - - 
HMDB0000721 Glycylproline 303 - - 
HMDB0000191 L-Aspartic acid 222 ↓ ↓ 
HMDB0000190 L-Lactic acid 91 ↑ ↑ 
HMDB0000187 L-Serine 98 - - 
HMDB0000167 L-Threonine 144 - - 
HMDB0000744 Malic acid 274 - - 
HMDB0000211 myo-Inositol 141 ↓ ↓ 
HMDB0006029 N-Acetylglutamine 297 - - 
HMDB0001888 N,N-Dimethylformamide 200 ↓ - 
HMDB0003337 Oxidized glutathione 282 - - 
HMDB0001565 Phosphorylcholine 87 - - 
HMDB0000906 Trimethylamine 213 ↑ ↑ 
HMDB0000306 Tyramine 209 - - 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 

HMDB0000407 
2-Hydroxy-3-methylbutyric 
acid 355/356 - ↑ 

HMDB0000034 Adenine 18/20 - - 
HMDB0001341 ADP 8 - - 
HMDB0000056 Beta-Alanine 250 ↑ ↑ 
HMDB0000043 Betaine 105/180 - - 
HMDB0000094 Citric acid 223 ↓ ↓ 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 
 
 
 
Table 9. 6 Metabolites with VIP scores >1 and entered for pathway analysis for comparison of 

Q treated control skeletal myotubes.  

HMDB0000562 Creatinine 198 - - 
HMDB0000660 D-Fructose 92 - - 
HMDB0000122 D-Glucose 108 - ↑ 

HMDB0000163 D-Maltose 110 - - 
HMDB0000108 Ethanol 338 ↓ ↓ 
HMDB0000123 Glycine 146 - ↑ 
HMDB0000863 Isopropyl alcohol 340/342 - - 
HMDB0000161 L-Alanine 319 - ↓ 
HMDB0000148 L-Glutamic acid 296 - - 
HMDB0000190 L-Lactic acid 91 ↑ ↑ 

HMDB0000687 L-Leucine 308 - - 
HMDB0000167 L-Threonine 144 - - 
HMDB0000883 L-Valine 354 - - 
HMDB0000211 myo-Inositol 141 ↓ ↓ 
HMDB0031419 N-Nitrosodimethylamine 120/190 - - 
HMDB0001565 Phosphorylcholine 87 - - 
HMDB0000243 Pyruvic acid 273 - - 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 

HMDB0000407 
2-Hydroxy-3-methylbutyric 
acid 

355/356 - - 

HMDB0000538 Adenosine triphosphate 53 - - 
HMDB0001341 ADP 8 - ↓ 
HMDB0000043 Betaine 105/180 - - 
HMDB0000072 cis-Aconitic acid 182* - - 

HMDB0000094 Citric acid 223 - ↓ 

HMDB0000660 D-Fructose 92 - - 
HMDB0000079 Dihydrothymine 336/337 - - 
HMDB0000086 Glycerophosphocholine 184 - - 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 

 
 
 
 
Table 9. 7 Metabolites with VIP scores >1 and entered for pathway analysis for comparison of 

Q treated aged skeletal myotubes.   

HMDB0000123 Glycine 146 ↑ ↑ 
HMDB0000201 L-Acetylcarnitine 182 - - 
HMDB0000161 L-Alanine 319 - ↓ 
HMDB0000191 L-Aspartic acid 222 - - 
HMDB0000641 L-Glutamine 258 - - 
HMDB0000172 L-Isoleucine 359 - - 

HMDB0000190 L-Lactic acid 91 - ↑ 

HMDB0000687 L-Leucine 308 - - 
HMDB0000167 L-Threonine 144 - ↓ 
HMDB0000929 L-Tryptophan 44 - - 
HMDB0000158 L-Tyrosine 45 ↑ ↑ 

HMDB0000883 L-Valine 354 - - 
HMDB0000211 myo-Inositol 141 - - 
HMDB0006029 N-Acetylglutamine 297 - - 
HMDB0003357 N-Acetylornithine 312 - - 
HMDB0031419 N-Nitrosodimethylamine 120/190 - - 
HMDB0000902 NAD 3 - - 
HMDB0001565 Phosphorylcholine 87 ↓ ↓ 
HMDB0000243 Pyruvic acid 273 ↓ - 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 
HMDB0000895 Acetylcholine 285/286 - - 
HMDB0000538 Adenosine triphosphate 53 - - 
HMDB0000056 Beta-Alanine 250 - ↑ 
HMDB0000097 Choline 186 - ↓ 
HMDB0000094 Citric acid 223 - - 
HMDB0000064 Creatine 103 - - 

HMDB0000163 D-Maltose 110 - ↓ 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 
 
 
 
Table 9. 8 Metabolites with VIP scores >1 and entered for pathway analysis for comparison of 

EGCG treated control skeletal myoblasts.    

HMDB0000086 Glycerophosphocholine 184 - - 

HMDB0000721 Glycylproline 303 - - 

HMDB0000161 L-Alanine 319 - - 
HMDB0000148 L-Glutamic acid 296 - - 
HMDB0000641 L-Glutamine 258 - ↓ 
HMDB0000187 L-Serine 98 - - 

HMDB0000167 L-Threonine 144 - - 
HMDB0000744 Malic acid 274 - - 
HMDB0000211 myo-Inositol 141 ↓ ↓ 

HMDB0000812 N-Acetyl-L-aspartic acid 301 - ↑ 
HMDB0006029 N-Acetylglutamine 297 - ↑ 

HMDB0000446 N-Alpha-acetyllysine 313/314 - - 
HMDB0031419 N-Nitrosodimethylamine 120/190 - - 
HMDB0001888 N,N-Dimethylformamide 200 - - 
HMDB0001565 Phosphorylcholine 87 ↓ ↓ 
HMDB0000296 Uridine 88 - - 
HMDB0000286 Uridine diphosphate glucose 60 - - 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 
HMDB0000001 1-Methylhistidine 29 ↓ ↓ 

HMDB0000407 
2-Hydroxy-3-methylbutyric 
acid 355/356 - - 

HMDB0004096 5-Methoxyindoleacetate 40 - - 
HMDB0000532 Acetylglycine 129 - ↑ 
HMDB0001341 ADP 8 - ↓ 
HMDB0000043 Betaine 105/180 - - 

HMDB0000033 Carnosine 46 - - 
HMDB0000094 Citric acid 223 - - 
HMDB0000064 Creatine 103 - ↑ 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 

 
 
 
 

HMDB0000660 D-Fructose 92 - ↑ 
HMDB0000163 D-Maltose 110 ↑ ↑ 
HMDB0000092 Dimethylglycine 212 - ↓ 
HMDB0000108 Ethanol 338 - ↓ 
HMDB0000134 Fumaric acid 48 - ↓ 
HMDB0000086 Glycerophosphocholine 101 - ↓ 

HMDB0000870 Histamine 184 - ↓ 

HMDB0000863 Isopropyl alcohol 340/342 - - 
HMDB0000172 L-Isoleucine 359 - ↓ 
HMDB0000190 L-Lactic acid 91 ↑ ↑ 
HMDB0000687 L-Leucine 308 - ↓ 

HMDB0000159 L-Phenylalanine 36 - - 
HMDB0000187 L-Serine 98 - - 
HMDB0000167 L-Threonine 144 ↓ ↓ 
HMDB0000929 L-Tryptophan 44 - - 
HMDB0000158 L-Tyrosine 45 - - 
HMDB0000883 L-Valine 354 - - 
HMDB0000744 Malic acid 274 ↑ - 
HMDB0000211 myo-Inositol 141 ↑ ↑ 
HMDB0000217 NADP 76 - - 
HMDB0003337 Oxidized glutathione 282 - - 
HMDB0000209 Phenylacetic acid 42 - - 
HMDB0001511 Phosphocreatine 199 - - 
HMDB0001565 Phosphorylcholine 87 ↑ ↑ 
HMDB0000251 Taurine 159 -  
HMDB0000906 Trimethylamine 213 - ↓ 
HMDB0000925 Trimethylamine N-oxide 180 - ↑ 
HMDB0000306 Tyramine 209 - ↓ 
HMDB0000296 Uridine 88 - - 

HMDB0000935 
Uridine diphosphate 
glucuronic acid 

31 - ↓ 
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Table 9. 9 Metabolites with VIP scores >1 and entered for pathway analysis for comparison of 

EGCG treated aged skeletal myoblasts.  

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 
HMDB0000001 1-Methylhistidine 29 - - 
HMDB0000479 3-Methylhistidine 196/197 - - 
HMDB0004096 5-Methoxyindoleacetate 40 - - 
HMDB0001890 Acetylcysteine 210 - - 
HMDB0000194 Anserine 129 - - 
HMDB0000043 Betaine 105/180 - - 

HMDB0000072 cis-Aconitic acid 182 - - 
HMDB0000094 Citric acid 223 ↓ ↓ 
HMDB0000122 D-Glucose 108 - - 

HMDB0000079 Dihydrothymine 337/337 - - 
HMDB0000108 Ethanol 338 - ↓ 
HMDB0000134 Fumaric acid 48 - - 
HMDB0000086 Glycerophosphocholine 184 - - 
HMDB0000128 Guanidoacetic acid 120 - - 
HMDB0000863 Isopropyl alcohol 340/342 - - 
HMDB0000201 L-Acetylcarnitine 182 - - 

HMDB0000161 L-Alanine 319 - - 
HMDB0000062 L-Carnitine 266 - - 
HMDB0000148 L-Glutamic acid 296 - - 
HMDB0000172 L-Isoleucine 359 - - 
HMDB0000190 L-Lactic acid 91 ↑ ↑ 
HMDB0000687 L-Leucine 308 - - 
HMDB0000744 Malic acid 274 - - 
HMDB0000211 myo-Inositol 141 - ↑ 
HMDB0000812 N-Acetyl-L-aspartic acid 301 -  
HMDB0003357 N-Acetylornithine 312 - - 
HMDB0000446 N-Alpha-acetyllysine 313/314 - - 
HMDB0031419 N-Nitrosodimethylamine 120/190 - - 
HMDB0001888 N,N-Dimethylformamide 200 ↑ - 
HMDB0000210 Pantothenic acid 360 - - 
HMDB0001511 Phosphocreatine 199 - - 
HMDB0001565 Phosphorylcholine 87 - ↑ 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 
 
 
 
 
Table 9. 10 Metabolites with VIP scores >1 and entered for pathway analysis for comparison 

of EGCG treated control myotubes. 

HMDB0000251 Taurine 159 - - 
HMDB0000925 Trimethylamine N-oxide 180 - - 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 
HMDB0000001 1-Methylhistidine 29 ↓ ↓ 

HMDB0000407 
2-Hydroxy-3-methylbutyric 
acid 355/356 - - 

HMDB0004096 5-Methoxyindoleacetate 40 - - 
HMDB0000895 Acetylcholine 285/286 - - 
HMDB0001890 Acetylcysteine 210 ↓ - 
HMDB0000034 Adenine 18/20 - - 

HMDB0000045 Adenosine monophosphate 16 - - 
HMDB0001341 ADP 8 - ↓ 
HMDB0000056 Beta-Alanine 250 - - 

HMDB0000043 Betaine 105/180 - - 
HMDB0000033 Carnosine 46 - - 
HMDB0000072 cis-Aconitic acid 182 - - 
HMDB0000064 Creatine 103 - - 
HMDB0000562 Creatinine 198 - - 
HMDB0000660 D-Fructose 92 - - 
HMDB0000122 D-Glucose 108 - - 

HMDB0000163 D-Maltose 110 - - 
HMDB0000092 Dimethylglycine 212 ↓ - 
HMDB0000134 Fumaric acid 48 - - 
HMDB0000115 Glycolic acid 101 - - 
HMDB0000128 Guanidoacetic acid 120 - - 
HMDB0000870 Histamine 33 - - 
HMDB0000201 L-Acetylcarnitine 182 - - 
HMDB0000161 L-Alanine 319 - - 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 
 
 

Table 9. 11 Metabolites with VIP scores >1 and entered for pathway analysis for comparison 

of EGCG treated aged skeletal myotubes. 

HMDB0000172 L-Isoleucine 359 - - 
HMDB0000687 L-Leucine 308 - - 
HMDB0000159 L-Phenylalanine 36 - - 
HMDB0000167 L-Threonine 144 ↓ ↓ 
HMDB0000929 L-Tryptophan 44 - - 
HMDB0000158 L-Tyrosine 45 - - 
HMDB0000902 NAD 3 - ↓ 
HMDB0003337 Oxidized glutathione 282 - - 
HMDB0000209 Phenylacetic acid 42 - - 
HMDB0000906 Trimethylamine 213 ↓ ↓ 
HMDB0000306 Tyramine 209 ↓ ↓ 

HMDB0000935 
Uridine diphosphate 
glucuronic acid 31 - - 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 

HMDB0000407 
2-Hydroxy-3-methylbutyric 
acid 355/356 - - 

HMDB0000479 3-Methylhistidine 196/197 - - 
HMDB0004096 5-Methoxyindoleacetate 40 - - 
HMDB0001890 Acetylcysteine 210 - - 
HMDB0000034 Adenine 18/20 - - 
HMDB0000045 Adenosine monophosphate 16 - - 

HMDB0000056 Beta-Alanine 250 - - 
HMDB0000033 Carnosine 46 - - 
HMDB0000097 Choline 186 - - 

HMDB0000072 cis-Aconitic acid 182 - - 
HMDB0000064 Creatine 103 - - 

HMDB0000660 D-Fructose 92 - - 
HMDB0000163 D-Maltose 110 - - 
HMDB0000079 Dihydrothymine 336/337 - - 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 
 

Table 9. 12 Metabolites with VIP scores >1 and entered for pathway analysis for comparison 

of EPI treated control skeletal myoblasts.    

HMDB0000142 Formic acid 9 - - 

HMDB0000134 Fumaric acid 48 - - 

HMDB0000123 Glycine 146 - - 
HMDB0000721 Glycylproline 303 - - 
HMDB0000870 Histamine 33 - - 
HMDB0000201 L-Acetylcarnitine 182 - - 

HMDB0000161 L-Alanine 319 - - 
HMDB0000062 L-Carnitine 266 - - 
HMDB0000641 L-Glutamine 258 - - 
HMDB0000172 L-Isoleucine 359 - - 
HMDB0000159 L-Phenylalanine 36 - - 
HMDB0000167 L-Threonine 144 - - 
HMDB0000929 L-Tryptophan 44 - - 
HMDB0000158 L-Tyrosine 45 - - 
HMDB0000744 Malic acid 274 - - 
HMDB0000211 myo-Inositol 141 - - 
HMDB0003357 N-Acetylornithine 312 - - 
HMDB0000446 N-Alpha-acetyllysine 313/314 - - 
HMDB0031419 N-Nitrosodimethylamine 120/190 - - 
HMDB0001888 N,N-Dimethylformamide 200 - - 
HMDB0000217 NADP 76 - - 
HMDB0000210 Pantothenic acid 360 - - 
HMDB0000906 Trimethylamine 213 - - 
HMDB0000306 Tyramine 209 - - 
HMDB0000828 Ureidosuccinic acid 85 - - 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 
HMDB0000001 1-Methylhistidine 29 ↓ ↓ 
HMDB0000479 3-Methylhistidine 196/197 - - 
HMDB0001890 Acetylcysteine 210 - ↓ 
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↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

  

 
 

HMDB0000034 Adenine 18/20 - - 
HMDB0000538 Adenosine triphosphate 53 - - 
HMDB0001341 ADP 8 - ↓ 

HMDB0000056 Beta-Alanine 250 - - 
HMDB0000043 Betaine 105/180 - - 
HMDB0000097 Choline 186 - - 

HMDB0000072 cis-Aconitic acid 182 - - 
HMDB0000094 Citric acid 223 - - 
HMDB0000562 Creatinine 198 - - 
HMDB0000079 Dihydrothymine 336/337 - - 

HMDB0000092 Dimethylglycine 212 - ↓ 
HMDB0000108 Ethanol 338 - - 
HMDB0000142 Formic acid 9 - - 

HMDB0000086 Glycerophosphocholine 184 - - 
HMDB0000123 Glycine 146 - - 

HMDB0000115 Glycolic acid 101 - - 
HMDB0001273 Guanosine triphosphate 62/69 - - 
HMDB0000201 L-Acetylcarnitine 182 - - 
HMDB0000161 L-Alanine 319 - - 
HMDB0000191 L-Aspartic acid 222 - - 
HMDB0000148 L-Glutamic acid 296 ↑ ↑ 
HMDB0000687 L-Leucine 308 - ↓ 
HMDB0000744 Malic acid 274 - - 
HMDB0000211 myo-Inositol 141 - - 
HMDB0006029 N-Acetylglutamine 297 - - 
HMDB0031419 N-Nitrosodimethylamine 120/190 - - 
HMDB0003337 Oxidized glutathione 282 - - 
HMDB0001511 Phosphocreatine 199 - - 
HMDB0000251 Taurine 159 - - 
HMDB0000906 Trimethylamine 213 - ↓ 
HMDB0000306 Tyramine 209 - ↓ 
HMDB0000828 Ureidosuccinic acid 85 - - 
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Table 9. 13 Metabolites with VIP scores >1 and entered for pathway analysis for comparison 

of EPI treated aged myoblasts.   

↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 
HMDB0000001 1-Methylhistidine 29 - ↓ 
HMDB0001659 Acetone 281 - - 
HMDB0000034 Adenine 18/20 - - 
HMDB0000045 Adenosine monophosphate 16 - - 
HMDB0001341 ADP 8 - - 
HMDB0000043 Betaine 105/180 - ↓ 

HMDB0000097 Choline 186 - - 
HMDB0000072 cis-Aconitic acid 182 - ↑ 
HMDB0000094 Citric acid 223 ↓ ↓ 

HMDB0000562 Creatinine 198 - - 
HMDB0000122 D-Glucose 108 - - 
HMDB0000108 Ethanol 338 ↓ ↓ 
HMDB0000086 Glycerophosphocholine 184 - - 
HMDB0000115 Glycolic acid 101 - - 
HMDB0000863 Isopropyl alcohol 340/342 - - 
HMDB0000201 L-Acetylcarnitine 182 - - 

HMDB0000191 L-Aspartic acid 222 - - 
HMDB0000062 L-Carnitine 266 - - 
HMDB0000148 L-Glutamic acid 296 - - 
HMDB0000190 L-Lactic acid 91 ↑ ↑ 
HMDB0000744 Malic acid 274 - - 
HMDB0000211 myo-Inositol 141 - - 
HMDB0000812 N-Acetyl-L-aspartic acid 301 - - 
HMDB0006029 N-Acetylglutamine 297 ↑ - 
HMDB0031419 N-Nitrosodimethylamine 120/190 - - 
HMDB0001888 N,N-Dimethylformamide 200 - - 
HMDB0001511 Phosphocreatine 199 - - 
HMDB0000251 Taurine 159 - - 

HMDB0000935 
Uridine diphosphate 
glucuronic acid 31 - - 
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Table 9. 14 Metabolites with VIP scores >1 and entered for pathway analysis for comparison 

of EPI treated control myotubes.    

↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 
HMDB0000001 1-Methylhistidine 29 ↓ ↓ 
HMDB0004096 5-Methoxyindoleacetate 40 - - 
HMDB0001659 Acetone 281 - - 
HMDB0000034 Adenine 18/20 - ↑ 
HMDB0001341 ADP 8 ↓ ↓ 
HMDB0000056 Beta-Alanine 250 - - 

HMDB0000072 cis-Aconitic acid 182 - - 
HMDB0000079 Dihydrothymine 336/337 - - 
HMDB0000092 Dimethylglycine 212 ↓ ↓ 

HMDB0000108 Ethanol 338 - - 
HMDB0000134 Fumaric acid 48 - - 
HMDB0000086 Glycerophosphocholine 184 - - 
HMDB0000115 Glycolic acid 101 - - 
HMDB0000863 Isopropyl alcohol 340/342 - ↑ 
HMDB0000201 L-Acetylcarnitine 182 - - 
HMDB0000161 L-Alanine 319 - - 

HMDB0000172 L-Isoleucine 359 - - 
HMDB0000167 L-Threonine 144 - - 
HMDB0000929 L-Tryptophan 44 - - 
HMDB0000158 L-Tyrosine 45 - - 
HMDB0000883 L-Valine 354 - - 
HMDB0000211 myo-Inositol 141 - - 
HMDB0000902 NAD 3 - - 
HMDB0000906 Trimethylamine 213 ↓ ↓ 
HMDB0000306 Tyramine 209 - - 

HMDB0000286 
Uridine diphosphate 
glucose 60 - - 

HMDB0000935 
Uridine diphosphate 
glucuronic acid 31 - - 
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Table 9. 15 Metabolites with VIP scores >1 and entered for pathway analysis for comparison 

of EPI treated aged skeletal myotubes. 

↑ significantly higher and ↓ significantly lower vs. untreated CTRL (P<0.05). – similar between 

conditions. 

 

HMDB Metabolite Bin 
[*Overlap] 

Direction of 
change: 5 µM 

vs. CTRL 

Direction 
of change: 
10 µM vs. 

CTRL 
HMDB0000001 1-Methylhistidine 29 ↓ - 

HMDB0000407 
2-Hydroxy-3-methylbutyric 
acid 355/356 - - 

HMDB0004096 5-Methoxyindoleacetate 40 - - 
HMDB0001341 ADP 8 - - 
HMDB0000056 Beta-Alanine 250 - - 

HMDB0000097 Choline 186 - - 

HMDB0000072 cis-Aconitic acid 182 ↑ - 
HMDB0000064 Creatine 103 - - 
HMDB0000163 D-Maltose 110 - - 

HMDB0000079 Dihydrothymine 336/337 - - 
HMDB0000092 Dimethylglycine 212 - - 
HMDB0000123 Glycine 146 - - 
HMDB0000201 L-Acetylcarnitine 182 - - 
HMDB0000161 L-Alanine 319 - - 
HMDB0000191 L-Aspartic acid 222 - - 

HMDB0000062 L-Carnitine 266 ↑ - 

HMDB0000172 L-Isoleucine 359 - - 
HMDB0000190 L-Lactic acid 91 - - 
HMDB0000687 L-Leucine 308 - - 
HMDB0000159 L-Phenylalanine 36 - - 

HMDB0000167 L-Threonine 144 - - 
HMDB0000929 L-Tryptophan 44 - - 
HMDB0000158 L-Tyrosine 45 - - 
HMDB0000883 L-Valine 354 - - 
HMDB0000211 myo-Inositol 141 ↓ - 
HMDB0031419 N-Nitrosodimethylamine 120/190 - - 
HMDB0003337 Oxidized glutathione 282 - - 
HMDB0000209 Phenylacetic acid 42 - - 
HMDB0000906 Trimethylamine 213 - - 
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Table 9. 16 Statistical analyses of control and aged myoblast metabolites following Q 

treatment. 

Metabolite Effect P P<0.05 P.significance 
Formic acid Dose 0.672  ns 
Formic acid Age 0.000473 * *** 
Formic acid Dose×Age 0.325  ns 
Carnosine Dose 0.525  ns 
Carnosine Age 0.000177 * *** 
Carnosine Dose×Age 0.074  ns 
Fumaric acid Dose 0.177  ns 
Fumaric acid Age 0.723  ns 
Fumaric acid Dose×Age 0.244  ns 
D-Fructose Dose 0.003 * ** 
D-Fructose Age 0.02 * * 
D-Fructose Dose×Age 0.074  ns 
Glycolic acid Dose 0.036 * * 
Glycolic acid Age 0.585  ns 
Glycolic acid Dose×Age 0.988  ns 
Guanidoacetic acid Dose 0.927  ns 
Guanidoacetic acid Age 0.008 * ** 
Guanidoacetic acid Dose×Age 0.701  ns 
Glycine Dose 4.99E-05 * **** 
Glycine Age 0.103  ns 
Glycine Dose×Age 0.142  ns 
cis-Aconitic acid/L-
Acetylcarnitine Dose 0.812  ns 
cis-Aconitic acid/L-
Acetylcarnitine Age 0.156  ns 
cis-Aconitic acid/L-
Acetylcarnitine Dose×Age 0.138  ns 
Choline Dose 0.909  ns 
Choline Age 0.855  ns 
Choline Dose×Age 0.24  ns 
Acetone Dose 0.096  ns 
Acetone Age 0.002 * ** 
Acetone Dose×Age 0.661  ns 
Acetic acid Dose 0.421  ns 
Acetic acid Age 6.51E-05 * **** 
Acetic acid Dose×Age 0.736  ns 
Dimethylglycine Dose 0.108  ns 
Dimethylglycine Age 0.511  ns 
Dimethylglycine Dose×Age 0.338  ns 
Acetylglycine Dose 0.806  ns 
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Acetylglycine Age 0.203  ns 
Acetylglycine Dose×Age 0.047 * * 
N-Acetyl-L-aspartic 
acid Dose 0.492  ns 
N-Acetyl-L-aspartic 
acid Age 0.076  ns 
N-Acetyl-L-aspartic 
acid Dose×Age 0.659  ns 
Trimethylamine Dose 0.131  ns 
Trimethylamine Age 0.795  ns 
Trimethylamine Dose×Age 0.311  ns 
Trimethylamine N-
oxide Dose 0.178  ns 
Trimethylamine N-
oxide Age 4.62E-16 * **** 
Trimethylamine N-
oxide Dose×Age 0.877  ns 
NN-
Dimethylformamide Dose 0.377  ns 
NN-
Dimethylformamide Age 0.245  ns 
NN-
Dimethylformamide Dose×Age 0.362  ns 
5-
Methoxyindoleacetate Dose 0.477  ns 
5-
Methoxyindoleacetate Age 1.73E-06 * **** 
5-
Methoxyindoleacetate Dose×Age 0.303  ns 
N-Acetylglutamine Dose 0.057  ns 
N-Acetylglutamine Age 0.003 * ** 
N-Acetylglutamine Dose×Age 0.817  ns 
ADP Dose 0.002 * ** 
ADP Age 0.002 * ** 
ADP Dose×Age 0.171  ns 
Adenine Dose 0.571  ns 
Adenine Age 0.00013 * *** 
Adenine Dose×Age 0.852  ns 
Phosphocreatine Dose 0.693  ns 
Phosphocreatine Age 0.318  ns 
Phosphocreatine Dose×Age 0.145  ns 
Creatine Dose 0.286  ns 
Creatine Age 0.003 * ** 
Creatine Dose×Age 0.688  ns 
Creatinine Dose 0.537  ns 
Creatinine Age 0.257  ns 
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Creatinine Dose×Age 0.174  ns 
Pyruvic acid Dose 0.008 * ** 
Pyruvic acid Age 0.194  ns 
Pyruvic acid Dose×Age 0.644  ns 
Acetylcholine Dose 0.337  ns 
Acetylcholine Age 0.363  ns 
Acetylcholine Dose×Age 0.327  ns 
N-Alpha-acetyllysine Dose 0.072  ns 
N-Alpha-acetyllysine Age 0.093  ns 
N-Alpha-acetyllysine Dose×Age 0.671  ns 
Dihydrothymine Dose 0.026 * * 
Dihydrothymine Age 3.15E-07 * **** 
Dihydrothymine Dose×Age 0.786  ns 
Isopropyl alcohol Dose 0.005 * ** 
Isopropyl alcohol Age 9.44E-14 * **** 
Isopropyl alcohol Dose×Age 0.034 * * 
Betaine Dose 0.048 * * 
Betaine Age 0.002 * ** 
Betaine Dose×Age 0.464  ns 
2-Hydroxy-3-
methylbutyric acid Dose 0.001 * *** 
2-Hydroxy-3-
methylbutyric acid Age 0.257  ns 
2-Hydroxy-3-
methylbutyric acid Dose×Age 0.004 * ** 
3-Methylhistidine Dose 0.204  ns 
3-Methylhistidine Age 2.30E-10 * **** 
3-Methylhistidine Dose×Age 0.125  ns 
Guanosine triphosphate Dose 0.255  ns 
Guanosine triphosphate Age 0.065  ns 
Guanosine triphosphate Dose×Age 0.958  ns 
N-
Nitrosodimethylamine Dose 0.085  ns 
N-
Nitrosodimethylamine Age 0.814  ns 
N-
Nitrosodimethylamine Dose×Age 0.187  ns 
L-Tyrosine Dose 0.045 * * 
L-Tyrosine Age 1.44E-06 * **** 
L-Tyrosine Dose×Age 0.894  ns 
Glycerophosphocholin
e Dose 0.371  ns 
Glycerophosphocholin
e Age 2.24E-06 * **** 
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Glycerophosphocholin
e Dose×Age 0.362  ns 
Phosphorylcholine Dose 0.905  ns 
Phosphorylcholine Age 0.015 * * 
Phosphorylcholine Dose×Age 0.8  ns 
Anserine Dose 2.02E-06 * **** 
Anserine Age 0.178  ns 
Anserine Dose×Age 0.004 * ** 
1-Methylhistidine Dose 0.256  ns 
1-Methylhistidine Age 0.174  ns 
1-Methylhistidine Dose×Age 0.364  ns 
Uridine diphosphate 
glucuronic acid Dose 0.901  ns 
Uridine diphosphate 
glucuronic acid Age 5.89E-06 * **** 
Uridine diphosphate 
glucuronic acid Dose×Age 0.526  ns 
L-Threonine Dose 0.001 * *** 
L-Threonine Age 0.000423 * *** 
L-Threonine Dose×Age 0.521  ns 
L-Lactic acid Dose 8.59E-20 * **** 
L-Lactic acid Age 1.60E-10 * **** 
L-Lactic acid Dose×Age 2.80E-08 * **** 
L-Alanine Dose 3.99E-05 * **** 
L-Alanine Age 4.70E-14 * **** 
L-Alanine Dose×Age 0.069  ns 
L-Carnitine Dose 0.315  ns 
L-Carnitine Age 0.138  ns 
L-Carnitine Dose×Age 0.458  ns 
Acetylcysteine Dose 0.204  ns 
Acetylcysteine Age 0.246  ns 
Acetylcysteine Dose×Age 0.44  ns 
N-Acetylornithine Dose 0.024 * * 
N-Acetylornithine Age 1.06E-09 * **** 
N-Acetylornithine Dose×Age 0.078  ns 
Ethanol Dose 0.005 * ** 
Ethanol Age 0.003 * ** 
Ethanol Dose×Age 0.328  ns 
Pantothenic acid Dose 0.004 * ** 
Pantothenic acid Age 0.000173 * *** 
Pantothenic acid Dose×Age 0.857  ns 
Adenosine triphosphate Dose 0.045 * * 
Adenosine triphosphate Age 0.897  ns 
Adenosine triphosphate Dose×Age 0.958  ns 
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Taurine Dose 0.208  ns 
Taurine Age 9.07E-15 * **** 
Taurine Dose×Age 0.763  ns 
Tyramine Dose 0.121  ns 
Tyramine Age 0.392  ns 
Tyramine Dose×Age 0.433  ns 
L-Tryptophan Dose 0.437  ns 
L-Tryptophan Age 8.94E-07 * **** 
L-Tryptophan Dose×Age 0.641  ns 
Histamine Dose 0.469  ns 
Histamine Age 8.37E-05 * **** 
Histamine Dose×Age 0.214  ns 
L-Phenylalanine Dose 0.478  ns 
L-Phenylalanine Age 2.38E-07 * **** 
L-Phenylalanine Dose×Age 0.21  ns 
L-Serine Dose 0.029 * * 
L-Serine Age 0.002 * ** 
L-Serine Dose×Age 0.025 * * 
Beta-Alanine Dose 6.58E-06 * **** 
Beta-Alanine Age 5.35E-06 * **** 
Beta-Alanine Dose×Age 0.052  ns 
Malic acid Dose 0.074  ns 
Malic acid Age 0.43  ns 
Malic acid Dose×Age 0.303  ns 
L-Valine Dose 0.128  ns 
L-Valine Age 2.79E-12 * **** 
L-Valine Dose×Age 0.169  ns 
Uridine diphosphate 
glucose Dose 0.054  ns 
Uridine diphosphate 
glucose Age 0.015 * * 
Uridine diphosphate 
glucose Dose×Age 0.852  ns 
Uridine Dose 0.637  ns 
Uridine Age 0.943  ns 
Uridine Dose×Age 0.802  ns 
L-Aspartic acid Dose 0.000156 * *** 
L-Aspartic acid Age 0.011 * * 
L-Aspartic acid Dose×Age 0.019 * * 
NADP Dose 0.581  ns 
NADP Age 0.953  ns 
NADP Dose×Age 0.14  ns 
Glycylproline Dose 0.076  ns 
Glycylproline Age 0.000214 * *** 
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Glycylproline Dose×Age 0.917  ns 
Adenosine 
monophosphate Dose 0.978  ns 
Adenosine 
monophosphate Age 0.799  ns 
Adenosine 
monophosphate Dose×Age 0.48  ns 
Phenylacetic acid Dose 0.367  ns 
Phenylacetic acid Age 0.000175 * *** 
Phenylacetic acid Dose×Age 0.85  ns 
D-Maltose Dose 0.009 * ** 
D-Maltose Age 0.418  ns 
D-Maltose Dose×Age 0.203  ns 
L-Isoleucine Dose 0.636  ns 
L-Isoleucine Age 1.05E-09 * **** 
L-Isoleucine Dose×Age 0.347  ns 
Citric acid Dose 7.31E-10 * **** 
Citric acid Age 0.004 * ** 
Citric acid Dose×Age 0.769  ns 
L-Leucine Dose 0.015 * * 
L-Leucine Age 0.000142 * *** 
L-Leucine Dose×Age 0.705  ns 
Ureidosuccinic acid Dose 0.709  ns 
Ureidosuccinic acid Age 0.696  ns 
Ureidosuccinic acid Dose×Age 0.669  ns 
myo-Inositol Dose 1.06E-08 * **** 
myo-Inositol Age 8.25E-05 * **** 
myo-Inositol Dose×Age 0.952  ns 
NAD Dose 0.629  ns 
NAD Age 0.371  ns 
NAD Dose×Age 0.293  ns 
D-Glucose Dose 0.005 * ** 
D-Glucose Age 0.993  ns 
D-Glucose Dose×Age 0.015 * * 
L-Glutamine Dose 0.442  ns 
L-Glutamine Age 1.45E-05 * **** 
L-Glutamine Dose×Age 0.713  ns 
L-Glutamic acid Dose 0.007 * ** 
L-Glutamic acid Age 0.000666 * *** 
L-Glutamic acid Dose×Age 0.378  ns 
Oxidized glutathione Dose 0.094  ns 
Oxidized glutathione Age 0.204  ns 
Oxidized glutathione Dose×Age 0.133  ns 
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*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
 
 
 
 

Table 9. 17 Statistical analyses of control and aged myotube metabolites following Q 

treatment. 

Metabolite Effect P P<0.05 P.significance 
Formic acid Dose 0.905  ns 
Formic acid Age 0.835  ns 
Formic acid Dose×Age 0.069  ns 
Carnosine Dose 0.576  ns 
Carnosine Age 0.927  ns 
Carnosine Dose×Age 0.489  ns 
Fumaric acid Dose 0.883  ns 
Fumaric acid Age 0.035 * * 
Fumaric acid Dose×Age 0.319  ns 
D-Fructose Dose 0.528  ns 
D-Fructose Age 0.026 * * 
D-Fructose Dose×Age 0.211  ns 
Glycolic acid Dose 0.145  ns 
Glycolic acid Age 1.37E-05 * **** 
Glycolic acid Dose×Age 0.623  ns 
Guanidoacetic acid Dose 0.608  ns 
Guanidoacetic acid Age 0.000271 * *** 
Guanidoacetic acid Dose×Age 0.053  ns 
Glycine Dose 0.006 * ** 
Glycine Age 1.07E-05 * **** 
Glycine Dose×Age 0.112  ns 
cis-Aconitic acid/L-
Acetylcarnitine Dose 0.109  ns 
cis-Aconitic acid/L-
Acetylcarnitine Age 0.028 * * 
cis-Aconitic acid/L-
Acetylcarnitine Dose×Age 0.266  ns 
Choline Dose 0.108  ns 
Choline Age 0.608  ns 
Choline Dose×Age 0.261  ns 
Acetone Dose 0.458  ns 
Acetone Age 0.749  ns 
Acetone Dose×Age 0.315  ns 
Acetic acid Dose 0.227  ns 
Acetic acid Age 0.293  ns 
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Acetic acid Dose×Age 0.46  ns 
Dimethylglycine Dose 0.234  ns 
Dimethylglycine Age 1.44E-10 * **** 
Dimethylglycine Dose×Age 0.51  ns 
Acetylglycine Dose 0.642  ns 
Acetylglycine Age 0.039 * * 
Acetylglycine Dose×Age 0.061  ns 
N-Acetyl-L-aspartic acid Dose 0.045 * * 
N-Acetyl-L-aspartic acid Age 0.031 * * 
N-Acetyl-L-aspartic acid Dose×Age 0.053  ns 
Trimethylamine Dose 0.218  ns 
Trimethylamine Age 2.29E-09 * **** 
Trimethylamine Dose×Age 0.453  ns 
Trimethylamine N-oxide Dose 0.521  ns 
Trimethylamine N-oxide Age 0.047 * * 
Trimethylamine N-oxide Dose×Age 0.937  ns 
NN-Dimethylformamide Dose 0.343  ns 
NN-Dimethylformamide Age 0.152  ns 
NN-Dimethylformamide Dose×Age 0.771  ns 
5-Methoxyindoleacetate Dose 0.316  ns 
5-Methoxyindoleacetate Age 0.018 * * 
5-Methoxyindoleacetate Dose×Age 0.366  ns 
N-Acetylglutamine Dose 0.018 * * 
N-Acetylglutamine Age 0.48  ns 
N-Acetylglutamine Dose×Age 0.282  ns 
ADP Dose 0.026 * * 
ADP Age 0.008 * ** 
ADP Dose×Age 0.462  ns 
Adenine Dose 0.107  ns 
Adenine Age 0.000543 * *** 
Adenine Dose×Age 0.531  ns 
Phosphocreatine Dose 0.503  ns 
Phosphocreatine Age 0.599  ns 
Phosphocreatine Dose×Age 0.674  ns 
Creatine Dose 0.325  ns 
Creatine Age 0.856  ns 
Creatine Dose×Age 0.353  ns 
Creatinine Dose 0.512  ns 
Creatinine Age 0.016 * * 
Creatinine Dose×Age 0.078  ns 
Pyruvic acid Dose 0.156  ns 
Pyruvic acid Age 2.12E-06 * **** 
Pyruvic acid Dose×Age 0.62  ns 
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Acetylcholine Dose 0.443  ns 
Acetylcholine Age 0.711  ns 
Acetylcholine Dose×Age 0.083  ns 
N-Alpha-acetyllysine Dose 0.185  ns 
N-Alpha-acetyllysine Age 2.43E-12 * **** 
N-Alpha-acetyllysine Dose×Age 0.275  ns 
Dihydrothymine Dose 0.062  ns 
Dihydrothymine Age 1.73E-05 * **** 
Dihydrothymine Dose×Age 0.231  ns 
Isopropyl alcohol Dose 0.001 * *** 
Isopropyl alcohol Age 7.05E-13 * **** 
Isopropyl alcohol Dose×Age 0.166  ns 
Betaine Dose 0.865  ns 
Betaine Age 0.971  ns 
Betaine Dose×Age 0.979  ns 
2-Hydroxy-3-methylbutyric 
acid Dose 0.162  ns 
2-Hydroxy-3-methylbutyric 
acid Age 0.122  ns 
2-Hydroxy-3-methylbutyric 
acid Dose×Age 0.03 * * 
3-Methylhistidine Dose 0.01 * ** 
3-Methylhistidine Age 0.000898 * *** 
3-Methylhistidine Dose×Age 0.311  ns 
Guanosine triphosphate Dose 0.337  ns 
Guanosine triphosphate Age 0.746  ns 
Guanosine triphosphate Dose×Age 0.777  ns 
N-Nitrosodimethylamine Dose 0.389  ns 
N-Nitrosodimethylamine Age 5.68E-05 * **** 
N-Nitrosodimethylamine Dose×Age 0.675  ns 
L-Tyrosine Dose 4.65E-06 * **** 
L-Tyrosine Age 4.95E-07 * **** 
L-Tyrosine Dose×Age 0.057  ns 
Glycerophosphocholine Dose 0.083  ns 
Glycerophosphocholine Age 0.000317 * *** 
Glycerophosphocholine Dose×Age 0.652  ns 
Phosphorylcholine Dose 5.12E-07 * **** 
Phosphorylcholine Age 5.53E-11 * **** 
Phosphorylcholine Dose×Age 0.916  ns 
Anserine Dose 0.007 * ** 
Anserine Age 0.066  ns 
Anserine Dose×Age 0.561  ns 
1-Methylhistidine Dose 0.397  ns 
1-Methylhistidine Age 0.000146 * *** 
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1-Methylhistidine Dose×Age 0.403  ns 
Uridine diphosphate 
glucuronic acid Dose 0.885  ns 
Uridine diphosphate 
glucuronic acid Age 0.042 * * 
Uridine diphosphate 
glucuronic acid Dose×Age 0.751  ns 
L-Threonine Dose 0.003 * ** 
L-Threonine Age 0.213  ns 
L-Threonine Dose×Age 0.958  ns 
L-Lactic acid Dose 0.011 * * 
L-Lactic acid Age 0.262  ns 
L-Lactic acid Dose×Age 0.235  ns 
L-Alanine Dose 0.002 * ** 
L-Alanine Age 2.75E-05 * **** 
L-Alanine Dose×Age 0.075  ns 
L-Carnitine Dose 0.374  ns 
L-Carnitine Age 6.41E-10 * **** 
L-Carnitine Dose×Age 0.326  ns 
Acetylcysteine Dose 0.178  ns 
Acetylcysteine Age 1.01E-09 * **** 
Acetylcysteine Dose×Age 0.041 * * 
N-Acetylornithine Dose 0.12  ns 
N-Acetylornithine Age 3.75E-08 * **** 
N-Acetylornithine Dose×Age 0.133  ns 
Ethanol Dose 0.865  ns 
Ethanol Age 0.863  ns 
Ethanol Dose×Age 0.985  ns 
Pantothenic acid Dose 0.561  ns 
Pantothenic acid Age 4.55E-18 * **** 
Pantothenic acid Dose×Age 0.478  ns 
Adenosine triphosphate Dose 0.12  ns 
Adenosine triphosphate Age 0.466  ns 
Adenosine triphosphate Dose×Age 0.844  ns 
Taurine Dose 0.874  ns 
Taurine Age 2.91E-06 * **** 
Taurine Dose×Age 0.891  ns 
Tyramine Dose 0.896  ns 
Tyramine Age 1.63E-09 * **** 
Tyramine Dose×Age 0.414  ns 
L-Tryptophan Dose 0.015 * * 
L-Tryptophan Age 5.22E-05 * **** 
L-Tryptophan Dose×Age 0.211  ns 
Histamine Dose 0.496  ns 
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Histamine Age 0.748  ns 
Histamine Dose×Age 0.517  ns 
L-Phenylalanine Dose 0.093  ns 
L-Phenylalanine Age 0.014 * * 
L-Phenylalanine Dose×Age 0.57  ns 
L-Serine Dose 0.128  ns 
L-Serine Age 0.136  ns 
L-Serine Dose×Age 0.549  ns 
Beta-Alanine Dose 0.012 * * 
Beta-Alanine Age 0.061  ns 
Beta-Alanine Dose×Age 0.332  ns 
Malic acid Dose 0.439  ns 
Malic acid Age 0.829  ns 
Malic acid Dose×Age 0.125  ns 
L-Valine Dose 0.067  ns 
L-Valine Age 0.002 * ** 
L-Valine Dose×Age 0.647  ns 
Uridine diphosphate glucose Dose 0.092  ns 
Uridine diphosphate glucose Age 0.044 * * 
Uridine diphosphate glucose Dose×Age 0.494  ns 
Uridine Dose 0.584  ns 
Uridine Age 0.784  ns 
Uridine Dose×Age 0.357  ns 
L-Aspartic acid Dose 0.033 * * 
L-Aspartic acid Age 0.838  ns 
L-Aspartic acid Dose×Age 0.063  ns 
NADP Dose 0.775  ns 
NADP Age 0.077  ns 
NADP Dose×Age 0.676  ns 
Glycylproline Dose 0.092  ns 
Glycylproline Age 0.215  ns 
Glycylproline Dose×Age 0.694  ns 
Adenosine monophosphate Dose 0.792  ns 
Adenosine monophosphate Age 0.142  ns 
Adenosine monophosphate Dose×Age 0.806  ns 
Phenylacetic acid Dose 0.066  ns 
Phenylacetic acid Age 0.107  ns 
Phenylacetic acid Dose×Age 0.262  ns 
D-Maltose Dose 0.351  ns 
D-Maltose Age 0.555  ns 
D-Maltose Dose×Age 0.033 * * 
L-Isoleucine Dose 0.02 * * 
L-Isoleucine Age 1.86E-06 * **** 
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L-Isoleucine Dose×Age 0.114  ns 
Citric acid Dose 1.37E-05 * **** 
Citric acid Age 0.000483 * *** 
Citric acid Dose×Age 0.266  ns 
L-Leucine Dose 0.071  ns 
L-Leucine Age 3.75E-08 * **** 
L-Leucine Dose×Age 0.192  ns 
Ureidosuccinic acid Dose 0.738  ns 
Ureidosuccinic acid Age 0.162  ns 
Ureidosuccinic acid Dose×Age 0.648  ns 
myo-Inositol Dose 0.000675 * *** 
myo-Inositol Age 1.36E-18 * **** 
myo-Inositol Dose×Age 0.358  ns 
NAD Dose 0.243  ns 
NAD Age 0.647  ns 
NAD Dose×Age 0.656  ns 
D-Glucose Dose 0.654  ns 
D-Glucose Age 0.937  ns 
D-Glucose Dose×Age 0.078  ns 
L-Glutamine Dose 0.003 * ** 
L-Glutamine Age 8.00E-04 * *** 
L-Glutamine Dose×Age 0.947  ns 
L-Glutamic acid Dose 0.558  ns 
L-Glutamic acid Age 0.148  ns 
L-Glutamic acid Dose×Age 0.147  ns 
Oxidized glutathione Dose 0.179  ns 
Oxidized glutathione Age 5.15E-12 * **** 
Oxidized glutathione Dose×Age 0.882  ns 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
 
 
 
 
Table 9. 18 Statistical analyses of control and aged myoblast metabolites following EGCG 

treatment. 

Metabolite Effect P P<.05 P.signif 
Formic acid Dose 0.161  ns 
Formic acid Age 0.077  ns 
Formic acid Dose×Age 0.239  ns 
Carnosine Dose 0.288  ns 
Carnosine Age 1.67E-05 * **** 
Carnosine Dose×Age 0.603  ns 
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Fumaric acid Dose 0.000784 * *** 
Fumaric acid Age 0.004 * ** 
Fumaric acid Dose×Age 0.476  ns 
D-Fructose Dose 0.008 * ** 
D-Fructose Age 0.05 * * 
D-Fructose Dose×Age 0.171  ns 
Glycolic acid Dose 0.71  ns 
Glycolic acid Age 0.339  ns 
Glycolic acid Dose×Age 0.167  ns 
Guanidoacetic acid Dose 0.095  ns 
Guanidoacetic acid Age 5.26E-07 * **** 
Guanidoacetic acid Dose×Age 0.339  ns 
Glycine Dose 0.864  ns 
Glycine Age 0.071  ns 
Glycine Dose×Age 0.049 * * 
cis-Aconitic acid* Dose 0.226  ns 
cis-Aconitic acid* Age 0.003 * ** 
cis-Aconitic acid* Dose×Age 0.447  ns 
Choline Dose 0.464  ns 
Choline Age 0.015 * * 
Choline Dose×Age 0.335  ns 
Acetone Dose 0.505  ns 
Acetone Age 2.31E-06 * **** 
Acetone Dose×Age 0.579  ns 
Acetic acid Dose 0.205  ns 
Acetic acid Age 0.000403 * *** 
Acetic acid Dose×Age 0.872  ns 
Dimethylglycine Dose 0.041 * * 
Dimethylglycine Age 0.003 * ** 
Dimethylglycine Dose×Age 0.554  ns 
Acetylglycine Dose 0.000758 * *** 
Acetylglycine Age 0.011 * * 
Acetylglycine Dose×Age 0.24  ns 
N-Acetyl-L-aspartic acid Dose 0.136  ns 
N-Acetyl-L-aspartic acid Age 0.471  ns 
N-Acetyl-L-aspartic acid Dose×Age 0.802  ns 
Trimethylamine Dose 0.038 * * 
Trimethylamine Age 0.000638 * *** 
Trimethylamine Dose×Age 0.462  ns 
Trimethylamine N-oxide Dose 0.007 * ** 
Trimethylamine N-oxide Age 9.55E-17 * **** 
Trimethylamine N-oxide Dose×Age 0.554  ns 
NN-Dimethylformamide Dose 0.287  ns 
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NN-Dimethylformamide Age 0.632  ns 
NN-Dimethylformamide Dose×Age 0.267  ns 
5-Methoxyindoleacetate Dose 0.031 * * 
5-Methoxyindoleacetate Age 1.35E-07 * **** 
5-Methoxyindoleacetate Dose×Age 0.863  ns 
N-Acetylglutamine Dose 0.236  ns 
N-Acetylglutamine Age 0.005 * ** 
N-Acetylglutamine Dose×Age 0.763  ns 
ADP Dose 0.022 * * 
ADP Age 0.76  ns 
ADP Dose×Age 0.21  ns 
Adenine Dose 0.97  ns 
Adenine Age 0.015 * * 
Adenine Dose×Age 0.947  ns 
Phosphocreatine Dose 0.87  ns 
Phosphocreatine Age 0.889  ns 
Phosphocreatine Dose×Age 0.415  ns 
Creatine Dose 0.006 * ** 
Creatine Age 0.115  ns 
Creatine Dose×Age 0.84  ns 
Creatinine Dose 0.003 * ** 
Creatinine Age 0.009 * ** 
Creatinine Dose×Age 0.026 * * 
Pyruvic acid Dose 0.58  ns 
Pyruvic acid Age 0.004 * ** 
Pyruvic acid Dose×Age 0.107  ns 
Acetylcholine Dose 0.168  ns 
Acetylcholine Age 0.095  ns 
Acetylcholine Dose×Age 0.081  ns 
N-Alpha-acetyllysine Dose 0.623  ns 
N-Alpha-acetyllysine Age 0.000527 * *** 
N-Alpha-acetyllysine Dose×Age 0.353  ns 
Dihydrothymine Dose 0.096  ns 
Dihydrothymine Age 0.000269 * *** 
Dihydrothymine Dose×Age 0.506  ns 
Isopropyl alcohol Dose 0.026 * * 
Isopropyl alcohol Age 1.18E-17 * **** 
Isopropyl alcohol Dose×Age 0.967  ns 
Betaine Dose 0.041 * * 
Betaine Age 0.058  ns 
Betaine Dose×Age 0.845  ns 
2-Hydroxy-3-methylbutyric acid Dose 0.007 * ** 
2-Hydroxy-3-methylbutyric acid Age 8.56E-06 * **** 
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2-Hydroxy-3-methylbutyric acid Dose×Age 0.752  ns 
3-Methylhistidine Dose 0.051  ns 
3-Methylhistidine Age 1.21E-10 * **** 
3-Methylhistidine Dose×Age 0.487  ns 
Guanosine triphosphate Dose 0.157  ns 
Guanosine triphosphate Age 0.001 * *** 
Guanosine triphosphate Dose×Age 0.976  ns 
N-Nitrosodimethylamine Dose 0.715  ns 
N-Nitrosodimethylamine Age 0.383  ns 
N-Nitrosodimethylamine Dose×Age 0.555  ns 
L-Tyrosine Dose 0.387  ns 
L-Tyrosine Age 3.00E-07 * **** 
L-Tyrosine Dose×Age 0.887  ns 
Glycerophosphocholine Dose 0.073  ns 
Glycerophosphocholine Age 1.65E-07 * **** 
Glycerophosphocholine Dose×Age 0.682  ns 
Phosphorylcholine Dose 1.99E-07 * **** 
Phosphorylcholine Age 7.47E-15 * **** 
Phosphorylcholine Dose×Age 0.000373 * *** 
Anserine Dose 0.011 * * 
Anserine Age 0.888  ns 
Anserine Dose×Age 0.458  ns 
1-Methylhistidine Dose 6.10E-05 * **** 
1-Methylhistidine Age 0.00051 * *** 
1-Methylhistidine Dose×Age 0.076  ns 
UDP glucuronic acid Dose 0.026 * * 
UDP glucuronic acid Age 2.12E-08 * **** 
UDP glucuronic acid Dose×Age 0.139  ns 
L-Threonine Dose 0.023 * * 
L-Threonine Age 8.20E-08 * **** 
L-Threonine Dose×Age 0.056  ns 
L-Lactic acid Dose 2.49E-05 * **** 
L-Lactic acid Age 0.926  ns 
L-Lactic acid Dose×Age 0.76  ns 
L-Alanine Dose 0.225  ns 
L-Alanine Age 1.82E-08 * **** 
L-Alanine Dose×Age 0.102  ns 
L-Carnitine Dose 0.201  ns 
L-Carnitine Age 0.477  ns 
L-Carnitine Dose×Age 0.239  ns 
Acetylcysteine Dose 0.047 * * 
Acetylcysteine Age 0.215  ns 
Acetylcysteine Dose×Age 0.798  ns 
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N-Acetylornithine Dose 0.152  ns 
N-Acetylornithine Age 0.000137 * *** 
N-Acetylornithine Dose×Age 0.858  ns 
Ethanol Dose 0.002 * ** 
Ethanol Age 0.393  ns 
Ethanol Dose×Age 0.623  ns 
Pantothenic acid Dose 0.164  ns 
Pantothenic acid Age 0.000809 * *** 
Pantothenic acid Dose×Age 0.185  ns 
Adenosine triphosphate Dose 0.653  ns 
Adenosine triphosphate Age 0.064  ns 
Adenosine triphosphate Dose×Age 0.187  ns 
Taurine Dose 0.018 * * 
Taurine Age 1.51E-17 * **** 
Taurine Dose×Age 0.61  ns 
Tyramine Dose 0.22  ns 
Tyramine Age 0.000443 * *** 
Tyramine Dose×Age 0.096  ns 
L-Tryptophan Dose 0.125  ns 
L-Tryptophan Age 5.76E-08 * **** 
L-Tryptophan Dose×Age 0.854  ns 
Histamine Dose 0.03 * * 
Histamine Age 7.14E-08 * **** 
Histamine Dose×Age 0.301  ns 
L-Phenylalanine Dose 0.153  ns 
L-Phenylalanine Age 4.62E-08 * **** 
L-Phenylalanine Dose×Age 0.858  ns 
L-Serine Dose 0.154  ns 
L-Serine Age 1.29E-06 * **** 
L-Serine Dose×Age 0.265  ns 
Beta-Alanine Dose 0.935  ns 
Beta-Alanine Age 0.004 * ** 
Beta-Alanine Dose×Age 0.187  ns 
Malic acid Dose 0.005 * ** 
Malic acid Age 0.012 * * 
Malic acid Dose×Age 0.196  ns 
L-Valine Dose 0.433  ns 
L-Valine Age 4.86E-10 * **** 
L-Valine Dose×Age 0.996  ns 
Uridine diphosphate glucose Dose 0.553  ns 
Uridine diphosphate glucose Age 4.90E-06 * **** 
Uridine diphosphate glucose Dose×Age 0.175  ns 
Uridine Dose 0.038 * * 
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Uridine Age 0.006 * ** 
Uridine Dose×Age 0.238  ns 
L-Aspartic acid Dose 0.02 * * 
L-Aspartic acid Age 5.93E-05 * **** 
L-Aspartic acid Dose×Age 0.369  ns 
NADP Dose 0.149  ns 
NADP Age 0.014 * * 
NADP Dose×Age 0.273  ns 
Glycylproline Dose 0.477  ns 
Glycylproline Age 0.000451 * *** 
Glycylproline Dose×Age 0.71  ns 
Adenosine monophosphate Dose 0.584  ns 
Adenosine monophosphate Age 0.116  ns 
Adenosine monophosphate Dose×Age 0.064  ns 
Phenylacetic acid Dose 0.109  ns 
Phenylacetic acid Age 4.94E-05 * **** 
Phenylacetic acid Dose×Age 0.502  ns 
D-Maltose Dose 0.01 * ** 
D-Maltose Age 0.000158 * *** 
D-Maltose Dose×Age 0.054  ns 
L-Isoleucine Dose 0.024 * * 
L-Isoleucine Age 1.97E-09 * **** 
L-Isoleucine Dose×Age 0.969  ns 
Citric acid Dose 0.000915 * *** 
Citric acid Age 1.96E-05 * **** 
Citric acid Dose×Age 0.391  ns 
L-Leucine Dose 0.006 * ** 
L-Leucine Age 6.08E-06 * **** 
L-Leucine Dose×Age 0.356  ns 
Ureidosuccinic acid Dose 0.557  ns 
Ureidosuccinic acid Age 0.034 * * 
Ureidosuccinic acid Dose×Age 0.552  ns 
myo-Inositol Dose 4.94E-05 * **** 
myo-Inositol Age 2.14E-05 * **** 
myo-Inositol Dose×Age 0.31  ns 
NAD Dose 0.8  ns 
NAD Age 0.256  ns 
NAD Dose×Age 0.604  ns 
D-Glucose Dose 0.305  ns 
D-Glucose Age 4.59E-06 * **** 
D-Glucose Dose×Age 0.784  ns 
L-Glutamine Dose 0.506  ns 
L-Glutamine Age 0.013 * * 
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L-Glutamine Dose×Age 0.25  ns 
L-Glutamic acid Dose 0.099  ns 
L-Glutamic acid Age 0.000204 * *** 
L-Glutamic acid Dose×Age 0.827  ns 
Oxidized glutathione Dose 0.103  ns 
Oxidized glutathione Age 0.003 * ** 
Oxidized glutathione Dose×Age 0.113  ns 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
 
 
 
 
 
 
 
 
Table 9. 19 Statistical analyses of control and aged myotube metabolites following EGCG 

treatment. 

Metabolite Effect P P<.05 P.signif 
Formic acid Dose 0.044 * * 
Formic acid Age 0.94  ns 
Formic acid Dose×Age 0.575  ns 
Carnosine Dose 0.018 * * 
Carnosine Age 0.704  ns 
Carnosine Dose×Age 0.958  ns 
Fumaric acid Dose 0.03 * * 
Fumaric acid Age 0.313  ns 
Fumaric acid Dose×Age 0.351  ns 
D-Fructose Dose 0.149  ns 
D-Fructose Age 0.012 * * 
D-Fructose Dose×Age 0.443  ns 
Glycolic acid Dose 0.341  ns 
Glycolic acid Age 1.02E-06 * **** 
Glycolic acid Dose×Age 0.859  ns 
Guanidoacetic acid Dose 0.561  ns 
Guanidoacetic acid Age 0.074  ns 
Guanidoacetic acid Dose×Age 0.571  ns 
Glycine Dose 0.054  ns 
Glycine Age 0.000212 * *** 
Glycine Dose×Age 0.557  ns 
cis-Aconitic acid* Dose 0.032 * * 
cis-Aconitic acid* Age 0.62  ns 
cis-Aconitic acid* Dose×Age 0.809  ns 
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Choline Dose 0.979  ns 
Choline Age 0.755  ns 
Choline Dose×Age 0.227  ns 
Acetone Dose 0.76  ns 
Acetone Age 0.293  ns 
Acetone Dose×Age 0.97  ns 
Acetic acid Dose 0.665  ns 
Acetic acid Age 0.234  ns 
Acetic acid Dose×Age 0.792  ns 
Dimethylglycine Dose 0.121  ns 
Dimethylglycine Age 5.41E-11 * **** 
Dimethylglycine Dose×Age 0.744  ns 
Acetylglycine Dose 0.236  ns 
Acetylglycine Age 0.066  ns 
Acetylglycine Dose×Age 0.787  ns 
N-Acetyl-L-aspartic acid Dose 0.158  ns 
N-Acetyl-L-aspartic acid Age 0.471  ns 
N-Acetyl-L-aspartic acid Dose×Age 0.748  ns 
Trimethylamine Dose 0.001 * *** 
Trimethylamine Age 6.81E-11 * **** 
Trimethylamine Dose×Age 0.288  ns 
Trimethylamine N-oxide Dose 0.738  ns 
Trimethylamine N-oxide Age 0.25  ns 
Trimethylamine N-oxide Dose×Age 0.452  ns 
NN-Dimethylformamide Dose 0.109  ns 
NN-Dimethylformamide Age 0.522  ns 
NN-Dimethylformamide Dose×Age 0.945  ns 
5-Methoxyindoleacetate Dose 0.083  ns 
5-Methoxyindoleacetate Age 0.014 * * 
5-Methoxyindoleacetate Dose×Age 0.774  ns 
N-Acetylglutamine Dose 0.151  ns 
N-Acetylglutamine Age 0.409  ns 
N-Acetylglutamine Dose×Age 0.884  ns 
ADP Dose 0.004 * ** 
ADP Age 0.87  ns 
ADP Dose×Age 0.083  ns 
Adenine Dose 0.412  ns 
Adenine Age 0.000204 * *** 
Adenine Dose×Age 0.32  ns 
Phosphocreatine Dose 0.103  ns 
Phosphocreatine Age 0.918  ns 
Phosphocreatine Dose×Age 0.478  ns 
Creatine Dose 0.134  ns 
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Creatine Age 0.103  ns 
Creatine Dose×Age 0.95  ns 
Creatinine Dose 0.176  ns 
Creatinine Age 0.033 * * 
Creatinine Dose×Age 0.465  ns 
Pyruvic acid Dose 0.397  ns 
Pyruvic acid Age 1.64E-07 * **** 
Pyruvic acid Dose×Age 0.803  ns 
Acetylcholine Dose 0.952  ns 
Acetylcholine Age 0.444  ns 
Acetylcholine Dose×Age 0.618  ns 
N-Alpha-acetyllysine Dose 0.735  ns 
N-Alpha-acetyllysine Age 3.45E-08 * **** 
N-Alpha-acetyllysine Dose×Age 0.279  ns 
Dihydrothymine Dose 0.221  ns 
Dihydrothymine Age 0.011 * * 
Dihydrothymine Dose×Age 0.37  ns 
Isopropyl alcohol Dose 0.344  ns 
Isopropyl alcohol Age 4.11E-11 * **** 
Isopropyl alcohol Dose×Age 0.138  ns 
Betaine Dose 0.357  ns 
Betaine Age 0.464  ns 
Betaine Dose×Age 0.942  ns 
2-Hydroxy-3-methylbutyric acid Dose 0.125  ns 
2-Hydroxy-3-methylbutyric acid Age 0.919  ns 
2-Hydroxy-3-methylbutyric acid Dose×Age 0.307  ns 
3-Methylhistidine Dose 0.167  ns 
3-Methylhistidine Age 0.009 * ** 
3-Methylhistidine Dose×Age 0.699  ns 
Guanosine triphosphate Dose 0.34  ns 
Guanosine triphosphate Age 0.485  ns 
Guanosine triphosphate Dose×Age 0.428  ns 
N-Nitrosodimethylamine Dose 0.95  ns 
N-Nitrosodimethylamine Age 0.000315 * *** 
N-Nitrosodimethylamine Dose×Age 0.667  ns 
L-Tyrosine Dose 0.296  ns 
L-Tyrosine Age 2.32E-08 * **** 
L-Tyrosine Dose×Age 0.566  ns 
Glycerophosphocholine Dose 0.018 * * 
Glycerophosphocholine Age 0.002 * ** 
Glycerophosphocholine Dose×Age 0.538  ns 
Phosphorylcholine Dose 0.694  ns 
Phosphorylcholine Age 8.22E-09 * **** 
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Phosphorylcholine Dose×Age 0.609  ns 
Anserine Dose 0.139  ns 
Anserine Age 0.088  ns 
Anserine Dose×Age 0.678  ns 
1-Methylhistidine Dose 0.005 * ** 
1-Methylhistidine Age 0.002 * ** 
1-Methylhistidine Dose×Age 0.183  ns 
Uridine diphosphate glucuronic 
acid Dose 0.474  ns 
Uridine diphosphate glucuronic 
acid Age 0.167  ns 
Uridine diphosphate glucuronic 
acid Dose×Age 0.415  ns 
L-Threonine Dose 0.002 * ** 
L-Threonine Age 0.404  ns 
L-Threonine Dose×Age 0.763  ns 
L-Lactic acid Dose 0.981  ns 
L-Lactic acid Age 0.319  ns 
L-Lactic acid Dose×Age 0.276  ns 
L-Alanine Dose 0.044 * * 
L-Alanine Age 0.002 * ** 
L-Alanine Dose×Age 0.437  ns 
L-Carnitine Dose 0.086  ns 
L-Carnitine Age 0.002 * ** 
L-Carnitine Dose×Age 0.79  ns 
Acetylcysteine Dose 0.099  ns 
Acetylcysteine Age 2.21E-07 * **** 
Acetylcysteine Dose×Age 0.108  ns 
N-Acetylornithine Dose 0.31  ns 
N-Acetylornithine Age 3.51E-06 * **** 
N-Acetylornithine Dose×Age 0.608  ns 
Ethanol Dose 0.329  ns 
Ethanol Age 0.261  ns 
Ethanol Dose×Age 0.896  ns 
Pantothenic acid Dose 0.835  ns 
Pantothenic acid Age 2.76E-14 * **** 
Pantothenic acid Dose×Age 0.399  ns 
Adenosine triphosphate Dose 0.745  ns 
Adenosine triphosphate Age 0.86  ns 
Adenosine triphosphate Dose×Age 0.791  ns 
Taurine Dose 0.671  ns 
Taurine Age 0.000193 * *** 
Taurine Dose×Age 0.191  ns 
Tyramine Dose 0.132  ns 
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Tyramine Age 3.45E-11 * **** 
Tyramine Dose×Age 0.103  ns 
L-Tryptophan Dose 0.122  ns 
L-Tryptophan Age 0.003 * ** 
L-Tryptophan Dose×Age 0.464  ns 
Histamine Dose 0.01 * ** 
Histamine Age 0.783  ns 
Histamine Dose×Age 0.823  ns 
L-Phenylalanine Dose 0.079  ns 
L-Phenylalanine Age 0.022 * * 
L-Phenylalanine Dose×Age 0.35  ns 
L-Serine Dose 0.312  ns 
L-Serine Age 0.148  ns 
L-Serine Dose×Age 0.539  ns 
Beta-Alanine Dose 0.073  ns 
Beta-Alanine Age 0.987  ns 
Beta-Alanine Dose×Age 0.987  ns 
Malic acid Dose 0.234  ns 
Malic acid Age 0.566  ns 
Malic acid Dose×Age 0.61  ns 
L-Valine Dose 0.819  ns 
L-Valine Age 0.006 * ** 
L-Valine Dose×Age 0.279  ns 
Uridine diphosphate glucose Dose 0.752  ns 
Uridine diphosphate glucose Age 0.1  ns 
Uridine diphosphate glucose Dose×Age 0.796  ns 
Uridine Dose 0.388  ns 
Uridine Age 0.867  ns 
Uridine Dose×Age 0.644  ns 
L-Aspartic acid Dose 0.099  ns 
L-Aspartic acid Age 0.276  ns 
L-Aspartic acid Dose×Age 0.269  ns 
NADP Dose 0.19  ns 
NADP Age 0.306  ns 
NADP Dose×Age 0.753  ns 
Glycylproline Dose 0.282  ns 
Glycylproline Age 0.891  ns 
Glycylproline Dose×Age 0.509  ns 
Adenosine monophosphate Dose 0.034 * * 
Adenosine monophosphate Age 0.357  ns 
Adenosine monophosphate Dose×Age 0.724  ns 
Phenylacetic acid Dose 0.252  ns 
Phenylacetic acid Age 0.332  ns 
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Phenylacetic acid Dose×Age 0.51  ns 
D-Maltose Dose 0.304  ns 
D-Maltose Age 0.14  ns 
D-Maltose Dose×Age 0.046 * * 
L-Isoleucine Dose 0.09  ns 
L-Isoleucine Age 0.000262 * *** 
L-Isoleucine Dose×Age 0.431  ns 
Citric acid Dose 0.675  ns 
Citric acid Age 2.57E-05 * **** 
Citric acid Dose×Age 0.371  ns 
L-Leucine Dose 0.807  ns 
L-Leucine Age 0.000192 * *** 
L-Leucine Dose×Age 0.751  ns 
Ureidosuccinic acid Dose 0.361  ns 
Ureidosuccinic acid Age 0.176  ns 
Ureidosuccinic acid Dose×Age 0.822  ns 
myo-Inositol Dose 0.339  ns 
myo-Inositol Age 6.96E-11 * **** 
myo-Inositol Dose×Age 0.453  ns 
NAD Dose 0.173  ns 
NAD Age 0.564  ns 
NAD Dose×Age 0.456  ns 
D-Glucose Dose 0.138  ns 
D-Glucose Age 0.483  ns 
D-Glucose Dose×Age 0.408  ns 
L-Glutamine Dose 0.172  ns 
L-Glutamine Age 0.048 * * 
L-Glutamine Dose×Age 0.912  ns 
L-Glutamic acid Dose 0.455  ns 
L-Glutamic acid Age 0.502  ns 
L-Glutamic acid Dose×Age 0.783  ns 
Oxidized glutathione Dose 0.411  ns 
Oxidized glutathione Age 3.42E-08 * **** 
Oxidized glutathione Dose×Age 0.977  ns 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Table 9. 20 Statistical analyses of control and aged myoblast metabolites following EPI 

treatment. 

Metabolite Effect P P<.05 P.signif 
Formic acid Dose 0.145  ns 
Formic acid Age 0.011 * * 
Formic acid Dose×Age 0.786  ns 
Carnosine Dose 0.618  ns 
Carnosine Age 0.001 * *** 
Carnosine Dose×Age 0.969  ns 
Fumaric acid Dose 0.476  ns 
Fumaric acid Age 0.181  ns 
Fumaric acid Dose×Age 1  ns 
D-Fructose Dose 0.572  ns 
D-Fructose Age 0.543  ns 
D-Fructose Dose×Age 0.915  ns 
Glycolic acid Dose 0.043 * * 
Glycolic acid Age 0.214  ns 
Glycolic acid Dose×Age 0.348  ns 
Guanidoacetic acid Dose 0.35  ns 
Guanidoacetic acid Age 0.006 * ** 
Guanidoacetic acid Dose×Age 0.469  ns 
Glycine Dose 0.327  ns 
Glycine Age 0.001 * *** 
Glycine Dose×Age 0.285  ns 
cis-Aconitic acid* Dose 0.068  ns 
cis-Aconitic acid* Age 0.000438 * *** 
cis-Aconitic acid* Dose×Age 0.708  ns 
Choline Dose 0.214  ns 
Choline Age 0.002 * ** 
Choline Dose×Age 0.421  ns 
Acetone Dose 0.148  ns 
Acetone Age 0.011 * * 
Acetone Dose×Age 0.762  ns 
Acetic acid Dose 0.15  ns 
Acetic acid Age 0.000127 * *** 
Acetic acid Dose×Age 0.478  ns 
Dimethylglycine Dose 0.305  ns 
Dimethylglycine Age 0.005 * ** 
Dimethylglycine Dose×Age 0.284  ns 
Acetylglycine Dose 0.405  ns 
Acetylglycine Age 0.112  ns 
Acetylglycine Dose×Age 0.651  ns 
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N-Acetyl-L-aspartic acid Dose 0.119  ns 
N-Acetyl-L-aspartic acid Age 0.267  ns 
N-Acetyl-L-aspartic acid Dose×Age 0.953  ns 
Trimethylamine Dose 0.211  ns 
Trimethylamine Age 0.003 * ** 
Trimethylamine Dose×Age 0.386  ns 
Trimethylamine N-oxide Dose 0.126  ns 
Trimethylamine N-oxide Age 2.96E-14 * **** 
Trimethylamine N-oxide Dose×Age 0.835  ns 
NN-Dimethylformamide Dose 0.32  ns 
NN-Dimethylformamide Age 0.366  ns 
NN-Dimethylformamide Dose×Age 0.376  ns 
5-Methoxyindoleacetate Dose 0.371  ns 
5-Methoxyindoleacetate Age 2.44E-08 * **** 
5-Methoxyindoleacetate Dose×Age 0.619  ns 
N-Acetylglutamine Dose 0.008 * ** 
N-Acetylglutamine Age 0.011 * * 
N-Acetylglutamine Dose×Age 0.206  ns 
ADP Dose 0.019 * * 
ADP Age 0.66  ns 
ADP Dose×Age 0.682  ns 
Adenine Dose 0.057  ns 
Adenine Age 0.004 * ** 
Adenine Dose×Age 0.24  ns 
Phosphocreatine Dose 0.673  ns 
Phosphocreatine Age 0.814  ns 
Phosphocreatine Dose×Age 0.587  ns 
Creatine Dose 0.000927 * *** 
Creatine Age 0.01 * ** 
Creatine Dose×Age 0.281  ns 
Creatinine Dose 0.585  ns 
Creatinine Age 0.723  ns 
Creatinine Dose×Age 0.685  ns 
Pyruvic acid Dose 0.016 * * 
Pyruvic acid Age 0.007 * ** 
Pyruvic acid Dose×Age 0.283  ns 
Acetylcholine Dose 0.074  ns 
Acetylcholine Age 0.001 * *** 
Acetylcholine Dose×Age 0.823  ns 
N-Alpha-acetyllysine Dose 0.869  ns 
N-Alpha-acetyllysine Age 0.00028 * *** 
N-Alpha-acetyllysine Dose×Age 0.798  ns 
Dihydrothymine Dose 0.572  ns 
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Dihydrothymine Age 0.000268 * *** 
Dihydrothymine Dose×Age 0.256  ns 
Isopropyl alcohol Dose 0.295  ns 
Isopropyl alcohol Age 3.40E-17 * **** 
Isopropyl alcohol Dose×Age 0.577  ns 
Betaine Dose 0.064  ns 
Betaine Age 0.001 * *** 
Betaine Dose×Age 0.849  ns 
2-Hydroxy-3-methylbutyric acid Dose 0.071  ns 
2-Hydroxy-3-methylbutyric acid Age 0.007 * ** 
2-Hydroxy-3-methylbutyric acid Dose×Age 0.554  ns 
3-Methylhistidine Dose 0.415  ns 
3-Methylhistidine Age 1.07E-12 * **** 
3-Methylhistidine Dose×Age 0.918  ns 
Guanosine triphosphate Dose 0.08  ns 
Guanosine triphosphate Age 0.001 * *** 
Guanosine triphosphate Dose×Age 0.869  ns 
N-Nitrosodimethylamine Dose 0.273  ns 
N-Nitrosodimethylamine Age 0.166  ns 
N-Nitrosodimethylamine Dose×Age 0.404  ns 
L-Tyrosine Dose 0.762  ns 
L-Tyrosine Age 1.15E-05 * **** 
L-Tyrosine Dose×Age 0.405  ns 
Glycerophosphocholine Dose 0.8  ns 
Glycerophosphocholine Age 5.20E-08 * **** 
Glycerophosphocholine Dose×Age 0.951  ns 
Phosphorylcholine Dose 3.90E-05 * **** 
Phosphorylcholine Age 4.75E-15 * **** 
Phosphorylcholine Dose×Age 0.002 * ** 
Anserine Dose 0.338  ns 
Anserine Age 0.168  ns 
Anserine Dose×Age 0.711  ns 
1-Methylhistidine Dose 0.000268 * *** 
1-Methylhistidine Age 0.083  ns 
1-Methylhistidine Dose×Age 0.877  ns 
Uridine diphosphate glucuronic 
acid Dose 0.156  ns 
Uridine diphosphate glucuronic 
acid Age 4.65E-06 * **** 
Uridine diphosphate glucuronic 
acid Dose×Age 0.712  ns 
L-Threonine Dose 0.422  ns 
L-Threonine Age 0.000117 * *** 
L-Threonine Dose×Age 0.854  ns 
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L-Lactic acid Dose 0.000545 * *** 
L-Lactic acid Age 0.000435 * *** 
L-Lactic acid Dose×Age 0.096  ns 
L-Alanine Dose 0.382  ns 
L-Alanine Age 3.02E-10 * **** 
L-Alanine Dose×Age 0.184  ns 
L-Carnitine Dose 0.399  ns 
L-Carnitine Age 0.698  ns 
L-Carnitine Dose×Age 0.411  ns 
Acetylcysteine Dose 0.042 * * 
Acetylcysteine Age 0.027 * * 
Acetylcysteine Dose×Age 0.31  ns 
N-Acetylornithine Dose 0.962  ns 
N-Acetylornithine Age 6.12E-06 * **** 
N-Acetylornithine Dose×Age 0.119  ns 
Ethanol Dose 0.003 * ** 
Ethanol Age 0.004 * ** 
Ethanol Dose×Age 0.723  ns 
Pantothenic acid Dose 0.753  ns 
Pantothenic acid Age 0.005 * ** 
Pantothenic acid Dose×Age 0.211  ns 
Adenosine triphosphate Dose 0.272  ns 
Adenosine triphosphate Age 0.39  ns 
Adenosine triphosphate Dose×Age 0.468  ns 
Taurine Dose 0.095  ns 
Taurine Age 6.54E-15 * **** 
Taurine Dose×Age 0.833  ns 
Tyramine Dose 0.131  ns 
Tyramine Age 0.005 * ** 
Tyramine Dose×Age 0.192  ns 
L-Tryptophan Dose 0.768  ns 
L-Tryptophan Age 3.17E-08 * **** 
L-Tryptophan Dose×Age 0.607  ns 
Histamine Dose 0.346  ns 
Histamine Age 2.74E-05 * **** 
Histamine Dose×Age 0.956  ns 
L-Phenylalanine Dose 0.837  ns 
L-Phenylalanine Age 1.03E-08 * **** 
L-Phenylalanine Dose×Age 0.735  ns 
L-Serine Dose 0.702  ns 
L-Serine Age 9.59E-06 * **** 
L-Serine Dose×Age 0.524  ns 
Beta-Alanine Dose 0.49  ns 
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Beta-Alanine Age 0.797  ns 
Beta-Alanine Dose×Age 0.209  ns 
Malic acid Dose 0.02 * * 
Malic acid Age 8.30E-06 * **** 
Malic acid Dose×Age 0.937  ns 
L-Valine Dose 0.922  ns 
L-Valine Age 6.37E-11 * **** 
L-Valine Dose×Age 0.768  ns 
Uridine diphosphate glucose Dose 0.269  ns 
Uridine diphosphate glucose Age 0.004 * ** 
Uridine diphosphate glucose Dose×Age 0.948  ns 
Uridine Dose 0.743  ns 
Uridine Age 0.81  ns 
Uridine Dose×Age 0.859  ns 
L-Aspartic acid Dose 0.026 * * 
L-Aspartic acid Age 2.00E-04 * *** 
L-Aspartic acid Dose×Age 0.23  ns 
NADP Dose 0.757  ns 
NADP Age 0.972  ns 
NADP Dose×Age 0.868  ns 
Glycylproline Dose 0.902  ns 
Glycylproline Age 0.002 * ** 
Glycylproline Dose×Age 0.524  ns 
Adenosine monophosphate Dose 0.994  ns 
Adenosine monophosphate Age 0.049 * * 
Adenosine monophosphate Dose×Age 0.394  ns 
Phenylacetic acid Dose 0.933  ns 
Phenylacetic acid Age 0.003 * ** 
Phenylacetic acid Dose×Age 0.271  ns 
D-Maltose Dose 0.49  ns 
D-Maltose Age 0.157  ns 
D-Maltose Dose×Age 0.432  ns 
L-Isoleucine Dose 0.404  ns 
L-Isoleucine Age 1.04E-11 * **** 
L-Isoleucine Dose×Age 0.646  ns 
Citric acid Dose 0.005 * ** 
Citric acid Age 6.53E-05 * **** 
Citric acid Dose×Age 0.335  ns 
L-Leucine Dose 0.076  ns 
L-Leucine Age 3.11E-05 * **** 
L-Leucine Dose×Age 0.845  ns 
Ureidosuccinic acid Dose 0.097  ns 
Ureidosuccinic acid Age 0.467  ns 
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Ureidosuccinic acid Dose×Age 0.509  ns 
myo-Inositol Dose 0.043 * * 
myo-Inositol Age 0.001 * *** 
myo-Inositol Dose×Age 0.813  ns 
NAD Dose 0.862  ns 
NAD Age 0.881  ns 
NAD Dose×Age 0.551  ns 
D-Glucose Dose 0.462  ns 
D-Glucose Age 0.006 * ** 
D-Glucose Dose×Age 0.464  ns 
L-Glutamine Dose 0.555  ns 
L-Glutamine Age 0.000665 * *** 
L-Glutamine Dose×Age 0.747  ns 
L-Glutamic acid Dose 0.006 * ** 
L-Glutamic acid Age 5.19E-05 * **** 
L-Glutamic acid Dose×Age 0.319  ns 
Oxidized glutathione Dose 0.197  ns 
Oxidized glutathione Age 0.002 * ** 
Oxidized glutathione Dose×Age 0.268  ns 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
 
 
 
 
 

Table 9. 21 Statistical analyses of control and aged myotube metabolites following EPI 

treatment. 

Metabolite Effect P P<.05 P.signif 
Formic acid Dose 0.668  ns 
Formic acid Age 0.549  ns 
Formic acid Dose×Age 0.365  ns 
Carnosine Dose 0.651  ns 
Carnosine Age 0.321  ns 
Carnosine Dose×Age 0.828  ns 
Fumaric acid Dose 0.394  ns 
Fumaric acid Age 0.015 * * 
Fumaric acid Dose×Age 0.833  ns 
D-Fructose Dose 0.975  ns 
D-Fructose Age 0.308  ns 
D-Fructose Dose×Age 0.879  ns 
Glycolic acid Dose 0.216  ns 
Glycolic acid Age 8.86E-08 * **** 
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Glycolic acid Dose×Age 0.641  ns 
Guanidoacetic acid Dose 0.511  ns 
Guanidoacetic acid Age 0.01 * ** 
Guanidoacetic acid Dose×Age 0.215  ns 
Glycine Dose 0.198  ns 
Glycine Age 6.45E-06 * **** 
Glycine Dose×Age 0.185  ns 
cis-Aconitic acid/L-
Acetylcarnitine Dose 0.278  ns 
cis-Aconitic acid/L-
Acetylcarnitine Age 0.005 * ** 
cis-Aconitic acid/L-
Acetylcarnitine Dose×Age 0.34  ns 
Choline Dose 0.073  ns 
Choline Age 0.003 * ** 
Choline Dose×Age 0.461  ns 
Acetone Dose 0.815  ns 
Acetone Age 0.883  ns 
Acetone Dose×Age 0.161  ns 
Acetic acid Dose 0.69  ns 
Acetic acid Age 0.582  ns 
Acetic acid Dose×Age 0.859  ns 
Dimethylglycine Dose 0.043 * * 
Dimethylglycine Age 1.29E-10 * **** 
Dimethylglycine Dose×Age 0.508  ns 
Acetylglycine Dose 0.015 * * 
Acetylglycine Age 0.121  ns 
Acetylglycine Dose×Age 0.891  ns 
N-Acetyl-L-aspartic acid Dose 0.391  ns 
N-Acetyl-L-aspartic acid Age 0.319  ns 
N-Acetyl-L-aspartic acid Dose×Age 0.678  ns 
Trimethylamine Dose 0.014 * * 
Trimethylamine Age 2.05E-09 * **** 
Trimethylamine Dose×Age 0.624  ns 
Trimethylamine N-oxide Dose 0.513  ns 
Trimethylamine N-oxide Age 0.038 * * 
Trimethylamine N-oxide Dose×Age 0.902  ns 
NN-Dimethylformamide Dose 0.044 * * 
NN-Dimethylformamide Age 0.00057 * *** 
NN-Dimethylformamide Dose×Age 0.666  ns 
5-Methoxyindoleacetate Dose 0.239  ns 
5-Methoxyindoleacetate Age 6.08E-05 * **** 
5-Methoxyindoleacetate Dose×Age 0.785  ns 
N-Acetylglutamine Dose 0.643  ns 
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N-Acetylglutamine Age 0.999  ns 
N-Acetylglutamine Dose×Age 0.751  ns 
ADP Dose 5.45E-05 * **** 
ADP Age 0.121  ns 
ADP Dose×Age 0.274  ns 
Adenine Dose 0.442  ns 
Adenine Age 6.40E-06 * **** 
Adenine Dose×Age 0.485  ns 
Phosphocreatine Dose 0.456  ns 
Phosphocreatine Age 0.296  ns 
Phosphocreatine Dose×Age 0.386  ns 
Creatine Dose 0.8  ns 
Creatine Age 0.56  ns 
Creatine Dose×Age 0.769  ns 
Creatinine Dose 0.906  ns 
Creatinine Age 0.239  ns 
Creatinine Dose×Age 0.106  ns 
Pyruvic acid Dose 0.261  ns 
Pyruvic acid Age 1.70E-07 * **** 
Pyruvic acid Dose×Age 0.834  ns 
Acetylcholine Dose 0.01 * ** 
Acetylcholine Age 0.08  ns 
Acetylcholine Dose×Age 0.764  ns 
N-Alpha-acetyllysine Dose 0.719  ns 
N-Alpha-acetyllysine Age 4.76E-10 * **** 
N-Alpha-acetyllysine Dose×Age 0.615  ns 
Dihydrothymine Dose 0.221  ns 
Dihydrothymine Age 0.000415 * *** 
Dihydrothymine Dose×Age 0.628  ns 
Isopropyl alcohol Dose 0.048 * * 
Isopropyl alcohol Age 2.50E-13 * **** 
Isopropyl alcohol Dose×Age 0.474  ns 
Betaine Dose 0.299  ns 
Betaine Age 0.971  ns 
Betaine Dose×Age 0.902  ns 
2-Hydroxy-3-methylbutyric acid Dose 0.145  ns 
2-Hydroxy-3-methylbutyric acid Age 0.467  ns 
2-Hydroxy-3-methylbutyric acid Dose×Age 0.754  ns 
3-Methylhistidine Dose 0.099  ns 
3-Methylhistidine Age 4.73E-08 * **** 
3-Methylhistidine Dose×Age 0.432  ns 
Guanosine triphosphate Dose 0.237  ns 
Guanosine triphosphate Age 0.351  ns 
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Guanosine triphosphate Dose×Age 0.491  ns 
N-Nitrosodimethylamine Dose 0.634  ns 
N-Nitrosodimethylamine Age 1.70E-05 * **** 
N-Nitrosodimethylamine Dose×Age 0.627  ns 
L-Tyrosine Dose 0.384  ns 
L-Tyrosine Age 7.41E-06 * **** 
L-Tyrosine Dose×Age 0.496  ns 
Glycerophosphocholine Dose 0.098  ns 
Glycerophosphocholine Age 3.52E-06 * **** 
Glycerophosphocholine Dose×Age 0.922  ns 
Phosphorylcholine Dose 0.579  ns 
Phosphorylcholine Age 1.41E-12 * **** 
Phosphorylcholine Dose×Age 0.122  ns 
Anserine Dose 0.729  ns 
Anserine Age 0.205  ns 
Anserine Dose×Age 0.8  ns 
1-Methylhistidine Dose 1.15E-05 * **** 
1-Methylhistidine Age 7.63E-06 * **** 
1-Methylhistidine Dose×Age 0.646  ns 
UDP glucuronic acid Dose 0.547  ns 
UDP glucuronic acid Age 0.013 * * 
UDP glucuronic acid Dose×Age 0.433  ns 
L-Threonine Dose 0.211  ns 
L-Threonine Age 0.137  ns 
L-Threonine Dose×Age 0.328  ns 
L-Lactic acid Dose 0.211  ns 
L-Lactic acid Age 0.509  ns 
L-Lactic acid Dose×Age 0.335  ns 
L-Alanine Dose 0.064  ns 
L-Alanine Age 4.20E-06 * **** 
L-Alanine Dose×Age 0.728  ns 
L-Carnitine Dose 0.002 * ** 
L-Carnitine Age 3.39E-14 * **** 
L-Carnitine Dose×Age 0.283  ns 
Acetylcysteine Dose 0.624  ns 
Acetylcysteine Age 0.000112 * *** 
Acetylcysteine Dose×Age 0.965  ns 
N-Acetylornithine Dose 0.212  ns 
N-Acetylornithine Age 1.71E-07 * **** 
N-Acetylornithine Dose×Age 0.906  ns 
Ethanol Dose 0.262  ns 
Ethanol Age 0.742  ns 
Ethanol Dose×Age 0.971  ns 



 

 464 

Pantothenic acid Dose 0.968  ns 
Pantothenic acid Age 1.16E-14 * **** 
Pantothenic acid Dose×Age 0.703  ns 
Adenosine triphosphate Dose 0.446  ns 
Adenosine triphosphate Age 0.763  ns 
Adenosine triphosphate Dose×Age 0.757  ns 
Taurine Dose 0.286  ns 
Taurine Age 3.91E-06 * **** 
Taurine Dose×Age 0.653  ns 
Tyramine Dose 0.222  ns 
Tyramine Age 1.89E-08 * **** 
Tyramine Dose×Age 0.501  ns 
L-Tryptophan Dose 0.067  ns 
L-Tryptophan Age 4.97E-05 * **** 
L-Tryptophan Dose×Age 0.688  ns 
Histamine Dose 0.502  ns 
Histamine Age 0.687  ns 
Histamine Dose×Age 0.982  ns 
L-Phenylalanine Dose 0.128  ns 
L-Phenylalanine Age 1.09E-06 * **** 
L-Phenylalanine Dose×Age 0.555  ns 
L-Serine Dose 0.257  ns 
L-Serine Age 0.005 * ** 
L-Serine Dose×Age 0.806  ns 
Beta-Alanine Dose 0.009 * ** 
Beta-Alanine Age 0.454  ns 
Beta-Alanine Dose×Age 0.405  ns 
Malic acid Dose 0.05  * 
Malic acid Age 0.415  ns 
Malic acid Dose×Age 0.581  ns 
L-Valine Dose 0.063  ns 
L-Valine Age 5.13E-09 * **** 
L-Valine Dose×Age 0.301  ns 
Uridine diphosphate glucose Dose 0.518  ns 
Uridine diphosphate glucose Age 0.124  ns 
Uridine diphosphate glucose Dose×Age 0.605  ns 
Uridine Dose 0.347  ns 
Uridine Age 0.944  ns 
Uridine Dose×Age 0.833  ns 
L-Aspartic acid Dose 0.18  ns 
L-Aspartic acid Age 0.11  ns 
L-Aspartic acid Dose×Age 0.808  ns 
NADP Dose 0.604  ns 
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NADP Age 0.049 * * 
NADP Dose×Age 0.888  ns 
Glycylproline Dose 0.696  ns 
Glycylproline Age 0.073  ns 
Glycylproline Dose×Age 0.971  ns 
Adenosine monophosphate Dose 0.224  ns 
Adenosine monophosphate Age 0.379  ns 
Adenosine monophosphate Dose×Age 0.435  ns 
Phenylacetic acid Dose 0.107  ns 
Phenylacetic acid Age 0.003 * ** 
Phenylacetic acid Dose×Age 0.734  ns 
D-Maltose Dose 0.45  ns 
D-Maltose Age 0.837  ns 
D-Maltose Dose×Age 0.274  ns 
L-Isoleucine Dose 0.139  ns 
L-Isoleucine Age 3.71E-07 * **** 
L-Isoleucine Dose×Age 0.913  ns 
Citric acid Dose 0.085  ns 
Citric acid Age 0.043 * * 
Citric acid Dose×Age 0.338  ns 
L-Leucine Dose 0.484  ns 
L-Leucine Age 8.57E-06 * **** 
L-Leucine Dose×Age 0.082  ns 
Ureidosuccinic acid Dose 0.261  ns 
Ureidosuccinic acid Age 0.094  ns 
Ureidosuccinic acid Dose×Age 0.999  ns 
myo-Inositol Dose 0.01 * ** 
myo-Inositol Age 4.21E-17 * **** 
myo-Inositol Dose×Age 0.428  ns 
NAD Dose 0.296  ns 
NAD Age 0.53  ns 
NAD Dose×Age 0.342  ns 
D-Glucose Dose 0.434  ns 
D-Glucose Age 0.986  ns 
D-Glucose Dose×Age 0.315  ns 
L-Glutamine Dose 0.995  ns 
L-Glutamine Age 0.007 * ** 
L-Glutamine Dose×Age 0.734  ns 
L-Glutamic acid Dose 0.046 * * 
L-Glutamic acid Age 0.183  ns 
L-Glutamic acid Dose×Age 0.481  ns 
Oxidized glutathione Dose 0.046 * * 
Oxidized glutathione Age 4.86E-10 * **** 
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Oxidized glutathione Dose×Age 0.468  ns 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
 
 

 

 

Table 9. 22 Comparison of metabolites with VIP scores >1 between control and aged 

myoblasts treated with Q, EGCG and EPI and modelled via PLS-DA. 

 Control Aged 

Metabolite Q EGCG EPI Q EGCG EPI 

1-Methylhistidine  X X  X X 
2-Hydroxy-3-methylbutyric 

acid 
X X  X   

3-Methylhistidine   X  X  

5-Methoxyindoleacetate  X   X  

Acetic acid       

Acetone X    
  X 

Acetylcholine X      

Acetylcysteine X  X  X  

Acetylglycine X X     

Adenine   X X  X 

Adenosine monophosphate      X 

Adenosine triphosphate   X    

ADP  X X X  X 

Anserine X    X  

Beta-Alanine X  X X   

Betaine X X X X X X 

Carnosine  X     

Choline X  X   X 

cis-Aconitic acid X  X  X X 

Citric acid X X X X X X 

Creatine  X     
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Creatinine   X X  X 

D-Fructose  X  X   

D-Glucose X   X X X 

D-Maltose  X  X   

Dihydrothymine   X  X  

Dimethylglycine X X X    

Ethanol  X X X X X 

Formic acid   X    

Fumaric acid  X   X  

Glycerophosphocholine  X X  X X 

Glycine X  X X   

Glycolic acid X  X   X 

Glycylproline X      

Guanidoacetic acid     X  

Guanosine triphosphate   X    

Histamine  X     

Isopropyl alcohol    X X X 

L-Acetylcarnitine   X  X X 

L-Alanine   X X X  

L-Aspartic acid X  X   X 

L-Carnitine     X X 

L-Glutamic acid   X X X X 

L-Glutamine       

L-Isoleucine  X   X  

L-Lactic acid X X  X X X 

L-Leucine  X X X X  

L-Phenylalanine  X     

L-Serine X X     

L-Threonine X X  X   
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L-Tryptophan  X     

L-Tyrosine  X     

L-Valine  X  X   

Malic acid X X X  X X 

myo-Inositol X X X X X X 

N-Acetyl-L-aspartic acid     X X 

N-Acetylglutamine X  X   X 

N-Acetylornithine     X  

N-Alpha-acetyllysine     X  

N-Nitrosodimethylamine   X X X X 

NAD       

NADP  X     

NN-Dimethylformamide X    X X 

Oxidized glutathione X X X    

Pantothenic acid     X  

Phenylacetic acid  X     

Phosphocreatine  X X  X X 

Phosphorylcholine X X  X X  

Pyruvic acid    X   

Taurine  X X  X X 

Trimethylamine X X X    

Trimethylamine N-oxide  X   X  

Tyramine X X X    

Ureidosuccinic acid   X    

Uridine  X     

Uridine diphosphate glucose   
     

Uridine diphosphate 

glucuronic acid 
 X    X 
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Table 9. 23 Comparison of metabolites with VIP scores >1 between control and aged myotubes 

treated with Q, EGCG and EPI and modelled via PLS-DA. 

 Control Aged 

Metabolite Q EGCG EPI Q EGCG EPI 
1-Methylhistidine  X X   X 
2-Hydroxy-3-methylbutyric 

acid 
X X   X X 

3-Methylhistidine     X  
5-Methoxyindoleacetate  X X  X X 
Acetic acid       
Acetone   X    
Acetylcholine  X  X   
Acetylcysteine  X   X  
Acetylglycine       
Adenine  X X  X  
Adenosine monophosphate  X   X  
Adenosine triphosphate X   X   
ADP X X X   X 
Anserine       
Beta-Alanine  X X X X X 
Betaine X X     
Carnosine  X   X  
Choline    X X X 
cis-Aconitic acid X X X  X X 
Citric acid X   X   
Creatine  X  X X X 
Creatinine  X     
D-Fructose X X   X  
D-Glucose  X     
D-Maltose  X  X X X 
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Dihydrothymine X  X  X X 
Dimethylglycine  X X   X 
Ethanol   X    
Formic acid     X  
Fumaric acid  X X  X  
Glycerophosphocholine X  X X   
Glycine X    X X 
Glycolic acid  X X    
Glycylproline    X X  
Guanidoacetic acid  X     
Guanosine triphosphate       
Histamine  X   X  
Isopropyl alcohol   X    
L-Acetylcarnitine X X X  X X 
L-Alanine X X X X X X 
L-Aspartic acid X     X 
L-Carnitine     X X 
L-Glutamic acid    X   
L-Glutamine X   X X  

L-Isoleucine X X X  X X 
L-Lactic acid X     X 
L-Leucine X X     
L-Phenylalanine  X   X X 
L-Serine    X   
L-Threonine X X X X X X 
L-Tryptophan X X X  X X 
L-Tyrosine X X X  X X 
L-Valine X  X   X 
Malic acid    X X  
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myo-Inositol X  X X X X 
N-Acetyl-L-aspartic acid    X   
N-Acetylglutamine X   X   
N-Acetylornithine X    X  
N-Alpha-acetyllysine    X X  
N-Nitrosodimethylamine X   X X X 
NAD X X X    
NADP       

NN-Dimethylformamide  
   X X  

Oxidized glutathione  X    X 
Pantothenic acid     X  
Phenylacetic acid  X    X 
Phosphocreatine       
Phosphorylcholine X   X   
Pyruvic acid X      
Taurine       
Trimethylamine  X X  X X 
Trimethylamine N-oxide       
Tyramine  X X  X  
Ureidosuccinic acid     X  
Uridine    X   
Uridine diphosphate glucose   X X   
Uridine diphosphate 

glucuronic acid 
 X X    
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