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Abstract—This paper proposes an offloading strategy for
communication resources and computing resources. Based on
the communication background of NOMA, this strategy com-
bines D2D communication and cellular mobile communication
to consider the use of resources in the communication process.
According to the performance of communication resources, the
power of cellular network users and D2D users is controlled to
make the task unloading decision between users and small MEC
server base stations. The purpose is to find the minimum sum of
the total cost of the user group within the coverage of the entire
base station. The cost is obtained from the task completion time
and the base station usage payment. The experimental results
show that this method can find the optimal solution of the user
group cost, and it also has a good performance in user fairness.
In reality, taking D2D communication into consideration for
coordinated distribution in a cellular network can greatly reduce
the cost of the two.

Index Terms—mobile edge computing (MEC), Non-orthogonal
multiple access (NOMA), device-to -device (D2D), game theory

I. INTRODUCTION

With the development of the Internet of Things technology,
the large-scale computing requirements of applications are
increasing. However, the computing resources of traditional
smart terminals are limited, so they cannot handle heavy tasks
in a short time. Cloud computing supports mobile users to
send large amounts of data to cloud servers far away from
mobile terminals for processing, so that they have higher
data storage capabilities. But this causes high latency, which
increases network load. Edge computing will offload user
data and computing tasks to the edge cloud, and dynamically
and optimally allocate appropriate resources to perform these
offloading tasks. A reasonable and effective uninstall strategy
can better reduce the impact of different factors on its perfor-
mance. Therefore, this is very valuable work.

A. Motivation
This article assumes that the user cost comes from uploading

and calculation, because the calculation result data volume

Corresponding author: Yuanfang Chen, yuanfang.chen.tina@gmail.com.
This work was supported by the National Natural Science Foundation of
China (Grant No. 61802097), the Project of Qianjiang Talent (Grant No.
QJD1802020), and the Key Research & Development Plan of Zhejiang
Province (Grant No. 2019C01012).

returned to the user by the task base station is very small
and can be ignored. In terms of communication resource allo-
cation, NOMA can better adapt to user network environment
changes and feedback processing delays. Therefore, this article
considers the NOMA technical solution based on the uplink
scenario. The scenario in this article is shown in Fig. 1,

Fig. 1. Example of a figure caption.

where D2D users and cellular network users jointly control
the allocation of channel resources. There are several groups
of users in the cellular communication network, and the tasks
and computing power of the users in the groups are different.
The situation of users in different groups is also different. The
user needs to coordinate the task through the intermediate task
manager and then assign the task to each MEC base station.
Since the computing capabilities of each MEC base station
are also heterogeneous, a reasonable allocation between users
and MEC base stations is particularly important for reducing
the cost of user groups. At the same time, there are devices
for D2D communication in cellular communication. D2D users
need to select MEC base stations and power that can minimize
the cost of all users in the scene through the intermediate task
manager for transmission.

B. Our Contribution

We propose a strategy optimization problem based on NO-
MA communication. This problem arises in a scenario where



D2D communication and traditional cellular network commu-
nication coexist. The purpose of the thesis is to solve the
problem of task transmission and offloading decision-making
for normal cellular network users and D2D communication
network users in small area communication scenarios. We
expect to minimize the overall cost of the system in the entire
small area while meeting the differentiated requirements of
different users such as delay and energy. In terms of restriction
conditions, it is necessary to consider different factors such as
the needs of individual users, the hardware conditions of the
user’s own equipment, the heterogeneity of the small MEC
server base station, and the communication conditions between
each device and the base station. Since its cost is composed of
task processing delay and task processing cost, it is necessary
to consider the mutual influence between the allocation of
user communication resources and the allocation of computing
resources. Therefore, the problem is a complex multi-objective
optimization problem. Therefore, we describe the problem
as a non-cooperative load balancing purely strategic game
problem that arises when multiple users share a server. From
the rational point of view of maximizing their own interests,
they participate in non-cooperative load balancing. The main
contributions of this article are as follows:

• We constructed a scene model combining D2D commu-
nication with traditional cellular network communication.

• We propose the construction of optimization problems
for two conflicting goals, and model the cost optimization
problem of various users in complex communication sce-
narios as a non-cooperative game load balancing problem.

• For this complex non-convex problem, an effective algo-
rithm DGT is proposed to solve it. Based on its effec-
tiveness, the Nash equilibrium solution of the problem
is obtained. Experiments show that this method not only
guarantees accuracy, but also performs well in fairness
and other indicators.

II. RELATED WORK

This paper reviews the related research status of the unload-
ing strategy.

According to the performance requirements of computing
offloading, the common offloading strategies can be divided
into three main types: minimizing delay, minimizing energy
consumption and maximizing revenue. In recent years, the
main researches on the strategy of minimizing delay are as
follows: the Stackelberg game theory method proposed in ref-
erence [1] is used to solve the problem. The voltage and power
control scheme proposed in reference [2] is task dependent.
The unloading strategy of minimizing energy consumption is
mainly composed of: in reference [3], a deterministic and
stochastic offline strategy is proposed for a single mobile
device for joint dynamic optimization calculation. In reference
[4], an offline precomputing unloading strategy is proposed,
which is transformed into a Markov decision process problem
to solve. In the unloading strategy to maximize revenue, the
authors in reference [5] used dynamic scheduling mechanism,
combined with task calculation queue and wireless channel

state to make unloading decision. In reference [6], the op-
timal transmitting power and the unloading strategy under
matching are obtained by dichotomy. Reference [7] proposed
an optimization problem for the cooperation between queue
information and channel state under dynamic coordination
mechanism.

From the point of view of resource allocation, resource
allocation can be divided into three types: resource allocation,
resource allocation and resource allocation. In the calculation
only resource allocation, literature [8] proposed the unloading
strategy scheme under double auction combining economics
and resource allocation. Reference [9] proposed a power
summer solstice and linear programming resource allocation
unloading strategy based on game theory. In communication
resource allocation, reference [10] established a convex opti-
mization resource allocation problem which combines network
bandwidth and current channel conditions to solve. In refer-
ence [11], the problem model is transformed into a continuous
problem and solved by using Nash bargaining game theory.
Joint computing and communication resource allocation are
comprehensive considerations. At present, the main researches
are as follows: literature [12] proposed an optimal resource
allocation unloading algorithm based on TDMA (time division
multiple access) system. Reference [13] considered the unload-
ing strategy of joint computation and convex optimization of
spectrum. In reference [14], an unloading strategy considering
the length of task queue and the state of network channel is
proposed.

In the actual network scenario, cellular communication net-
work coexists with a large number of D2D communications.
The spectrum efficiency can be improved by controlling the
cooperation of the two in the channel. The current main
research literature [15] proposes a fixed power edge range to
adjust the strategy of reducing user interference. Reference
[16] proposed a cross-linked game algorithm combined with
user history. Under this analysis and investigation, the com-
munication scenario in this paper considers the overlapping
of cellular communication network and D2D communication
network. The problem is defined as the decision-making prob-
lem of splitting tasks for joint communication and computing
resources in noma transmission mode.

III. SYSTEM MODEL AND PROBLEM MODELING

The thesis scenario is the work of minimizing the cost
of the divisible task between a group of users and multiple
heterogeneous small MEC base stations, and the coordinated
control of the power of D2D users. Suppose there are N
users, and each user has a separable computationally intensive
task to be processed. U = {1, 2, ..., N}. O small MEC base
stations, each base station has different computing power and
unit time usage price. M = {1, 2, ..., O}. D has a one-to-
one matching relationship DS-DR for the DS(Sending device)
and DR(Receiving device). D = {1, 2, ..., Q}. The total
computational workload of each user is expressed as Nk. The
transmission workload of each DS-DR user is expressed as
Nd



A. Unloading Delay and Energy Consumption of UE-NOMA

For each user who offloads tasks, the inequality about hs
indicates that the channel gains between users sending K tasks
to M servers are as follows:

h1 < h2 < ... < hm < hn < ... < hM (1)

In the paper, we assume that each transmission channel is
a quasi-static flat Rayleigh fading channel, which shows that
its channel transmission characteristics follow the Rayleigh
probability density function. This function is a constant in a
transmission block, and multipath propagation will not cause
inter-symbol interference. The paper considers that in each
resource block (unit time block), users can transmit tasks to
K small MEC base stations at the same time. When using
the OMA (Orthogonal Multiple Access) traditional method,
the user divides the task into K subtasks. Each unit time
block has T seconds. When performing unloading tasks, users
need to queue the tasks and load them on the MEC base
station respectively. We consider that in the NOMA uplink
transmission scenario, users can load multiple tasks to multiple
servers at the same time. In order to facilitate the discussion of
the advantages of NOMA, we assume that the current single
user k has two tasks loaded on two small MEC base stations
(MECm; MECn) and the channel gain is the same as the
above expression.

In the OMA transmission mode, the user’s transmission
depends on the system to allocate a certain period of time
to offload tasks to the MEC base station. Assuming that the
tasks assigned by users to m and n are of the same size, the
offload rate is:

Rm = Blog(1 +
Pkhm
N0

)

Then the user first transmits the task from the channel to the
small MEC base station m, and the time it takes is Tm

Tm ,
N
2

Rm
=

N

2Blog(1 + Pkhm

N0
)

(2)

Similarly, the transmission time transmitted by the user to the
small MEC base station n is:

Tn ,
N
2

Rn
=

N

2Blog(1 + Pkhn

N0
)

(3)

Therefore, the time required for the user to complete the
uplink transmission of the small MEC base station m and the
small MEC base station n is expressed as TOMA = Tm+ Tn.

In the NOMA transmission mode, due to the characteristics
of NOMA transmission, the user can perform offloading and
transmission of tasks to the MEC server m during the time Tn
when the MEC server n alone occupies the channel. Therefore,
the transmission time of the small MEC base station m is
expressed as:

Tm ,
N
2

Rm
=

N

2Blog2(1 +
Pkhm

Pkhn+N0
)

(4)

The transmission time of small MEC base station n is
expressed as:

Tn ,
N
2

Rn
=

N

2Blog2(1 +
Pkhn

N0
)

(5)

In the above formula, Pk represents the offload transmission
power of user k. N0 represents the spectral power density of
background noise power, when T = Tn.

If all the transmissions cannot be completed within the
time block of Tn, the remaining transmission tasks can be
completed within a part of the time period of Tm. (0 ≤ θ < 1):
TNOMA = max(Tm, Tn) = (1 + θ)Tn

Therefore, in the scenario of one user with two small MEC
base stations, the delay difference between traditional OMA
and NOMA is:

TOMA − TNOMA = (Tm + Tn)−max(Tm, Tn)

=
N

2Blog2(1 +
Pkhm

N0
)
+

N

2Blog2(1 +
Pkhn

N0
)

−max( N

2Blog2(1 +
Pkhm

Pkhn+N0
)
,

N

2Blog2(1 +
Pkhn

N0
)
) (6)

The result shows TOMA − TNOMA ≥ 0, which shows that
TNOMA is always better than TOMA in terms of latency. It
should be clear that, under the limitation of the channel gain
situation above, adding the user’s transmission to MEC base
station m to the user’s transmission time block Tn to MEC
base station n will not affect the user’s original transmission
to MEC base station n.

The channel gain between the user and the MEC base
station meets the above preconditions. In this case, the signal
transmitted by the user to the MEC server n will be decoded
before the user transmits the signal to the MEC base station
m. In summary, the NOMA transmission mode has better
performance than the traditional OMA transmission mode in
terms of delay.

From the time delay consumption, the energy consump-
tion of traditional OMA to complete the task is expressed
as EOMA = 2TPk. The energy consumed by NOMA to
complete the task is expressed as ENOMA = (1 + β)TPk.
EOMA − ENOMA = (1 − β)TPk ≥ 0 shows that under the
condition of completing the same amount of tasks, NOMA
performs better than traditional OMA in terms of energy
consumption.

B. UE-NOMA Scene Model

Users divide their own intensive tasks and send them to
multiple small MEC base stations. It should be noted that
not all base stations will choose to unload tasks. Therefore,
this article uses ωk,m to represent the connection relationship
between user k and base station m, which is defined as:

ωk,m =

{
1 USER k collected with MEC m

0 USER k not collected with MEC m
(7)



Define the set Wk = {k|ωk,m = 1} to indicate whether a
connection is established between user k and the small MEC
base station.

There are D D2D pairs (DS-DR) in the scene. Each USER-
MEC cluster group contains a variable number of DS-DR task-
intensive D2D communication users. We use θd,f to represent
the connection relationship between DS − DRd and each
USER-MEC cluster group, which is defined as:

θd,f =

{
1 DS −DRd collected with group f
0 DS −DEd not collected with group f

(8)
We define the set Qd = {d|θd,f = 1} as the set of DS −

DRd who have established a connection with the USER-MEC
group f.

During the transmission of DS-DR to the USER-MEC
cluster group, DSd will transmit the task to DRd with a
transmission power of Pd. The noise received by the user
transmission also includes the signal power of the DS-DR
sender DSd in the USER-MEC group. We use Od to represent
it: Od ,

∑D
d=1 Pdhdθd,f . User k signal power Skis expressed

as Sk,m , Pkhmωk,m, Where Pk represents the unloading
power of the task sent by user k. The noise power Ik,m
caused by other users in the USER-MEC cluster group to
user k is expressed as: Ik,m ,

∑K
n=k+1 Pnhnωn,m. N0 is the

spectral power density of the background noise. According to
Shannon’s formula, the M-channel transmission rate of user K
to MEC base station is:

Hk,m , Blog2(1 +
Sk,m

Ik,m +Od +N0
)

= Blog2(1 +
Pkhmωk,m∑K

n=k+1 Pnhnωn,m +
∑D
d=1 Pdhdθd,f +N0

)

(9)
In the upload phase, the total transmission time of user k is

as follows:

Tuppk = max{Nk,m
Hk,m

|m ∈MEC} (10)

According to the energy consumption formula, the energy
consumption of user k in the upload phase is as follows:

Eupp = Tuppk Pk (11)

C. DS-DR-NOMA Scene Model

D2D communication reuses uplink resources. Therefore, the
base station can control the transmission power of D2D and
coordinate its multiplexed resources to adjust the interference
caused by D2D communication to users in cellular communi-
cation. We assumes that the channel gain of DS-DR users in
the scene is expressed as h1 < h2 < ... < hD.

The signal power of DS − DRd is expressed as: Sd ,
Pdhd. The noise power Od of other DS-DR in the USER-
MEC cluster group received by DS − DRd is expressed as:
Od ,

∑D
n=d+1 Pdhdθd,f . Therefore, the transmission rate is

expressed as::

Hd , Blog2(1 +
Sd

Od +N0
)

= Blog2(1 +
Pdhd∑D

n=d+1 Pdhdθd,f +N0

) (12)

Suppose that the transfer task size of DS − DRd is Nd.
The total time to complete the transmission task is as follows:

Td =
Nd
Hd

=
Nd

Blog2(1 +
Pdhd∑D

n=d+1 Pdhdθd,f+N0
)

(13)

D. Computing Rsesource model

Small MEC base stations are heterogeneous, so they have
different computing capabilities, denoted as γm.

The entire communication process of cellular network users
is divided into uploading, remote MEC calculation processing,
and downloading. Theoretically, compared to the amount of
data uploaded, the amount of data downloaded in the three
stages is less, and in general, there is not much time cost
difference. Therefore, in the calculations in this article, only
the time cost of uploading and remote MEC calculation
processing is considered. The processing time is expressed as
T pro:

T pro{m ∈MEC} = max{Nk,m
γm
} (14)

The user has certain local computing capabilities, which is
expressed as γloc. This means that tasks that have not been
unloaded are processed locally. We define local processing
time as:

T loc =
Nk −

∑m=M
m=1 Nk,m
γloc

(15)

The monetary cost of this article uses the Amazon Web
Services server pricing model. Under this pricing model, the
price function ρm of each small MEC base station is positively
related to its computing power.

Therefore, the cost of user K on MEC server m is as Gk,m =
Nk,m

γm
ρm. When user k establishes a connection with multiple

MEC servers, the total cost of task offloading for user k is:

Gtot =

m=M∑
m=1

Nk,m
γm

ρm (16)

E. Problem Modeling

Due to the limitations of user local equipment performance
and MEC server performance, the mathematical modeling of
the problem considers the following constraints.

The total amount of tasks of a cellular network user includes
the amount of tasks that users offload to the small MEC base
station and the amount of tasks processed locally. Constraint
1: the sum of the tasks should be equal to the sum of the tasks
that the user needs to process:

m=M∑
m=1

Nk,m +Nloc = Nk (17)

Constraint 2: the sum of transmission power and local calcu-
lated power of all users must be less than the maximum power
of local intelligent device:

Pk + Ploc ≤ Pmaxk (18)



The local energy consumption of users is as Eloc = T loc ∗
Ploc. Constraint 3: the total energy consumption of the user’s
equipment shall not exceed the energy value of the equipment
itself:

Ek = Eupp + Eloc ≤ Emax (19)

The time cost of user is the sum of upload time and unload
processing time, and the maximum value of local calculation
processing time. Constraint 4: The user’s time cost should be
less than the expected maximum delay of the user’s task.

T tot = max{Tupp + T pro, T loc} ≤ Tmax (20)

The user’s monetary cost is only due to the money paid
to the service provider for the tasks that are offloaded to the
MEC server for processing. Constraint 5: the monetary cost
of user should be less than the maximum expected value of
user task

Gtot =

m=M∑
m=1

Nk,m
γm

ρm ≤ Gmax (21)

Constraint 6 and constraint 7: the transmission power of
DS-DR users is within the scope of equipment realization:

Pmind ≤ Pd ≤ Pmaxd (22)

We assumes that each user has a certain preference for delay
and money cost. α is used to control the delay preference, and
β is used to control the preference for money cost. Therefore,
the total user cost is expressed as Ck = αT tot + βGtot (α+
β = 1). Since D2D users do not use computing resources on
MEC server, the cost of D2D users is only related to their
time cost: Cd = Td =

Nd

Hd
. The goal of this paper is to find a

strategy to minimize the total cost of users and D2D devices in
the system while meeting the needs of users. Different service
providers attach different importance to the D2D equipment in
the system, so η is used to indicate their importance. Therefore,
the objective function of this paper is as follows:

Subject : Min

N∑
k=1

Ck + η

M∑
m=1

Cd

Constraint : (17), (18), (19), (20), (21), (22)

V ariables : ωk,m, θd,f , Pk, Pd

{k,m, d|k ∈ U m ∈M d ∈ D}

IV. SOLUTION ALGORITHM

This section mainly solves the problems raised in the
previous section. In order to reduce the complexity and time
cost of the algorithm, we decoupled functions in the allocation
of computing resources and communication resources. The
DGT algorithm is composed of three parts: Algorithm 1: PA
(Power Adjustment) 2: CalCost 3: GA(Game Adjustment).
Because we have listed communication-related formulas in the
previous chapters, we will not repeat them in the algorithm
in this section. The transmission time of the user and the
transmission time of the D2D device are directly calculated.

Algorithm 1 PA
Input: parameters, U, M, D

Output: Pair
1: Initialization: Tmin = T = 10, Tmax = 1, l = 1
2: Put all DS into the first group of USER-MEC Pair.
3: Pair[0] = [U [1],M [1], D], Pair[f ] = [U [f ],M [f ], []]
4: while T > Tmin do
5: Using formula and Scipy to solve multi-objective min-

imum value problem, and get the minimum transmission
time Timea of USER and DS.

6: Randomly select a DS from m group and put it into
another random n group.

7: DSd /∈ Tmp Pair[m] = [U [m],M [m], D[m]]
8: → DSd ∈ Tmp Pair[n] = [U [n],M [n], D[n]]
9: Do the same calculation as step 5 to get Timeb.

10: Pro = Exp(Timea−TimebT ), a = random(0, 1)
11: if Timea − Timeb > 0 or a < Pro then
12: Update Pair = Tmp Pair
13: end if
14: l+ = 1, T = Tmax

log(l)
15: end while
16: return

The function of algorithm 1 is: 1. Matching the DS-DR user
and the cellular network USER-MEC group. 2. Find the best
power for both cellular network users and DS-DR users.

First, match the DS set into the first USER-MEC cluster. By
default, the DS set matched by other USER-MEC cluster is
empty. The US and MEC in the matching here respectively
represent a group of cellular users and a group of MEC
small base stations. The cycle condition is that when the
current temperature of the algorithm is greater than the initial
algorithm minimum temperature Tmin, the exchange operation
must be performed on the matching. By using the communi-
cation resource calculation formula described earlier in the
paper and the Scipy multi-objective optimization algorithm to
find the minimum transmission time Timea under the current
match, and record the current user and DS-DR transmission
power. Then randomly select two DSs in the MEC cluster
group with non-duplicate users for temporary exchange. If
Timea − Timeb > 0, the overall transmission time can
be made smaller after the exchange. Or when the random
exchange probability is reached, the exchange is considered
valid in both cases.(U[1] represents a group of multiple users,
and so does M[1])

The function of Algorithm 2 is to obtain the minimum cost
value of each user in the allocation scenario through all known
USER-MEC matching pairs and the respective task upload
time of each user. First, set the initial time t and the search
step size of the initialization algorithm, and assign the user’s
acceptable delay upper limit to Tupp. Determine whether the
MEC and the user’s local equipment can fulfill the user’s task
requirements at the current cost. When the user’s task can be
completed under the cost value, the lower limit of the cost
is adjusted to the current cost, otherwise the upper limit of
the current cost is adjusted to the current cost. The condition



for stopping adjusting the current cost of the user is that the
difference between the upper and lower cost limits of the user
is less than the preset cost accuracy threshold. Finally, the
algorithm returns the minimum cost value group corresponding
to the user group under the current match.

Algorithm 2 CalCost
Input: Pair,Tupp,k

Output: Cbest

1: for k ∈ U do
2: step = nmin, t = step, Tupp = TMax

k , T low = 0,
Cupp = nmax, Clow = 0

3: while t < TMax
k and t < TLock do

4: Cupp = α ∗ Tupp + β ∗Gupp
5: Clow = α ∗ Tupp
6: while (Cupp − Clow) > ε do
7: Ccur = (Cupp+Clow)

2
8: Use an algorithm to find out whether the task

can be completed by Ccur

9: if Can complete the task then
10: Cupp = Ccur

11: else
12: Clow = Ccur

13: end if
14: if Ccur < Cbest then
15: Cbest = Ccur

16: end if
17: t+=step
18: end while
19: end while
20: end for
21: return

Algorithm 3 first initializes the matching situation of user-
MEC pairs, and puts all MECs into the matching set of
the first user. This means that the first user will select and
use resources on all MECs, while the remaining users can
only perform task calculation processing locally. In this initial
matching case, algorithm 1 is used to calculate the minimum
cost.The main idea of the entire exchange process is that
each user will exchange the mec currently owned by him
to other users through polling. After the exchange, calculate
the sum of the two benefits brought by the process. When
the income is positive, it means that the total cost of this
exchange can be reduced, and it is recorded in the current
user’s meaningful exchange set EC. On the contrary, when the
income is negative, no record is made. If the current change
set EC is not empty, it means that there is exchange behavior
that can reduce its overall cost. Then perform an exchange
operation that maximizes cost reduction. Then poll all users
again. If the number of stable users recorded is equal to all
users, it means that all users have reached the Nash equilibrium
stable state, and the algorithm stops at this time.

Algorithm 3 GA
Input: Tupp

Output: LastCost
1: Initialization: stable user = 0
2: put all mec in first user group
3: Pair[0] = [U [0],M,D[0]], Pair[f ] = [U [f ], [], D[f ]]
4: Use Algorithm 2 to obtain Cini

5: while stable user < len(U) do
6: stable user = 0
7: for all ka ∈ U and kb ∈ U and (ka 6= kb)m ∈M do
8: Randomly select a meca from m group and put it

into another random n group.
9: meca /∈ Tmp Pair[m] = [U [m],M [m], D[m]]

10: → meca ∈ Tmp Pair[n] = [U [n],M [n], D[n]]
11: Use Algorithm 2 to obtain Ctmp

12: change=Cini − Ctmp
13: if change > 0 then
14: record it in {EC}
15: end if
16: end for
17: if {EC} 6= ∅ then
18: find changemax and update it in Pair
19: else
20: stable user+=1
21: end if
22: end while
23: Use Algorithm 2 to obtain LastCost
24: return

V. EXPERIMENTAL RESULT

In order to verify the effectiveness and various indicators of
the algorithm in this paper, this section presents and analyzes
the experimental numerical results.

In terms of performance evaluation, we conducted separate
experiments on the cost and user fairness of different user
scales, and the cost and user fairness of different mec scales.
The final results of the experiment are the average of multiple
groups of experimental results to reduce randomness. The
main indicators are defined as:

Cost = Group Cost+ ξD2D Cost

Fair = (

m∑
i=1

Ck)
2/m

m∑
i=1

Fig. 2 shows the overall user cost performance of each
algorithm under a certain DS-DR communication scenario.
Macroscopically, as the number of DS-DR users increases,
the total user demand will increase, so the total user cost will
also show an upward trend.

The blue square line shows the cost change when only
DS-DR communication matching is performed without power
control, and the green triangle line shows the cost change when
only DS-DR power control is performed without communica-
tion matching. It can be seen that the cost values of the two are
generally between the simulated reality algorithm and the DGT



Fig. 2. Example of a figure caption.

algorithm. The cost of the two shows that the algorithm that
only performs communication matching and the algorithm that
only performs power control can effectively reduce the cost.
At the same time, reasonable adjustment and control of the two
can achieve mutual gain effects. The cost in the scenario of no
communication matching and no power control is represented
by the purple line. It can be seen that the cost will cause a high
cost value for users under all user scales. Under different DS-
DR scales, the DGT algorithm can achieve a cost reduction
of nearly 30% compared with the simulated reality algorithm
through communication matching and power control.

(a) (b)

Fig. 3. ChangeMECUSER

As shown in Fig. 3(a), with the increase in the number of
MECs, the total cost of users has shown a downward trend.
On the scale of 24 and 30 mec, the optimal solution of game
theory algorithm is slightly better than exchange algorithm.

As shown in Fig. 3(b), the increase in the number of
users will increase the cost of the entire user group. As the
competition between users for MEC becomes more and more
fierce, the cost difference is very obvious when the number
of users reaches 60. The cost value of game theory algorithm
saves 3000 cost compared with random algorithm, and nearly
2000 cost compared with exchange algorithm. . It can be seen
that the DGT algorithm can maintain a very good optimal
cost accuracy rate when the calculation is small and accuracy
is required. The DGT algorithm can also minimize user costs
and adapt to the needs of different user scales.

Fig. 4. Example of a figure caption.

Fig. 4 shows the performance of the cost average fairness
index for different scales of MEC and different scales of
users. It can be seen from the figure that the fairness index
of the random algorithm is the worst, followed by the local
algorithm. When the MEC scales are different, DGT performs
well on the user fairness index, reaching a fairness index of
more than 80%, followed by exchange algorithms. When the
user scale is different, the local algorithm and the random
algorithm perform similarly, while the exchange algorithm
performs similarly to the DGT algorithm. Therefore, it shows
that an effective distribution algorithm will have a positive
effect on the user’s perception of fairness.

(a) (b)

Fig. 5. FairChangeMECUSER

Fig. 5(a) shows the change in the average fairness index of
users when the number of MECs changes. It can be seen that
the fairness index of the random algorithm is very unstable and
low. When there are a large number of MEC base stations,
the average fairness of the DGT algorithm under each user
scale is better than the switching algorithm. It can be seen
that the DGT algorithm takes into account the needs of users
for fairness while ensuring that the overall user cost is as small
as possible, and has a good performance.

Fig. 5(b) shows the change in the average fairness index of
users when the number of users changes. When the number
of users is very small, user demand exceeds the amount of
services MEC can provide. With the increase in the number
of users, user competition for MEC has gradually increased.
Generally, at the stage where the number of users is 12-15, the



fairness index will reach the lowest value due to inconsistent
distribution. However, it can be seen that even when the
number of users is at a relatively high level of competition,
the DGT algorithm can maintain a fairness index that is better
than other algorithms. The whole line graph shows that the
DGT algorithm can adapt to the optimized environment of
various resource imbalance scenarios. It can reduce the cost
value of the user community while taking into account the
fairness needs of users from the perspective of community.

VI. CONCLUSION

This article discusses the group optimization problem of
DS-DR users and cellular network users considering commu-
nication resources, computing resources and power allocation.
This problem has two conflicting goals: 1. User money cost
and time delay cost. 2. Cellular network user cost and DS-DR
user cost. In addition to user equipment capabilities and MEC
hardware attributes, the factors that affect the final cost mainly
depend on the transmission power of DS-DR users and cellular
network users, and the offloading and matching strategy of
cellular network users and MEC small base station equip-
ment. In the communication resource allocation process, we
reasoned about the superiority of the NOMA communication
mode in terms of transmission speed and energy consumption
compared with the traditional communication mode, and used
it. In the process of computing resource allocation, we have
reasonably considered the user’s money cost and delay cost.
We have separately considered and balanced the impact of
cellular network users and DS-DR users on the total cost.
In order to solve this complex multi-objective optimization
problem, we carried out reasonable mathematical modeling
and task decoupling. In the process of communication resource
allocation, algorithm 1 is proposed to solve the problem
under the exchange mode based on the flame retardation
theory. In the process of computing resource allocation, the
problem is described as a Nash equilibrium problem under
non-cooperative game based on game theory, and it is solved
by algorithm 2 and 3. On this basis, we conducted experiments
on different types of system configuration scenarios. For
example, different DS-DR scales, different user scales, and
different MEC scales. The experimental results show that the
reasonable allocation of power for DS-DR users and cellular
network users can save nearly 30% of the cost compared to
simulated real-life allocation. In the allocation strategy, the
DGT algorithm can ensure that the cost is minimized after the
user is matched with the MEC server, and it also has a good
performance in the consideration of fairness between users.
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