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Abstract
Marine ecosystems are changing rapidly due to ocean warming, overfishing and a 
raft of other anthropogenic impacts. Such changes are expected to disrupt produc-
tivity dynamics and alter marine food webs, with likely negative consequences for 
ecosystem services. It is, therefore, essential to devise and implement methods that 
can rapidly and inexpensively monitor changes in the marine food web structure. 
Unfortunately, conventional methods for surveying marine food webs are typically 
laborious, expensive and often destructive, resulting in only a small fraction of ma-
rine ecosystems being well studied, and an even smaller subset of them being studied 
through time. Here, we pilot a low-cost approach to reconstructing trophic networks 
of marine tropical, temperate and polar regions, using taxonomical inventories aris-
ing from published environmental DNA (eDNA) metabarcoding studies, and build-
ing trophic links based on primary literature information. Although the trophic webs 
obtained are a simplified approximation of those constructed with traditional meth-
ods, they generate realistic networks that fit with expectations, and allow ecological 
inference over time scales and costs that are orders of magnitude smaller than that 
traditionally achieved. We show the potential of a new application of environmental 
DNA analysis that promises to offer a rapid and scalable approach to gather vital 
information on ecosystem structure, hence boosting marine monitoring at a time of 
increasingly rapid environmental changes.
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1  | FOOD WEBS IN THE CONTE X T OF 
MARINE MANAGEMENT

Food webs are biological portrayals of natural communities, focus-
sing on networks of trophic interactions, and typically defined by 
their structure and dynamics (Link et al., 2005). Since Darwin's fa-
mous consideration of the “tangled bank” (Darwin, 1859), this idea 
of an intricate web of links among species has served as a paradigm 
in ecology and progressively gained consideration in conserva-
tion management, as a means to monitor the health of ecosystems 
and their responses to environmental changes (Bascompte,  2009; 
Rogers et al., 2010; Sala & Sugihara, 2005). Indeed, changes in spe-
cies composition and relative abundance, in response to climatic and 
anthropogenic impacts may affect trophic relationships in several 
sections of a food web, altering energy flows at multiple trophic lev-
els (Rogers et al., 2010). Events such as ocean warming and acidi-
fication (Koenigstein et al., 2016), overfishing (Mullon et al., 2005), 
habitat destruction (Layman et  al.,  2007), invasions of alien spe-
cies (Papacostas & Freestone, 2019) can all reduce or modify bio-
diversity, potentially disrupting trophic interactions and food web 
structure (Kimbro et  al.,  2009; Myers et  al.,  2007), and leading to 
detrimental consequences for ecosystem functions and services 
(Chen et al., 2016; Daskalov, 2002).

Though some of the earliest trophic web studies had considered 
marine habitats (Hardy, 1924; Petersen, 1918), food web analysis 
has had greater popularity in terrestrial and freshwater contexts, 
due to the intrinsic difficulties that marine systems present (Link 
et  al.,  2005). Indeed, the study of marine food webs has always 
been challenging for several reasons: expensive sampling cost and 
inaccessibility (Bicknell et al., 2016), species dispersed over broad 
areas due to physical (Carr et  al.,  2003) and biological processes 
(Block et  al.,  2011), higher functional diversity and trophic web 
complexity compared to terrestrial habitats (Cohen,  1994; Link 
et al., 2005).

To better understand the complexity of oceans, marine con-
servation and fisheries management have, over decades, gradually 
shifted their focus from single-species to ecosystem-based ap-
proaches (Garcia, 2003; Jennings, 2005), and in this context, trophic 
interconnections have become increasingly important descriptors in 
the quest to evaluate and reduce the ecological impacts of human 
activities (Rogers et  al.,  2010; Sala & Sugihara,  2005). However, a 
major barrier to the implementation of food web descriptors in ma-
rine management strategies is the requirement of comprehensive 
data sets on consumer–resource relationships for the species within 
the food web (Moloney et al., 2011), especially for the ones at lower 
trophic levels. Therefore, further information on species composi-
tion and their interactions is critical to inform policy decisions and 
assess the efficacy of conservation/management interventions 
(Douvere & Ehler, 2011). Considering the velocity of anthropogenic 
impacts (Halpern et  al.,  2019), the necessity for rapid assessment 
and monitoring of marine trophic webs is at odds with the time and 
resources required to generate the necessary data, making manage-
ment action less effective. Thus, it remains a priority to improve and 

refine the tools to reconstruct marine food webs for monitoring ma-
rine ecosystems.

2  | A PATH FOR MARINE FOOD WEB 
RECONSTRUC TION

2.1 | From stomach contents to stable isotopes

The initial attempts to unravel the complexity of marine ecologi-
cal networks were based on in situ observational studies (Bailey 
et al., 2007) and stomach content analysis (Amundsen & Sánchez-
Hernández, 2019; Hyslop,  1980). Although these continue to 
have an important role in marine ecology, they often remain time-
consuming, subject to bias (Amundsen & Sánchez-Hernández, 2019; 
Baker et al., 2014) and generally require large sample sizes and lethal 
sampling (Vinson & Budy, 2011). In 1978, in a momentous shift in the 
field of ecology, DeNiro and Epstein stated that “organisms are what 
they eat, isotopically” (DeNiro & Epstein, 1978). This paved the way 
for the expansion of a novel way of studying trophic links, based on 
the recording of Carbon (δ13C) and Nitrogen (δ15N) stable isotope 
ratios of consumers, which were found to mirror those of their diets 
(DeNiro & Epstein, 1978, 1981; Fry, 2006). Isotope analysis has had 
a remarkable impact on food web studies, by improving diet re-
construction (e.g. Matley et al., 2018), elucidating niche space (e.g. 
Layman et al., 2007) and building food webs (e.g. Fry, 2006). Their 
key advantage is the fact that isotopic signatures reflect resource 
consumption over an extended period (up to several months), hence 
being more suited for developing robust models of trophic structure.

Despite this, stable isotopes have some limitations in the study 
of complex environments such as entire marine ecosystems, as they 
are constrained by metabolic assumptions, prey identification reso-
lution, and the invasive sampling required. Indeed, isotopic enrich-
ment is subject to many variables (Fry, 2006; Lecomte et al., 2011; 
Post et al., 2007), and a common problem is that the range of pos-
sible signatures is too narrow for capturing the astounding diversity 
of food sources in the ocean. Importantly, only a small number (for 
trophic studies, typically 13C and 15N) of isotopes are generally used, 
which do not allow accurate estimation of proportions if the number 
of prey types is larger than four or five, or if sources have similar iso-
topic signatures (Moore & Semmens, 2008; Phillips & Gregg, 2003). 
Furthermore, the accuracy of trophic networks depends on the 
resolution of node selection: that is, not just "who eats whom" but 
"who is who" (Martinez, 1993). More specifically, species identifica-
tion involves highly specialized, long-term, collaborative taxonomic 
work, which does not always lead to clear taxon resolution (Roslin 
& Majaneva, 2016), assigning the various web nodes to categories 
that are often taxonomically and functionally too broad to be fully 
informative (Perez-Matus et  al.,  2017). Finally, the stable isotope 
approach requires repeated invasive temporal sampling, in order to 
capture the whole range of potential prey items in the system under 
study, making it time-consuming, costly and highly reliant on com-
plementary techniques (Nielsen et al., 2018; Vinson & Budy, 2011).
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2.2 | Metabarcoding in dietary studies

Over the last decade, there has been a rapid expansion of massively 
parallel, high-throughput sequencing technologies (Bik et al., 2012; 
Shokralla et al., 2012), which have drastically reduced the cost and 
time required for generating large and comprehensive species in-
ventories. The approach of simultaneously identifying several taxa 
from bulk samples through the parallel sequencing of DNA bar-
codes (the DNA metabarcoding approach) (Bohmann et al., 2014; 
Taberlet et al., 2012; Valentini et al., 2016) facilitates a faster and 
more standardized sampling, enhancing spatial and temporal reso-
lution, and reducing reliance on traditional taxonomic approach 
(Cordier et al., 2017; Pawlowski et al., 2018; Seymour et al., 2020).

Furthermore, DNA metabarcoding has been rapidly embraced 
for the study of animal diets (Bohmann et al., 2014), hence vastly ex-
panding the range of diversity available for scrutiny in gut contents of 
consumers, using a tool that is universal across the tree of life (Meyer 
et al., 2020; Siegenthaler et al., 2019). DNA-based stomach content 
analysis approaches have boosted interest in dietary studies, partic-
ularly owing to the higher taxonomic accuracy afforded, which can 
improve our understanding of trophic links that would otherwise re-
main obscure using traditional methods (De Barba et al., 2014; Meyer 
et al., 2020; Nielsen et al., 2018). This has been especially important for 
species whose diet is particularly problematic to assess, for instance, 
due to highly diverse consumer–resource systems composed of cryp-
tic species (Leray et al., 2015), or as a result of prey deterioration in 
dietary remains such as stomach contents, regurgitates and scats (e.g. 
Kaunisto et al., 2017; McInnes et al., 2017; Nielsen et al., 2018), or for 
species that forage widely in remote environments and are therefore 
difficult to study (Walters et al., 2019).

The accuracy and affordability of DNA barcoding open new 
research avenues for the study of trophic interactions by allowing 
comparative studies of trophic networks in space and time (Smith 
et al., 2011). First attempts to reconstruct a whole trophic web via 
DNA metabarcoding have been made in well-studied ecosystems 
(Casey et al., 2019; Smith et al., 2011) and low-diversity terrestrial 
environments such as the Arctic (Wirta et al., 2015). DNA metabar-
coding also offers unprecedented resolution in unravelling feeding 
associations among hosts and parasitoids (Smith et al., 2011), gen-
eralist consumers and their resources (De Barba et al., 2014; Meyer 
et al., 2020; Wirta et al., 2015), and omnivorous predators, within 
large, hyper-diverse food web (Casey et  al.,  2019). Limitations of 
this approach are the need to capture, subject to stress and, in most 
cases, sacrifice the studied organisms at the nodes of the prospec-
tive interaction network, as well as the requirement to use correction 
factors to account for multiple sources of bias (Thomas et al., 2016).

2.3 | Tapping into a new source: eDNA 
metabarcoding studies

One further step into the expanding world of DNA monitoring 
may offer opportunities to untie diet studies from the constraints 

of collecting animals from wild populations (Clare, 2014). In recent 
years, the emergence of environmental DNA (eDNA) is having an 
explosive impact on biodiversity research, ushering in an era of non-
invasive, efficient, whole-ecosystem surveying (Bakker et al., 2019; 
Berry et al., 2019; Seymour et al., 2020). Environmental DNA is de-
fined as a mixture of genetic material, including entire cells and ex-
tracellular DNA, retrieved from a variety of environmental samples 
such as sediment, water and air (Barnes & Turner, 2016; Pawlowski 
et al., 2020; Taberlet et al., 2012).

Novel metabarcoding studies based on eDNA extracted from 
marine water and sediments have shown their effectiveness in de-
tecting differences in metazoan community composition through 
space (e.g. Jeunen et al., 2019; Sigsgaard et al., 2020), time (Berry 
et al., 2019; Djurhuus et al., 2020) and across anthropogenic impact 
gradients (Bakker et  al.,  2017; DiBattista et  al.,  2020). Collecting 
water or sediment eDNA samples may soon enhance the reach of ex-
isting surveys, as well as reduce the costs of data collection through 
the involvement of recreational (UNIG ) and commercial fishing ves-
sels (Russo et al., 2020). Of all the biodiversity methods, eDNA sur-
veys are among the least destructive, as there is no requirement of 
handling organisms (Boussarie et al., 2018), which in the oceans typ-
ically range from tiny to enormous and are often elusive and difficult 
to locate and capture. DNA metabarcoding also offers the level of 
methodological universality able to screen biodiversity across virtu-
ally all trophic levels in a community (Bourlat et al., 2013).

Despite its obvious advantages, like every other method, eDNA 
metabarcoding has its limitations, as cautioned by several authors 
(Cristescu & Hebert, 2018; Hansen et al., 2018). Among these, false 
positives (i.e. species detected but not present in the sampling area) 
may arise from contamination along the analytical workflow (sam-
pling, DNA extraction, amplification, sequencing, etc.), or through 
transport and resuspension (Barnes & Turner, 2016). False negatives 
(i.e. species present in the sampling area but not detected) may also 
result in important species being “missed” due to the inefficiency 
of the primers used. Most importantly, perhaps, gaps in the pub-
licly available DNA sequence reference data bases may still hinder 
the taxonomic identification of key organisms (Collins et al., 2019), 
while differences among bioinformatic processes may still account 
for changes in biodiversity reconstruction (Flynn et  al.,  2015). 
Nevertheless, countermeasures are incessantly devised, leading 
to increasingly robust eDNA procedures across habitats (Goldberg 
et al., 2016).

The rapidly expanding popularity of eDNA studies means that an 
unprecedented number of large data sets are being generated non-
invasively and made available to the scientific community upon pub-
lication. These data can be used to explore the trophic structure of 
marine communities inhabiting certain areas and may lead to useful, 
integrated information for management interventions.

Here, we propose a novel approach for the reconstruction of 
trophic networks of marine communities, by using marine eDNA 
metabarcoding data sets from recently published studies and iden-
tifying all possible consumer–resource interactions through a litera-
ture review-based approach. First, we harvested the published eDNA 
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metabarcoding data and reconstructed trophic webs from three 
tropical ecosystems subjected to different levels of anthropogenic 
disturbance: Bahamas, a shark sanctuary; Turks & Caicos, where fish-
ing pressure is increasing in recent years, and Jamaica, known for 
longer-term depletion of fish populations (Bakker et al., 2017, 2019). 
We then selected data sets from a temperate rocky coast in southern 
New Zealand (i.e. Aramoana; Jeunen et al., 2019) and a polar hab-
itat in the Canadian Arctic (i.e. Iqaluit; Lacoursière-Roussel et al.,  ), 
to explore the generality of the proposed approach across latitudes 
and different climatic zones. Subsequently, we collated species in-
ventories for each community, focussing on macro-eukaryotic taxa, 
which generally have a better-understood taxonomy and greater 
significance for management and conservation policy. We then con-
structed a pairwise consumer–resource interaction matrix for all the 
taxa within the ecosystem (i.e. nodes of the reconstructed trophic 
network; see Table S1), determining all possible trophic links of the 
community. To obtain this information, we sifted through thousands 
of records from different online data bases (Web of Science, Google 
Scholar and FishBase) and identified 136 scientific publication (Table 
S2) for demonstrated trophic interactions at the species level (i.e. bi-
nary links in the food web). For simplification, in the query, we did not 
include cannibalistic, parasitic or other symbiotic interactions. When 
information on a specific taxon was not available, information from 
the immediately higher taxonomic level was used (example provided 
in Appendix S1). Basal resources that represent a variety of trophic 
pathways in marine environments were chosen to set the base of 
the food web (Briand et  al.,  2016): sedimentary organic matter 
(SOM) as detrital particles sedimented into the ocean floor (Cresson 
et al., 2012), particulate organic matter (POM), including phytoplank-
ton, bacteria and organic particles suspended in the water column 
(Volkman & Tanoue, 2002), and multicellular autotrophs.

Matrices were then imported into R, and the cheddar package 
(Hudson et al., 2013) was used to visualize trophic webs and mea-
sure their network properties, which included: link density (i.e. the 
number of links for each node), measures of trophic height, such as 

average chain (i.e. the average chain length of all paths from each 
node to a basal resource) and longest chain (i.e. the average of the 
longest chain length from each node to a basal resource, weighted 
for the trophic level of the node) (Hudson et  al.,  2013). Using 
Cytoscape v 3.8.0 (Shannon et al., 2003), we evaluated topological 
parameters of the food webs, as neighbourhood connectivity (i.e. 
the average number of neighbours for each node) a measure that 
shows the degree of connectivity of nodes in a network. (Maslov & 
Sneppen, 2002). All statistical analyses were performed in R v 3.3.0 
(https://www.R-proje​ct.org/).

Representation of the three tropical trophic networks based 
on sites experiencing low (Bahamas), medium (Turks & Caicos), 
and high (Jamaica) levels of anthropogenic pressure are shown in 
Figure 1 (a, b, and c, respectively). The number of nodes reflected 
the different levels of anthropogenic impact, with the Jamaican 
trophic web having almost half (N  =  23) the number of nodes 
compared to the network of Bahamas (N  =  40) and the trophic 
web of Turks and Caicos having an intermediate number (N = 34). 
The link density also followed a similar pattern, with the more 
impacted network having just over half (L/N = 2.26) the number 
of interactions compared to the less impacted web (L/N = 4.00) 
and the Turks & Caicos network showing an intermediate value 
(L/N = 3.03).

Neighbourhood connectivity and length-chain parameters all sig-
nificantly varied among the three Caribbean networks (Figure 2a). In 
general, the nodes from the Bahamas network were more connected 
(mean  ±  SE) (neighbourhood connectivity  =  10.29  ±  0.32), exhib-
iting statistically (Kruskal-Wallis test: H = 70.99, df = 4, p < .0001) 
higher values of neighbourhood connectivity compared to both 
Turks & Caicos and Jamaica (Figure 2a). The Bahamas food web also 
displayed significantly longer longest chain (Figure 2b) and average 
chain path (Figure 2c), with greater values compared to those in the 
other two more impacted locations (Kruskal–Wallis test: H = 14.55, 
df = 4, p = .005 and Kruskal–Wallis test: H = 13.61, df = 4, p = .008; 
respectively).

F I G U R E  1   Visual representation of the trophic relationships in (a) Bahamas, (b) Turks and Caicos and (c) Jamaica reef habitats. 
1—Caribbean reef shark (Carcharhinus perezi, Carcharhinidae), 2—Lemon shark (Negaprion brevirostris, Carcharhinidae), 3—Tiger shark 
(Galeocerdo cuvier, Carcharhinidae), 4—Blacknose shark (Carcharhinus acronotus, Carcharhinidae) 5—Nurse shark (Ginglymostoma cirratum, 
Ginglymostomatidae), 6—Bull shark (Carcharhinus leucas, Carcharhinidae), 7—Grey snapper (Lutjanus griseus, Lutjanidae), 8—Yellowtail 
snapper (Ocyurus chrysurus, Lutjanidae), 9—Scomberomorus sp. (Scombridae), 10—Great hammerhead (Sphyrna mokarran, Sphyrnidae), 
11—Redfin needlefish (Strongylura notata, Belonidae), 12—Southern stingray (Hypanus americanus, Dasyatidae), 13—Yellow stingray (Urobatis 
jamaicensis, Urotrygonidae), 14—Calamus sp. (Sparidae), 15—Bar jack (Caranx ruber, Carangidae), 16—Dash goby (Ctenogobius saepepallens, 
Gobiidae), 17—White grunt (Haemulon plumierii, Haemulidae), 18—Bluestriped grunt (Haemulon sciurus, Haemulidae), 19—Halichoeres sp. 
(Labridae), 20—Lane snapper (Lutjanus synagris, Lutjanidae), 21—Rosy razorfish (Xyrichtys martinicensis, Labridae), 22—Seargent-major 
(Abudefduf saxatilis, Pomacentridae), 23—Hardhead silverside (Atherinomorus stipes, Atherinidae), 24—Reef silverside (Hypoatherina 
harringtonensis, Atherinidae), 25—Brachyura, 26—Echinoidea, 27—Atlantic menhaden (Brevoortia tyrannus, Clupeidae), 28—Gastropoda, 
29—Ascidiacea, 30—Bivalvia, 31—Bryozoa, 32—Copepoda, 33—Holothuroidea, 34—Nematoda, 35—Ophiuroidea, 36—Polychaeta, 
37—Porifera, 38—Whitespotted eagle ray (Aetobatus narinari, Myliobatidae), 39—Barber surgeonfish (Acanthurus bahianus, Acanthuridae), 
40—Blue tang surgeonfish (Acanthurus coeruleus, Acanthuridae), 41—Horse-eye jack (Caranx latus, Carangidae), 42—Red hind (Epinephelus 
guttatus, Serranidae), 43—Gnatholepis sp. (Gobiidae), 44—French grunt (Haemulon flavolineatum, Haemulidae), 45—Redear herring (Harengula 
humeralis, Clupeidae), 46—Malacoctenus sp. (Labrisomidae), 47—Princess parrotfish (Scarus taeniopterus, Scaridae), 48—Sparisoma sp. 
(Scaridae), 49—Great barracuda (Sphyraena barracuda, Sphyraenidae), 50—Paguridae, 51—Anchoa, 52—Carangidae, 53—Blue chromis 
(Chromis cyanea, Pomacentridae), 54—Redband parrotfish (Sparisoma aurofrenatum, Scaridae), 55—Amphipoda, 56—S.O.M., 57—Algae, 
58—P.O.M. (figure appears in colour in the online version only). Photo credits provided in Appendix S2

https://www.R-project.org/
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Food webs were also reconstructed using data from the cold 
temperate (Aramoana; Figure 3a) and the polar (Iqaluit; Figure 3b) 
ecosystems, in order to illustrate the generality and global scope of 

the proposed approach. According to general expectations of pole-
ward reduction of marine biodiversity (Hillebrand,  2004), we also 
observed fewer nodes (N = 23; N = 18; respectively; Aramoana and 
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Iqaluit) and about half the link density (L/N = 2.57; L/N = 2.28) in the 
food webs from colder climatic regions, compared to the less dis-
turbed tropical example (L/N = 4.00). Connectivity and length chain 
parameters were also lower in the cold-water habitats (Figure 2).

3  | BENEFITS ,  C AVE ATS AND FUTURE 
STEPS

In the last decade, the rapid expansion of eDNA metabarcoding in 
a marine biomonitoring context has generated countless examples 
of its effectiveness in assessing marine biodiversity (e.g. Aglieri 
et al., 2020; Boussarie et al., 2018; Sigsgaard et al., 2020). Despite 
a growing body of literature in freshwater habitats (e.g. Compson 
et  al.,  2019; Seymour et  al.,  2020), just a few research studies 
have explored how eDNA metabarcoding could be beneficial for a 
community network analysis perspective in marine environments 
(DiBattista et al., 2020; Djurhuus et al., 2020; Minicante et al., 2019). 
The present exercise shows that it is possible to further extend the 
boundaries of eDNA analysis into the field of trophic ecology, ob-
taining simplified yet realistic representations of different marine 
trophic webs, at a speed and scales that would be inconceivable 
through any other means, and, crucially, at virtually no cost, owing to 
the availability of published eDNA-based taxon inventories.

We provided a reconstruction of tropical, temperate and polar 
marine food webs to explore the feasibility of this approach across 
the latitudes of the planet, where different abiotic and biotic con-
ditions occur, and results fit with what is known about the selected 
climatic zones. The reconstruction of the polar food web in Iqaluit 
was unable to differentiate among the trophic positions of polar 
fishes (all shown at the same level in the trophic web, Figure  3b). 
This is probably mainly due to the nature of this environment, where 
traditional sampling effort is too limited for allowing accurate esti-
mation of biodiversity, consequently, resulting in scant knowledge of 
species-specific diets (Archambault et al., 2010; Darnis et al., 2012). 
This dearth of information, especially for taxa at lower trophic lev-
els, reduces the resolution of the food web, which may affect robust 

conclusions and consequent applications. This caveat is well recog-
nized in trophic ecology studies (Casey et al., 2019; Smith et al., 2011) 
and several studies in recent years have increased efforts to build 
more comprehensive DNA libraries for the identification of species, 
with the aim to fill the knowledge-gap pertaining to species interac-
tions in less-studied systems (e.g. Walters et al., 2019).

At more regional scales, the food webs reconstructed in the 
three Caribbean island nations reflect the known levels of ocean 
stewardship existing in the region (Bakker et al., 2017, 2019), with 
the diversity in apex sharks and functional redundancy in meso-
predator sharks and large piscivores, leading to an increase in com-
plexity of trophic interaction and food web structure in healthy 
tropical reef ecosystems (Barley et al., 2020; Gilarranz et al., 2016; 
Roff et al., 2016). It is clear that such a 'coarse' approach to food web 
reconstruction would require some level of investment in validation 
using diet analyses for at least some key nodes of the network; yet, 
eDNA-based reconstructions would allow rapid, affordable, low-
effort replicates of food web snapshots that could cover a much 
wider area over a much shorter period.

Interestingly, even with the proposed simplified approach, it is 
possible to identify noteworthy features of food webs, in a compara-
tive framework. For instance, the topology (neighbourhood connec-
tivity), trophic chain length (longest chain and average chain) and the 
trophic position of key apex predators [e.g. Lemon shark (Negaprion 
brevirostris, Carcharhinidae)] all differ between ecosystems under 
distinct anthropogenic impacts (Figure 1). The simplification of food 
webs is a common indicator for ecological degradation in marine en-
vironments (Coll et al., 2008; Gilarranz et al., 2016), so, even with the 
caveat of required validation and data set expansion, this approach 
appears promising.

Further examination of top- and mesopredators reveals that 
different reef sharks in the Bahamas have trophic positions simi-
lar to previous studies reviewed by Roff et al., 2016 (see Table S3). 
There is a variation in the trophic position of some species [e.g. 
Blacknose shark (Carcharhinus acronotus, Carcharhinidae), Bull shark 
(Carcharhinus leucas, Carcharhinidae)] that could be due to the dif-
ferent prey composition and abundance among studies or, more 

F I G U R E  2   Food web properties for 
Bahamas (red), Turk & Caicos (orange), 
Jamaica (yellow), Aramoana (green), Iqaluit 
(blue) and results of Kruskall-Wallis test 
among locations: (a) Neighbourhood 
Connectivity (H = 70.99, df = 4, 
p < .0001); (b) Longest Chain (H = 14.55, 
df = 4, p = .005) and (c) Average Chain 
(H = 13.61, df = 4, p = .008) (figure 
appears in colour in the online version 
only)
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likely, for the difference in the approach used to estimate trophic 
levels. In fact, diet composition studies use quantitative proportions 
of prey categories and their respective trophic level, gleaned from 
stomach contents and stable isotopes analysis (Hussey et al., 2014). 
Conversely, our suggested approach, which uses binary eDNA data, 
considers all trophic interactions with the same weight, which could 
distort the complexity of food web structure (Bersier et al., 2002), 

but still provide a realistic portrayal of tropical reef marine communi-
ties through vastly reduced practical and financial investment.

The recent, explosive popularity of eDNA studies means 
that: (i) a large number of studies are being carried out on ma-
rine communities across the world; ii) these studies are produc-
ing large DNA-based taxonomic inventories, stored in public 
repositories, and available to the scientific community at no 

F I G U R E  3   (a) Visual representation of the trophic web and its trophic relationships in the rocky shore ecosystem of Aramoana. 1—New 
Zealand fur seal (Arctocephalus forsteri, Otariidae), 2—Yellow-eye mullet (Aldrichetta forsteri, Mugilidae), 3—Thornfish (Bovichtus variegatus, 
Bovichtidae), 4—Common triplefin (Forsterygion lapillum, Tripterygiidae), 5—Blackhead lanternfish (Lampichthys procerus, Myctophidae), 
6—Bastard trumpeter (Latridopsis forsteri, Latridae). 7—Rock cod (Lotella rhacina, Moridae), 8—New Zealand octopus (Macroctopus maorum, 
Octopodidae), 9—Spotty (Notolabrus celidotus, Labridae), 10—Maori chief (Notothenia angustata, Nototheniidae), 11—Butterfish (Odax pullus, 
Odacidae), 12—New Zealand blueback sprat (Sprattus antipodum, Clupeidae), 13—Snoek (Thyrsites atun, Gempylidae), 14—New Zealand 
rough skate (Zearaja nasuta, Rajidae), 15—Brachyura, 16—Bryozoa, 17—Euphausiacea, 18—Gastropoda, 19—Isopoda, 20—Ophiuroidea, 
21—Polychaeta, 22—Porifera, 23—S.O.M., 24—Algae, 25—P.O.M. (b) Visual representation of the trophic web and its trophic relationships in 
Iqaluit. 1—Harp seal (Pagophilus groenlandicus, Phocidae), 2—Ringed seal (Pusa hispida, Phocidae), 3—Polar cod (Boreogadus saida, Gadidae), 
4—Atlantic spiny lumpsucker (Eumicrotremus spinosus, Cyclopteridae), 5—Fish doctor (Gymnelus viridis, Zoarcidae), 6—Arctic staghorn sculpin 
(Gymnocanthus tricuspis, Cottidae), 7—Twohorn sculpin (Icelus bicornis, Cottidae), 8—Inquiline snailfish (Liparis inquilinus, Liparidae), 9—Lycodes 
sp. (Zoarcidae), 10—Bivalvia, 11—Ophiuroidea, 12—Copepoda, 13—Euphausiacea, 14—Amphipoda, 15—Polychaeta, 16—S.O.M., 17—Algae, 
18—P.O.M. (figure appears in colour in the online version only). Photo credits provided in Appendix S2
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extra cost. Although, as said above, an in-depth understand-
ing of a trophic web requires direct, painstaking validation of 
predator-prey links through gut content, metabarcoding and 
isotopic analyses, these remain costly, lengthy, infrequent 
and therefore insufficient for large scale application. The use 
of opportunistic network analyses built on eDNA metabar-
coding studies could represent a valuable asset to generate 
an extensive baseline of simplified food web reconstructions, 
which could help environmental scientists and practitioners 
monitor a larger portion of our seas and flag possible ongoing 
anthropogenic disturbance (DiBattista et  al.,  2020; Gilarranz 
et  al.,  2016). These rapidly generated networks have the po-
tential to unveil processes such as the loss of keystone species 
(Wu et  al.,  2020), the impact of expanding/invasive species 
(Saebi et al., 2020), the detrimental impacts of environmental 
changes on top predators (Sagarese et al., 2017), the depletion 
of forage taxa that sustain commercially important resources 
(Lassalle et al., 2011), the ecosystem-level effect of marine pro-
tection (Casselberry et al., 2020), and a variety of other ecolog-
ical processes that are often latent and difficult to unpick over 
timescales that are relevant to management.

It remains clear that more research should be devoted to as-
sessing the biases of the proposed approach, such as the distortion 
caused by the use of binary data and the reliance on literature data. 
Further work should also focus on assessing the temporal robust-
ness of the reconstructions based on eDNA taxon inventories, and 
standardized methods should be devised for the selection of the 
nodes and the comparisons with traditional methods. Yet, in a world 
where biodiversity loss and ecosystem disruptions remain major 
challenges, it would be unwise not to tap on multiple, free-to-use, 
large data sets that continue to be generated, relentlessly, from all 
ocean regions and habitats.
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