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Salvia miltiorrhiza Bunge is a common Chinese herbal medicine, and its major active
ingredients are phenolic acids and tanshinones, which are widely used to treat vascular
diseases. However, the wild form of S. miltiorrhiza possess low levels of these important
pharmaceutical agents; thus, improving their levels is an active area of research.
Transcription factors, which promote or inhibit the expressions of multiple genes
involved in one or more biosynthetic pathways, are powerful tools for controlling gene
expression in biosynthesis. Several families of transcription factors have been reported
to participate in regulating phenolic acid and tanshinone biosynthesis and influence their
accumulation. This review summarizes the current status in this field, with focus on the
transcription factors which have been identified in recent years and their functions in the
biosynthetic regulation of phenolic acids and tanshinones. Otherwise, the new insight
for further research is provided. Finally, the application of the biosynthetic regulation of
active ingredients by the transcription factors in S. miltiorrhiza are discussed, and new
insights for future research are explored.
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INTRODUCTION

Salvia miltiorrhiza Bunge is a small genome size plant; thus, it makes it a model medical plant
to study (Lu et al., 2020). The main active ingredients of S. miltiorrhiza can be divided into
two groups: water-soluble phenolic acids and liposoluble diterpenoid tanshinones. Phenolic acids,
like rosmarinic acids and salvianolic acids, are antibacterial, anti-oxidative, and antiviral reagents,
Wenping et al. (2011), while tanshinones, such as tanshinone I, tanshinone IIA, dihydrotanshnone
I, tanshinone IIB, and cryptotanshinone, exhibit antitumor, antioxidant, and anti-inflammatory
activities (Zhou et al., 2017).

Not surprisingly, initial investigations of phenolic acid and tanshinone have mainly focused
on establishing their biosynthetic pathways. The biosynthetic pathways of phenolic acids and
tanshinones in S. miltiorrhiza have been studied by overexpressing or inhibiting key enzyme genes
(Gao et al., 2009; Kai et al., 2011; Ma et al., 2013). However, this approach has limited efficiency
when compared to transcriptional regulation. Transcription factors (TFs) in plants regulate the
biological processes through activating or inhibiting one or multiple pathways (Gao et al., 2014).
To date, more than 1,300 TFs have been detected in S. miltiorrhiza (Wenping et al., 2011;
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Luo et al., 2014), including WKRYs, bHLHs, MYBs, AP2/ERFs,
and so on. However, the regulatory mechanisms of the
biosynthesis of the active ingredient in S. miltiorrhiza are still
poorly understood.

Here we review the biosynthetic pathways of phenolic acids
and tanshinones in S. miltiorrhiza, with particular focus on
the TFs that regulate the pathways, and highlight effective
research approaches for improving the active ingredients
of medical plants.

BIOSYNTHETIC PATHWAYS OF
PHENOLIC ACIDS AND TANSHINONES

The simplified biosynthetic pathways of phenolic acids and
tanshinones is shown in Figure 1A.

The biosynthetic pathways of the general phenylpropanoid
pathway and the tyrosine-derived pathway in S. miltiorrhiza
have been intensively investigated. The general phenylpropanoid
pathway is initiated by the catalytic action of phenylalanine
ammonia-lyase (PAL) on the precursor amino acid
phenylalanine, which is then catalyzed by cinnamate 4-
hydroxylase (C4H) and p-coumaroyl coenzyme A ligase
(4CL) into 4-coumaroyl-CoA (Yang et al., 2016). L-Tyrosine
is catalyzed by tyrosine aminotransferase (TAT) and 4-
hydroxyphenylpyruvate reductase (HPPR) successively
into 3,4-dihydroxyphenyllactic acid (Di et al., 2013). 4-
Coumaroyl-CoA and 3,4-dihydroxyphenyllactic acid (DHPL)
are the two intermediates of the phenolic biosynthetic
pathway according to experiments involving [ring-(13)C]-
phenylalanine labeling in vivo. These are then catalyzed by
rosmarinic acid synthase (RAS) to form 4-coumaroyl-3′,4′-
dihydroxyphenyllactic acid (4C-DHPL) which is then converted
into rosmarinic acid by a P450 monooxygenase, SmCYP98A14
(Di et al., 2013).

All terpenoids are synthesized from sequential assembly
of five-carbon building blocks (C5H8) called isoprene units,
while the four isoprene units constitute diterpenes (Yang
et al., 2016). Isopentenyl diphosphate (IPP) and its isomer
dimethylallyl diphosphate (DMAPP) are the two precursors
of all terpenoids and are synthesized via two independent
pathways: the methylerythritol phosphate (MEP) pathway in
the plastids and the mevalonate (MVA) pathway in the cytosol.
It was proposed that tanshinones are chiefly synthesized by
the MEP pathway rather than the MVA pathway (Ma et al.,
2015). Then, geranyl diphosphate synthase (GPPS), farnesyl
diphosphate synthase (FPPS), and geranylgeranyl diphosphate
synthase (GGPPS) catalyze DMAPP and IPP successively to
form geranylgeranyl diphosphate (GGPP), which is the universal
precursor of all diterpenoids (Dong et al., 2011). Skeleton
miltiradiene in tanshinone biosynthesis is formed from Sm1,
SmCPS2, and SmKSL1. In the downstream pathway, P450s
participate in tanshinone biosynthesis. Guo et al. (2013)
found that a P450 monooxygenase CYP76AH1 transformed
miltiradiene to ferruginol. However, reference genes for post-
modification characterization involved in biosynthetic pathway
need further investigation.

TFs REGULATING BIOSYNTHESIS OF
PHENOLIC ACID AND TANSHINONE

In plants, the regulation and accumulation of secondary
metabolites is usually controlled by a complex network
containing TFs (Yang et al., 2012). And TFs act as switches in
regulating secondary metabolites network. The action of TFs
possesses three traits: (1) TFs act alone or in a combinatorial
fashion with other TFs to modulate the expression of target genes
(Pinson et al., 2009; Goossens et al., 2017); (2) TFs can positively
or negatively regulate biosynthesis pathways (Table 1); (3) one TF
regulates the expression of multiple genes participating in one or
more biosynthetic pathways (Goossens et al., 2017; Hassani et al.,
2020; Table 1).

Currently, several TFs which can regulate phenolic acid
and tanshinone biosynthesis have been characterized,
and a transcriptional regulation network of ingredients in
S. miltiorrhiza is shown in Figure 1.

bHLH Family
The bHLH family is the second largest class of plant TFs (Feller
et al., 2011; Goossens et al., 2017) and define their functionality
with the specific DNA-4binding domains. The bHLH family
harbors two functionally distinct regions in 60 amino acids: the
basic region at the N-terminus which can bind to the E-box
DNA motif (CANNTG) and the HLH motif which often forms
homodimers or heterodimers with other bHLH proteins (Feller
et al., 2011; Shen et al., 2016; Xing et al., 2018b). MYC TFs,
belonging to bHLH family, possess a JAZ interaction domain
(JID) in the N-terminal region, which differentiates MYC from
other bHLH proteins (Kazan and Manners, 2013). The bHLH
family plays an important part in regulating the biosynthesis
of secondary metabolites such as the flavonoid pathway in
Arabidopsis thaliana (Outchkourov et al., 2014), the iridoid
pathway in Catharanthus roseus (Van Moerkercke et al., 2016),
and the anthocyanin pathway in Chrysanthemum morifolium
(Xiang et al., 2015).

Eight bHLH TFs have been reported to participate in the
regulation of biosynthesis of active ingredients in S. miltiorrhiza,
namely, SmMYC2, SmMYC2a, SmMYC2b, SmbHLH51,
SmbHLH10, SmbHLH148, SmbHLH3, and SmbHLH37.
MYC2 is a core gene TF in the plant and is responsive to
jasmonates (Yang et al., 2017). Zhou et al. (2016) discovered
that the overexpression of SmMYC2 could significantly
increase the yields of phenolic acids by simultaneously up-
regulating phenylpropanoid biosynthesis pathway and tyrosine
biosynthesis pathway. However, SmMYC2a regulates phenolic
acid biosynthetic pathway by binding with an E-box motif
within promoters of SmCYP98A14 and SmHCT6, while
SmMYC2b only binds with an E-box motif within promoters
of SmCYP98A14. Zhang et al. (2020) overexpressed bHLH3 in
S. miltiorrhiza, and contents of caffeic acid (CA), salvianolic
acid B (Sal B), and rosmarinic acid (RA) were decreased by
50, 62, and 50%, respectively, compared with the control; in
addition, the four tanshinone ingredients, the cryptotanshinone
(CT), tanshinone I (T-I), tanshinone II A (T-II A), and
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FIGURE 1 | Biosynthetic pathways and a transcriptional regulation network of ingredients in Salvia miltiorrhiza. (A) A simplified transcriptional regulation network of
phenolic acid and tanshinone biosynthetic pathways. Red enzyme genes can be interacted with transcription factors. (B) The transcription factor–enzyme gene
regulation network. The black arrows indicate the interaction between TFs and enzyme. Red arrows and red T-shaped line indicate upregulation and inhibition
between transcription factors.

dihydrotanshinone I (DT-I) decreased to 3, 14.48, 9, and 38%
of the control, respectively. Interestingly, SmbHLH37, another
bHLH TF of subfamily R like SmbHLH3, negatively regulates
the biosynthesis of phenolic acids due to a dual effect, both by
repressive binding to promoters of biosynthetic genes, and by
a negative feedback loop on jasmonic acid accumulation (Du
et al., 2018). Along with suppressing key enzyme genes of the
biosynthetic pathway, SmbHLH37 antagonizes transcription
activator SmMYC2 and can interact with SmJAZs. In addition,
SmbHLH51 positively regulates phenolic acid through up-
regulating many enzyme genes in the biosynthetic pathways
(Wu et al., 2018). SmbHLH10 can directly bind to G-box within
promotors of genes in the pathway, activate the expression of
genes, and finally up-regulate tanshinones biosynthesis (Xing
et al., 2018b). Xing et al. (2018a) found SmbHLH148 induced
the accumulation of phenolic acids and tanshinones through
activating virtually the whole biosynthetic pathway of phenolic
acids and tanshinones.

MYB Family
The MYB family is one of the largest TF families in plants
and possess three repeats (R1, R2, and R3). These are classified
into four groups based on the number of adjacent repeats:
1R (R1/2, R3-MYB), 2R (R2R3-MYB), 3R (R1R2R3-MYB), and
4R (harboring four R1/R2-like) (Liu et al., 2015). The MYB
family is known to participate in the regulation of primary
metabolism, secondary metabolism, and plant development
(Dubos et al., 2010).

It has been suggested that subgroup 4 of MYB family has
a negative effect on the accumulation of phenylpropanoid
metabolites and acts as transcriptional repressors of
phenylpropanoid pathway by suppressing transcription of

key enzymes (Zhang et al., 2013). Zhang et al. (2020) found that
SmMYB39, a MYB TF in subgroup 4, acts as a repressor in the
rosmarinic acid pathway. The transcripts and enzyme activities of
C4H and TAT, two key enzyme genes, were all down-regulated by
SmMYB39. Deng et al. (2020) found SmMYB2, which activated
the expression and promotion of salvianolic acid accumulation
through binding to the MBS1/MBS2/MRE elements within the
promoter CYP98A14. The three MYBs belonging to subgroups
20, SmMYB9b, and SmMYB98b act as direct activators in
tanshinone biosynthesis (Li S. et al., 2018; Xing et al., 2018a),
while SmMYB98 can promote both tanshinone and phenolic
acid accumulation (Hao et al., 2020). Ding et al. (2017) found
SmMYB36, a novel member of R2R3-MYB in evolution, or
SmMYB36-bHLH complexes could up-regulate tanshinone
biosynthesis but inhibit phenylpropanoid biosynthesis in
S. miltiorrhiza hairy roots. Moreover, SmMYB36 can not only
influence secondary metabolism but also regulate primary
metabolism and may be a potential tool to alter metabolic flux.
Overexpression or suppressing-expression of SmMYB111 can
up-regulate or down-regulate, respectively, the production of Sal
B, and Li S. et al. (2018) speculated that SmTTG1-SmMYB111-
SmbHLH51, a ternary transcription complex, may act as a
positive regulator of the phenolic acid pathway. SmMYB1
promotes phenolic acid biosynthesis by activating the expression
of CYP98A14. Interestingly, the interaction between SmMYB1
and SmMYC2 additively activates the CYP98A14 promoter
(Zhou et al., 2021).

AP2/ERF Family
AP2/ERF proteins are also one of the largest families of TFs in
the plant (Ji et al., 2016) and consist of 40–70 conserved amino
acids (Xie et al., 2019). They are identified by an APETALA2
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(AP2)/Ethylene Responsive Element Binding Factor (EREB)
domain and are classified into four families: AP2, ERF, RAV,
and DREB (Yamasaki et al., 2013). The AP2/ERFs have been
reported to participate in secondary metabolism. For example,
a novel AP2/ERF, Ii049, regulates lignan biosynthesis in Isatis
indigotica (Ma et al., 2017). In addition, AaERF1 positively
regulates artemisinin biosynthesis genes in Artemisia annua
(Xiang et al., 2019).

Four AP2/ERFs in S. miltiorrhiza have been studied to
regulate the biosynthesis of tanshinones and phenolic acids.
Sun et al. (2019) found that the overexpression of SmERF115
reduced the yield of tanshinones but increased the yield of
phenolic acids, and it is speculated that SmERF115 controlled
the biosynthesis of phenolic acids mainly through regulating
the expression of SmRAS1. In contrast, SmERF1L1 inhibits the
biosynthesis of phenolic acids but promotes the biosynthesis
of tanshinones, suggesting that a balance may exist between
biosynthesis of phenolic acid and tanshinone in S. miltiorrhiza
(Huang et al., 2019). In addition, SmERF128 and SmERF6 can
also positively regulate diterpenoid tanshinone biosynthesis in
S. miltiorrhiza. SmERF128 activated the expression of SmCPS1,
SmKSL1, and SmCYP76AH1, while SmERF6 only recognized the

GCC-box of SmCPS1 and SmKSL1, respectively (Bai et al., 2018;
Zhang et al., 2019).

Other Families
Moreover, three GRAS TFs, two WRKY TFs, one AREB, one
LBD, and one JAZ TF have also been identified to regulate active
ingredients in S. miltiorrhiza.

GRAS TFs possess a C-terminal and comprise five conserved
subdomains: LRI, VHIID, LRII, PFYRE, and SAW (Pysh et al.,
1999; Hofmann, 2016). SmGRAS1, SmGRAS2, and SmGRAS3,
all GRAS, are reported to influence tanshinone biosynthesis in
S. miltiorrhiza, as positive regulators. Interestingly, SmGRAS2
may regulate the tanshinones biosynthesis through interacting
with SmGRAS1, while SmGRAS1 and SmGRAS3 directly
regulate the biosynthesis of tanshinones by activating SmKSL1 (Li
et al., 2019, 2020).

The WRKY family is a large TF family present in flowering
plants and can regulate secondary metabolite biosynthesis (Yu
et al., 2018) and interact with W-box (TTGACC/T) within the
promoter of genes (Phukan et al., 2016). SmWRKY1 plays a role
in the regulation of tanshinones biosynthesis and acts as a positive
regulator through activating SmDXR in the MEP pathway, while

TABLE 1 | TFs positively or negatively regulate ingredients in S. miltiorrhiza.

Family Member Tanshinone Phenolic acid References

Function Target Function Target

bHLH SmbHLH51 Positive Wu et al., 2018

SmbHLH10 Positive DXS2; CPS1; CPS5 Xing et al., 2018b

SmbHLH148 Positive Positive Xing et al., 2018a

SmbHLH3 Negative CYP76AH1; KSL1 Negative TAT; HPPR Zhang et al., 2020

SmbHLH37 Negative TAT1; PAL1 Du et al., 2018

SmMYC2 Positive TAT1; PAL1; CYP98A14 Yang et al., 2017

SmMYC2a Positive Positive CYP98A14; RAS6 Zhou et al., 2016

SmMYC2b Positive Positive CYP98A14; RAS6

MYB SmMYB39 Negative Zhang et al., 2013

SmMYB9b Positive Negative Zhang et al., 2017

SmMYB98 Positive Positive Hao et al., 2020

SmMYB98b Positive Liu et al., 2020

SmMYB111 Positive Li S. et al., 2018

SmMYB36 Positive DXR; MCT; CMK; IPPI; GGPPS1; HMGS1 Negative C4H1; 4CL1; HPPR1 Ding et al., 2017

SmMYB2 Positive CYP98A14 Deng et al., 2020

MYB1 Positive CYP98A14 Zhou et al., 2021

ERF SmERF1L1 Positive DXS Negative Huang et al., 2019

SmERF115 Negative Positive RAS1 Sun et al., 2019

SmERF6 Positive CPS1; KSL1 Negative Bai et al., 2018

SmERF128 Positive CYP76AH1; KSL1; CPS1 Zhang et al., 2019

WRKY SmWRKY2 Positive CPS Deng et al., 2019

SmWRKY1 Positive DXR Cao et al., 2018

GRAS SmGRAS1 Positive KSL1 Negative Li et al., 2019

SmGRAS2 Positive KSL1 Negative

SmGRAS3 Positive KSL1 Negative Li et al., 2020

Other SmAREB1 Positive Jia et al., 2017

SmLBD50 Negative Lu et al., 2020

SmJAZ8 Negative Negative Pei et al., 2018
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SmWRKY2 positively regulates tanshinones through activating
SmCPS in the downstream pathway (Cao et al., 2018;
Deng et al., 2019).

The LBD proteins consists of approximately 100 amino acids
with the N-terminal lateral organ boundaries (LOB) domain
(Lu et al., 2020). Transgenic plants overexpressing SmLBD50
inhibit the synthesis of total phenolic acids in S. miltiorrhiza. It
was speculated that LBD TFs may locate downstream in the JA
signaling pathway and serve as the downstream gene of bHLH
and MYB TFs, which play important parts in the biosynthesis of
secondary metabolites in S. miltiorrhiza (Lu et al., 2020).

JAZ TF family can repress JA-dependent responses (Pauwels
and Goossens, 2011), and Pei et al. (2018) found that SmJAZ8,
which acted as a core repressor regulating JA-induced phenolic
acid and tanshinone biosynthesis in S. miltiorrhiza hairy roots,
might directly interact with SmMYC2a and suppress its activity.
SmAREB1 is a special TF, and the transcriptional activation assay
showed it has no activity, but the SmSnRK2.6 protein interacts
with the SmAREB1 protein and activates its transcription to
positively regulate phenolic acid biosynthesis (Jia et al., 2017).

CONCLUSION AND FUTURE
PERSPECTIVE

S. miltiorrhiza can be used for the prevention of vascular diseases,
especially atherosclerosis and cardiac diseases, for example,
myocardial infarction, myocardial ischemia/reperfusion injury,
cardiac fibrosis, cardiac hypertrophy, and arrhythmia (Li Z.M.
et al., 2018). Phenolic acids and tanshinones are the major active
ingredients in S. miltiorrhiza. A large number of enzyme-coding
genes in phenolic acid and tanshinone biosynthetic pathways
have been over-expressed or down-regulated to enhance the
production of these compounds. Recently, more attention has
been focused on TFs, which can activate or inhibit the multiple
genes involved in one or more biosynthetic pathways. In this
review we have discussed the potential and current limitations
of the use of TFs for improving the production yield of
secondary metabolites.

To date, many TFs are hypothesized to regulate tanshinones
and phenolic acids. The key TF candidates are screened through
the response of exogenous inductors, the distributions of specific
expression, and the homology with other TFs studied in other
plants (Li et al., 2015; Yu et al., 2018; Zhang et al., 2018). However,
only a few TFs have been experimentally proven to participate
in biosynthetic regulation. We hope more experimental pieces of
evidence can be offered, so that more reliable and efficient TFs
could be found, and we propose that more experiments should be

performed to verify the function of TFs. Moreover, although there
are a large number of researches on the biosynthesis of phenolic
acids and tanshinones, it has not been clear which special enzyme
plays a part for some reactions. And it impedes the study of the
mechanism in which TFs act.

Jia et al. (2017) found that SmAREB1 promoted greater
metabolic flux to the phenolic acid-branched pathway by
interacting with SmSnRK2.6, a protein kinase; however, more
upstream factors of TFs in S. miltiorrhiza remain elusive. Protein
kinases are common regulators of TFs. In addition, exogenous
plant hormones, biological stresses, and abiotic stresses can
influence the expression of TFs, but little is known about the
specific mechanism. The deeper study of this can make it cheaper
and more convenient to regulate TFs, so as to make the regulation
of plant secondary metabolite biosynthesis easier.

Some TFs can display a dual action and can regulate two
pathways simultaneously. Many TFs have been found to bind
sites on the promoter regions of both flavonoid and artemisinin
genes in A. annua. Phenolic acids and tanshinones are two
valuable pharmaceutical secondary metabolites in S. miltiorrhiza.
SmMYC2a/b and SmMYB98 have been found to positively
regulate biosynthetic pathways of phenolic acid and tanshinone
simultaneously. Therefore, parallel transcriptional regulation of
phenolic acid and tanshinone biosynthesis deserves further study.

Once the biosynthetic regulation of active ingredients by
TFs in S. miltiorrhiza has been clearly understood, its clinical
application will become more efficient. Furthermore, the
knowledge obtained during studies with this model medicinal
plant can then be extended to other complex medicinal
plants, thus laying a foundation for the clinical application of
medicinal plants.
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