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ABSTRACT
We present a maximum-likelihood weak lensing analysis of the mass distribution in
optically selected spectroscopic Galaxy Groups (G3Cv5) in the Galaxy And Mass
Assembly (GAMA) survey, using background Sloan Digital Sky Survey (SDSS) pho-
tometric galaxies. The scaling of halo mass, Mh, with various group observables is
investigated. Our main results are: 1) the measured relations of halo mass with group
luminosity, virial volume and central galaxy stellar mass,M⋆, agree very well with pre-
dictions from mock group catalogues constructed from a GALFORM semi-analytical
galaxy formation model implemented in the Millennium ΛCDM N-body simulation;
2) the measured relations of halo mass with velocity dispersion and projected half-
abundance radius show weak tension with mock predictions, hinting at problems in
the mock galaxy dynamics and their small scale distribution; 3) the median Mh|M⋆

measured from weak lensing depends more sensitively on the lognormal dispersion in
M⋆ at fixed Mh than it does on the median M⋆|Mh. Our measurements suggest an
intrinsic dispersion of σlog(M⋆) ∼ 0.15; 4) Comparing our mass estimates with those in

the catalogue, we find that the G3Cv5 mass can give biased results when used to select
subsets of the group sample. Of the various new halo mass estimators that we cali-
brate using our weak lensing measurements, group luminosity is the best single-proxy
estimator of group mass.

Key words: gravitational lensing: weak – methods: data analysis – galaxies: groups
– galaxies: clusters – dark matter

⋆ jiaxin.han@durham.ac.uk

1 INTRODUCTION

Even though the nature of dark matter will ultimately be de-
termined by observations of its particle properties, its gravi-
tational effect has so far been the cleanest way to map its dis-
tribution in the universe. Weak gravitational lensing is one

http://arxiv.org/abs/1404.6828v3
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of the main techniques for mapping dark matter on large and
intermediate scales (e.g. Bartelmann & Schneider 2001). As
its name suggests, weak lensing is the production of weak
distortions (shear) in the shapes of background, or source,
galaxies by foreground masses. Usually one has no prior
knowledge of the intrinsic shape of a source galaxy, resulting
in uncertainties much larger than the gravitational shear sig-
nal, so the extraction of shape distortions has to be done in
a statistical way, for example by measuring the shear-shear
correlation function on large scales (e.g., Kilbinger et al.
2013), or by stacking a large number of source galaxies
around many lenses on smaller scales. Early applications
of stacked lensing to low mass groups have been carried out
by Hoekstra et al. (2001) and Parker et al. (2005) who mea-
sured the average mass-to-light ratio of groups in the Cana-
dian Network for Observational Cosmology Field Galaxy
Redshift Survey (CNOC2). Stacked lensing measurements
have also been made using galaxies and groups in many cur-
rent large surveys, including the SDSS (Mandelbaum et al.
2006a,b; Johnston et al. 2007; Sheldon et al. 2009), CFHT
Lensing Survey (Velander et al. 2013; Hudson et al. 2013),
COSMOS (Leauthaud et al. 2012) and Deep Lens Sur-
vey (Choi et al. 2012). These studies estimate the average
density profile of the dark matter haloes of the lenses, and
derive scaling relations between halo mass and other obser-
vational properties.

Even though stacked lensing analyses can give a non-
parametric estimate of the matter density profile around
lenses with similar properties, the interpretation of the
stacked signal can be difficult. This is because the stacked
profile is an average over all the contributing haloes of un-
known mass distribution, and this average typically has a
complicated weighting determined by the error of each shape
measurement, the number of pairs within each radial bin,
and the redshifts of lenses and sources. To account somewhat
for these averaging effects, one usually parametrizes the dis-
tribution of halo masses and the clustering of haloes using
the framework of halo occupation distribution (HOD) mod-
els (e.g. Cooray & Sheth 2002; Mandelbaum et al. 2005b;
Leauthaud et al. 2012), and fits for the HOD parameters
given the stacked profiles.

In this work we carry out a weak lensing analy-
sis of galaxy groups from the Galaxy And Mass Assem-
bly (GAMA, Driver et al. 2011) survey. GAMA is an ongo-
ing spectroscopic survey of moderate sky coverage. As large
scale surveys go, it has deep spectroscopy as well as uni-
form, yet high, completeness (> 98%) down to rAB = 19.8.
This makes possible the construction of a large and accurate
galaxy group catalogue (G3Cv5, Robotham et al. 2011),
able to reach lower halo masses than other existing cata-
logues of the local universe. In addition, the survey region
of GAMA was selected to overlap several companion sur-
veys at different wavelengths, ranging from radio to x-ray.
These complementary data provide a detailed picture of the
properties of GAMA galaxies. The variation of galaxy prop-
erties with environment, defined by the mass distribution
probed by weak lensing, can be investigated using gravi-
tational shear measurements of background galaxies taken
from the photometric SDSS data in the same region. Fortu-
nately, the redshift distribution of GAMA groups peaks at
z ∼ 0.2, where the lensing efficiency of the SDSS galaxy sam-
ple also peaks. These lens and source samples are described

in more detail in Section 2. Since our default lens sample is
subject to a survey flux limit and a group multiplicity selec-
tion, most of the measured mass-observable relations in this
work are subject to some selection effects and should not
be taken as general relations for a volume-limited sample.
In order to draw some general conclusions on galaxy for-
mation, however, we only compare our measurements with
mock galaxy catalogues that incorporate the same selection
function. These mock catalogues are also described in Sec-
tion 2.

As the galaxy number density of our source sample
(∼ 1 arcmin−2) is much lower than some dedicated lensing
surveys (e.g., ∼ 20 arcmin−2 in CFHTLS and ∼ 70 arcmin−2

in COSMOS), and because the lens sample is restricted by
the small GAMA sky coverage (∼ 150deg2 in this work)
compared with SDSS for instance, we do not have any ob-
vious advantage in signal-to-noise over existing measure-
ments. Hence efficient utilization of the lensing signal is cru-
cial to our analysis. To this end, we go beyond the pop-
ular stacked analyses, and perform a maximum-likelihood
analysis on the shapes of individual background galaxies,
broadly following the method in Hudson et al. (1998) (see
also Schneider & Rix 1997; Hoekstra et al. 2003, 2004). The
key difference between our approach and stacked lensing is
that we fit the shapes of each source galaxy explicitly, while
stacked lensing only estimates or fits the average tangen-
tial shear for sub-samples of sources binned in radius, and
around lenses binned according to mass proxies. Our method
requires no binning in the source sample, and can be applied
with or without binning in the lens sample. Not binning
the data avoids information losses, leading to good mea-
surements with our small sample. Another advantage of our
method is that it is free from the averaging ambiguity asso-
ciated with stacking, since the mass of each lens is explic-
itly modelled. With this method, the large number of avail-
able observational properties associated with GAMA groups
can now all be linked with the underlying halo masses, to
provide valuable constraints on galaxy formation models.
We will also show that our maximum-likelihood weak lens-
ing method is an ideal tool for model selection, to pick up
the tightest mass-observable relation observationally. We de-
scribe our method in Section 3, and its practical application
in Section 4.

As a first application of our maximum-likelihood weak
lensing (MLWL) method, we extract the scaling relations of
halo mass to various group observables, including velocity
dispersion, luminosity, radius, virial volume and stellar mass
of the group’s central galaxy. With MLWL we give both non-
parametric measurements of these relations by binning only
the lens sample according to observable, and parametric fits
by modelling the mass-observable relation as a power-law
with no binning at all. The G3Cv5 comes with estimated
halo masses calibrated using mock catalogues. These mass
estimates are also examined with MLWL, to see if they differ
from our measurements. Starting from MLWL we also con-
struct several new mass estimators, which we compare with
predictions from a semi-analytical galaxy formation model
and previous measurements. These results are described and
discussed in Sections 5 and 6, with all the fits summarized
in Table 1.

Weak lensing measurements can be compared with pre-
dictions from galaxy formation models to gain insight into
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the various physical processes in the model. In this com-
parison, it is crucial that one properly accounts for the
observational selection effects. Hilbert & White (2010) first
compared the weak lensing measured mass-richness rela-
tion with the prediction from semi-analytic galaxy forma-
tion models. They construct mock clusters by picking clus-
ter haloes from simulation snapshots, and applying obser-
vational selection functions to the member galaxies of the
mock clusters. In this work, we improve the treatment of
selection effects in two aspects. First, a light-cone galaxy
catalogue (Merson et al. 2013) is constructed from a semi-
analytic galaxy formation model, to account fully for the
selection function of the galaxy survey. Second, identical
group finding algorithms (Robotham et al. 2011) are applied
to both the real and mock galaxy catalogues, to account fully
for the selection effect introduced by group finding. We also
have compared many more mass-observable relations. All
the relations in Table 1 are subject to sample selection, and
we only compare them with mock catalogues constructed
with the same selection function as the real data. The only
exception is in the comparison of our stellar mass-halo mass
relation with those from other works, where we make an
additional measurement for a volume-limited central galaxy
sample.

To summarize the structure of the paper, we describe
our lens and source samples in Section 2 along with the
mock catalogues to which we compare our measurements;
the general MLWL method is described in Section 3, with its
application to our samples described in Section 4; the results
are presented and discussed in Sections 5 and 6; finally, we
conclude in Section 7.

The units throughout this paper, wherever not explic-
itly specified, are km s−1 for velocity, h−1Mpc for length,
h−1M⊙ for halo mass, h−2M⊙ for galaxy stellar mass, and
h−2L⊙ for luminosity, where H0 = 100h km s−1 Mpc−1.
The log() function throughout is the common (base 10) log-
arithm, while the natural logarithm is ln(). Unless explicitly
stated, the lens sample covers groups with three or more
members. The relevant cosmological parameters, which only
appear in the distance calculations of our measurements, are
ΩM = 0.3 and ΩΛ = 0.7. 1

2 DATA SAMPLES

The lens and source samples used in this work are described
in detail in Sections 2.1 and 2.2 respectively. Section 2.3
contains a description of the mock GAMA group catalogues,
to which we compare our measurements.

1 The mock catalogues with which we compare are constructed
from the ΛCDM Millennium simulation which has a different cos-
mology (ΩM = 0.25, ΩΛ = 0.75). However, our lensing mea-
surements are very insensitive to cosmology. Switching to Millen-
nium/WMAP9/Planck cosmologies only introduces a ∼ 1 percent
difference into the fitted parameters.

2.1 Lens Catalogue: GAMA Galaxy Group
Catalogue (G3Cv5)

We use the fifth version of the GAMA Galaxy Group Cata-
logue (Robotham et al. 2011, hereafter G3Cv5)2 in the three
equatorial GAMA regions (12×4 deg2 each) as our lens sam-
ple. The galaxy groups were identified in the 3-year GAMA
I data using a modified Friends-of-Friends (FoF) algorithm
(Eke et al. 2004a) and calibrated against a set of mock cata-
logues constructed from the GALFORM (Bower et al. 2006)
semi-analytical model, following the method described in
Merson et al. (2013). The GAMA I data used here are uni-
formly limited to rAB = 19.4 across the three regions. Group
properties are found to be robust to the effects of interlop-
ers and are median unbiased. The G3Cv5 catalogue contains
∼ 12200 groups with two or more members and includes
∼ 50% of all the GAMA galaxies down to a magnitude limit
of rAB 6 19.4.

Applying the G3Cv5 group finding algorithm to mock
GAMA surveys shows that approximately half of the two-
member groups contain galaxies from different dark mat-
ter haloes. These groups would have particularly unreli-
able properties, so we exclude all binary groups from this
study, reducing the sample to ∼ 4500 groups. In addition,
we exclude groups for which the measured velocity disper-
sion is smaller than the assumed velocity measurement er-
rors or for which the stellar mass of the central galaxy
has not been estimated (mainly due to missing photom-
etry in the GAMA I reprocessed multi-wavelength imag-
ing; Hill et al. 2011; Kelvin et al. 2012; Taylor et al. 2011).
This removes a further 164 groups. The central galaxy of
the group is defined in the iterative way recommended by
Robotham et al. (2011), where the galaxy furthest from the
galaxy luminosity-weighted projected centre is rejected and
this process repeated until the brighter of the final two galax-
ies is chosen. This is the preferred choice of centre accord-
ing to Robotham et al. (2011) who find the iterative centre
to be less affected by interlopers than the Brightest Clus-
ter Galaxy (BCG) or the luminosity-weighted centre. We
use these iterative central galaxies to define the centres of
our groups. This central galaxy is identical to the BCG for
∼ 90% of the groups, and it makes little difference in our
measurement if we choose the BCG as group centre instead.
Stellar masses for group central galaxies were inferred using
a stellar population synthesis model, adopting a Chabrier
IMF (Taylor et al. 2011).

The redshift distribution of our group sample, i.e. lens
catalogue, is shown in the lower panel of Fig. 1, peaking at
z ∼ 0.2 and extending to z ∼ 0.5.

2.1.1 G3Cv5 Mass Estimators

For each GAMA group, after measuring the group velocity
dispersion with the gapper estimator (Beers et al. 1990) and
correcting for a velocity measurement error, the dynamical

2 We updated the version number to the internal version number
of the group catalogue as in the GAMA database. However, the
catalogue refers to the same one as in Robotham et al. (2011),
and the G3Cv1 quoted in the previous version of this paper.
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mass of the group is estimated via

Mdyn = Adyn σ
2
v R50. (1)

R50 is the projected half-abundance radius containing 50
percent of the group members (Robotham et al. 2011). We
adopt this definition of group radius throughout this pa-
per. The prefactor Adyn ∼ 10 was calibrated as a func-
tion of redshift and multiplicity in the mock catalogues by
Robotham et al. (2011). The mass definition used in the cal-
ibration process is not exactly the commonly used M200b,
but closely related to it as mentioned in Robotham et al.
(2011)(see Jiang et al. 2013, for more details of the exact
mass definition used and how it compares to M200b). The
other G3Cv5 mass estimator, the luminosity mass, comes
from rescaling the total group luminosity

Mlum = Alum Lgrp. (2)

Lgrp is the total r-band luminosity of the group, corrected for
the fraction of light in galaxies below the survey flux limit us-
ing the GAMA luminosity function (Robotham et al. 2011).
Throughout this paper we refer to the r-band Lgrp as the
group luminosity. Most of the GAMA groups contain mem-
bers fainter thanM∗ = −20.44+5 log h (Blanton et al. 2003;
Loveday et al. 2012), and the group luminosity is dominated
by galaxies aroundM∗, so the correction factor is below 3 for
about 90 per cent of the groups and ∼ 2 at z = 0.2, the me-
dian group redshift. The prefactor Alum is calibrated using
Mdyn for the observed groups as a function of redshift and
multiplicity. Consequently, Mlum is median unbiased with
respect to Mdyn.

As shown in the top panel of Fig. 1, the GAMA groups
mainly reside in haloes of 1013−1014h−1M⊙. The dynamical
mass has a broader distribution than the luminosity mass,
reflecting the larger dispersion in the former estimate, par-
ticularly for the groups with low membership. We find that
the same luminosity mass calibration method applied to the
mock groups suggests that halo mass should be more tightly
correlated with luminosity mass than with dynamical mass.

2.2 Source Catalogue: SDSS shape measurements

We use as source galaxies those from the SDSS DR7 within
and around the three GAMA regions. The approach we
follow is to measure a per-galaxy shape distortion, and
then relate those to the shear applied to the ensemble
of galaxies. The shapes of these galaxies are measured
by Mandelbaum et al. (2005a) and Reyes et al. (2012) us-
ing the re-Gaussianisation technique, which we briefly de-
scribe in Appendix A for completeness. As recommended
by Mandelbaum et al. (2005a) and Reyes et al. (2012), we
keep only those galaxies with extinction-corrected r-band
model magnitudes brighter than 21.8, r-band extinction be-
low 0.2, and galaxy resolution3 above 1/3 in both the r
and i bands. The photometric redshifts of these galaxies
are estimated using the template fitting algorithm ZEBRA4

(Feldmann et al. 2006), the application of which in weak

3 The galaxy resolution is a measurement of how extended
the galaxy is compared to the width of the PSF; see
Mandelbaum et al. (2005a) for the exact definition.
4 http://www.astro.ethz.ch/research/Projects/ZEBRA
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Figure 1. The mass and redshift distributions of our lens and
source samples. Upper panel: distribution of the G3Cv5 dynam-
ical and luminosity mass estimates for our group sample. Lower
panel: redshift distribution of our GAMA group sample and the
SDSS source galaxies. Note that only groups with at least three
members are considered in this work.

lensing is thoroughly discussed by Nakajima et al. (2012).
We further require that the ZEBRA photo-z determinations
are successful using a non-starburst template, considering
the typically large photo-z errors for starburst galaxies. The
final sample consists of ∼ 5.6 × 105 galaxies, corresponding
to a number density of ∼ 1 arcmin−2. The lower panel of
Fig. 1 shows the distribution of galaxy photo-z values, which
peaks around z = 0.5 and extends to z > 1.0. The use of
photo-zs for source galaxies could introduce a bias and boost
the error in our lensing mass measurement. We address these
issues with the help of Monte-Carlo simulations as detailed
in Section 3.5, 4.2 and 5.1.

http://www.astro.ethz.ch/research/Projects/ZEBRA
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2.2.1 Galaxy ellipticity

For a purely elliptical galaxy image following a 2D Gaussian
brightness profile, its shape can be simply quantified by the
axis ratio and the direction of the major axis. Equivalently,
we can measure an ellipticity, χ = (χ1, χ2), defined as

χ1 + iχ2 =
1− q2

1 + q2
ei2φ, (3)

where q is the minor to major axis ratio. φ is the position
angle of the major axis, defined in a reference frame where
the positive x and y axes point to the east and the north on
the sky respectively. Note that the ellipticity is not a vector,
since a rotation of the reference frame by ψ transforms χ as

(

χ′
1

χ′
2

)

= R(−2ψ)

(

χ1

χ2

)

(4)

, where

R(θ) =

(

cos θ sin θ
− sin θ cos θ

)

(5)

is the rotation matrix. However, we still write it in a vector
form to simplify equations involving dot products of ellip-
ticities and shears later, where χ · χ′ = χ1χ

′
1 + χ2χ

′
2.

A real galaxy image is typically the convolution of a
non-Gaussian intrinsic image with a non-Gaussian point
spread function (PSF). In Appendix A, we describe how
we measure the ellipticities for real galaxies. How the el-
lipticity relates to the lens distribution will be described in
Section 3.1.

2.3 Mock Group Catalogues: Millennium
light-cones

The GAMA group finder has been run on a set of nine light-
cone mock galaxy catalogues by Robotham et al. (2011) to
produce mock group catalogues that allow us to compare the
model predictions with observations and investigate sample
variance. The mock galaxy catalogues were created follow-
ing the approach developed by Merson et al. (2013), briefly
summarised here.

Firstly a GALFORM semi-analytical galaxy formation
model (Bower et al. 2006, in this case) is run on merger trees
extracted from the Millennium simulation (Springel et al.
2005) to create the galaxy distribution within each simula-
tion snapshot. Using the individual snapshots (with repli-
cations if necessary), a galaxy lightcone is generated by
sampling the galaxies according to their redshift and dis-
tance away from the observer. An interpolation on galaxy
position, velocity and k-correction is applied between snap-
shots to avoid any abrupt transitions or features at snaphot
boundaries. All other galaxy properties are fixed to the ear-
lier snapshot. Finally the GAMA survey selection function
is applied to the galaxies in the lightcone to produce a mock
GAMA survey. When applying the survey selection function
we force the mock luminosity function to reproduce perfectly
the observed luminosity function, by abundance matching.
This changes the r-band magnitudes of the original GAL-
FORM predicted magnitudes by less than 0.15 mags typi-
cally.

This process is repeated for each of the nine different
GAMA lightcone mocks, all extracted from the same Mil-
lennium simulation, with some limited attempt at reducing

any overlap between each of them. Futher details of their
construction and limitations are given in Robotham et al.
(2011) and Merson et al. (2013).

The G3Cv5 grouping algorithm was run on these
GAMAmock surveys, yielding the so-called mock group cat-
alogues. Each mock group has the same set of observational
properties (and measured in exactly the same way) as the
real GAMA groups. For the purpose of this study, we also as-
sociate a true halo mass, Mh, with each group by selecting
the mass of the dark matter halo hosting the iteratively-
determined central galaxy of the mock group5.

3 METHOD: MAXIMUM LIKELIHOOD WEAK
LENSING

One might wonder whether the Maximum Likelihood Weak
Lensing (MLWL) technique is simply stacked weak lensing
extended to the unbinned limit, that is, the case in which
one has at most a single lens-source pair inside each bin.
While stacked weak lensing usually works pair by pair for
all the lens-source pairs, the MLWL method used here op-
erates source by source. With Ns source galaxies one has
2Ns independent observables since each source galaxy has
two ellipticity components (see Equation (3)). Coupled with
Nℓ lens galaxies, this gives NℓNs tangential shear measure-
ments. However, these NℓNs pairs are generally not inde-
pendent, and the covariance matrix of these measurements
has at most 2Ns non-zero eigenvalues. Hence the matrix is
not invertible when NℓNs > 2Ns and, in this case, it is
not possible to write down the joint probability distribu-
tion function (PDF) of these variables. In other words, at-
tempts to extend stacked lensing to the unbinned limit will
fail when the total number of radial bins from all the mass
bins exceeds the intrinsic number of degrees of freedom in
the source sample (2Ns). However, there is still a PDF asso-
ciated with the dataset in the unbinned case when one works
in the eigenspace, i.e. directly with the shear of each source
galaxy rather than the tangential shear of each lens-source
pair, as we do here.

We start by describing the ellipticity of each source
galaxy with a 2 dimensional Gaussian distribution, which
enables us to write down a likelihood function combining all
the source galaxies. The model dependence enters through
the expected ellipticity of each source. This is achieved by
modelling the predicted ellipticity field as a superposition of
the shear field from all the foreground lenses. Each lens is
modelled as a circularly symmetric mass distribution with a
single parameter. In principle, the mass parameter of all the
lens haloes can be estimated simultaneously by optimizing
the joint likelihood of all the source ellipticities. However,
this means a parameter space with a dimensionality of the
number of lenses, ∼ 4500 for our sample, which is not easily
manageable. Besides, the huge number of parameters also
means extremely low signal to noise for the estimate of each
individual parameter. Instead of fitting the mass of each halo
explicitly, we reduce the dimensionality by predicting their
masses from group observables (e.g., group luminosity), and

5 We note that this matching differs from what was done in
(Robotham et al. 2011), as discussed further in Section 6.1.
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only fit the parameters of a mass-observable relation. We
also take a second approach by dividing the sample into a
small number of bins according to observables, and fit a sin-
gle mass to all the haloes within each bin. In the following
subsections we give a detailed description of our implemen-
tation.

3.1 Predicting the ellipticity of source galaxies

The shear field, generated by foreground lenses, transforms
the intrinsic ellipticities of source galaxies into observed el-
lipticities. To linear order, with our definition the ellipticity
transforms under a small applied shear |γ| ≪ 1 as (e.g.,
Bernstein & Jarvis 2002)

χ = χ0 + 2γ − (2γ · χ0)χ0. (6)

If the intrinsic ellipticity, χ0, of each galaxy is randomly
oriented with no correlation between its two components,
then the expectation value of the observed ellipticity can be
found from Equation (6) as

E[χ] = 2Rγ, (7)

with

R = 1− σ2
SN (8)

being the shear responsivity (Bernstein & Jarvis 2002). Here
σ2
SN = E[χ2

0,1] = E[χ2
0,2] is the intrinsic shape noise. In

the presence of measurement errors, the responsivity (Equa-
tion 8) is still valid, and can be equivalently derived from the
more general Equation (5.33) in Bernstein & Jarvis (2002)
with a constant weight function.

It also follows from Equation (6) that when |γ| ≪ 1, the
predicted ellipticity χ̂ = E[χ] due to the shear contribution
from different lenses adds up linearly for the same source:
(

χ̂1

χ̂2

)

= 2R
∑

ℓ

R(2φℓ + π)

(

γt,ℓ
γ×,ℓ

)

(9)

where R(θ) is the rotation matrix defined in Equation (5),
γt,ℓ and γ×,ℓ are the tangential and cross shear produced
by lens ℓ at the position of the source, and φℓ is the posi-
tion angle of the lens in the reference frame of the source.
Note the tangential reference frame is rotated by φℓ + π/2
from the local source frame. The summation runs over all
contributing lenses (i.e., foreground haloes).

3.2 Lens models

We model the mass distribution of each group as a spherical
NFW (Navarro et al. 1996, 1997) halo, with a single param-
eter, M , defined as the virial mass such that the average
matter density inside the virial radius equals 200 times the
mean density of the universe. The concentration parameter
is fixed as in Duffy et al. (2008),

c = 10.14

(

M

2× 1012h−1M⊙

)−0.081

(1 + z)−1.01. (10)

The data used in this study are consistent with these as-
sumptions, but do not provide sufficient leverage to fit the in-
ternal halo profile while also determining the dependence of
total mass on other group observables; hence the restricted

lens model adopted here. We denote the virial radius fol-
lowing this definition as R200b. We also considered a cen-
tral point source component representing the stellar mass
of the central galaxy, but found it had almost no impact
on the results and can be safely ignored for this analy-
sis. In this work we have also neglected the contribution
to the lensing signal from line-of-sight structures, the im-
pact of lens group asymmetries, and contamination from
radial alignments of group member galaxies. Previous stud-
ies (Marian et al. 2010; Schneider et al. 2012, 2013) suggest
that these effects are likely to be present at a level of no
more than a few per cent. The contributions from these
uncertainties, as well as the contributions from any lenses
absent from our sample to the observed source shapes, are
effectively considered as part of the intrinsic shape noise.

These circularly symmetric lenses induce only tangen-
tial shear in the source images,

γ×,ℓ = 0 and (11)

γt,ℓ =
∆Σ

Σcrit
(12)

(see e.g. Schneider 2005). Here ∆Σ = Σ(< r) − Σ(r) is the
difference between the mean physical surface overdensity, Σ,
within a radius r and that at r. Analytical expressions for
∆Σ(r) for NFW haloes can be found in Wright & Brainerd
(2000). The critical physical surface density is defined as

Σcrit =
c2

4πG

Ds

DℓsDℓ

, (13)

where Dℓ, Ds and Dℓs are the angular diameter distances to
the lens, the source and that between the two respectively.
In calculating these distances we adopt the fitting formula
of Adachi & Kasai (2012), which is accurate to within 1 per-
cent, for relevant cosmologies.

3.3 Likelihood function

Following Hudson et al. (1998), we assume the noise in the
observed χ follows a bi-variate Gaussian distribution. The
probability of observing each source galaxy with shape χ =
(χ1, χ2) is given as:

p(χ|χ̂) = 1

2πσ2
e
−

[

(χ1−χ̂1)2

2σ2 +
(χ2−χ̂2)2

2σ2

]

, (14)

where the single-component variance, σ2 = σ2
χ +σ2

SN , is the
sum of the measurement noise, σχ, and intrinsic shape noise,
σSN . For our source sample, σSN ≃ 0.4 (Mandelbaum et al.
2005a) provides the dominant contribution to the total
noise.6 The predicted ellipticity, χ̂, is given by Equa-
tions (9), (11) and (12).

The likelihood function of our full lens-source sample is
written as,

L =
∏

i

pi, (15)

6 Reyes et al. (2012) found the measurement noise in
Mandelbaum et al. (2005a) was underestimated, leading to
an overestimate of the shape noise used here. Reyes et al. (2012)
estimates the shape noise to be σSN ≃ 0.35 − 0.37. Adopting
this shape noise would lead to a ∼ 2− 4 per cent increase in the
responsivity. As a result, the derived masses would be lowered
by a similar factor.
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where i runs over all the source galaxies. In principle, an
imperfect PSF correction could break the statistical inde-
pendence of the likelihoods for individual source galaxies so
the combined likelihood is no longer a simple product as
above. Even in this case, however, the large shape noise will
make Equation (15) true to good approximation.

3.4 Likelihood ratio

The log-likelihood function can be written as

ln(L/L0) =
∑

i

[

(2χ − χ̂) · χ̂
2σ2

]

i

, (16)

where lnL0 is a constant quantifying the log-likelihood of
the observed shapes given a model that predicts no gravita-
tional shear. This L0 is independent of the model parame-
ters, varying only with the data.

The observed ellipticity is the sum of a true elliptic-
ity, produced by the gravitational shear from the entire
mass distribution, and a noise component, i.e. χ = χT + ǫ,
while the predicted ellipticity can be written in terms of a
difference from the true shear-induced ellipticity, through
χ̂ = χT − χ∆. Note χ∆ = 0 would correspond to a perfect
model. With this decomposition, the likelihood ratio reduces
to

2 ln(L/L0) =
∑

i

(

χ
2
T − χ

2
∆ + 2ǫ · χ̂
σ2

)

i

(17)

=
∑

i

(

S

N

)2

i

−
(

∆S

N

)2

i

+

(

2CMN

N2

)

i

, (18)

with the first term representing the signal-to-noise ratio of
the data, the second term deriving from discrepancies be-
tween the model and actual gravitational shears, and the
last term being the model-noise cross-correlation.

Intrinsic alignments of background galaxies and sys-
tematic biases in the measured ellipticities can both pro-
duce regions of the survey in which 〈ǫ〉 6= 0. In addition,
the predicted ellipticities near to survey boundaries will
typically have a preferential alignment, because no con-
tribution is taken into account in the model from lenses
just outside the survey region. Consequently, the model-
noise cross-correlation term in equation (18) may well be
non-zero near to the edges of the survey region, meaning
that the most likely model will be biased by this cross-
correlation. In stacked weak lensing, this cross-correlation
term shows up as systematic shear (see e.g. Hirata et al.
2004; Mandelbaum et al. 2005a). It can equivalently be un-
derstood as the non-zero residual of tangential shear aver-
aged inside boundary-crossing annuli around sources. This
systematic shear can be avoided by excluding the contribu-
tion to the source galaxy predicted ellipticity from any lens
more distant than the nearest survey boundary, as we will
do in Section 4.1.

In the absence of the cross-correlation term, the inter-
pretation of the likelihood ratio is now clear: it is simply
the difference between the signal-to-noise ratio in the data
and that from the model deficiency. Since L0 is model in-
dependent, maximizing the likelihood function is equivalent
to minimizing the model deficiency. This makes MLWL an
ideal tool to search for the tightest mass-observable rela-

tions, or the least-scatter halo mass estimators, as we will
do in Section 6.2.

According to Equation (18), one needs to avoid regions
in the dataset where |∆S| & S is expected, to avoid de-
grading the overall signal-to-noise or producing biased fits.
It also becomes clear from Equation (18) that stacking or
binning reduces the signal-to-noise by averaging the model
within each bin, thus contributing to the model deficiency
term.

More generally, one can define a test statistic

TS = 2 ln(L/L0), (19)

where L is the maximum likelihood value of a full model
while L0 is that of the same model with some parameters
fixed (the null model). According to Wilks’s theorem (Wilks
1938), if the data follow from the null model, then TS follows
a χ2 distribution with n degrees of freedom, where n is the
difference between the number of free parameters in the full
and null models. For a measured TS, the probability that
such a large TS is compatible with noise, or the p-value, is
simply p = P (χ2

n > TS). This can be converted to a Gaus-
sian significance of Φ−1(1− p/2) σ, where the function Φ−1

is the quantile function of the Gaussian distribution. The co-
variance among parameters can also be estimated from the
Hessian matrix of the likelihood ratio with respect to the
parameters. Expanding the likelihood ratio locally around
the maximum-likelihood value to leading order, we have

δTS = δcTHδc, (20)

where c is a column vector of model parameters, and H =
∇c ln(L) is the Hessian matrix. δTS is now the likelihood
ratio with respect to a null model at c+ δc. Setting δTS =
1, the p = 0.317 critical value of the χ2 distribution, one
obtains the covariance matrix of parameters as Σcov = H−1.
Alternatively, the errors on the parameters can be estimated
using random catalogues, which are particularly useful when
accounting for additional systematics. This will be described
in Sections 3.5 and 4.2.

3.5 Prior distribution of nuisance parameters

So far we have assumed that the only uncertainties come
from the measured shapes of the source galaxies. However,
the likelihood function depends implicitly on the redshift of
each source galaxy and the inferred centre and predicted
mass for each lens. The uncertainties in these implicit pa-
rameters can be accounted for by marginalizing over their
prior distributions. With any observed source redshift, zo,
observed lens centre, Xo, and predicted lens mass, Mo, the
probability distributions of the actual values can be writ-
ten as P (z|zo), P (X|Xo) and P (M |Mo). Given knowledge
about these additional stochastic processes, the likelihood
function can be more generally written as

L =

∫ m
∏

s=1

p(χs|zs,X1,X2, ...Xn,M1,M2, ...Mn) (21)

dP (zs|zo,s)
n
∏

ℓ=1

dP (Xℓ|Xo,ℓ)dP (Mℓ|Mo,ℓ),

where the subscripts s and ℓ represent different sources and
lenses in the sample. The above equation arises from assum-
ing independent prior distributions, P (zs|zo,s), P (Xℓ|Xo,ℓ)



8 J. Han et al.

and P (Mℓ|Mo,ℓ), for the different sources and lenses, al-
though it is straightforward to generalise to correlated dis-
tributions.

Equation (21) is too computationally intensive to solve
directly. Instead, we take an indirect approach in our likeli-
hood optimization and continue to use Equation (15) as our
likelihood function. Ignoring the stochastic processes men-
tioned above should lead to both a biased parameter estima-
tion and underestimated parameter uncertainties. In addi-
tion, Wilks’s theorem would no longer hold to interpret TS.
To determine these biases and errors, we will apply the same
fitting process to a set of random catalogues in which these
additional stochastic processes have been introduced and the
actual parameter values are known. Comparing the distri-
bution of the fitted parameters with the input values, we
can measure the bias and errors introduced by this method.
These can then be used to correct the results inferred from
the real observations, and calibrate where significance levels
lie within the TS distribution.

To construct the random catalogues, the prior distribu-
tions are chosen as follows:

P (z|zo) = N (zo, σz), (22)

dP (X = {r, θ}|Xo) =
r

σ2
X

exp

(

− r2

2σ2
X

)

dr
dθ

2π
, (23)

P (logM |Mo) = N (logMo, σlogM ), (24)

where N (µ, σ) is a Gaussian distribution with mean µ and
standard deviation σ, r and θ are the 2−dimensional separa-
tion and position angle of X with respect to Xo, and σlogM

represents the width of the true halo mass distribution for
the appropriate mass estimator. For each source galaxy, the
photo-z standard deviation is obtained by symmetrizing the
ZEBRA one-sigma confidence limits, zℓ, zu, through σz =
√

[(zu − zo)2 + (zℓ − zo)2]/2. These estimated photo-z un-
certainties are similar to those obtained by Nakajima et al.
(2012), who compared their estimated galaxy photo-z values
to spectroscopic redshifts.

We choose to centre haloes on the iteratively-
determined centres of light, which in most cases coincide
with the locations of the BCGs. Although the existence of
an offset between BCG and the real halo centre is well
recognised (see,e.g., Skibba et al. 2011; Zitrin et al. 2012;
George et al. 2012, and references therein), a reliable and
general quantification of the offsets is not yet available. In or-
der to estimate the prior distribution of offsets between pro-
jected mass and iteratively-determined centres of haloes, we
start from investigating the displacements between different
observational proxies of the halo centre. As shown in Fig-
ure 2, the displacement between the iteratively-determined
and overall light centres in the real G3Cv5, when expressed
in units of the group radius, R50 ∼ 0.2R200b , is almost in-
dependent of group observed mass or multiplicity. Its dis-
tribution can be well fitted with a 2D-Gaussian with mean
0 and σ

X̃
= 0.35 in each dimension, where X̃ = X/R50. In

Figure 2 only the distribution of |X̃| = DCoL−Iter/R50 is
plotted, which is a Rayleigh distribution (see Equation 23).
Assuming the offset distributions of these two centres from
the projected mass centre are independent and identical, this
implies that σ

X̃
= 0.35/

√
2 ≃ 0.2. Hence we model the off-

set between observed and true halo centres with a Gaussian
distribution having σX = 0.2R50. The median, σX, in our
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Figure 2. Distribution of the offset between the centre of light
and the iterative centre for G3Cv5 groups. The separation be-
tween the two centres, DCoL−Iter , is normalised by the comov-
ing size, R50, of each group. Different symbols represent different
multiplicity ranges and the black solid line is a Rayleigh distribu-
tion fitted to the whole sample.

sample is ∼ 0.03 h−1Mpc, comparable with the estimation of
∼ 0.01 h−1Mpc by Zitrin et al. (2012) for their SDSS cluster
sample, and with the BCG offset of ∼ 0.02Mpc estimated in
George et al. (2012).

To estimate the distribution of the true halo mass at
a given observationally-inferred mass, we make use of the
mock G3C catalogues. In these, the true halo mass is well
described by a log-normal distribution for any given dy-
namical (luminosity) mass measurement, with a dispersion
σlogM = 0.6 − 0.8 (σlogM = 0.5 − 0.7), increasing (decreas-
ing) with mass. For a measured luminosity mass in the range
of 1013 − 1015h−1M⊙, which comprises the majority of our
lenses, the dispersion stays roughly constant at σlogM = 0.5,
as is evident in the upper-right panel of Fig. 3. In what fol-
lows, we adopt σlogM = 0.5 by default, but use σlogM = 0.7
for the dynamical mass estimator.

Note that if the full likelihood function (Equation 21) is
used, then in principle any parameters that are part of the
distribution function can be fitted. For example, one would
be able to measure the mean logarithmic halo mass, or the
median mass parameter for the lognormal prior distribution
in halo mass (Equation 24). As stated above, in this work we
choose an alternative approach by fitting a simple likelihood
function to the data ignoring the priors, and then calibrate
the fitted parameters using random catalogues accounting
for the priors. This is equivalent to the full likelihood fit-
ting and, in the remainder of the paper, we will quote our
calibrated best-fit mass-observable relations as the median
mass-observable relation assuming a lognormal mass disper-
sion as in Equation (24).
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4 DATA ANALYSIS

4.1 Data cuts

In order to minimize systematic uncertainties, a series of cuts
are applied to select the lens-source pairs for the likelihood
analysis, as described below.

Closed-circle cut. The model-noise correlation discussed
in Section 3.4 is most significant on intermediate (∼ 10 Mpc)
to large scales for our sample, but in this paper we are con-
sidering the small-scale matter distribution in and around
haloes. Thus, instead of making any correction, we com-
pletely avoid this boundary effect by imposing a closed-circle
cut. Specifically, when predicting the gravitational shear at
the location of galaxy s, χ̂s, our model only includes contri-
butions from lenses that are closer to the source than is the
nearest survey boundary.
Virial cut. We model each lensing group with a single

NFW halo. However, on large scales the two-halo term,
i.e., the matter distribution contributed by nearby haloes,
dominates over the single halo term. Since our sample does
not cover arbitrarily low mass haloes, our modelled mat-
ter distribution will be missing the contribution from low
mass haloes that are not modelled. Hayashi & White (2008)
showed that a sharp transition in the halo-mass cross-
correlation, ξhm, happens at a scale where ξhm ∼ 6, cor-
responding to ∼ 3R200b for the halo mass and redshift
ranges relevant here. Within this distance, the mass distri-
bution is well described by a single halo profile. To avoid
the correlation-dominated regime, we limit the analysis to
within 2R200b of each lens, where the virial radius R200b of
the group is estimated from its luminosity mass. This cut
essentially decouples the lens modelling of haloes from each
other, except for close by ones. As we further discuss in
Appendix B2, the haloes that are not modelled should in-
troduce a bias of less than 3% in our mass estimates when
our data cuts are applied.
Centre-offset cut. If the iteratively-determined lens cen-

tre is offset from the projected centre of mass, then this will
lead to an underestimate of the halo mass with the largest
errors being made in the central density profile. To reduce
any bias associated with this effect, lens-source pairs are
not used where the source is within a projected distance
rp = 0.3R50 of a lens. This corresponds to a median physi-
cal radius of ∼ 0.04 h−1Mpc.
Obscuration cut. It can be difficult to measure the

shapes of background galaxies that lie close, in pro-
jection, to the bright central galaxies of foreground
groups (e.g. Hirata et al. 2004; Mandelbaum et al. 2005a).
Budzynski et al. (2012) found that the obscuration radius
of SDSS DR7 galaxies is about 5 arcsec, so we exclude any
source galaxy that lies within 10 arcsec of a foreground halo
centre in our sample. Adopting an even larger cut of 20 arc-
sec makes no significant difference to our results.

Redshift cut As a result of the large uncertainty in pho-
tometric redshift measurements, some foreground galaxies
containing no real shear signal could be mistakenly iden-
tified as background source galaxies. To prevent excessive
contamination from foreground galaxies, we only use source
galaxies that have a photometric redshift at least ∆z = 0.3
higher than the spectroscopic redshift of the lens. This choice
of redshift buffer is more conservative than the ∆z = 0.1 in

Mandelbaum et al. (2006a), where they chose to correct for
the remaining contamination with a boost factor. As there is
a low lensing efficiency for small lens-source redshift separa-
tions, we estimate that our choice of the redshift buffer only
reduces the signal-to-noise of the resulting measurements by
∼ 25% compared to no buffering, while effectively remov-
ing all foreground galaxy contamination (see Appendix B1).
This large redshift cut also reduces systematics from the
photo-z prior distributions, since Σcrit is less sensitive to
source redshift for larger redshift separations between lens
and source.
Multiplicity cut. As stated in Section 2, we only keep

groups with three or more members as lenses by default.
Note that this creates a multiplicity-limited sample whose
mass-observable relations could generally differ from those
in a volume-limited sample. To compare our results with
thoeretical models properly, we will use mock catalogues
with the same selection criteria as the observational sample.
We discuss this selection effect further when we compare
our measured mass-light relation and stellar mass-halo mass
relation with other measurements in Sections 5.3, 5.4, and
Appendix B3.

4.2 Assessing systematics: Bias, Error and
Significance

Random catalogues are used to calibrate the MLWL method
for systematic errors introduced by the cuts applied to the
data, described above, and the ignorance of prior distribu-
tions highlighted in Section 3.5. These catalogues are Monte
Carlo realizations that also provide estimates of the statis-
tical significance of our results. We will call them random

catalogues, to differentiate from the galaxy mock catalogues
described in Section 2.3, which are produced using a physi-
cally motivated galaxy formation model.

The random catalogues are based on the subsets of
G3Cv5 groups and SDSS source galaxies that we are con-
sidering. For any lens, an observed mass is assigned from
the parametrized mass-observable relation that we try to
calibrate. True lens centres and masses are chosen for each
group from the distributions given in Equations (23) and
(24), while the source galaxies are assigned true redshifts
via Equation (22) and “intrinsic” ellipticities according to a
bivariate Gaussian with σ =

√

σ2
χ + σ2

SN . This realisation of
the source galaxy population is lensed by the set of inferred
true lenses, ignoring the two-halo term, which is estimated
to produce under 3% bias in our results (see Appendix B2).
Thousands of random catalogues were created, with all ob-
servational properties except source shapes being identical
with those in the real data.

The same analysis procedure is applied to each random
catalogue, adopting the same data cuts as were used with
the real data, yielding distributions of the fitted parame-
ters from the random catalogues. In all cases studied, the
distributions can be reasonably well described by a normal
distribution. For each parameter x with mean, µx, and stan-
dard deviation, σx, in the random catalogues, we derive its
bias ∆x = x0−µx, where x0 is the model input value. These
derived biases and uncertainties are then applied to the pa-
rameters inferred from the real data, and we will quote our



10 J. Han et al.

final measurements as

x = x̂+∆x ± σx, (25)

where x̂ is the best fit parameter value from the likelihood
analysis on the real dataset. We leave the bias term explicitly
in the result, because it depends on our assumptions of the
prior distributions.

As explained in Section 3.4, in order to translate TS to
a significance value, one needs to know the distribution of
TS under the condition that the data are described by the
null model. In the standard likelihood analysis, this is given
by Wilks’s theorem, to be a χ2

n(TS) distribution. However,
our TS is estimated from a simple likelihood model which is
only a crude description of the data distribution, because the
prior distributions are ignored in the simple model. This in-
validates Wilks’s theorem. The distribution of our estimated
TS is therefore expected to differ from χ2

n(TS), and we cal-
ibrate this distribution using our random catalogues. As in
Han et al. (2012), we find that the TS distribution in the
presence of systematics no longer follows a χ2

n(TS) distri-
bution. However, when scaled as TS′ = TS/b, where b is a
consant to be determined, TS′ can be very well described
by a χ2

n(TS
′) distribution with the same number of degrees

of freedom. In what follows, instead of interpreting TS by
reference to a χ2

n(TS/b) distribution, we will make use of
TS′ = TS/b which behaves as a standard χ2

n variable. This
TS′ serves as a “corrected” TS and can be used to obtain
significance levels using conventional χ2

n distributions. By
fitting the TS distribution in the random catalogues with a
χ2
n(TS/b) distribution, we can derive the scale factor b and

use it to correct the observed TS in the real measurements.

5 RESULTS AND DISCUSSION

In this section we describe in detail our measured mass-
observable relations, and compare these results with those
in previous studies. As mentioned in the beginning of Sec-
tion 3, we will be taking two complementary approaches in
our fitting: 1) splitting the whole sample into several bins
according to some observable and fitting a single mass to
all the haloes within each bin; 2) predicting the mass of
each halo from a mass-observable relation and fitting for
the parameters of this relation globally. While the former
approach is able to give a non-parametric description of
the mass-observable relations, the latter uses all the lenses
more efficiently and yields analytical descriptions of the re-
lations. We summarize these parametrized fits in Table 1,
along with an estimated bias and uncertainty inferred from
random catalogues, in the form of Equation (25). We also
list the correlation coefficients, estimated from the likelihood
surface between parameters from the fitting, as well as the
TS with respect to a null model with no gravitational shear.
A visualization of the halo density profiles through stacked
lensing is provided in Appendix D. Since we will be showing
the best fits together with systematic corrections through-
out the following sections, we first provide an overview of
those systematic corrections.

5.1 Overview of the systematic corrections

Systematic corrections to the fits are derived following the
procedure detailed in Section 4.2 by applying our likelihood
fitting to random catalogues that account for the prior distri-
butions described in Section 3.5. After incorporating these
additional stochastic processes in the random catalogues,
the derived errors are generally larger than those estimated
from direct likelihood fitting of the real data. The system-
atic biases barely affect the power-law slopes in our models,
and are generally smaller than the parameter uncertainties.

We use the random catalogues to check for effects of
both the data cuts and the prior distributions. To check the
effect of the data cuts alone, we first create two sets of ran-
dom catalogues with no prior distributions. In generating
these catalogues, one set has the same data cuts as in Sec-
tion 4.1 when predicting the shear field, while the other set
has no data cuts at all. In both cases, the true parameters
and their errors are accurately recovered from direct likeli-
hood fitting on the random catalogues. This confirms that
our adopted data cuts do not bias the results, and that our
MLWL method is working well when no systematics from
prior distributions are present. To calibrate the effect of the
priors, we generate one set of random catalogues for each
mass-observable relation that we wish to calibrate. Direct
likelihood fitting is performed on these catalogues with no
priors in the model, and the bias and error of the fitted
parameters are extracted from their distributions after the
fitting.

To see the separate effects of photo-z, centre-offset
and mass-dispersion on the fitting, we generate one addi-
tional set of mocks including each effect individually for
the last model in Table 1, M = AMlum, and assess their
biases. This yields ∆log(A) = 0.02, 0.08,−0.17 for photo-z,
centre-offset and mass-dispersion biases respectively, reveal-
ing that one tends to underestimate the mass when ignoring
photo-z bias and centre-offset effects, while overestimating
the mass by assuming there is no dispersion in the mass-
observable relation. Our estimated photo-z bias translates
into −5 per cent in mass, in good agreement with that ob-
tained by Nakajima et al. (2012) at our median group red-
shift z = 0.2 ( assumingM ∝ ∆Σ1.5; see Mandelbaum et al.
2010). Mandelbaum et al. (2005b) found that the stacked
lensing-estimated mass lies in between the mean and me-
dian value of the actual mass of the sample in the presence
of a mass scatter. This is consistent with our result that for
a log-normal mass scatter, the estimated mass is higher than
the median (or the mean in logMh). Note that the overall
bias ∆log(A) = −0.09 is roughly the summation of the three,
but is dominated by the mass dispersion bias. Assuming a
mass dispersion of 0.7 dex would lead to ∆log(A) = −0.32. In
Table 1 we adopt a mass dispersion of 0.5 dex by default, and
use 0.7 dex for the dynamical mass estimators (marked by
† in the table), leading to larger biases in their parameters.

5.2 Mass-Observable Scaling Relations

Before parametrizing the mass-observable relations with
particular functional forms, we can measure them in a non-
parametric way by splitting the lens sample according to
a single mass proxy. We fit a single mass parameter to
each subsample of lenses. These measurements will provide
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Figure 3. Halo mass scaling with observed group properties. The upper-left panel contains the dependence of group mass on redshift,
showing the selection in our sample. The other three panels show the scaling of halo mass with r-band group luminosity, Lgrp, multiplicity
volume, VN , and stellar mass of the central galaxy, M⋆. In each panel, the data points with errorbars show the halo mass measured using
MLWL within each observable bin. The vertical errorbars are estimated from the weak lensing likelihood, while the horizontal errorbars
simply mark the span of each bin. Black solid lines are the globally fitted power-law scalings from the MLWL method. The black dashed
lines show the global fits after systematic correction (except in the redshift dependence panel). Note we have not applied systematic
corrections to the binned measurements. Green solid lines depict the median relation extracted from 9 mock GAMA catalogues, while
the green dashed lines mark the typical 16th and 84th (i.e., ±1σ) percentiles of the halo mass distribution in one mock catalogue.

a consistency check with the parametrizations adopted in
our global fits. Unlike stacked lensing, we still do maximum
likelihood fitting over every source galaxy after splitting the
lens sample. As a result of our virial cut, the different lenses
are mostly decoupled from each other, and it makes little
difference whether we fit the bins jointly or independently.
For the same reason, we expect the systematic correction to
each binned measurement to be the same as that obtained
for the global fit. In addition, because we present the binned
measurements mostly to reassure that our parametrizations

of the mass-observable relations are reasonable, and because
it is computationally expensive to estimate the systematic
corrections, we make no attempt to derive the corrections
for the binned measurements.

In Figs 3 and 4 we explore the scaling relations for var-
ious mass observables: group velocity dispersion, σv; group
total luminosity, Lgrp; stellar mass of the iterative central
galaxy, M∗; the multiplicity volume, VN ; and the observed
radius, R50. Note that the total luminosity has been cor-



12 J. Han et al.

10
2

10
3

12

12.5

13

13.5

14

14.5

15

15.5

σv[km/s]

lo
g
(M

h
[M

⊙
/
h
])

Binned
Global
Systematic
Mock

10
−3

10
−2

10
−1

10
0

10
1

9

10

11

12

13

14

15

R50[(Mpc/h)]

lo
g
(M

h
[M

⊙
/
h
])

Binned
Global
Systematic
Mock

Figure 4. Halo mass scaling with group velocity dispersion, σv, and observed radius, R50. R50 is defined to be the projected radius
containing 50% of the observed galaxies in the group. Line styles are the same as in Fig. 3. The vertical black dashed line in the Mh(R50)
panel marks the spatial resolution of the Millennium simulation underpinning the mocks.

rected for unobserved galaxies in the group by integrating
the GAMA galaxy luminosity function.

A similar correction can be done for the observed multi-
plicity of groups, N , to derive an absolute multiplicity Nabs.
Equivalently, we choose to introduce a multiplicity volume
as

VN =
N

n(z)
, (26)

where n(z) is the average number density of observed galax-
ies at redshift z. This volume translates into Nabs when mul-
tiplied by the expected number density of galaxies down to
the desired absolute magnitude limit. Even though group
redshift is not a physical mass proxy, we still include it in
Fig. 3 to show the group sample selection varies with red-
shift.

All of these scaling relations can be well described by
power-law functions. Hence we provide global fits of these
relations by modelling the mass of each group as a power-
law function of a single observable of the group, and max-
imizing the likelihood of the entire sample. This produces
the parametrized relations in Table 1, which are shown with
black lines in Figs 3 and 4. As expected they all agree with
the binned measurements. For each fit (except that for the
redshift selection), we also plot a dashed line showing the
relation after applying the systematic correction listed in
Table 1.

In Figs 3 and 4 we also compare our measurements with
predictions from mocks. From each of 9 mocks, we extract
the 16th, 50th and 84th percentiles of the halo mass dis-
tribution as functions of the group properties. The mea-
sured redshift evolution of the halo mass agrees well with
that determined from the mocks, reflecting the identical red-
shift selection in the real and mock catalogues. Both the
measuredMh(Lgrp) andMh(VN) relations agree remarkably
well with those in the mocks. The former may not be too

surprising since the semi-analytical model underlying the
mocks is tuned to reproduce the galaxy luminosity func-
tion. In addition, a further adjustment has been made to
the galaxy luminosities in the mocks, attributing any resid-
ual difference in the redshift-dependent luminosity distribu-
tion to survey photometry. However, these adjustments are
guided by the global luminosity function, while our mea-
surement probes the halo occupation distribution (HOD) of
the galaxies, revealing that the mocks have correctly popu-
lated haloes with (total) light. According to our definition,
VN is a measurement of the average clustering of galaxies
out to group boundaries. If one assumes that galaxies trace
the distribution of dark matter with a constant bias, then
VN ∼ (4π/3)∆R3

200b where ∆ = 200 according to our virial
convention. Thus, one expects M ∝ VN , which is what we
see in Fig. 3, where the global fit givesMh ∝ V 1.03+0.01±0.23

N .
This agreement with the mocks indicates that we have cor-
rectly modelled the average spatial distribution of galaxies
inside and outside groups. The measured Mh(M⋆) relation
also agrees quite well with the mock predictions.

The globally fitted Mh(σv) relation is slightly steeper
than that seen in the mocks. This difference is too large to
be accounted for by the anticipated systematic error in the
slope, and persists when we use only N > 5 groups. Ex-
amination of the binned measurement shows that the differ-
ence originates from the lower measured mass at low σv and
higher measured mass at high σv. In both of these regimes,
the uncertainties are much larger than those at intermedi-
ate velocity dispersion due to either intrinsically small halo
mass or the small number of stacked groups at high mass.
Overall, the measurement is marginally consistent with the
mock predictions according to the error bars. The small ten-
sion may originate from a velocity bias of satellite subhaloes
in the dark matter-only Millennium simulation. For exam-
ple, Munari et al. (2013) find that while galaxies trace dark
matter closely in SPH simulations, the velocity dispersions
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Figure 5. The scaling of group luminosity with velocity dispersion, σv, and size, R50. In both panels, the solid lines show the median
group luminosity at fixed σv or R50, while the dashed lines plot the 16th and 84th (i.e., ±1σ) percentiles. The red thick lines represent
the results from the GAMA group catalogue, while the green thin lines are those from the mocks. Note that for the mocks we have
plotted one median line for each mock catalogue, but only one set of ±1σ percentiles. In the Lgrp(R50) panel, the vertical black dashed
line marks the spatial resolution of the Millennium simulation underpinning the mocks.

of subhaloes in simulations with cooling are generally lower
than those in dark matter-only or adiabatic simulations, due
to the longer survival times for low velocity subhaloes in the
former. The situation is further complicated by the existence
of “orphan” galaxies in semi-analytical models, i.e. galaxies
whose associated dark matter substructure has become un-
resolved in the simulation. In this case, the galaxy position is
chosen to be that of the most bound particle from the previ-
ously associated subhalo. This results in a velocity distribu-
tion that follows that of the dark matter particles. However,
as found in Munari et al. (2013), there is a halo mass depen-
dent velocity dispersion bias between the subhaloes and dark
matter particles. This could have given rise to the different
M − σv slope we see in the mock. A similar discrepancy is
observed for the Mh(R50) relation as well, but only at small
R50, where the predicted halo mass is almost constant while
the measured mass keeps decreasing with R50. Despite this
difference, the prediction is still marginally consistent with
the measurements within the error ranges.

If theMh(σv) and Mh(R50) scaling relations are indeed
different in the data and in the mocks, then one might ex-
pect different scaling of Lgrp with σv or R50 as well, since
we have seen that Lgrp is a good halo mass proxy in both
real and mock data. We compare these light-observable re-
lations in Fig. 5. While there is little to distinguish be-
tween the real and mock Lgrp(σv) relations, there is an ob-
vious difference in the Lgrp(R50) scaling between the two,
similar to the difference observed in the Mh(R50) relation.
Note that this difference is most pronounced near the spa-
tial resolution ǫ = 5h−1kpc of the Millennium simulation
underpinning the mock catalogues, but is still observable
out to R50 ∼ 40ǫ. Similar results have been found when
measuring the galaxy correlation function, where the auto-
correlation function of red galaxies on small scales in the

GAMA mocks significantly exceeds that in the real data
(Farrow 2013). This discrepancy ties in with studies of the
radial distribution of satellite galaxies, which find an over-
prediction of model red satellites (Budzynski et al. 2012;
Guo et al. 2013; Wang et al. 2014). Our result is also in line
with Robotham et al. (2011) who find an overprediction of
the number of compact groups in the mocks.

The discrepancy between mock and data compact group
luminosities could also be due to a selection effect caused by
imperfections in the SDSS photometry. As the GAMA in-
put catalogue was constructed from the SDSS photometric
galaxies, selection effects in the latter could propagate to the
GAMA catalogue. It is known that near bright galaxies, the
flux level of the background sky could be overestimated in
the SDSS(Adelman-McCarthy et al. 2008), leading to an un-
derestimate of the flux of neighbouring galaxies. As a result,
faint galaxies in the vicinity of bright ones could be miss-
ing from the flux-limited GAMA galaxy catalogue, which
in turn could remove bright and compact groups from the
group catalogue. Note this type of selection is not imple-
mented in the current GAMA mock catalogues, which could
result in an excess of bright groups at small R50 compared
to observations.

The model’s treatment of orphan galaxies, which dom-
inate the galaxy population in the inner halo, may also
be responsible for the differences between model and data
Mh(σv) and Mh(R50) relations. Changes in how the posi-
tions of these galaxies are modelled, and in the dynamical
friction time estimation can both affect the satellite abun-
dance and hence the size distribution of sample groups. For
example, Jiang et al. (2008) found that the dynamical fric-
tion time scale inferred by Bower et al. (2006) is overesti-
mated for major mergers, resulting in an excess of orphan
galaxies in the model. Lastly, when constructing the light-
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cone mocks, it is necessary to interpolate the position and
velocity of galaxies between simulation snapshots in order to
place galaxies in an observer’s past light cone. Even though
Merson et al. (2013) have tried several different interpola-
tion methods, we do not exclude the possibility that those
interpolations could distort the spatial and velocity distribu-
tions of galaxies, contributing to our observed discrepancies.

5.3 Comparison of group mass to light ratio with
2PIGG measurement

In the left-hand panel of Fig. 6, we compare the measured
group mass-to-light ratios with those from the 2 degree
Field Galaxy Redshift Survey (2dFGRS, Colless et al. 2001)
Percolation-Inferred Galaxy Group catalogue (Eke et al.
2004b, 2PIGG hereafter). The mass-to-light ratios in 2PIGG
are derived from group dynamical masses and rF band total
luminosities. We have calibrated their rF band luminosity to
r band in the comparison. This time our measurement from
the G3Cv5 is done by fitting a constant Mh/L value to all
groups within each luminosity bin. For the mocks, we mea-
sure the median and 16th and 84th (i.e., ±1σ) percentiles of
Mh/L within each luminosity bin. 7 Again our measured
Mh/L agrees very well with the mock prediction. Below
Lgrp = 2 × 1011h−2L⊙, it appears that our measurement
is also in good agreement with that from the 2PIGG cat-
alogue. However, for brighter groups, our measured Mh/L
stays almost constant, while the 2PIGG Mh/L continues to
increase with Lgrp. This difference can be largely explained
by the different depths of the two surveys. Since groups are
selected to have a minimum number of Nmin galaxies in both
catalogues, the group selection function can be described as

V lim
N (z) = Nmin/n<Mlim(z), (27)

where n<Mlim(z) is the number density of galaxies above
the survey flux limit. As the GAMA survey is ∼ 2 mag-
nitudes deeper than the 2dFGRS, we expect 2PIGGs to
behave like poorly sampled GAMA groups. Note that the
completeness of the 2dFGRS is not as uniform as in GAMA,
so the estimated n<Mlim(z) varies across the sky. We model
this n<Mlim(z) with a Gaussian distribution at given z, and
generate a random n<Mlim(z) for each GAMA group at z
to account for the variation of completeness in the 2dF-
GRS. Repeating the Mh/L calculation on a sub-sample of
our groups selected with the 2dFGRS depth, VN > V lim,2dF

N ,
which constitutes ∼ 1/3 of our standard sample, gives the
results in the right-hand panel of Fig. 6. Due to the reduced
signal-to-noise, we also show an unbinned broken power-law
fit of the form M/L = Amin(Lgrp/Lp, 1)

b, where Lp and b
are the parameters to be fitted. Using the 2dFGRS selection
function decreases the measured Mh/L at low Lgrp due to
the inclusion of N = 2 groups, while that at high Lgrp is
increased due to the exclusion of low VN groups at given
redshift. This time our measurement largely agrees with the
2PIGG result for groups around Lgrp = 3 × 1011h−2M⊙,
showing the importance of sample selection when compar-
ing observed group properties with other results.

7 The results are quite similar if we convert the Mh(Lgrp) scaling
relations obtained in the previous section to Mh/L.

0 0.1 0.2 0.3 0.4 0.5
10

−6

10
−5

10
−4

10
−3

10
−2

z
co
m
ov

in
g
d
en
si
ty

[(
M
p
c/
h
)−

3
]

2 × 1010

3 × 1010

4 × 1010

7 × 1010

1 × 1011

2 × 1011

3 × 1011

Figure 8. The redshift distribution of central galaxies inside dif-
ferent stellar mass bins. The sample covers all the central galaxies
in groups down to N = 2, and all the ungrouped galaxies down
to rAB < 19.4. Different coloured lines represent different stellar
mass bins, with increasing stellar mass from top to bottom at
z < 0.2. The binning in stellar mass is the same as used in Fig. 7.

Up to z = 0.2, all the stellar mass bins are complete, except for
a slight incompleteless in the smallest mass bin.

5.4 Comparison of the halo mass-stellar mass
relation with other works

The measuredMh(M⋆) is compared with several recent halo
occupation distribution (HOD) descriptions for group cen-
tral galaxies in Fig. 7. We calibrate the units and mass defi-
nitions in these relations to those used here, and list them in
Table C1 along with the dispersion in stellar mass at fixed
halo mass used for each of these studies. Note that all the
average M⋆(Mh) relations in these HOD descriptions are
measuring the median stellar mass of the central galaxy for
haloes of a given mass. What we measure is the median halo
mass for groups of a given central stellar mass, assuming a
log-normal distribution in halo mass at fixed central stellar
mass. To make the HOD-based relations comparable with
our measurements, we make use of

dP (Mh|M⋆) =
dP (M⋆|Mh)φ(Mh)dMh
∫

dP (M⋆|Mh)φ(Mh)dMh

, (28)

where φ(Mh) = dN(Mh)/dMh is the halo mass function.
When dP (M⋆|Mh) follows a log-normal distribution, as is
assumed when the HOD-based relations are inferred, we find
that the converted distribution, dP (Mh|M⋆), is also very
well described by a log-normal distribution, consistent with
what had been assumed in Equation (24). The median halo
mass, or mean logarithmic mass, can then be found through

logMh(M⋆) =

∫

log(Mh)dP (Mh|M⋆). (29)
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Figure 6. The mass-to-light ratio of groups. In the left-hand panel, the points with error bars are the MLWL fitted Mh/L within each
luminosity bin. A green solid line shows the median Mh/L at fixed luminosity in the mocks, while the green dashed lines are the 16th
and 84th (i.e., ±1σ) percentiles. The blue thick line is the 2PIGG-inferred Mh/L (Eke et al. 2004b). The right-hand panel is like the
left, just with the groups in both real and mock samples further selected to mimic the 2PIGG selection function. The red dashed line is
an unbinned broken power-law fit of the form Mh/L = Amin(Lgrp/Lp, 1)b.
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We adopt the Sheth et al. (2001) mass function in our con-
version8, and have checked that adopting the Tinker et al.
(2008) mass function or a different cosmology (Millen-
nium/WMAP9/Planck) produces no more than a 10% dif-
ference in the converted relations at the high mass end, much
smaller than model to model variations.

At low masses (M⋆ < 1011h−2M⊙), it appears that the
Guo et al. (2010) and Moster et al. (2013) results agree best
with our measurement for groups with more than two mem-
bers, while at the high mass end the average halo mass in
our sample is lower than their predictions. However, we em-
phasize that our standard sample is limited to groups with
three or more members. This introduces a redshift depen-
dent selection in VN , given by V lim

N (z) = Nmin/n<Mlim(z).
Since VN is strongly correlated with halo mass, in principle
all our measured relations could be biased with respect to
the relation in a volume limited halo sample. We have tested
a different multiplicity cut of N > 5, and it does give a
systematically higher Mh(M⋆) relation. In Appendix B3 we
explicitly show how the halo mass depends on Nabs at fixed
M⋆ or Lgrp in a volume limited mock catalogue. With the
knowledge that our observed halo mass-stellar mass relation
is strongly multiplicity dependent, including central galax-
ies from N < 3 groups will only lower our measurement.
To derive a selection-free stellar mass (SM)-halo mass (HM)
relation, we extend our sample to include N = 2 groups as
well as ungrouped galaxies representing N = 1 groups. This
gives us a flux-limited central galaxy sample. As we show
in Fig. 8, by further restricting to z < 0.2, we get a volume
limited sample of central galaxies with M⋆ > 1010h−2M⊙.
The measured halo masses are shown with black squares in
the right-hand panel of Fig. 7. We also show the median
halo mass for mock galaxies with the same selection. The
match between data and mocks improves slightly if we shift
the measured halo masses down by 0.07 dex, the typical size
of systematic correction estimated in Table 1.

The quoted HOD models, though differing substantially
in their predicted stellar mass for a given halo mass, all
give a satisfactory fit to the stellar mass function with their
adopted dispersions. Hence, deriving the SM-HM relation
from pure abundance matching inevitably faces a degener-
acy between the average SM-HM relation and the SM dis-
persion at fixed HM (see, e.g., Wang et al. 2006).

We find the converted relation is more sensitive to the
model dispersion than to the mean relation. We show in
the right panel of Fig. 7 that when a common dispersion
value is adopted, all of the converted relations are very sim-
ilar. With σlog(M⋆) = 0.2, the volume-limited measurement
can be well reproduced by any of the HOD models. This
is consistent with the values of 0.16 − 0.2 dex found by
many previous works (e.g., Yang et al. 2009; Li et al. 2012;
Leauthaud et al. 2012; Reddick et al. 2013; Behroozi et al.
2013; Kravtsov et al. 2014). Note this dispersion includes
both the intrinsic stellar mass variation at a given halo
mass and the stellar mass measurement error. Subtract-
ing the typical stellar mass measurement error of 0.13
dex for our sample, the intrinsic dispersion is found to be
σlog(M⋆),intrinsic ∼ 0.15.

8 Calculated with hmf (Murray et al. 2013):
http://hmf.icrar.org

In Figure 9, we compare our SM-HM relation de-
rived from the volume limited sample to that measured
in several other galaxy-galaxy lensing studies, including
the measurements in SDSS (Mandelbaum et al. 2006b),
CFHTLenS (Velander et al. 2013; Hudson et al. 2013) and
COSMOS (Leauthaud et al. 2012). As in Figure 7, we plot
the average logarithmic halo mass at fixed stellar mass.
The halo mass definitions are either in or converted to
our M200b convention according to the scaling relation in
Giocoli et al. (2010), except for the SDSS measurements
which adoptM180b. The difference betweenM200b andM180b

is only around 3 percent, so we do not correct for it here.
The COSMOS result is provided in the form of a HOD
model, which we have converted to our convention accord-
ing to Equations (28) and (29). CFHTLens results are given
by Velander et al. (2013) and Hudson et al. (2013) indepen-
dently. To avoid overcomplicating the figure, in the case of
Hudson et al. (2013) we only plot their best-fit relation for
the full sample evaluated at z = 0.3, the redshift of their
lowest redshift bin.

It is worth noting that our measurements are based on
a sample of central galaxies, while others use samples mix-
ing both central and satellite galaxies. They all rely on HOD
modelling to extract a stellar mass-halo mass relation, typ-
ically mixing both populations. They can still differ in how
satellite galaxies are modelled. In the COSMOS model, a
satellite galaxy has no subhaloes, and contributes to the
lensing signal only through the displaced density profile of
its host halo. In the other three studies shown in Fig. 9,
satellites are associated with subhaloes with truncated den-
sity profiles, parametrized by a halo mass parameter that
follows the same stellar mass-halo mass relation as that of
the central galaxies. One should also note that while both
the SDSS and our lens samples have spectroscopic redshifts,
the CFHTLens and COSMOS lens samples rely on photo-
metric redshifts. Lastly, we point out that both our stellar
mass sample and the COSMOS sample are volume-limited,
unlike the other samples being considered here, which are
flux-limited and hence subject to stellar mass incomplete-
ness. However, we find little difference in our results be-
tween flux-limited and volume-limited samples. Overall, de-
spite the different methods and datasets, good agreement is
found among the various results considered here.

Note that our measured masses may be systematically
(0.1 − 0.2 dex) above the median halo mass of the un-
derlying distribution at a fixed stellar mass, primarily as
a consequence of the scatter in the Mh(M∗) relation. A
correction for this would bring our measurements closer
to the COSMOS line. Similar corrections are already in-
cluded in the quoted relations from the other studies, ex-
cept for Hudson et al. (2013). It is worth emphasizing that
this correction refers to the difference between the best-
fitting mass and the median mass of the stacked haloes in
each stellar mass bin, but not the Bayesian conversion be-
tween < M∗|Mh > and < Mh|M∗ > (i.e, Equation (28)).
In Hudson et al. (2013), even though the Bayesian conver-
sion is performed when fitting a parametric SM-HM relation,
the correction from the best-fit lensing mass to the median
mass is not given. In some other works, for example when
the COSMOS measurement is compared with that from the
CFHTLens in Velander et al. (2013) and with SDSS mea-
surements in Leauthaud et al. (2012), the Bayesian conver-

http://hmf.icrar.org
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Figure 9. The central halo mass-stellar mass relation mea-
sured from weak lensing. We compare our measurements derived
from the volume limited stellar mass sample to several other
galaxy-galaxy lensing measurements, including from SDSS (split
according to early and late types; Mandelbaum et al. 2006b),

CFHTLenS (split according to colour by Velander et al. 2013,
V13, or a fit to the full sample Hudson et al. 2013, H13),
and COSMOS (Leauthaud et al. 2012, z ∼ 0.37). As in Fig-
ure 7, we plot the average logarithmic halo mass at fixed stel-
lar mass. The COSMOS measurement and is provided as a fitted
< log(M⋆)|Mh > relation, which we have converted to our con-
vention according to Equations (28) and (29). The same conver-
sion is done for the results from Hudson et al. (2013).

sion is not carried out, resulting in an apparent discrepancy
between the COSMOS result and other measurements at the
high mass end.

There could also be systematic uncertainties in
the stellar mass estimates across different studies.
Mandelbaum et al. (2006a) adopt a Kroupa IMF in the stel-
lar mass estimate, while all the others assume a Chabrier
IMF. The difference in stellar mass caused by these two
IMFs is typically 0.05 dex. However, one should keep in
mind that the systematic uncertainties in stellar mass es-
timates can be as large as 0.25 dex, depending on the de-
tailed implementation of the stellar population synthesis
models (Behroozi et al. 2010).

Finally, we note that the general trend observed be-
tween halo and stellar mass in this work is similar to
those obtained in, e.g., Lin & Mohr (2004); Lin et al. (2004);
Zheng et al. (2007); Brown et al. (2008); Guo et al. (2014);
Oliva-Altamirano et al. (2014), using a variety of methods
and galaxy samples.

6 CALIBRATION AND CONSTRUCTION OF
MASS ESTIMATORS

In this section we apply our MLWL method to calibrate the
existing halo mass estimators from the G3Cv5 catalogue.
We also try to construct some new estimators combining

the various mass observables we have studied above, and
select the best combinations according to their performance
in the MLWL fitting. These results are also summarized in
Table 1.

6.1 Diagnosing G3Cv5 Mass Estimators

The G3Cv5 catalogue comes with two mass estimates. A
typical usage of these estimates involves investigating other
group properties at fixed group mass (e.g., Guo et al. 2014;
Oliva-Altamirano et al. 2014). In this section we compare
the weak lensing measured masses within these bins with the
G3Cv5 estimates. To this end, we measure the ratio of halo
mass to G3Cv5 mass within each bin, and also try a power-
law fit to the relation between the ratio and the G3Cv5 mass,
i.e. Mh/MG3C = A(MG3C/10

14h−1M⊙)α. The results are
shown in the left and middle panels of Fig. 10. In general, the
WL-measured masses are smaller than the G3Cv5 masses.
At their closest, for haloes around 1013 − 1014h−1M⊙, the
G3Cv5 mass estimates are still larger than the WL ones
by 0.1 − 0.2 dex. The global power-law fit to the dynam-
ical mass bias yields log(A) = −0.54 − 0.22 ± 0.10 and
α = −0.31 + 0.04 ± 0.15. The fit to the luminosity mass
bias gives a slope that is consistent with zero, so we fix it to
be zero and find log(A) = −0.28 − 0.09 ± 0.09. This means
that the weak lensing mass measurement is 3.5 times smaller
than the dynamical mass estimates near 1014h−1M⊙, or ∼ 2
times smaller than the luminosity mass globally. Similar bi-
ases are observed in the mock catalogues when comparing
the input halo masses with those from the G3Cv5 mass esti-
mators. The slope for the dynamical mass bias in the mocks
is somewhat steeper than that shown by the groups in the
G3Cv5 itself, reflecting the different mass-velocity dispersion
relation that we observed in Section 5.2. The agreement be-
tween luminosity mass and lensing mass is slightly better,
although the discrepancy is amplified when systematic cor-
rections are taken into account.

The presence of bias at fixed estimated mass does not
conflict with the G3Cv5 claim of a global median unbi-
ased mass calibration. The G3Cv5 calibration is done en-
suring that the estimated masses are unbiased with respect
to the real group masses in their global median value. Also,
only the dynamical mass is calibrated with halo masses in
the mock. The luminosity mass is subsequently calibrated
against the dynamical mass. While Robotham et al. (2011)
split the G3Cv5 groups into multiplicity and redshift bins,
they did not find unbiased mass estimates for each dynami-
cal or luminosity mass bin. This calibration thus leaves room
for a mass-dependent bias both below and above the me-
dian mass value. The problem can become more severe if
the mass-velocity dispersion-radius relation, which is used
as a primary mass estimator, differs between the data and
the mock. Unfortunately, such a difference is just what we
have observed using our lensing measurement–a conclusion
that can only be reached using an independent mass mea-
surement such as lensing. Finally, the G3Cv5 calibration is
only done using FoF groups that are bijectively matched
with particular haloes. As a result, an overall bias could
also show up when one examines the masses of the entire
group sample. These three effects combined result in both
an overall and a mass-dependent bias of our mass measure-
ment with respect to the G3Cv5 estimates. This bias also
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Table 1. MLWL Calibrated Mass-Observable Relations. The parameter values are listed as x = x̂ + ∆x ± σx, where x̂, ∆x and σx

are the best-fitting value, bias and error for parameter x. TS is the test statistic defined in Equation (19), where the null model is the
one with no gravitational shear. In general a larger TS means a better fit. Additional systematic uncertainties can lead to reduced TS
values, and a dilution factor b is estimated to account for these uncertainties. We list the test statistic together with its estimated dilution
factor b as TS/b. The significance value is derived from the TS value, taking into account the degrees of freedom in the fitting, and
describes how significantly the best-fit differs from statistical fluctuations of the null model. We derive the significances for both the raw
TS and the diluted TS/b, and list the diluted significance in parenthesis beside the raw significance. In estimating the parameter bias,
we adopt a mass dispersion of 0.5 dex by default, but use 0.7 dex for the dynamical mass estimators (marked with †), leading to larger
estimated biases in their parameters. The power-law pivot scales are: M0 ≡ 1014h−1M⊙, M∗0 ≡ 1011h−2M⊙, L0 ≡ 2 × 1011h−2L⊙,
v0 ≡ 500 km s−1, V0 ≡ 1000(h−1Mpc)3, R0 ≡ 0.3h−1Mpc. Mp is in units of h−1M⊙, while A is dimensionless. Mdyn and Mlum refer
to the G3Cv5 mass estimator defined in Equation (1) and (2). The log() function is base 10 throughout this paper. C represents the
correlation coefficient, inferred from the Hessian matrix of the log-likelihood, for the two parameters listed as subscripts. Note these
results are derived from a flux-limited group catalogue (G3Cv5) and are subject to the group selection function.

Halo Mass Estimator Fitted Parameters Parameter correla-
tion

TS/b Significance Reference

Mp

(

VN

V0

)α
log(Mp) = 13.58− 0.07± 0.13
α = 1.03 + 0.01± 0.23

Clog(Mp)α = 0.18 46.1/1.5 6.5(5.1) Fig. 3

Mp

(

Lgrp

L0

)α
log(Mp) = 13.48− 0.08± 0.12
α = 1.08 + 0.01± 0.22

Clog(Mp)α = −0.16 53.9/2.2 7.0(4.6) Fig. 3

Mp

(

M∗

M
∗0

)α
log(Mp) = 13.34− 0.07± 0.12
α = 1.08 + 0.02± 0.28

Clog(Mp)α = 0.07 42.7/1.4 6.2(5.2) Fig. 3

† Mp

(

σv

v0

)α
log(Mp) = 13.67− 0.21± 0.08
α = 2.09 + 0.08± 0.34

Clog(Mp)α = 0.32 46.9/5 6.5(2.6) Fig. 4

Mp

(

R50
R0

)α
log(Mp) = 13.34− 0.06± 0.13
α = 0.98 + 0.05± 0.38

Clog(Mp)α = 0.49 32.6/1.4 5.4(4.4) Fig. 4

Mp

(

σv

v0

)ασ
(

VN

V0

)αV
log(Mp) = 13.78− 0.07± 0.17
ασ = 1.28 + 0.00± 0.45
αV = 0.61 + 0.02± 0.24

Clog(Mp)ασ
= 0.24

Clog(Mp)αV
= −0.05

CασαV
= −0.65

54.6/1.7 6.8(5.0) Fig. 11

Mp

(

Lgrp

L0

)αL
(

VN

V0

)αV
log(Mp) = 13.31− 0.03± 0.28
αL = 1.99− 0.10± 0.98
αV = −0.92 + 0.10± 0.90

Clog(Mp)αL
= −0.73

Clog(Mp)αV
= 0.74

CαLαV
= −0.95

56.2/1.6 6.9(5.3) Fig. 11

Mp

(

Lgrp

L0

)αL
(

σv

v0

)ασ

(1 + z)αz log(Mp) = 14.15− 0.07± 0.30
αL = 0.78 + 0.02± 0.29
ασ = 1.31 + 0.03± 0.52
αz = −5.79 + 0.18± 3.64

Clog(Mp)αL
= −0.20

Clog(Mp)ασ
= 0.53

Clog(Mp)αz
= −0.91

CαLασ = −0.67
CαLαz = 0.01
Cασαz = −0.37

63.7/2.4 7.2(4.2) Fig. 11

† A
(

Mdyn

M0

)α
Mdyn log(A) = −0.54− 0.22 ± 0.10

α = −0.31 + 0.04± 0.15

Clog(A)α = 0.12 43.9/5.3 6.3(2.4) Fig. 10

A
(

Mlum
M0

)α
Mlum log(A) = −0.28− 0.07 ± 0.12

α = −0.01 + 0.01± 0.19
Clog(A)α = 0.28 52.2/1.9 6.9(4.9) Sec. 6.1

AMlum log(A) = −0.28− 0.09 ± 0.09 - 52.2/2.2 7.2(4.9) Sec. 5.1; Fig. 10

propagates to the G3Cv5 luminosity mass, which is a sec-
ondary estimator.

The G3Cv5 masses become less biased with higher mul-
tiplicity cuts. In the right panel of Figure 10, we show
the measured bias of the G3Cv5 dynamical and luminosity
masses when adopting different multiplicity cuts N > Nmin.
With higher multiplicity cuts, the biases become weaker,
and are consistent with unity for N > 10 groups.

6.2 Constructing Mass Estimators

To allow a more general parametrization of the dynamical
mass, we consider power-law combinations of six physical
observables: VN , (1+z), σv, R50, Lgrp of the groups andM⋆

of group central galaxies. While we have considered simul-
taneous independent variations of all of the six power-law
exponents, appropriate subsets of these variables, with all
other exponents fixed to zero, are able to provide a good
mass estimator.
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Figure 10. Left and middle panels: the biases of halo mass with respect to the G3Cv5 mass estimates, where G3Cv5 mass refers to
dynamical (left) and luminosity (middle) mass in the two panels. In both cases, the red data points are the MLWL measured mass ratio
within each G3Cv5 mass bin; the black solid line is a power-law MLWL fit to the mass ratio-G3Cv5 mass relation in the whole sample;
the black dashed line is the fit with systematic corrections; the green solid lines are the median relations in the nine mock catalogues,

while the green dashed lines mark the typical 16th and 84th (i.e., ±1σ) percentiles in one mock. Note that for luminosity mass the
power-law fit gives a slope so close to zero that we have fixed it to be zero. Right panel: The measured bias of the G3Cv5 mass estimates
adopting different multiplicity cuts Nmin. The red points with error bars show the bias of the G3Cv5 luminosity mass. The blue solid
line is the measured bias of the G3Cv5 dynamical mass, and the blue dashed lines are the error bounds.

According to Equation (18), the model with the highest
TS would also be the one with the least scatter,

∑

i(
∆Si

Ni
)2.

In other words, for a given sample, TS is a measurement of
the intrinsic tightness of each mass-observable relation. To
account for both the improvement in fit and the number of
degrees of freedom in the model, the lowest p-value (or high-
est significance) combination of these parameters is found.
With a significance of 7.23σ derived from TS relative to a
null model with no lensing mass present, the best choice is
of the form

M ∝ LαL
grpσ

ασ
v (1 + z)αz . (30)

The best-fit parameters are listed in Table 1.
Since the TS value can be diluted in the presence of

systematics, we also tried the above selection process with
TS′ = TS/b. As listed in Table 1, the estimated b is ∼ 2−5,
and is primarily set by the systematic uncertainty in the
mass dispersion, σlogM . Given the uncertainty in how well
the modelled mass dispersion mimics that in the real data, it
is unclear which of TS or TS′ provides a better measure of
significance. Hence we consider both in an effort to provide
insight into the robustness of the results. If we assume a
common value of b for all estimators, then for b in the range
2− 20, the best construction is simply

M ∝ LαL
grp. (31)

The significance according to the raw TS is 7.0σ.
Simple combinations of VN with σv or Lgrp can achieve

comparable significance to the best combinations given
above, in the forms

M ∝ σασ
v V αV

N (32)

and

M ∝ LαL
grpV

αV

N . (33)

Note that VN ∝ Lgrp if we assume a universal luminosity
function for both group and field galaxies. Consequently,

the estimator M(VN , σ, z) has a comparable significance to
M(Lgrp, σ, z). In addition, estimators that explicitly depend
on Lgrp and z are expected to be robust to changes in the
survey selection function described by V lim

N (z). Again the
best-fit parameters for all the above estimators can be found
in Table 1.

In Fig. 11 we show the joint distributions of true mass
in the mocks, for N > 3 groups, and estimated mass de-
rived from our mass estimators, calibrated with real lensing
measurements, as well as the G3Cv5 mass estimators with
their official calibration. The G3Cv5 dynamical mass esti-
mator has both the largest bias and scatter. As shown in
Section 6.1, the G3Cv5 luminosity mass estimator is also
biased, despite having been carefully tuned at different mul-
tiplicities and redshifts. Combining velocity dispersion with
VN instead of R50 results in a much improved dynamical es-
timator. The performance can be further improved when σv

is combined with Lgrp and z, but the estimation of Lgrp from
observed group properties does involve many more steps
than is the case for VN . Bravely applying our N > 3 cali-
brated estimators toN > 2 groups in the mock still produces
good results for all the new estimators except M(σ, VN), as
seen in Fig. 12.

We caution that the performance of different estima-
tors in the mocks should not be taken as conclusive, since the
mocks may not be an appropriate realization of the real uni-
verse. In particular, haloes below 1012h−1M⊙ are resolved
by at most ∼ 1000 particles in the Millennium simulation.
In this mass range, fewer than 100 particles will typically lie
within subhaloes in any given halo, and any galaxies asso-
ciated with these subhaloes will be less numerically reliable
than one might wish. Hence one expects that the mock cata-
logue will provide a deficient representation for haloes below
1012h−1M⊙.
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Figure 11. The performance of different mass estimators applied
to the mock catalogue for groups with N > 3. In each panel, the
contour lines mark the 30th, 60th and 90th percentiles of the 2D
density distribution. The red solid line is the median distribu-
tion of actual halo mass, conditioned on observed mass, with red
dashed lines showing the 16th and 84th (i.e., ±1σ) percentiles.
The top panels are for the G3Cv5 estimators as calibrated in
Robotham et al. (2011), while the others show our new estima-
tors from Table 1. Note that systematic corrections have been
applied to the parameters.

7 CONCLUSIONS

We have carried out a maximum-likelihood weak lensing
analysis on a set of SDSS source galaxies located in the
GAMA survey regions, in order to derive halo masses for the
GAMA galaxy groups. The group mass distribution is mod-
elled with an NFW profile, with a mass-concentration rela-
tion fixed by previous simulation results. This enables us to
predict the gravitational shear produced by each halo with
a single parameter, namely halo mass. Comparing the pre-
dicted shear with the observed shapes of background galax-
ies allows us to fit the halo mass of our foreground lenses.
By splitting the G3Cv5 group sample according to various
observed properties, we have explored the scaling relations
between halo mass and these observables. With power-law
parametrization of these relations, global fits over the en-
tire sample are also performed. The resulting likelihood ra-
tios quantify the intrinsic tightness of each mass-observable
relation. All the fitted results are summarized in Table 1.
The dominant systematic uncertainty in our measured mass-
observable relations comes from the assumed halo mass dis-
persion around the median, modelled as a lognormal distri-
bution in mass.
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Figure 12. Same as Fig. 11 but for N > 2 groups.

We emphasize that the majority of our measurements
are based on the multiplicity-limited G3Cv5 group sample,
and are subject to the group selection function described
by VN 6 V lim

N (z). The only exception is the measured
halo mass-stellar mass relation where a volume-limited stel-
lar mass sample is specially constructed. Proper compari-
son of our results with theory or other measurements have
to take the selection effect into account. To help interpret
our results and to compare with theoretical predictions we
have constructed mock catalogues based on the application
of the GALFORM semianalytic model of galaxy formation
(Bower et al. 2006) to halo merger trees in the ΛCDM Mil-
lennium N-body simulation Springel et al. (2005). The mock
catalogues are generated using the selection function of the
real GAMA survey. For the first time, identifical group find-
ing algorithms and selection functions have been applied
to both observational data and lightcone galaxy mocks to
enable side-by-side comparisons between lensing measure-
ments and a semi-analytic model. Overall there is very good
agreement between our measured mass-observable relations
and those predicted by the galaxy formation model. In par-
ticular, we find that:

• The halo mass scales roughly in proportion to group
luminosity, multiplicity volume and central galaxy stellar
mass in the multiplicity limited G3Cv5 sample. These rela-
tions are in excellent agreement with predictions from the
mocks.

• For given stellar mass of the central galaxy, the halo
mass strongly depends on the number of galaxies in the
group. To compare our measurement with existing HOD
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models, we have constructed a volume limited central galaxy
catalogue, and measured the stellar mass-halo mass rela-
tion free from selection effects. We find the measurement
of the Mh(M⋆) relation provides a very powerful constraint
on the HOD scatter of the M⋆(Mh) relations. A dispersion
σlog(M⋆) = 0.2, or 0.15 after subtracting the stellar mass
measurement noise, is able to yield a good agreement be-
tween our measurement and all the HOD predictions that
we considered.

• The measuredMh(σv) relation shows a slightly different
slope from that in the mocks, which could originate from
the velocity bias of galaxies with respect to dark matter.
The measuredMh(R50) relation is also in slight tension with
those in the mock catalogues at small R50. Such a small
scale discrepancy is also obvious in the Lgrp(R50) scaling
of groups. It can be partly explained by the limited spatial
resolution of the Millennium simulation, and may also reflect
the treatment of orphan galaxies in the model.

• The G3Cv5 mass estimators are biased when used for
stacking. Luminosity mass has a small but constant bias,
while dynamical mass can have a large and mass-dependent
bias. A globally calibrated mass-to-light relation can serve
as a very good mass estimator for groups, and is the tightest
halo mass to single observable relation in our sample. The
estimation can be slightly improved when combined with
VN . The mass estimates from dynamical measurements can
be much improved when combining σv with VN instead of
R50, or when combined with group luminosity and redshift.

• The dominant source of systematic uncertainty in our
mass estimators comes from the assumed dispersion in halo
mass about the median value, modelled with a lognormal
distribution in mass. For a mass dispersion of 0.5− 0.7 dex,
the resulting overestimation in median lens mass is typically
0.2 − 0.3 dex. This is slightly counteracted by smaller un-
derestimations caused by uncertainties in the redshifts of
background photometric galaxies and the positions of grav-
itational centres of foreground lenses. Selection cuts in the
data do not cause significant biases in the results. The sys-
tematic uncertainties considered here change the slopes of
the mass-observable relations by only 0.01, but do have a
greater impact on the significance of the results, reducing
TS for the fits by a factor of 2− 5.

In this work we have taken a galaxy-by-galaxy
maximum-likelihood approach to extract the lensing signal
of galaxy groups. Compared with stacked weak lensing, our
approach makes much more efficient use of the information
contained in individual galaxy shapes. In addition, our uti-
lization of the information carried by individual lenses is
also more efficient, since our fitting can be done free from
binning. In contrast, stacked weak lensing usually measures
a weighted average density profile of the underlying, to be
modelled, matter distribution. This involves averaging over
the distribution of halo masses and redshift. A direct fitting
without knowing the underlying sample distribution and the
stacking weights leaves the result difficult to interpret, or
gives biased results if bravely interpreted as the average
mass of the sample. A further complication in stacked lens-
ing comes from the redshift evolution of halo profiles. Haloes
evolve with redshift, as do the definitions of the halo mass
and edge, so the same halo mass does not correspond to the
same profile in either physical or comoving coordinates. It

is not clear what is the best coordinate system for stacking.
In contrast, our likelihood fitting deals with each halo sep-
arately, and can properly incorporate any distribution and
evolution in halo density profiles. We note that stacked lens-
ing could complement MLWL by providing a non-parametric
measurement of the average density profile. In this work we
only do stacked weak lensing for visualization of the mea-
sured and fitted profiles.

We plan to explore the mass-concentration relation and
the halo mass function probed by GAMA in subsequent
papers. This methodology would also be well suited for
higher redshift, using the combination of the VIPERS survey
(Guzzo et al. 2013), which has 100,000 spectroscopic galax-
ies with 0.5 < z < 1.2, and the CFHTLens source catalogue,
which has a median redshift ∼ 0.75 and a source density of
17 arcmin−2. The KiDS survey (de Jong et al. 2013) has just
come to its first data release of 50 square degree data over-
lapping with GAMA. Adopting the KiDS shear catalogue,
we expect to have more than a factor of 3 improvement in
signal to noise ratio.
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APPENDIX A: ELLIPTICITY
MEASUREMENTS

The shapes of the source galaxies in this work are
measured using the re-Gaussianisation technique by
Mandelbaum et al. (2005a); Reyes et al. (2012), which we
briefly describe here. The convolution of a galaxy image
with a point spread function (PSF) has two major effects
that we seek to remove. Firstly, since the PSF is generally
close to round, it circularises the apparent galaxy shape;
this is known as PSF dilution, and the correction for it can
be a factor of ∼ 2 for typical-sized galaxies. Secondly, since
the PSF has some small ellipticity (the PSF anisotropy),
that ellipticity is imprinted coherently into the shapes of all
galaxies. If uncorrected then this gives rise to a coherent ad-
ditive systematic error in galaxy shapes and inferred lensing
shears. The goal of a PSF correction method is to allow one
to infer galaxy shapes by correcting for both of these effects,
and thereby infer the lensing shear.

Historically, the earliest methods of PSF correction were
based on correcting the second moments of the observed
galaxy image using the second moments of the PSF to derive
the correction factor (e.g., Kaiser et al. 1995). The method
that we use here, re-Gaussianization, is a moments-based
technique that corrects for non-Gaussianity of the PSF (pro-
vided that it is small, as for ground-based PSFs) and for
kurtosis of the galaxy profile. In brief, the correction pro-
ceeds in two steps. In the first step, the PSF is split into
a Gaussian image, G(x), plus a residual, ǫ(x), so that the
observed image can be written as

I = (G+ ǫ)⊗ f = G⊗ f + ǫ⊗ f, (A1)

where f is the pre-seeing galaxy profile, and all quantities
are implicitly functions of position (but we have suppressed
the argument). We make a simple elliptical Gaussian ap-
proximation, f ′ to f , and use that to derive a new image I ′

defined as

I ′ = I − ǫ⊗ f ′ ≃ G⊗ f. (A2)

While our approximation to f is a simple one, we rely on
the fact that the residual from a Gaussian PSF (ǫ) is quite
small. Our new image, I ′, can be interpreted as an image
of what the galaxy would have looked like if it had been
convolved with a simple Gaussian PSF. We can therefore
carry out the second step of our PSF correction process
using a moments-based method that corrects for the low-
est order of non-Gaussianity in the galaxy profiles, but as-
sumes a Gaussian PSF (Bernstein & Jarvis 2002) in order
to estimate a per-object galaxy ellipticity. For more details
on this entire process, see Hirata & Seljak (2003). The re-
Gaussianization method has been tested extensively on real
and simulated data (Mandelbaum et al. 2005a; Reyes et al.
2012; Mandelbaum et al. 2012, 2013) with calibration that
is well-controlled at the percent level.

APPENDIX B: FURTHER DISCUSSION OF
SYSTEMATICS

We expand in this section several discussions on system-
atics related to various datacuts introduced in Section 4.1.
These include our choice of the redshift cut, the influence
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Figure B1. Contamination in the background source sample
from foreground galaxies, for lenses in three luminosity mass bins.
The L1, L2 and L3 bins have mean mass 5× 1012, 1.5× 1013 and
8 × 1013h−1M⊙, and mean redshifts of 0.12, 0.18 and 0.25, and
a minimum redshift separation of ∆z = 0.3. For comparison we

also show the L3 bin with ∆z = 0.01 (L3Tight). Error-bars mark
the 2σ uncertainty estimated from 1000 mock samples.

of unmodelled lenses mentioned in the virial cut and in Sec-
tion 4.2, and the effect of the multiplicity cut, which was
discussed in Sections 5.3 and 5.4.

B1 Suppressing foreground contamination

To quantify the amount of contamination in the source sam-
ple from foreground group member galaxies, we extract the
correlation function of background galaxies with foreground
lenses. Specifically, we count the average number density,
n, of background galaxies around foreground lenses, and
compare them with the average number density of random
galaxies around lenses, nrand. The random galaxies are gen-
erated by randomizing the position of background galaxies
inside the survey region, so that the random sample will
have the same size and follow the same redshift distribu-
tion as the real sample. The contamination level, or the
lens-source correlation function, can then be estimated from
ξ = n/nrand−1. In Fig. B1 we show the estimated correlation
for our adopted minimum redshift separation of ∆z = 0.3,
around different mass haloes. For comparison, the correla-
tion for the most massive bin with ∆z = 0.01 is also shown.
While it is obvious that the contamination is large with a
small ∆z, it can be mostly eliminated with our redshift cut.

B2 Influence of the two halo term

We have ignored the contribution of the two halo term
(see, e.g. Mandelbaum et al. 2005b; Johnston et al. 2007;
Hayashi & White 2008) on large scales throughout this pa-
per. Since this term arises from the correlated distribution

of haloes, the missing contribution comes from unmodelled
haloes. By adding a two halo term to the mass model in our
Monte Carlo shear map simulation, and fitting the simulated
map with our standard procedure, we have estimated that
the bias introduced by completely missing the two halo term
is a ∼ 3 per cent overestimate in mass.Since this procedure
double-counts the two-halo term if we include it for every
halo at every separation, the influence from the two-halo
term is already overestimated. Hence we ignore it through-
out this paper.

B3 Absolute multiplicity dependence of the
mass-observable relations

The group selection function of our current catalogue is de-
scribed by the multiplicity volume VN (see Equation 26 and
27), or equivalently the absolute multiplicity. To understand
better how this selection function affects our measurements
of mass-observable relations, in this section we explore ex-
plicitly the dependence of these relations on the absolute
multiplicity. We have selected, from the Bower et al. (2006)
model in the Millennium database, two samples of haloes
within a narrow range of either luminosity or central galaxy
stellar mass. In Fig. B2, We plot the halo mass of these
objects as a function of their luminosity or central stellar
mass, and color-code them with absolute multiplicity. Here
the absolute multiplicity Nabs is defined to be the number
of galaxies in the halo with an absolute r-band magnitude
r < −13. The scatter of these mass observable relations at
fixed observable value is clearly not stochastic, but corre-
lates strongly with Nabs. As a result, the measured mass-
observable relations in a multiplicity-limited group sample
will generally be higher than those in a volume-limited sam-
ple, since groups with lower absolute multiplicities are more
likely to be missing in the sample, consistent with what we
see in Fig. 7 of Section 5.4.

APPENDIX C: STELLAR MASS-HALO MASS
RELATIONS

We convert the fitted average central galaxy stellar mass-
halo mass relations in the literature to the following form
where possible, and list the parameters in Table C1, along
with their adopted HOD dispersion:

M⋆ =
AMh

[

(

Mh

M0

)α

+
(

Mh

M0

)β
]γ . (C1)

The halo mass Mh is defined to have an average density
of 200 times the background matter density. This func-
tional form, especially with γ = 1 as in Yang et al. (2003),
or similar functions to represent two power-laws with a
smooth transition, has been frequently used to fit the ob-
served galaxy stellar mass distribution to a modelled halo
mass distribution (e.g. Wang et al. 2006; Yang et al. 2008;
Wang & Jing 2010; Moster et al. 2010, 2013; Guo et al.
2010; Behroozi et al. 2010, 2013; Wang et al. 2013b). The
different relations largely agree at the low mass end, where
there are good constraints, and differ significantly at the
high mass end. All the listed relations adopt a Chabrier
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Figure B2. The role of group absolute multiplicity in the mass-observable relations. In the left panel, we plot the halo mass-luminosity
relation for all haloes with 1011h−2L⊙ < Lgrp < 2 × 1011h−2L⊙, colour-coded by Nabs. The right panel is similar but for the halo
mass-central galaxy stellar mass relation of systems with central galaxy stellar masses in the range 9×1010h−2M⊙ < M⋆ < 1011h−2M⊙.

Table C1. HOD model parameters for the central galaxy stellar mass-halo mass distribution, with the average relation of the form given
by Equation (C1), and halo mass defined to have an average density of 200 times the background matter density. The final column lists
the assumed dispersion in the stellar mass at fixed halo mass.

Model A log(M0/h−1M⊙) α β γ σlog(M⋆)

WangL13 (Wang et al. 2013a) 0.0387 11.67 -1.56 0.66 1 0.17

WangLY13 (Wang et al. 2013b) 0.0372 11.70 -1.16 0.71 1 0.22

Moster13 (Moster et al. 2013) 0.0370 11.58 -1.38 0.61 1 0.1

Guo10 (Guo et al. 2010) 0.0690 11.40 -0.926 0.261 2.44 0

IMF. These relations are compared with our measurements
in Section 5.4.

APPENDIX D: STACKED GROUP DENSITY
PROFILES

As a sanity check, in this section we show the stacked density
profiles of our group sample, and compare them with the
predictions from our MLWL fits.

Following Mandelbaum et al. (2006a), we adopt the fol-
lowing estimator for the average comoving surface overden-
sity profile around haloes of similar mass stacked in comov-
ing cooordinates:

〈∆Σ(r)cmv〉 =
∑

i wiχt,iΣcrit,ia
2
ℓ,i

2R
∑

i wi

. (D1)

Here, Σcmv(r) = ρ̄
∫

l.o.s
δm,cmv(r)dl is the comoving over-

density of matter integrated along the line of sight, and
〈∆Σcmv(r)〉 = 〈Σcmv(< r)〉 − 〈Σcmv(r)〉 is the difference be-
tween the average surface overdensity within a radius r and
that at r. The subscript i runs over all the lens-source pairs

in the sample. aℓ is the scale factor at the lens redshift, χt

is the tangential ellipticity of the source galaxy with respect
to the lens, and the weighting function is chosen to be

wi =
1

(Σcrit,ia2)2(σ2
χi

+ σ2
SN)

. (D2)

With this weighting scheme, the responsivity is calculated
using (Bernstein & Jarvis 2002)

R =

∑

i wi[1− (1− fi)σ
2
SN − f2

i χ
2
i /2]

∑

i wi

, (D3)

where fi = σ2
SN/(σ

2
SN + σ2

χi
). The responsivity is almost

independent of radius.
Ignoring the error on shear responsivity, the covariance

of the estimated surface density at radii rI and rJ can be
written as

C(∆ΣI ,∆ΣJ ) =
∑

i∈I,j∈J wiΣcrit,ia
2
ℓ,iwjΣcrit,ja

2
ℓ,jC(χt,i, χt,j)

4R2
∑

i∈I wi

∑

j∈J wj

. (D4)

Suppose the ellipticities of different galaxies are indepen-
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Figure D1. Stacked surface density profile for all the groups used
in this work. Points with errorbars are the stacked profiles. Dif-
ferent lines are the predicted surface density profiles from various
mass estimates, stacked exactly the same way as for the data. As
labelled in the figure, the dynamical and luminosity masses are
the standard G3Cv5 calibrated mass estimators, while other lines
are power-law combinations of the listed observables.

dent, then correlations of tangential ellipticity only exist
if the two lens-source pairs are constructed from the same
source galaxy, i.e.

C(χt,i, χt,j) =
{

cos(2φij)(σ
2
SN + σ2

χi
) common source galaxy
0 otherwise,

(D5)

where φij is the angle subtended by lens-source pair ij. The
equations above fully account for the correlated error in-
troduced by multiple use of the same source galaxy in the
stacking. These estimated errors give consistent results with
chunked bootstrap measurements. Jeong & Komatsu (2009)
have also derived a continuous version of the covariance ma-
trix for stacked lensing that accounts for cosmic variance.

Fig. D1 shows the stacked surface density profile of
groups, with the same data cuts as applied in the likelihood
analysis. Since we have halo mass estimates for each individ-
ual group from Section 6.2, we can stack the inferred pro-
jected NFW profiles in exactly the same way as we stack the
data. This gives predicted stacked profiles that are directly
comparable with the measured profiles, free from any aver-
aging ambiguities, under the assumption that the predicted
mass is taken as the real mass of each group. No systematic
corrections are applied in the mass estimates during stack-
ing, to make a fair comparison with the measured profiles
for which no correction is made either. It can be seen that
our newly calibrated mass estimators lead to model stacked
profiles that agree very well with each other, as well as with
the measurement, while the G3Cv5 estimates overpredict
the measured profile. The rise in the profile at large radius
is caused by our virial cut, R < 2R200b, for each group,
which implies that the smaller haloes cannot contribute at
large radii and are hence unable to dilute the average stacked
surface density profile here.

In Fig. D2, we show the stacked surface density profiles
split into three luminosity bins. This time no radial cut is
applied. The measured and modelled profiles are in good
agreement in all cases. Good agreement is also observed be-
tween the data and our estimators.
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Figure D2. Stacked surface density profile for groups with different luminosities. From left to right, groups are selected by luminosities
in the range of (0.1 − 1) × 1011h−2L⊙, (1 − 5) × 1011h−2L⊙ and (5 − 50) × 1011h−2L⊙. Line styles are the same as in Fig. D1. Note
that no radial cut has been applied in producing this plot.
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