
Graph Mapping Offloading Model Based On Deep
Reinforcement Learning With Dependent Task

Ning Mao†, Yuanfang Chen∗, Mohsen Guizani‡, Gyu Myoung Lee§
†School of Software, Dalian University of Technology, DaLian, China

∗School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China
‡Qatar University, Qatar

§Liverpool John Moores University, UK

Abstract—In order to solve the problem of task offloading
with dependent subtasks in mobile edge computing (MEC),
we propose a graph mapping offloading model based on deep
reinforcement learning (DRL). We model the user’s computing
task as directed acyclic graph (DAG), called DAG task.
Then the DAG task is converted into a topological sequence
composed of task vectors according to the custom priority.
And the model we proposed can map the topological sequence
to offloading decisions. The offloading problem is formulated
as a Markov decision process (MDP) to minimize the trade-
off between latency and energy consumption. The evaluation
results demonstrate that our DRL-based graph mapping of-
floading model has better decision-making ability, which proves
the availability and effectiveness of the model.

Index Terms—mobile edge computing (MEC), task offload-
ing, directed acyclic graph (DAG), Markov decision process
(MDP), deep reinforcement learning (DRL)

I. Introduction
With the increase of mobile equipments, the diversity

and complexity of mobile applications are getting higher
and higher, such as VR, AR, face recognition [1], [2].
Although the performance of mobile equipments has been
greatly improved, many computing intensive applications
can not be completed in effective time by themselves.
MEC sinks the computing resources to the edge of the
network closer to the user, and users use the MEC server
to help complete the task computing [3]. Compared with
completely local computation, it can greatly shorten the
latency and reduce the energy consumption. How to of-
fload task reasonably is one of the main problems in MEC.
The offloading decision problem in MEC environment can
be converted as an optimization problem, which needs to
be solved in a given environment. However, due to the
complexity of MEC environment, the final optimization
problem is often a NP hard problem, which makes the
traditional solution method no longer feasible.

Deep reinforcement learning (DRL) has been greatly
developed due to its strong perception and decision-
making ability [4]. It is an important research direction

Corresponding author: Yuanfang Chen, yuan-
fang.chen.tina@gmail.com. This work was supported by the National
Natural Science Foundation of China (Grant No. 61802097), the
Project of Qianjiang Talent (Grant No. QJD1802020), and the Key
Research & Development Plan of Zhejiang Province (Grant No.
2019C01012).

to introduce DRL into MEC environment to solve the
problem of offloading decision and resource allocation. For
example, [5] proposed a reinf orcement learning framework
based on DQN to solve the resource allocation problem
in edge computing and designed a real-time adaptive
computing resource allocation strategy for user task to
improve the average end-to-end reliability. In [6], authors
consider the problem of wireless driven MEC computa-
tional offloading in a time-varying channel environment,
that is, the difficult combinatorial optimization problem
needs to be solved in the channel coherent time and
proposed an adaptive DRL framework to complete the
offloading decision approximately in real time. A vehicle
edge computing network architecture is explored in [7],
in which the vehicle can be used as a mobile edge server
to provide computing services for the nearby users and
proposed Q-learning and DQN based algorithm to maxi-
mize the long-term utility of the vehicle edge computing
network. In [8], a MEC system composed of multiple
mobile users with random task arrival was considered, and
the target of offloading strategy is to minimize the long-
term average computing cost in terms of buffer delay, and
deep deterministic policy gradient (DDPG) algorithm was
used to independently learn the effective task offloading
strategy of each mobile user.

However, the current computing intensive task is gener-
ally composed of multiple subtasks, and there is a depen-
dency relationship between the subtasks, so the computing
task can be abstracted into DAG task. Therefore, the
original task offloading decision is transformed into the
offloading decisions of all task nodes in DAG task. But
with the increase of the number of task nodes, it will be
very difficult to get the optimal offloading decision of all
task nodes [9]. Most of the existing researches are based
on heuristic algorithm. For example, in [10], a heuristic
algorithm for wireless sensing joint scheduling and compu-
tational offloading for multi-component applications was
proposed to minimize the computation latency of the
application. In [11], the practical application was modeled
as a general DAG task structure, then the offloading
problem was modeled as 0-1 programming problem, and
the particle swarm optimization algorithm was used to
solve the problem. In [12], authors considered the scenario

of multiple servers. The final problem was modeled as
a nonlinear integer programming problem and solved by
genetic algorithm.

However, using heuristic algorithm to solve the of-
floading decision problem of DAG task often leads to
great computation cost, which causes MEC system not
having real-time decision-making ability [13]. Moreover,
heuristic algorithms need more or less expert knowledge,
which reduces the flexibility of model design. Therefore,
reinforcement learning has been widely used to solve the
offloading decision problem of DAG task. [14] proposed
a temporal-difference learning based algorithm to solve
the problem of online task scheduling optimization and
scheduling procedure was modeled as Markov decision
process. In [15], authors proposed a deep reinforcement
learning based multi-job dependent task offloading algo-
rithm and the graph convolutional network(GCN) was
used to extract the deep information of DAG task. [15]
alse considered DAG task, the target was to jointly
determine the offloading decision and resource allocation
of each subtask under the time-varying wireless fading
channel and random edge computing ability, and a deep
reinforcement learning framework based on actor-critic
learning structure was proposed to solve the problem.

In this paper, we design a DRL-based graph mapping
offloading model, which makes full use of the strong per-
ception and decision-making ability of deep reinforcement
learning to sove the offloading decision problem of DAG
task. Our contributions are as follows:

• In order to transform DAG task into the data that
can be input into the model. We propose a priority-
topology-relative-entropy (PTRE) algorithm to con-
vert the task nodes in DAG task into a sequence
of task vectors according to their priority without
violating the dependency of DAG task. That is to
say, DAG task can be transformed into a topological
sequence by PTRE algorithm.

• We formulate the offloading decision problem of
DAG task into Markov decision process, define state,
action and reward, and design a DRL-based graph
mapping offloading model which maps task vector
into offloading decision. This model can get the
approximate optimal offloading decision without any
expert knowledge.

• The special actor network and critic network are
designed to handle the topological sequence. The A3C
deep reinforcement learning algorithm is adopted to
train the model. The evaluation results show that the
model is superior in performance.

The rest of the paper is organised as follows. In Section
II, we present the system model in detail. In Section III, we
establishe a mathematical model for practical problems.
In Section IV, the details of DRL-based graph mapping
offloading model will be discussed in detail. Section V is
the experimental part, we present the evaluation results

here. Section VI is the last section of this paper, which
summarizes the full text.

II. System Model
The computing resources of MEC server are allocated

in the way of virtual machine (VM) [16]. The interaction
between the user equipment and the server is essen-
tially the interaction with the corresponding VM, which
provides private computing, communication and storage
resources. In user equipment, the local CPU is used for
local computing, the local transmission unit (LTM) is used
for uploading the tasks and receiving the results of edge
computing. the virtual central processor (VCPU) in VM is
used for edge computing, and the virtual transmission unit
(VTM) is used for receiving the uploaded tasks by user
equipment and returning the results of edge computing.

A. DAG task
There is a graph parser (GP) in user equipment, which

is used to convert computing intensive task into DAG task
format. The target is to make offloading decisions for this
kind of DAG task, as shown in Figure 1.

Fig. 1: DAG task format of computing intensive task.

DAG task is represented by point set N and edge set E,
that is, DAG task G = (N,E), task node ni ∈ N , where
i ∈ 1, 2, , |N |, |N | is the total number of task nodes.
Edge eij ∈ E denotes task node ni is the precursor of task
node nj and task node nj is the successor of task node ni.
A task node without a precursor is called an entry task
node, while a task node without a successor is called an
exit task node. Each edge has two weights, the local weight
wl

ij and the offloading weight wo
ij are used to represent

the fixed communication cost of the same equipment and
different equipments between task node ni and task node
nj . Task node ni should include the following information:
the data size, dexei , the required CPU cycles, ci, the data
size of the result after computing, dresi .

B. System Flow
Figure 2 describes the execution flow of the whole

system. The user’s computing task is first transformed
into DAG task by GP. Then the offloading decisions of

all task nodes in DAG task will be made in mapping
offloading module (MOM).

• Local Computing:
If task node ni is decided to compute locally, then

ni is computed by the local CPU. So the computing
latency and energy consumption of task node ni can
be expressed as follows:tli =

ci
f l

eli = pltli

(1)

where f l is the computing rate of the local equipment,
pl = σ(f l)

τ is the local computing power, σ and τ
are constants.

• Edge Computing:
If task node ni is decided to compute in edge server,

it will go through three processes:
First, user equipment uploads the task node ni to

the MEC server through LTM, and the corresponding
VM in the server receives the task through the VTM.
After that, the edge computing is carried out by
VCPU. Finally, the result is sent back to the user
equipment through VTM, and the user equipment
receives the result through LTM.tui =

dexei

vu
, tvmi =

ci
fvm

, tdi =
dresi

vd

eoi = putui + pdtdi

(2)

where vu is uploading rate of user equipment, fvm

is the computing rate of the VM, vd is the returning
rate, pu and pd are the uploading and returning power
of user equipment respectively.

Whether it’s local computing or edge computing,
all computing components and transmission compo-
nents are not allowed to preempt resources. When
resources conflict, they need to wait in queue. But,
the uploading process of LTM and VTM does not
affect their receiving process, and vice versa.

III. Problem Formulation

In order to minimize the trade-off between total latency
and energy consumption, we need to transform the actual
offloading problem into a mathematical problem. The
completion time of local computing, uploading, edge com-
puting and result returning of task node ni are respectively
expressed as: ECT l

i, ECTu
i , ECT o

i , ECT d
i . If task node

ni is decided to compute locally, then ECTu
i , ECT o

i and
ECT d

i are meaningless and set to 0. If it is decided to
offload, then ECT l

i is meaningless and set to 0. When
processing task node ni, the available time of CPU, LTM,
VCPU and VTM are expressed as: CAT l

i, CATu
i , CAT o

i ,
CAT d

i . Using P(i) to represent the set of predecessor nodes
of task node ni, we can get:

Fig. 2: The whole system flow.

ECT l
i = max

(
CAT l

i, max
j∈P (i)

(
ECT l

j , ECT d
j

))
+ tli

ECTu
i = max

(
CATu

i , max
j∈P (i)

(
ECT l

j , ECTu
j

))
+ tui

ECT o
i = max

(
CAT o

i ,max

(
ECTu

i , max
j∈P (i)

ECT o
j

))
+ tvmi

ECT d
i = max

(
CAT d

i , ECT o
i

)
+ tdi

(3)

The meanings of formula (3) are :
• The premise for task node ni to start local computing

is that the CPU is available and all its precursor nodes
have completed the computing. Local computing start
time plus local computing latency leads to ECT l

i.
• The premise for task node ni to start uploading is

that LTM is available and all its precursor nodes have
completed computing or uploaded locally. Uploading
start time plus uploading latency leads to ECTu

i .
• The premise for task node ni to start edge computing

is that VCPU is available, uploading is completed,
and all its precursor nodes have completed comput-
ing. The edge computing start time plus the edge
computing latency leads to ECT o

i .
• The premise for the result of task node ni to start

returning is that VTM is available and edge comput-
ing is completed. The start time of returning plus the
returning latency leads to ECT d

i .
The start time of DAG task is set to 0, then the last exit

task node’s completation time is the scheduling latency of
the whole DAG task. The total energy consumption is the
sum of the energy consumption of all task nodes. Let ai
represents the offloading decision of task node ni, ai = 0
indicates that the task is decided to compute locally, and
ai = 1 indicates that the task is decided to compute in
edge server, that is:

Tall = max

(
max

ni∈exit

(
ECT l

i , ECT d
i

))
Eall =

∑
ni∈N,ai=0

eli +
∑

ni∈N,ai=1

eoi
(4)

Compared with all task nodes compute locally, the
latency benefit GT and energy consumption benefit GE

brought by a certain scheduling scheme are defined as
follows:

GT =
Tl − Tall

Tl
, GE =

El − Eall

El
(5)

where Tl and El represent the latency and energy con-
sumption when all task nodes are local computing re-
spectively. The smaller the Tall and Eall brought by a
certain scheduling scheme, the higher the latency benefit
and energy consumption benefit. Therefore, the objective
function is defined as the comprehensive profit, and the
ultimate target is to maximize the comprehensive, that is:

max CP = αGT + (1− α)GE (6)

where α is equilibrium factor, which takes value in the
interval (0, 1).

IV. DRL-based Graph Mapping Offloading Model

In this section, we describe each part of DRL-based
graph mapping offloading model (DRL-GMOM). Firstly,
the priority-topology-relative-entropy algorithm (PTRE)
is introduced to transform DAG task into task vector
sequence. The algorithm plays the role of data prepro-
cessing and can provide training data for DRL-GMOM.
The offloading decision problem is formulated as Markov
decision process, and the corresponding state space, action
space and reward are presented. Finally, we give the
structure of DRL-GMOM in detail, and A3C algorithm is
used to complete the model training.

A. Priority-Topology-Relative-Entropy algorithm
Because of the dependency between task nodes, the of-

floading decision order of task nodes must be a topological
sort of DAG task. In this way, we can ensure that the
precursor node must make decisions before the successor
nodes. In this paper, the priority is calculated according to
the principle that the higher the execution cost, the higher
the priority. The execution cost is represented by cost
quota, which is calculated by latency, energy consumption
and fixed task communication cost.

• If task node ni is decided to compute locally, then
time cost, tcli = tli, energy consumption cost, ecli = eli,
and S (i) is used to represent the set of all successor
nodes of task node ni, and the local execution cost
quota is:

qcli = αtcli + (1− α) ecli + β
∑

j∈S(i)

wl
ij (7)

• If task ni is decided to compute in edge server, then
time cost, tcoi = tui + tvmi + tdi , energy consumption
cost, ecoi = eoi , and the edge execution cost quota is:

qcoi = αtcoi + (1− α) ecoi + β
∑

j∈S(i)

wo
ij (8)

From (1) and (2), we get the final cost quota: qi =
min(qcli , qc

o
i
), and define the final priority as follows:

rank[i] =

{
max
j∈S(i)

(rank (j)) + qi ni ∈ exit

qi ni /∈ exit
(9)

Same as α, β is also equilibrium factor, which takes
value in the interval (0, 1). And exit represents the set
of exit task nodes. According to the priority, all task
nodes in DAG task are sorted in descending order, and a
task sequence idx is obtained, that is, idx[1] is the task
node with the highest priority, and idx[|N |] is the task
node with the lowest priority. From formula (5), it can be
concluded that the task sequence represented by idx must
be a topological sequence of the original DAG task. For
convenience, the symbol ni is used later in this paper to
refer to task node idx[i], that is, ni is represented as the
i-th task node in the task sequence idx. Similarly, P (i)
and S(i) are represented as the set of predecessor nodes
and the set of successor nodes of the i-th task node in
task sequence idx, respectively.

According to the order of task sequence idx, each task
node is represented from the perspective of information.
We define the task vector of task node ni (idx[i]) is
composed of the following information:

• Its priority index i.
• Latency of local computing tli and energy consump-

tion eli.
• Each latency of edge computing tui , tvmi , tdi and energy

consumption eoi .
• The index of m predecessor nodes and m successor

nodes.
The selected precursor and successor task nodes should

contain as much information as possible that is not
included in task node ni, that is, those precursor and
successor task nodes that are not similar to the task node
ni should be selected, so as to ensure that the transformed
task vector contains more information. In this paper, we
use relative entropy [17] to describe the dissimilarity of
task nodes. The larger the relative entropy, the more dis-
similar the two task nodes are. The information vector of
task node ni is defined as: veci = (i, tui , tvmi , tdi , t

l
i, e

o
i , e

l
i),

so the relative entropy between task node ni and nj is:

KL(veci |vecj) = −
len−1∑
loc=0

veci (loc) log
vecj (loc)

veci (loc)
(10)

where len is the length of the information vector and loc is
the element index of the information vector. The relative
entropy values of the task node and all its predecessor

nodes and successor nodes are calculated respectively, and
then the index of the first m task nodes is extracted by
descending sorting. In this way, the complete task vector
taski of task node ni is obtained, and the sequence of task
vectors of all task nodes in task sequence idx is represented
by TASK. The pseudo code of priority-topology-relative-
entropy algorithm is described as Algorithm 1.

Algorithm 1 PTRE algorithm
Input: tli, t

u
i , t

vm
i , tdi , e

l
i, e

o
i of each task node ni

Output: sequence of task vector: TASK
1: for each task node ni in DAG task do
2: tcli = tli, ecli = eli, tcoi = tui + tvmi + tdi , ecoi = eoi
3: calculate:

qcli = αtcli + (1− α) ecli + β
∑

j∈S(i)

wl
ij

qcoi = αtcoi + (1− α) ecoi + β
∑

j∈S(i)

wo
ij

4: qi = min(qcli , qc
o
i
)

5: calculate:

rank[i] =

{
max
j∈S(i)

(rank (j)) + qi ni ∈ exit

qi ni /∈ exit

6: end for
7: sort all task nodes in descending order by the array

rank and get task sequence idx
8: define idx[i]s information vector as:

veci = (i, tui , tvmi , tdi , t
l
i, e

o
i , e

l
i)

9: for ni in idx do
10: for njinP (i) , nkinS (i) do
11: calculate:

KLP [j] =

N∑
n=1

veci (loc) log
vecj (loc)

veci (loc)

KLS [k] =

N∑
n=1

veci (loc) log
veck (loc)

veci (loc)

12: end for
13: sort KLP and KLS in descending order, get pred =

KLP [1 : m] and succ = KLS [1 : m]
14: put taski = (i, tui , t

vm
i , tdi , t

l
i, e

o
i , e

l
i, pred, succ) into

TASK
15: end for

B. Markov decision process(MDP)
Because each user is connected to one VM to provide

private computing, communication and storage resources,
the parameters of network environment are considered as
static. Therefore, we will focus on the perspective of DAG
task to establish Markov decision process.

• State space: State space is defined as the sequence
composed of TASK and offloading decisions of his-

torical task nodes. The decision set of historical task
nodes is represented by H, then:

state = {(TASK, sequence of ai)| ai ∈ H} (11)

• Action space: Because each task node can only be
decided as local computing or edge computing, the
action is defined as:

action = {0, 1} (12)

where 0 represents local computing and 1 represents
edge computing.

• Reward: When task node ni is computed according
to decision ai, the increment of total latency and
energy consumption is expressed as ∆Ti and ∆Ei.So
the reward function can be defined as:

rewardi = α

Tl

|N | −∆Ti

Tl
+ (1− α)

El

|N | −∆Ei

El
(13)

So we can get the cumulative reward in the process
of MDP: R =

∑|N |
i=1 γ

irewardi. It can be concluded that
while maximizing the cumulative reward R, the objective
function CP is also maximized.

C. Model Design
The DRL-GMOM is based on sequence to sequence

model [18] with attention mechanism, which is a mapping
model for mapping task vector sequence into off loading
decision sequence. The main structure of the actor network
is composed of an encoder and a decoder, both of which
use recurrent neural network. According to TASK, taski
is input into the encoder for encoding. After receiving all
the task vectors, the decoder is initialized by the encoder’s
final hidden state, and then begins decoding. At the final
output, decision πθ(ai|statei) is obtained through softmax
layer, where θ is the parameter of the actor network.

Fig. 3: Actor network in DRL-GMOM.

Critic network is used to evaluate state value Vω(statei),
where ω is the parameter of the critic network. The main
structure of the network is composed of recurrent neural
network and fully connected network. Initial state is also
initialized by the encoder’s final hidden state in the actor
network. And the historical decision is taken as the input.

Fig. 4: Critic network in DRL-GMOM.

The final hidden state of the network is mapped to the
state value through the fully connected network.

Considering that A3C algorithm interacts with the envi-
ronment in multiple threads and executes multiple agents
asynchronously [19], it can remove the correlation between
state transition samples in the training process. A3C
algorithm replaces the experience pool which needs a lot
of memory for data storage by asynchronous execution. In
view of the above advantages, we adopts A3C algorithm to
train DRL-GMOM. The random initialization parameters
of actor network and critic network in the main thread
are θm and ωm, and the parameters of actor network and
critic network in i-th sub-thread are expressed by θi and ωi

respectively. The global maximum number of iterations is
set to Emax. The training steps are described as Algorithm
2.

V. Performance Evaluation
A. Simulation Environment

According to the DAG graph generator provided by
reference [20], the data sets required are generated. The
data sets are divided into training data sets and test data
sets.

Dag tasks in training sets and test sets are divided into
8 categories according to the number of task nodes: 12,
16, 20, 24, 28, 32, 36 and 40. The width and density of
DAG task are generated randomly. dexei and dresi of each
task node are randomly generated in the interval [25KB,
850KB]. And the fixed communication costwl

ij and wo
ij are

randomly generated in the interval [1, 10].
There are 500 DAG tasks in each category in the

training data sets and 100 DAG tasks in each category
in the test data sets. In other words, there are 4000 DAG
tasks in training data sets and 800 DAG tasks in test data
sets. The target is to simulate computing intensive task
with different number of task nodes.

The encoder and decoder in actor network and the RNN
in critic network are composed of two layers of GRU,
and the number of hidden layer, numhidden is 512. The
discount factor γ = 0.99, the global maximum iteration
number Emax = 4000. The training learning rate of actor
network, lra and critic network, lrc both are 0.0005, and
Adam is used as the optimizer for training. The uploading
bandwidth and downloading bandwidth between user and

Algorithm 2 Training steps of DRL-GMOM in each thread
Input: DAG task
Output: specific offloading decision of every task node

1: initialize Actor and Critic in main thread with random
weight θm and ωm

2: the weights of Actor and Critic in specific thread i are
θi and ωi

3: initialize E = 0, t = 0
4: repeat
5: dθm = 0, dωm = 0, θi = θm, ωi = ωm, f lag = t
6: while statet is not terminal, t− flag ̸= tlocal do
7: choose at according to π(at|statet, θi)
8: execute at and get rewardi and statet+1

9: t = t+ 1, E = E + 1
10: end while
11: Initialize the RNN’s Initial state in critic network

with the last hidden state in encoder
12: if statet is not terminal state then
13: Rt = V (statet|ωi)
14: else
15: Rt = 0, statet = statet
16: end if
17: for j = t− 1, t− 2, , f lag do
18: Rj = rewardj + γRj+1, Ai

j = Rj − V (sj |ωi)
19: dθm = dθm +∇θm logπ(aj |sj , θi)Ai

j

20: dωm = dωm +
∂(Ai

j)
2

∂ωi

21: end for
22: Update θm and ωm by dθm and dωm

23: until E > Emax

TABLE I: Main Parameter
Parameter Value
dexei , dresi [25KB, 850KB]
wl

ij , w
o
ij [1, 10]

numhidden 512
γ 0.99

Emax 4000
lra, lrc 0.0005
fvm 8× 106B/s
f l 1× 106B/s

pu, pd 1.3w, 1.2w
α, β 0.5,0.1

edge server are 10Mbps. VM’s computing rate fvm = 8×
106 B/s, user equipment’s computing rate f l = 1×106 B/s,
pu = 1.3w, pd = 1.2w. Equilibrium factor α = 0.5,β = 0.1.
We create 4 sub-threads to interact with the environment,
and set tlocal in each sub-thread to 100.

In order to highlight the performance of DRL-GMOM,
the following algorithms will be compared:

• HEFT algorithm: [21] HEFT algorithm is a heuristic
static DAG scheduling algorithm. The core of the
algorithm is based on the earliest completion time.

• Round Robin (RR): [22] Each time, the task node is
assigned to the user equipment and the corresponding
VM in turn, and then the cycle is restarted.

• Temporal-Difference learning (TD): [14] Compared
with Monte Carlo algorithm, this algorithm can
solve reinforcement learning problems without using
complete state sequence. The estimation is made by
TD error in each time slot.

• Random policy: Whether the task node ni computes
locally or in edge server is completely random without
violating the dependency relationship.

• Greedy policy: If the comprehensive profit computed
locally is greater than that computed in the server,
it’s decided to be local computing, otherwise it is
determined to be computed in server.

B. Simulation Results
The DRL-GMOM is trained under the above experi-

mental conditions. After the training, the performance of
the 5 algorithms are compared through the test data sets.
The results are shown in Table 1. It can be concluded
that our DRL-GMOM has the best performance on all
test data sets. And the second is Temporal-Difference
learning algorithm. We get the optimal average compre-
hensive profit (shown in brackets) of test sets with 12,
16 and 20 task nodes. It can be found that the average
comprehensive profit obtained by DRL-GMOM is very
close to the optimal solution.

TABLE II: Comparison of Average Comprehensive Profit
Nodes DRL-GMOM HEFT RR TD Random Greedy

12 0.543(0.546) 0.280 0.320 0.428 0.314 0.292
16 0.553(0.556) 0.322 0.337 0.423 0.324 0.320
20 0.558(0.563) 0.333 0.347 0.441 0.320 0.338
24 0.568 0.357 0.356 0.465 0.357 0.362
28 0.569 0.341 0.350 0.453 0.333 0.346
32 0.553 0.318 0.333 0.451 0.332 0.326
36 0.567 0.331 0.343 0.506 0.328 0.329
40 0.568 0.390 0.380 0.469 0.373 0.389

In MEC environment, network bandwidth has a great
impact on the performance of the offloading algorithm.
In order to test the performance improvement of DRL-
GMOM in comprehensive profit with the increase of band-
width, the training data set with 12 task nodes is selected,
and the model is retrained under different bandwidth, and
the test set with 12 task nodes is used to test the model.
Similarly, compared with the 5 algorithms mentioned
above, it can be seen from the results shown in Figure
5 that with the increase of bandwidth, the performance of
the DRL-GMOM is the largest under the same conditions.
We can find that the performance of HEFT algorithm and
greedy policy is better than Temporal-Difference learning
when the bandwidth is about more than 13Mpbs. Because
HEFT algorithm is actually a greedy policy, the greedy
policy and the HEFT algorithm change roughly the same.

VI. Conclusion
In this paper, we design a DRL-based graph mapping

offloading model, which is used to solve the task offloading
problem with dependent subtasks in MEC environment.
Firstly, We model the user’s computing task as DAG,

Fig. 5: Comparison of comprehensive profit of each algo-
rithm with bandwidth increasing.

and then the DAG task is transformed into task vector
sequence task by priority-topology-relative-entropy algo-
rithm. Based on sequence to sequence model, we construct
the graph mapping offloading model’s actor network and
critic network through GRU recurrent neural network.
Finally, the model is trained by A3C deep reinforcement
learning algorithm. By comparing the experimental re-
sults, we can conclude that the DRL-based graph mapping
offloading model proposed in this paper can achieve higher
user comprehensive profit, which proves its effectiveness
and feasibility.

References

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief,
“A survey on mobile edge computing: The communication
perspective,” IEEE Communications Surveys Tutorials, vol. 19,
no. 4, pp. 2322–2358, 2017.

[2] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and
D. Sabella, “On multi-access edge computing: A survey of the
emerging 5g network edge cloud architecture and orchestration,”
IEEE Communications Surveys Tutorials, vol. 19, no. 3, pp.
1657–1681, 2017.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3,
no. 5, pp. 637–646, 2016.

[4] S. S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement
learning: An overview,” CoRR, vol. abs/1806.08894, 2018.
[Online]. Available: http://arxiv.org/abs/1806.08894

[5] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink, and R. Mathar,
“Deep reinforcement learning based resource allocation in low
latency edge computing networks,” in 2018 15th International
Symposium on Wireless Communication Systems (ISWCS),
2018, pp. 1–5.

[6] L. Huang, S. Bi, and Y. J. A. Zhang, “Deep reinforcement
learning for online computation offloading in wireless powered
mobile-edge computing networks,” IEEE Transactions on Mo-
bile Computing, vol. 19, no. 11, pp. 2581–2593, 2020.

[7] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement
learning for offloading and resource allocation in vehicle edge
computing and networks,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 11, pp. 11 158–11 168, 2019.

[8] Z. Chen and X. Wang, “Decentralized computation offloading
for multi-user mobile edge computing: a deep reinforcement
learning approach,” EURASIP J. Wirel. Commun. Netw., vol.
2020, no. 1, p. 188, 2020.

[9] L. Jin-zhong, X. Jie-wu, Z. Jin-tao, Z. Bing, and L. Chang-xin,
“Survey on grid workflow scheduling algorithm,” Application
Research of Computers, 2009.

[10] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal
joint scheduling and cloud offloading for mobile applications,”
IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 301–
313, 2019.

[11] Maofei Deng, Hui Tian, and Bo Fan, “Fine-granularity based
application offloading policy in cloud-enhanced small cell net-
works,” in 2016 IEEE International Conference on Communi-
cations Workshops (ICC), 2016, pp. 638–643.

[12] Z. Cheng, P. Li, J. Wang, and S. Guo, “Just-in-time code
offloading for wearable computing,” IEEE Transactions on
Emerging Topics in Computing, vol. 3, no. 1, pp. 74–83, 2015.

[13] C. Tsai and J. J. P. C. Rodrigues, “Metaheuristic scheduling
for cloud: A survey,” IEEE Systems Journal, vol. 8, no. 1, pp.
279–291, 2014.

[14] Y. Zhang, Z. Zhou, Z. Shi, L. Meng, and Z. Zhang, “On-
line scheduling optimization for dag-based requests through
reinforcement learning in collaboration edge networks,” IEEE
Access, vol. 8, pp. 72 985–72 996, 2020.

[15] Z. Tang, J. Lou, F. Zhang, and W. Jia, “Dependent task
offloading for multiple jobs in edge computing,” in 2020 29th
International Conference on Computer Communications and
Networks (ICCCN), 2020, pp. 1–9.

[16] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas,
“Fast adaptive task offloading in edge computing based on
meta reinforcement learning,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 1, pp. 242–253, 2021.

[17] B. Barz, E. Rodner, Y. G. Garcia, and J. Denzler, “Detecting
regions of maximal divergence for spatio-temporal anomaly de-
tection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 5, pp. 1088–1101, 2019.

[18] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas,
“Computation offloading in multi-access edge computing using
a deep sequential model based on reinforcement learning,” IEEE
Communications Magazine, vol. 57, no. 5, pp. 64–69, 2019.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in Proceedings of
the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, ser. JMLR
Workshop and Conference Proceedings, vol. 48. JMLR.org,
2016, pp. 1928–1937.

[20] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm
for heterogeneous systems by an optimistic cost table,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3,
pp. 682–694, 2014.

[21] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-
effective and low-complexity task scheduling for heterogeneous
computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, no. 3, pp. 260–274, 2002.

[22] G. Otsuru and Y. Sanada, “Phase selection in round-robin
scheduling sequence for distributed antenna system,” IEICE
Transactions on Communications, 2020.

