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Abstract: Difficulty in turning is prevalent in older adults and results in postural instability and
risk of falling. Despite this, the mechanisms of turning problems have yet to be fully determined,
and it is unclear if different speeds directly result in altered posture and turning characteristics. The
aim of this study was to identify the effects of turning speeds on whole-body coordination and to
explore if these can be used to help inform fall prevention programs in older adults. Forty-two
participants (21 healthy older adults and 21 younger adults) completed standing turns on level
ground. Inertial Measurement Units (XSENS) were used to measure turning kinematics and stepping
characteristics. Participants were randomly tasked to turn 180◦ at one of three speeds; fast, moderate,
or slow to the left and right. Two factors mixed model analysis of variance (MM ANOVA) with
post hoc pairwise comparisons were performed to assess the two groups and three turning speeds.
Significant interaction effects (p < 0.05) were seen in; reorientation onset latency of head, pelvis, and
feet, peak segmental angular separation, and stepping characteristics (step frequency and step size),
which all changed with increasing turn speed. Repeated measures ANOVA revealed the main effects
of speeds within the older adults group on those variables as well as the younger adults group. Our
results suggest that turning speeds result in altered whole-body coordination and stepping behavior
in older adults, which use the same temporospatial sequence as younger adults. However, some
characteristics differ significantly, e.g., onset latency of segments, peak head velocity, step frequency,
and step size. Therefore, the assessment of turning speeds elucidates the exact temporospatial
differences between older and younger healthy adults and may help to determine some of the issues
that the older population face during turning, and ultimately the altered whole-body coordination,
which lead to falls.

Keywords: inertial measurement unit; turning; whole-body coordination; older adults

1. Introduction

Fall-related injuries that occur while turning have been associated with an increased
risk of subsequent hip fractures in elderly people [1]. Cumming and Klineberg [2] examined
the association between history of falls and risk of hip fracture in 412 older adults, which
identified characteristics of falls related to hip fracture. They found that individuals who
fell while performing a standing turn test were 7.9 times more likely to have a subsequent
fall resulting in a hip fracture. Falling in older adults can lead to immobility and loss of
independence, resulting in high costs for both the individual and healthcare systems [3].

Turning is a fundamental but complex component of behavior that requires whole-
body coordination, however, instability and balance impairment during turning are com-
mon in the elderly [1]. Turning is initiated by saccadic eye movements to shift gaze in
the direction of travel followed by the rotation of the head, then the trunk and pelvis,
and, finally, the stepping movements of the feet [4–9]. Although older adults employ the
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same temporal sequence as younger adults, there are significant differences in the spatial
characteristics of the turn; for instance, younger adults show greater head-on-trunk rota-
tion than older adults [10]. It has also been observed that older adults employ an en-bloc
movement strategy while turning, which is characterized by reduced relative rotations
between adjacent segments and a near-simultaneous rotation initiation [11].

A previous study found that staggering is common among older adults who had
previously experienced an unexpected fall when completing a 180◦ turn [1]. Problems
associated with changing direction in older adults and individuals with balance problems,
particularly with the performance of 180◦ turns, have been reported [12]. These studies
have identified similar findings with regards to stepping characteristics in older adults,
with older adults reporting difficulties when performing a turning task and who were
more likely to take multiple steps (three or more) to complete a 180◦ turn [1,12]. The
stepping actions during a turn are critical as they may be an indication of instability and
loss of coordination. Slow turning has been found to be associated with smaller and more
frequent steps; characteristics that are also more common in older adults [13,14]. During
turning in both a standing or walking turn, older adults often turn more slowly and with
more rigid trunk movements, which may represent a strategy to compensate for actual or
perceived instability [12–14]. In addition, real-life turning situations often require quick and
unpredictable movements, with limited time for planning, e.g., turning to circumvent an
unexpected obstacle or turn as fast as possible to get to a target. Therefore, it is important
to investigate unplanned–reactive–turns incorporating speed modifications of turning
patterns. To our knowledge, there are currently no studies that have investigated the
effect of speed during turning in older adults, which may provide more detail regarding
challenges faced by older adults when completing turns. The aims of this study were
to explore the effects of the turn speed during turning over 180◦ on body coordination
and stepping characteristics in healthy older adults when compared to healthy younger
adults. We hypothesized that changing turn speed would result in changes in whole-body
coordination and stepping characteristics in older adults only. This aimed to clarify the
effects of turn speed on turning characteristics in older adults, which may be linked to fall
risks, which in turn may be used to inform fall prevention programs in older adults.

2. Materials and Methods
2.1. Participants

Based on a previous study that used a similar methodology [15], G*Power statistical
software was used to determine the sample size required by using the head onset latency
variable (an effect size of f = 0.3, Alpha = 0.05, power = 0.95, sample size = 32, critical
t(18) = 3.15, and Lambda = 17.28). A sample size of 16 participants per group was deter-
mined to be sufficient, however, to allow for any dropouts or missing data, the sample size
was capped at least at 20 participants per group. The following inclusion criteria were con-
sidered; aged between 18–35 for the younger adults group and 60–75 for the older adults
group, able to follow commands and instructions, able to walk independently without any
assistive device, and have sufficient cognitive ability to understand the questionnaire and
follow commands, which was assessed using the mini-Thai mental state examination with
a score of ≥24/30 [16]. Participants had no clinical diagnosis of a condition or symptoms
that could influence the test performance, such as arthritis or severe leg pain. The following
exclusion criteria were used; comorbidity with severe systemic illness, severe signs and
symptoms of musculoskeletal problems, which could influence test performance. All par-
ticipants were asked to read the participant information sheet and sign an informed consent
form. The study was approved by the local Ethics Committee on Human Experimentation
and adhered to the Declaration of Helsinki (MU-CIRB 2020/048.1902).

2.2. Turning Protocol and Data Collection

The turning kinematics of all participants were measured using Inertial Measurement
Units (XSENS, MVN, Xsens Technologies B.V., P.O. Box 559, 7500 AN Enschede, the
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Netherlands), which was used to measure whole-body movement turning kinematics and
stepping characteristics at a sampling frequency of 100 Hz. IMUs were strapped firmly to
the body segments, including the center of the head, middle of the thorax, pelvis, and the
center of the left and right feet, Figure 1.
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Figure 1. Location of the positioning of the XSENS IMU sensors.

After the attachment of the XSENS sensors, the model was then calibrated for each
participant before collecting data. The calibration process took approximately 10–15 s
to perform and followed the manufacturer’s recommendations. This involved a static
phase where the participants were asked to stand still with a relaxed upright position
without moving, and a dynamic phase where the participants were asked to start walking
forward with a comfortable arm swing for about 5 m and then turn to walk back to the
starting position, and finally a second static phase standing still again with a relaxed
upright position.

For data collection, participants stood facing a laptop screen. A test consisted of a
visual cue, controlled by a program in LabVIEW, which showed a representation of the
turn the participants were asked to imitate, focusing on the direction and speed of an
animated clock arm as accurately as possible. Prior to each trial, a video was shown of the
animation demonstrating the turn. Participants were asked to turn at 3 randomly selected
speeds; fast (1.5 s), moderate (2 s), and slow (3 s), the timing of which was indicated by
two audio signals, which has been used previously to explore turning speeds during 180◦

turns [9,17] (Figure 2). Each participant was allowed to perform a practice trial and they
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were instructed by the verbal instruction by “please begin turning on the first audio signal
and finish turning when the audio signal finished as consistent with the audio as you can”.
The instruction was also used during the test. In addition, they were asked to turn to
point in a new direction, and all participants invariably ended up with their head, body,
and feet aligned with the new travel direction. The test protocol was not continued until
the participant indicated that they understood the instructions and the researcher was
satisfied that there was no confusion about how to align their body segments. A minimum
of two practice trials was performed for each direction and speed combination, and the
participants were instructed to take a 5 min break at the end of the practice trials or take a
rest whenever necessary until they indicated they were fully rested and ready to continue.
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Figure 2. (a) A representation of the video screen for 180◦; (b) participants completing standing turns on level ground
through 180◦ in each speed from audio signals and either to the left (counter-clockwise) or the right (clockwise).

2.3. Data Processing

Segmental Euler angles from the XSENS systems were exported to determine the
angular displacement of the head, thorax, pelvis, and left and right feet in the global
reference frame. Kinematic data were passed through a dual fourth-order Butterworth
low pass filter using a cut-off frequency of 6 Hz. The MATLAB (R2020b) programming
environment was used to analyze all measures from the kinematic datasets, using the
following as dependent variables; the reorientation onset time of head, trunk, pelvis
and feet, peak head-trunk and peak head-pelvis angular separations, displacement, and
velocity of yaw trajectory time-series from each body segment, temporal–spatial stepping
characteristics including; step onset, step frequency, step duration, and step size.

To yield velocity and acceleration profiles for each segment, the displacement profiles
were differentiated. The criteria used to determine the rotation onset for each segment
as the earliest time point preceding segment displacement of 5◦ was >0◦ with a veloc-
ity >0◦s−1. The end of rotation was determined as the first zero crossing in the velocity
profile, following the end of the segment rotation.

Furthermore, the relationship between segmental onset latency and intersegmen-
tal kinematics was explored, which represented the intersegmental coordination during
turning. The relationship between peak head yaw velocity and peak segmental angular
separation has been used to indicate the extent to which the head leads the lower segments.
This follows the description of previously reported techniques from these variables in
clinical populations with turning deficits and has been used as a measure of coordina-
tion [11,15].

As the time-course of the turn trials varied in duration, time-normalized profiles
were created for the axial segments by using the onset and offset latencies from the head
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and thorax. For the normalization procedure, the earliest onset latency (typically the
head yaw onset latency) and the final axial offset latency were chosen for each turn trial.
Normalization was performed using a customized MATLAB function, which not only
increased each time series to a length of 1000 data points, i.e., longer than all individual
time series but also interpolated any missing data points. This method of normalization
facilitated the comparison of the segments to each other over the course of all axial segment
rotations. Using the normalized axial segment profiles, angular separation profiles were
obtained by subtracting one profile from another, which resulted in head-thorax and
head-pelvis profiles.

Individual steps were analyzed, and the step events were defined as the positive zero
crossing preceding a negative zero crossing following, a velocity that surpassed a threshold
of 15% of the maximum step velocity. Each step onset was then determined as the first
frame of the step interval with a velocity greater than or equal to 30◦s−1. Following the
identification of the peak velocity within an individual step, step end time was signified
by the first frame being less than 30◦s−1. Thereafter, individual step characteristics were
determined from step onset to step end. Step duration, which was calculated for all steps,
was defined as the interval between step onset and step placement time during the turn.
The average step size was measured from the yaw rotation of the foot during the swing
phase in each step while turning. The total number of steps during turning was counted
from the first step to the completion of the turn. Finally, the step frequency was calculated
from the number of steps taken divided by stepping duration. All dependent variables for
each segment and individual stepping characteristics were extracted using a previously
published methodology [15,18].

2.4. Statistical Analysis

All statistical analyses were performed using IBM SPSS statistics version 24 (IBM
Corporation, Armonk, NY, USA). The distribution of all data was tested using Shapiro–
Wilk tests and found suitable for parametric testing. Mixed Model Analysis of Variance
tests (MM ANOVA) with post hoc pairwise comparisons was performed to assess the
effects of two factors; the groups (older adults or younger adults) and 3 turning speeds
(fast, moderate or slow). If significant interactions were seen between the two factors
Repeated Measures Analysis of Variance tests (RM ANOVA) were performed to determine
if differences exist between the 3 turning speeds within the 2 groups. Partial eta squared
(ηp

2) was used to represent the effect size. Statistical significance was set at p < 0.05, and a
Bonferroni correction was used for multiple comparisons. In addition, regression analyses
between peak head yaw velocity and peak head-thorax and peak head-pelvis angular
separation were used to assess intersegmental coordination.

3. Results

Fifty individuals (24 from younger adults and 26 from older adults) in total who
lived independently were recruited from the local community of Salaya, Nakorn Pathom,
Thailand. However, eight individuals (three from the younger adults and five from the
older adults) did not meet the criteria, therefore, 42 participants in total (21 participants
for each group) were included in the analysis. The 21 healthy older adults (OLD group)
consisted of 9 males and 12 females, aged 66.4 ± 3.25 years, a mass of 60.98 ± 11.85 kg, and
height of 1.59 ± 0.08 m.; and the 21 healthy younger adults (YOUNG group) consisted of
12 males and 9 females, aged 22.47 ± 2.18 years, a mass of 61.56 ± 11.18 kg, and height of
162.53 ± 10.64 cm.

3.1. Segment Onset Latencies

Segment reorientation began with the head followed by the rotation of the trunk and
pelvis, then the lead and trail feet; this sequence was preserved for each turning speed in
both groups (Figure 3).
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The MM ANOVA revealed significant interactions (p < 0.05) between groups and
turn speeds for onset latency for the head, pelvis, leading foot, and trailing foot (Table 1).
Therefore, the effects of turning speed within the two groups were further explored using
RM ANOVA tests for these parameters.

Table 1. Mean and standard deviations (SD) and interaction between group and turning speed for whole-body coordination
and stepping characteristics variables which performed by MM ANOVA.

Variables
OLD Group (n = 21) YOUNG Group (n = 21)

Slow Moderate Fast Slow Moderate Fast Group Effect
p-Value (ηp

2)
Speed Effect
p-Value (ηp

2)

Head onset (s)# 0.63 (0.07) 0.59 (0.04) 0.54 (0.06) 0.53 (0.08) 0.54 (0.07) 0.52 (0.05) <0.001 * (0.18) 0.001 * (0.16)

Thorax onset (s) 0.67 (0.07) 0.62 (0.06) 0.58 (0.07) 0.57 (0.07) 0.58 (0.08) 0.55 (0.06) <0.001 * (0.15) 0.001 * (0.16)

Pelvis onset (s) # 0.71 (0.09) 0.68 (0.06) 0.65 (0.09) 0.65 (0.06) 0.60 (0.07) 0.57 (0.04) 0.003 * (0.11) 0.001 * (0.14)

Leading foot onset
(s) # 0.92 (0.13) 0.81 (0.08) 0.81 (0.13) 0.91 (0.18) 0.82 (0.10) 0.69 (0.08) 0.051 (0.03) <0.001 * (0.27)

Trailing foot onset
(s) # 1.28 (0.14) 1.22 (0.21) 1.17 (0.21) 1.25 (0.27) 1.13 (0.15) 0.89 (0.11) <0.001 * (0.12) <0.001 * (0.28)

Peak head yaw
velocity (◦s−1) # 128.17(15.17) 141.32 (23.35) 155.45 (24.08) 136.75 (24.18) 181.45 (19.60) 271.53 (48.23) <0.001 * (0.59) <0.001 * (0.71)

Peak head-thorax
angular

separation (◦)
9.45 (3.33) 14.67 (5.23) 18.70 (7.56) 16.53 (7.19) 17.63 (5.99) 21.75 (7.70) <0.001 * (0.12) <0.001 * (0.26)

Peak head-pelvis
angular

separation (◦)
9.89 (3.61) 15.74 (5.93) 19.08 (8.60) 15.70 (6.85) 18.49(5.99) 22.46 (6.61) 0.001 * (0.1) <0.001 * (0.31)

Total step (n) 4.81 (0.80) 4.16 (0.24) 3.38 (0.49) 4.31 (0.60) 3.43 (0.40) 2.95 (0.31) <0.001 * (0.31) <0.001 * (0.59)

Step frequency
(n) # 3.62 (0.30) 3.10 (0.30) 2.57 (0.21) 3.26 (0.24) 3.10 (0.40) 2.24 (0.26 <0.001 * (0.16) <0.001 * (0.18)

Step duration (s) 3.23 (0.18) 2.43 (0.17) 2.15 (0.32) 3.05 (0.26) 2.22 (0.22) 1.72 (0.21) <0.001 * (0.27) <0.001 * (0.88)

Step size (◦) # 59.21 (8.57) 67.68 (9.65) 75.22 (8.91) 73.47 (11.54) 74.71 (11.16) 79.46 (12.91) <0.001 * (0.15) <0.001 * (0.23)

# Indicates a significant interaction (p < 0.05). * Indicates significant main effects (p < 0.05). MM ANOVA = Mixed Model Analysis
of Variance.

For head onset latency the RM ANOVA revealed a main effect of turning speed
on (F(2, 40) = 15.27, p = 0.031, ηp

2 = 0.16) within the OLD group only. Post-hoc pairwise
comparisons showed that there was a significant decrease in the head onset latency between
slow and fast speeds and slow and moderate speeds (Tables 2 and 3 and Figure 4). Whereas,
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for pelvis onset latency, the RM ANOVA revealed a main effect of turning speed within
the YOUNG group only (F(2, 40) = 6.84, p < 0.05, ηp

2 = 0.031), with the post-hoc pairwise
comparisons showing a significant increase between slow and fast speeds and slow and
moderate speeds (Tables 2 and 3).

Table 2. RM ANOVA for variables that showed a significant interaction within MM ANOVA.

Groups Variables
Speeds Speed Effect

p-Value (ηp
2)Slow Moderate Fast

Old Group

Head onset (s) 0.63 (0.07) 0.59 (0.04) 0.54 (0.06) 0.031 * (0.16)

Pelvis onset (s) 0.71 (0.09) 0.68 (0.06) 0.65 (0.09) 0.194 (0.08)

Leading foot onset (s) 0.92 (0.13) 0.81 (0.08) 0.81 (0.13) 0.125 (0.10)

Trailing foot onset (s) 1.28 (0.14) 1.22 (0.21) 1.17 (0.21) 0.411 (0.04)

Peak head yaw
velocity (◦s−1) 128.17 (15.17) 141.32 (23.35) 155.45 (24.08) 0.001 * (0.41)

Step frequency (n) 3.62 (0.30) 3.10 (0.30) 2.57 (0.21) <0.001 * (0.62)

Step size (◦) 59.21 (8.57) 67.68 (9.65) 75.22 (8.91) <0.001 * (0.47)

Young Group

Head onset (s) 0.53 (0.08) 0.53 (0.08) 0.53 (0.08) 0.775 (0.01)

Pelvis onset (s) 0.65 (0.06) 0.60 (0.07) 0.57(0.04) <0.001 * (0.32)

Leading foot onset (s) 0.91 (0.18) 0.82 (0.10) 0.69 (0.08) 0.004 * (0.24)

Trailing foot onset (s) 1.25 (0.27) 1.13 (0.15) 0.89 (0.11) 0.001 * (0.3)

Peak head yaw
velocity (◦s−1) 136.75 (24.18) 181.45 (19.60) 271.53 (48.23) <0.001 * (0.44)

Step frequency (n) 3.26 (0.24) 3.10 (0.40) 2.24 (0.26 <0.001 * (0.33)

Step size (◦) 73.47 (11.54) 74.71 (11.16) 79.46 (12.91) 0.518 (0.03)

* Indicates a significant main effect (p < 0.05). RM ANOVA = Repeated Measures Analysis of Variance. MM ANOVA = Mixed Model
Analysis of Variance. OLD = older adults group, and YOUNG = younger adults group.
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p-Value (ηp2) 
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# 
0.63 (0.07) 0.59 (0.04) 0.54 (0.06) 0.53 (0.08) 0.54 (0.07) 0.52 (0.05) <0.001 * (0.18) 0.001 * (0.16) 
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(s) 
0.67 (0.07) 0.62 (0.06) 0.58 (0.07) 0.57 (0.07) 0.58 (0.08) 0.55 (0.06) <0.001 * (0.15) 0.001 * (0.16) 

Pelvis onset (s) 

# 
0.71 (0.09) 0.68 (0.06) 0.65 (0.09) 0.65 (0.06) 0.60 (0.07) 0.57 (0.04) 0.003 * (0.11) 0.001 * (0.14) 

Leading foot 

onset (s) #  
0.92 (0.13) 0.81 (0.08) 0.81 (0.13) 0.91 (0.18) 0.82 (0.10) 0.69 (0.08) 0.051 (0.03) <0.001 * (0.27) 

Trailing foot 

onset (s) #  
1.28 (0.14) 1.22 (0.21) 1.17 (0.21) 1.25 (0.27) 1.13 (0.15) 0.89 (0.11) <0.001 * (0.12) <0.001 * (0.28) 

Peak head yaw 

velocity (°s−1) # 

128.17  

(15.17) 

141.32 

(23.35) 

155.45 

(24.08) 

136.75 

(24.18) 

181.45 

(19.60) 

271.53 

(48.23) 
<0.001 * (0.59) <0.001 * (0.71) 
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Figure 4. Bar graph showing the mean onset latencies with turn speed. There was a significant main effect of turn speed on
the timing of reorientation onset for all segments. Values are mean ± SEM. # Indicates a significant interaction (p < 0.05)
from MM ANOVA. * Indicates post-hoc pairwise comparisons of turning speeds within-group from RM ANOVA. ** Indicate
main effects of group and turning speed from MM ANOVA. m Indicates post-hoc pairwise with a Bonferroni adjustment for
multiple comparisons from MM ANOVA.
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Table 3. Post hoc comparisons RM ANOVA revealed the effects of turning speed in each group.

Groups Variables Speeds Mean Diff (SE) p-Value
CI of Diffs

Lower Bound Upper Bound

OLD group

Head onset (s)

Slow to Fast 0.10 (0.02) <0.001 * 0.052 0.150

Slow to Moderate 0.05 (0.02) 0.019 * 0.007 0.094

Moderate to Fast 0.05 (0.02) 0.052 0.000 0.101

Peak head yaw
velocity (◦s−1)

Slow to Fast −27.25 (6.27) 0.001 * −43.657 −10.909

Slow to Moderate −13.15 (6.40) 0.160 −29.878 3.579

Moderate to Fast −14.13 (5.43) 0.051 −28.307 0.039

Step frequency (n)

Slow to Fast 1.05 (0.06) <0.001 * 0.889 1.220

Slow to Moderate 0.52 (0.10) <0.001 * 0.246 0.795

Moderate to Fast 0.53 (0.10) <0.001 * 0.295 0.772

Step size (◦)

Slow to Fast −16.01 (2.05) <0.001 * −21.372 −10.655

Slow to Moderate −8.47 (2.27) 0.004 * −14.399 −2.539

Moderate to Fast −7.54 (1.97) 0.003 * −12.696 −2.392

YOUNG group

Pelvis onset (s)
Slow to Fast 0.08 (0.02) 0.018 * 0.010 0.119

Slow to Moderate 0.05 (0.02) 0.002 * −0.017 0.035

Moderate to Fast 0.03 (0.01) 0.053 0.028 0.123

Leading foot onset (s)

Slow to Fast 0.22 (0.04) <0.001 * 0.125 0.319

Slow to Moderate 0.09 (0.04) 0.190 −0.028 0.197

Moderate to Fast 0.14 (0.03) <0.001 * 0.063 0.211

Trailing foot onset (s)

Slow to Fast 0.37 (0.05) <0.001 * 0.225 0.506

Slow to Moderate 0.13 (0.06) 0.179 −0.040 0.298

Moderate to Fast 0.24 (0.04) <0.001 * 0.136 0.336

Peak head yaw
velocity (◦s−1)

Slow to Fast −134.79 (11.93) <0.001 * −165.95 −103.62

Slow to Moderate −44.71 (7.70) <0.001 * −64.84 −24.57

Moderate to Fast −90.01 (10.53) <0.001 * −117.59 −62.57

Step frequency (n)

Slow to Fast 1.02 (0.07) <0.001 * 0.832 1.199

Slow to Moderate 0.152 (0.11) 0.546 −0.136 0.440

Moderate to Fast 0.863 (0.12) <0.001 * 0.540 1.186

* Indicates a significant difference (p < 0.05). RM ANOVA = Repeated Measures Analysis of Variance. Diff = Difference. CI = Confidence
Intervals. OLD = older adults group, and YOUNG = younger adults group.

For the leading foot onset latency, the RM ANOVA showed a main effect of turning
speed only in the YOUNG group (F(2, 40) = 18.62, p = 0.004, ηp

2 = 0.24). Post-hoc pairwise
comparisons showed that the leading foot onset latency decreased significantly between
moderate and fast speeds and slow and fast speeds (Tables 3 and 4 and Figure 4). In
addition, for the trailing foot onset latency, the RM ANOVA also found the main effect of
turning speed within the YOUNG group only (F(2, 40) = 24.07, p = 0.001, ηp

2 = 0.3). As with
the leading foot onset latency, the post-hoc pairwise comparisons showed that the trailing
foot onset latency also decreased significantly (p < 0.05) between moderate and fast speeds
and slow and fast speeds (Tables 2 and 3 and Figure 4).

The MM ANOVA showed no interactions between groups and turn speeds for the
thorax onset latency. However, significant main effects were seen for the group (p < 0.001)
and turn speed (p = 0.001) (Table 1). Post-hoc pairwise comparisons with a Bonferroni
adjustment for multiple comparisons showed significant differences in thorax onset latency
between slow and fast speeds and moderate and fast speeds (Table 4 and Figure 4). In
addition, a significant difference between groups (p < 0.001) was seen in the MM ANOVA
on thorax onset latency.
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Interestingly, our results found that segment reorientation onset latency was shortest
during fast speed trials and longest during slow speed trials for all segment onset latencies
(Figure 4).

Table 4. Post hoc comparisons for the main effects seen in the MM ANOVA, where no interactions between group and
turning speed were seen.

Variables Both Groups
Combined

Mean Diff (SE) p-Value
CI of Diffs

Lower Bound Upper Bound

Thorax onset (s)

Slow to Fast 0.06 (0.02) 0.001 * 0.022 0.094

Slow to Moderate 0.02 (0.02) 0.456 −0.015 0.058

Moderate to Fast 0.04 (0.01) 0.044 * 0.001 0.071

YOUNG to OLD −0.06 (0.01) <0.001 * −0.80 −0.33

Peak head-thorax
angular separation (◦)

Slow to Fast −7.24 (1.46) <0.001 * −10.815 −3.657

Slow to Moderate −3.16 (1.23) 0.035 * −6.157 −0.167

Moderate to Fast −4.07 (1.46) 0.020 −7.657 −0.491

YOUNG to OLD 4.36 (1.13) <0.001 * 2.118 6.117

Peak head-pelvis
angular separation (◦)

Slow to Fast −7.98 (1.45) <0.001 * −11.54 −4.42

Slow to Moderate −4.32 (1.25) 0.003 −7.377 −1.268

Moderate to Fast −3.66 (1.50) 0.051 −7.327 0.013

YOUNG to OLD 3.98 (1.15) 0.001 * 1.706 6.252

Total step (n)

Slow to Fast 1.40 (0.13) <0.001 * 1.090 1.711

Slow to Moderate 0.77 (0.12) <0.001 * 0.473 1.065

Moderate to Fast 0.63 (0.08) <0.001 * 0.432 0.830

YOUNG to OLD −0.55 (0.09) <0.001 * −0.734 −0.374

Step duration (s)

Slow to Fast 1.21 (0.05) <0.001 * 1.072 1.339

Slow to Moderate 0.81 (0.05) <0.001 * 0.700 0.925

Moderate to Fast 0.39 (0.05) <0.001 * 0.267 0.519

YOUNG to OLD −0.27 (0.04) <0.001 * −0.350 −0.186

* Indicates a significant difference (p < 0.05), MM ANOVA = Mixed Model Analysis of Variance, Diff = Difference, CI = Confidence Intervals,
OLD = older adults group, and YOUNG = younger adults group.

3.2. Intersegmental Coordination

The MM ANOVA revealed that there were no significant interactions between groups
and turn speeds for intersegmental coordination. However, there was a significant main ef-
fect for both groups (p < 0.001) and turning speed (p < 0.001) on peak head-thorax and peak
head-pelvis angular separations (Table 1). Further post-hoc pairwise comparisons with a
Bonferroni adjustment for multiple comparisons found significant differences (p < 0.05) for
peak head segmental angular separation between slow and fast speeds, slow and moderate
speeds, and moderate and fast speeds, showing that peak segmental angular separation
decreased with a decrease in turning speed (Table 4 and Figure 5). In addition, our results
showed that the younger adults achieved a greater amount of peak head segmental angular
separations than older adults.

When considering peak head yaw velocity, the MM ANOVA tests revealed significant
interactions (p < 0.001) between groups and turn speeds (Table 1). Further RM ANOVA
tests found a main effect of turning speed on the peak head yaw velocity in the OLD group
(F(2, 40) = 10.18, p = 0.001, ηp

2 = 0.41) and the YOUNG group (F(2, 40) = 90.47, p < 0.0001,
ηp

2 = 0.44) (Table 2). Post-hoc pairwise comparisons showed that the peak head yaw
velocity decreased with a decrease in turn speed (p < 0.05) between slow and fast speeds,
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slow and moderate speeds, and moderate and fast speeds in the YOUNG group, whereas
the OLD group only showed differences between the slow and fast speeds (Table 3).
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Figure 5. The effects of turning speed on mean (a) peak head–thorax angular separation and (b) peak head–pelvis angular
separation under both conditions. The box and whisker plots illustrate the median peak head–thorax angular separation
and peak head–pelvis angular separation. ** Indicate main effects of group and turn speed from MM ANOVA. m Indicates
post-hoc pairwise with a Bonferroni adjustment for multiple comparisons from MM ANOVA.

A further regression analysis between peak head yaw velocity and peak head–pelvis
angular segment separation revealed a lower correlation in the OLD group when compared
to the YOUNG group. However, both groups showed the existence of relationships between
the head and pelvis under the turning speed condition, which predicts that turns performed
above peak head velocities of approximately 100◦s−1 will result in a separation between
the head and pelvis during the turn and that the peak-pelvis angular separation increases
with increasing turn speed (Figure 6).
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3.3. Stepping Characteristics

The comparison of total step, step frequency, step duration, and step size between
groups and during turn speed conditions are presented in Tables 1–4 and Figure 7. The
MM ANOVA tests revealed no interaction between groups and turn speed for total step
count, however, significant main effects were seen for groups (p < 0.001) and turn speed
(p < 0.001) (Table 1). Post-hoc pairwise comparisons with a Bonferroni adjustment for
multiple comparisons found significant differences (p < 0.001) in total step count between
slow and fast speeds, moderate and fast speeds, and slow and moderate speeds, which
showed that the number of steps was significantly greater during the slower turn speed
(Table 4 and Figure 7). As with the total step count, for the step duration, the MM ANOVA
tests revealed no interactions between groups and turn speed, however, significant main
effects were seen for the group (p < 0.001) and speed (p < 0.001) (Table 1). Further post-
hoc pairwise comparisons with a Bonferroni adjustment for multiple comparisons found
significant differences (p < 0.05) between slow and fast speeds, slow and moderate speeds,
and moderate and fast speeds, which showed that step duration was significantly greater
during the slower turn speed (Table 4 and Figure 7).
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Figure 7. The effect of turn speed on (a) total step counts, (b) step frequency and (c) step duration taken to turn and (d)
step size. Values are mean ± SEM. # Indicates a significant interaction (p < 0.05) from MM ANOVA. * Indicates post-hoc
pairwise comparisons of turning speeds within group from RM ANOVA. ** Indicate main effects of group and speed from
MM ANOVA. m Indicates post-hoc pairwise with a Bonferroni adjustment for multiple comparisons from MM ANOVA.

For step frequency, a significant interaction between groups and turn speeds was
found (p = 0.019) (Table 1). A further RM ANOVA test revealed a main effect of turning
speed on step frequency within the OLD group (F(2, 40) = 71.38, p < 0.001, ηp

2 = 0.62) and
in the YOUNG group (F(2, 40) = 55.67, p < 0.001, ηp

2 = 0.33) (Table 2). Post-hoc pairwise
comparisons showed that the step frequency increased significantly (p < 0.001) with all
decreases in turning speeds in both groups (Table 3 and Figure 7). As with step frequency,
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step size also showed an interaction between groups and turn speed (Table 1). A further
RM ANOVA revealed a main effect of turning speed in only the OLD group (F(2, 40) = 29.07,
p < 0.001, ηp

2 = 0.47) (Table 2). In addition, post-hoc pairwise comparisons showed that
significantly smaller step sizes (p < 0.001) were taken with the slower turning speed (Table 3
and Figure 7).

4. Discussion

The purpose of this study was to explore the effects of turn speed in healthy older
adults compared to healthy younger adults and to observe its effects on body coordination
and stepping characteristics. We hypothesized that turning at different speeds would result
in changes in whole-body coordination and stepping behavior characteristics in older
adults. We have accepted our hypotheses as the data shows that turning speed resulted in
statistically significant changes in these characteristics not only in the older adults but also
in the younger adults in some variables.

4.1. Segment Onset Latency

Previous studies have shown a clear top-down sequence of the onset of body segment
reorientation during turning [5,8,19,20]. The horizontal movement starts with the eyes,
which shift its gaze towards the new direction of travel; this is followed by head, trunk,
pelvis yaws, and reorientation of the feet [4,7,15]. Our results are consistent with previous
studies that used a similar methodology [15,18]. This current study found that there was
an interaction effect between group and turn speed conditions on mean onset latency for
all segments. When considering the onset latency of all segments at the three turn speeds,
we found that the faster the turn speed, the earlier the rotation onset, showing the same
temporal sequence between the younger and older adults groups. Interestingly, the older
adults group had a longer onset latency than the younger adults group. This is consistent
with the results of a previous study [10], indicating that the older adults may be responding
to the differences in turn speed differently from the younger adults. It seems that the
relative timing sequence is the same for each turn speed but is initiated sooner for faster
turns, and these were constant between turns at each speed. This was consistent with
the findings of previous studies [7], as well as segmental onset latency literature, which
suggests that segmental onset latency may be controlled by a central nervous system (CNS)
synergy [7]. This supports the notion that the various body segments are not controlled
independently by the CNS, but rather are programmed as a sequence released earlier
or later depending on the required speed of the turning movement [5,7]. This motor
pattern can be adapted to control similar motor tasks, thus reducing the complexity of
motor planning and reducing the reliance on sensory feedback [5,6]. Reed-Jones et al. in
2009 also found that a specific motor synergy task can be used by the CNS to control the
reorganization of axial segments and to maintain dynamic balance and ongoing forward
motion [6,7]. The controlling of the segmental timing sequence of the head, trunk, and feet
redirection in each turn speed in the current study reflects the use of motor patterns to
control dynamic postural reorientation, releasing the whole command from the brain to
begin the turning sequence and produce movement [5,6]. This highly coordinated sequence
could be used to control the ongoing trajectory of the lower segments during turning [15].
En-bloc turning has previously been documented in older adults and individuals with
PD [11,21]. The previous study also found that the older adults initiated body segment
rotation simultaneously during 360◦ turns [12,22]. Our results also support the previous
study, which suggested that en-bloc segmental reorientation pattern may be adopted to
simplify control turning movement pattern and may be an indicator of compensation for
decreased postural stability and balance in frail populations during turning [22].

4.2. Peak Head Velocity and Peak Segmental Angular Separation Relationship

Traditionally, en-bloc turning, which is a strategy of altered turning behavior that puts
older adults and individuals with PD at a greater risk of falling, has been characterized
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by reduced relative rotations between adjacent segments and near-simultaneous rotation
initiation [21–23]. In this study, we found a significant difference (p < 0.001) between peak
head velocity, the peak head-thorax, and the peak head-pelvis angular separation between
groups. These results are consistent with the findings of Forsell et al. [23]. Our results
(Figure 6) suggest that when turning at speeds less than 100◦s−1 the head and body move in
an en-bloc pattern, whereas at faster speeds, the head leads the pelvis by as much as 40–50◦

in healthy younger adults and only 20–30◦ in older adults. Despite this evidence that
participants turn with a slow peak head yaw speed, their intersegmental coordination was
interrupted [15,22]. A fixed characteristic or en-bloc appearance was observed during turns
along with smaller reciprocal movements between either the head and thorax or the head
and pelvis. These may be related to a shorter stride length and/or slower gait speed, as
either would diminish the need for counterbalancing pelvic rotation [22–24]. Alternatively,
this might result from joint stiffness in older adults. Participants who turned with a slow
speed and restrained their heads might not have retained a reciprocal oscillating pattern
during turns [23]. Overall, it is worth noting that slow turning in older adults results
in difficulty while performing daily activities, especially those that require turning or
sequential movements and leads to an increased risk of falling [22–25].

4.3. Stepping Characteristics

We found that the foot rotation during the swing phase (step size) reduced, whereas
the total number of steps, step duration, and step frequency increased during slower turns
in older adults compared to younger adults. Our results suggest that small, frequent steps
may also be partially explained by a generalized effect of simply moving slowly. It is gen-
erally agreed upon that turning step characteristics are frequently used to measure turning
difficulties in older adults, as well as in individuals with neurological conditions, especially
individuals with PD [17,21,25,26]. These findings support the hypothesis that turning
speed and stepping behavior are intrinsically linked in interactive fall prevention [19,20].
Older adults take extra turning time, number of steps, and make wider turns with small
steps to increase stability during turning [3,19,20,27]. It has been indicated that the pres-
ence of characteristics of turning disturbances increases the risk of falling. According to
Akram et al. [8], older adults who have impaired gait stability take extra turning time and
turning steps to compensate for lack of stability [20]. This finding suggests that stepping
characteristics in older adults may be the direct result of an intentionally slow turning
strategy to compensate for perceived or actual instability.

There are several limitations to this study. Sex differences were not included in
the selected characteristics. It would have been useful to compare the older group of
adults to a sex-matched group of younger healthy adults, or an age-matched group of
adults with no mobility issues, or observe the differences of whole-body coordination
during turning between the early older adults and the oldest adults. This would give
important information regarding the extent of turning deficits in this population. A second
limitation was that we did not include eye movement in the analysis. In future work, it is
recommended that this is included to investigate any link with whole-body coordination,
balance, and posture during on-the-spot turns and walking turns. This would further our
understanding of the mechanisms that underlie turning problems and the risk of falls in
older adults. To relate the findings of this study to problems associated with the risk of
falling in daily life, a questionnaire could be used before and after the experiment. This
would enable the exploration of which aspects of home life are of higher risk and the
recommendation of appropriate precautions.

5. Conclusions

This study demonstrates systematic relationships between turning speed on whole-
body coordination during standing turns. Our results indicate that turning speeds result
in altered whole-body coordination and stepping behavior in older adults with the same
temporal–spatial sequence as younger adults. However, some characteristics differ signifi-



Sensors 2021, 21, 2827 14 of 15

cantly, e.g., onset latency of segments, peak head velocity, step frequency, and step size.
Importantly, the extent to which a turn is carried out using intersegmental coordination
is dependent on the turning speed. These strategies may assist in the maintenance of
balance while changing the turn speed in the presence of age-related physiological deficits
and/or low balance confidence. Thus, determining and quantifying the turning movement
dysfunction related to this fall-provoking activity may be useful for identifying individuals
who are at risk of falling, which may be used to guide more effective training during
turning in older individuals.
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