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Climate Change Risk Indicators for seaports in the United Kingdom 

 

Abstract  

 

Climate change is the most threating environmental issue and the biggest challenge that humanity has ever faced. While 

acting as the key nodes of globalisation and international business, seaports are exposed to the vulnerability of climate 

impacts, mainly because of their locations, including low-lying areas, coastal zones, and deltas. The paper is to develop 

a Climate Change Risk Indicator (CCRI) framework for climate risk assessment of seaports, enabling research-informed 

policymaking on such a demanding topic. Due to the increasing number of extreme weather events (EWEs), climate 

change adaptation is becoming an essential and necessary issue to be addressed by seaport stakeholders. Climate risk 

analysis aids rational adaptation planning. Many climate assessments have been done for measuring climate 

vulnerabilities, and various climate adaptation measures have been proposed for reducing climate risks. However, few 

of them used quantitative approaches for climate risk evaluations in seaports and fewer on the provisions of CCRIs for 

comparing climate risks of different locations and timeframes to guide rational policy making. Furthermore, climate 

change is a dynamic issue, requiring big objective data to support the analysis (e.g. monthly climate data on CCRIs) of 

climate threats and vulnerabilities. In this paper, Evidence Reasoning (ER) is employed to evaluate the climate risks in 

seaports by tackling the incomplete data. The findings reveal the quantitative measures of climate change risks in 

different locations and in different months. Furthermore, the risk levels of seaports in the future are assessed for 

observing the changes and informing policy making. The main contributions of this study include the visualisation of 

the comprehensive climate risk levels and provision of a new climate risk analysis framework through the comparison 

of climate change risks with respect to different locations and timeframes. Suitable climate adaptation measures can be 

chosen to implement, and seaports can cooperate on climate resilience issues (e.g. seaport network service and pre-

disaster relief logistics).   

 

1. Introduction 

 

Over the past few years, the focus on climate change studies has switched from mitigation only to a mixture of mitigation 

and adaptation (California Institute of Technology, 2018). In a maritime nation like the United Kingdom, climate change 

will cause sea-levels to rise continuously throughout the 21st century, and coastal and offshore infrastructure is also 

vulnerable to changing patterns of storm conditions. The Marine Climate Change Impacts Partnership (MCCIP) has 

released a report on the current and future impacts of climate change in the UK, noting that more disruptions to 

operations could occur in ports. The potential sensitive weather-related disruptions include wind, heat, cold and fog (The 

Maritime Executive, 2020). In the European Economic Area (EEA) member countries, the total reported economic 

losses provoked by extreme weather events (EWEs) from 1980 to 2017 added up to approximately EUR 453 billion (in 

2017 Euro values) (European Environment Agency, 2020). An EWE is an event that is rare at a particular place and time 

of year. The definition of an EWE would normally be as rare as or rarer than the 10th or 90th percentile of a probability 

density function estimated from observations (IPCC, 2014b). 

 

The Intergovernmental Panel on Climate Change (IPCC) is an international association for climate change research. 

Climate change adaptation is one of the critical studies by the IPCC working group II in the fifth assessment report 

(Field et al., 2014). They have undertaken thorough reviews on transport infrastructures and stated that transportation 

systems would face enormous challenges by the environment in the near future (2030-2040) and the long future (2080-

2100), especially in developed cities. They have also indicated the climate-related drivers of impacts for coastal zone 

systems and transportation systems. Coastal cities with extensive port facilities and surrounding industries are risky to 

increased flood exposure. High-density cities located in low-lying coastal areas are also facing high vulnerability. There 

is a possibility of an unexpecting increase in coastal vulnerability in the next two decades. A challenging sector to adapt 

is because of large existing population and stocks, especially in developed country cities, leading to potentially 

significant secondary economic impacts with regional and possibly global consequences for international trade. The 

emergency response needs well-functioning transport infrastructures.  

 

Field et al. (2012) find that a changing climate leads to alternation in EWEs in different sectors, including intensity, 

frequency, duration, spatial extent, and timing. It can result in unprecedented EWEs. For instance, in 2019, the stand-

out EWEs were the many different types of floods, causing millions of pounds worth of damage and causing misery to 

many people. Transportation is profoundly affected by climate change. Seaports are the critical nodes of international 

supply chains and then be on the edge of economic and natural disasters. Beside storming and flooding, the heat wave 

also presents a severe climate impact. In 2003, the heat wave in Central Europe caused the death toll at more than 70,000 

(Bouchama, 2004). On the other hand, extreme and continuous heat can also damage road surfaces (Wang et al., 2019b) 

and distort rail lines (Sieber, 2013), and it affects the land transport connectivity of seaports. Therefore, climate change 

adaptation planning for seaports is critical to visualise, analyse and mitigate the climate risks of passengers and goods 



from different EWEs.  

 

As there are different drivers to EWEs and different adaptations for a particular EWE, it is important to develop a 

conceptual framework that enables to integrate all climate vulnerabilities to access the climate risks of transport 

infrastructures (e.g. seaports) at a whole in different seasons, and also now and in future. This paper aims to develop a 

Climate Change Risk Indicator (CCRI) framework to tackle this issue. The resources for climate change adaptation can 

be scientifically allocated for different seaports against different climate threats in different seasons. Also, it can aid to 

integrate all climate threats to compare the climate vulnerabilities across seaports, and to implement suitable adaptation 

measures to a particular seaport (Zommers and Alverson, 2018).  

 

The reminder of this paper is organised as follows. Section 2 presents a literature review on climate change adaptation 

and vulnerability assessment for seaports. The CCRI assessment model by the ER approach is described gradually in 

Section 3. Next, twelve seaports in the UK are selected to analyse the feasibility of the CCRI framework in Section 4. 

It is followed by the research implications and conclusion in Section 5. 

 

2. Literature review  

 

The literature review is conducted from three perspectives, including climate vulnerability assessment, climate change 

adaptation reports, and climate data in the UK.  

 

2.1. Climate vulnerability impact assessment for seaports 

 

There are various studies for different climate vulnerabilities and increasing trend in climate change adaptation areas 

(Poo et al., 2018). We observe a growing number of climate vulnerability studies for critical transportation 

infrastructures and coastal regions in the past decade. These two kinds of studies are closely related to CCRI framework 

setup and future development. Based on the biographical review by Poo et al. (2018) and further update, eight climate 

vulnerability impact studies have been conducted with a focus on seaports have been undertaken with a focus on coastal 

regions. Table 1 presents the summary of the studies. There are different climate threats, and a risk assessment to 

encounter such threats is not seen in the current literature. 

 

Table 1 Summary of climate vulnerability impact assessment for seaports 

Location 

Multi/ 

Single 

ports 

Wind 

velocity/ 

direction 

Storm 

surge 

Wave 

height 

Sea-level 

rise 

Wave 

direction Reference 

Port Arthur, Tasmania Single    v  (Hunter et al., 2003) 

Port-aux-Francais, Kerguelen Island Single    v  (Testut et al., 2006) 

Rhine–Meuse–Scheldt delta Multi  v v v  (Zhong et al., 2012) 

Port Kembla, New South Wales Single    v  (Chhetri et al., 2014) 

Catalan coast, North-west Mediterranean Sea Multi v  v v  (Sánchez-Arcilla et al., 2016) 

Catalan coast, North-west Mediterranean Sea Multi   v v  (Sierra et al., 2016) 

Northern Tyrrhenian Sea Multi v     (Repetto et al., 2017) 

Port of Barcelona, Catalonia Single   v v v (Sierra et al., 2017) 

Note: "v represents covered" 

 

By analysing the previous seaport climate vulnerability studies, climate threats are deemed as critical parameters for 

undergoing vulnerability assessments. “Wind velocity/ direction”, “Storm surge”, “Wave Height”, “Sea-level rise”, and 

“Wave direction” are the critical factors influencing climate vulnerability assessments, while “Temperature” and 

“Precipitation” are not mentioned in these studies. “Sea-level rise” is the most altered threat as it is included in all studies 

except the one by Repetto et al. in 2017, which is mainly focusing on wind events. “Sea-level rise” includes the 

assessments of sea-level changes with different scenarios and defines the acceptable discharges of considered seaports 

(Repetto et al., 2017). Some common factors have been considered, but a common standard for assessing the climate 

vulnerabilities are not developed yet. It is necessary to create a framework for comparing the risks between different 

seaports for measuring the urgency of adaptation planning.  

 

A summary of the climate impact studies on coastal regions has been shown in Table 2. The coastal region studies are 

expanding the vulnerability assessment to a city or a district scale. Therefore, except for assessing climate threats and 

coastal vulnerabilities like the seaport studies, further assessments have been done. For instance, “Landslide”, 

“Flooding”, “Hurricane”, “Tolerance”, and “Social-economy” are the categories of specific indicators in the coastal 

regional studies. “Climate exposure” is defined as the group of climate stressors. “Coastal vulnerability” considers the 

vulnerabilities in some coastal details. Wave exposure, Coastal erosion and characteristics of coasts are included. 

“Landslide” and “Flooding” are the corresponding indicators for assessing the risks of specific extreme events. 



“Tolerance” is the group of indicators for assessing the relieving abilities of coastal areas. “Social-economy” means the 

social and economic characteristics of the regions nearby. Land use, transportation network and population are all 

included in these categories to measure the sensitivity and importance of the port cities. Before 2008, the studies are not 

comprehensive, and they are mainly focusing on climate threats. From 2008, more multi-criteria assessments have been 

done in different parts of the world. Furthermore, Briguglio (2010) and Hanson et al. (2011) have set up adaptation 

index, vulnerability index, and ranks for assessing the flooding risk to global coastal cities in 2010 and 2011 respectively. 

In 2019, McIntosh et al. evaluate seaport vulnerability by open-data indicators, and then they set up a comparative 

assessment of seaport for North Atlantic medium and high-use seaports. This study provides a solid platform to 

implement a CCRI assessment for the UK seaports.  

 

Table 2 Summary of climate vulnerability impact assessment for coastal regions 

Location 

Multi/ 

Single 

Climate 

exposure 

Coastal 

vulnerability 

Land- 

slide Flooding Tolerance 

Social-

economy Reference 

Australia Multi v   v   

(Graeme and Kathleen, 

1999) 

Port Said Governorate, 

Egypt Multi v     v 

(El-Raey, 1997, El-Raey 

et al., 1999) 

Viti Levu, Fiji Islands Single  v     

(Gravelle and Mimura, 

2008) 

Andaman Islands Multi v      (Kumar et al., 2008) 

Germany Multi v      (Sterr, 2008) 

Worldwide selected cities Multi v v   v v (Briguglio, 2010) 

Worldwide selected cities Multi      v (Hanson et al., 2011) 

Copenhagen, Denmark Single v v    v (Hallegatte et al., 2011) 

Chennai, India Multi  v  v   

(Arun Kumar and Kunte, 

2012) 

Shanghai, China Single  v     (Yin et al., 2013) 

South Africa Multi v v   v v (Musekiwa et al., 2015) 

Southeast Florida, the US. Multi v v   v v 

(Genovese and Green, 

2015) 

Port Harcourt Metropolis, 

Nigeria Single    v v v 

(Akukwe and Ogbodo, 

2015) 

Cayman Islands Single v v     (Taramelli et al., 2015) 

Sao Paulo, Brazil Single v v v v  v 

(Vitor Baccarin et al., 

2016) 

Greater Tokyo area, Japan Multi v   v v v (Hoshino et al., 2016) 

Kuwait Multi  v v v v v 

(Alsahli and Alhasem, 

2016) 

Gulf of Bejaia, Algeria Multi v v v v  v 

(Djouder and Boutiba, 

2017) 

Port Said Governorate, 

Egypt Single  v    v (Abou Samra, 2017) 

Barcelona Single v v    v (Cortès et al., 2018) 

Jamaica and Saint Lucia Multi v   v   (Monioudi et al., 2018) 

China Multi     v v (Wan et al., 2018) 

North Atlantic region, the 

US. Multi v v  v v v 

(McIntosh and Becker, 

2019, McIntosh et al., 

2018) 

 

Some common factors have been considered, but a common standard for assessing the climate vulnerabilities are not 

developed yet. A dynamic and seasonal indicator-based assessment is needed for the risks between different seaports for 

measuring the urgency of adaptation planning (Rangel-Buitrago et al., 2020). Therefore, more studies are analysed to 

investigate the local climate change adaptation reports for seaports in Section 2.2 and local climate data in Section 2.3 

before the CCRI framework in Section 3.  
 

 

2.2. Climate threats from climate change adaptation reports 

 

Except collecting the factors from journal articles, local climate change adaptation reports provide valuable materials 

for understanding the climate threats. For instance, on 9th May 2011, the UK Government published “Climate Resilient 

Infrastructure: Preparing for a Changing Climate” (Department for Environment Food & Rural Affairs, 2011). It sets 

out the governmental view and planning to adapt infrastructures in transportation sectors to climate change impacts. 

 

Table 3 Summary of climate risks influencing transport infrastructure gathered by the UK Government 

Infrastructure Key risks 



Roads  Flooding from increased storminess and precipitation  

 Bridge destruction due to increased river flow resulting from storminess and precipitation 

 Road embankments damage in south-east England due to drier summers and wetter winters  

Railways  Flooding from increased storminess and precipitation 

 Bridge damage due to increased river flow resulting from storminess and precipitation 

 Rail embankments damage in south-east England due to drier summers and wetter winters 

 Overheating of underground trains by increased temperatures 

Ports  High tides / storm surges causing increased sea level at ports 

 High winds at ports due to increased storminess 

Airports  High winds at airports due to increased storminess 

  

Department for Environment, Food & Rural Affairs (DEFRA) invited nine UK seaport professional bodies, and they 

had submitted climate change adaptation reports about seaport risks under Climate Change Act 2008. The first-round 

reports are published by DEFRA in 2011, and the second-round reports are released in 2015 and 2016. The two round 

reports are all shown in Table 4. 

 

Table 4 List of reporting bodies of climate change adaptation reports 

Reporting bodies Seaports/ Docks Reference 

Associated British Ports Hull, Humber, Immingham and 

Southampton 

(Associated British Ports, 2011, Associated 

British Ports, 2016)  

Port of Dover Dover (Port of Dover, 2011, Port of Dover, 2015) 

Felixstowe Dock and Railway 

Company 

Felixstowe (Felixstowe Dock and Railway Company, 

2011, Felixstowe Dock and Railway 

Company, 2015)  

Harwich Haven Authority Harwich Haven (Jan Brooke Environmental Consultant Ltd, 

2011) 

Mersey Docks and Harbour 

Company Ltd 

Liverpool (Mersey Docks and Harbour Company Ltd, 

2011) 

Milford Haven Port Authority Milford Haven (Milford Haven Port Authority, 2011, 

Milford Haven Port Authority, 2015) 

PD Teesport Ltd Teesport and Hartlepool (PD Teesport Ltd, 2011, PD Teesport Ltd, 

2015) 

Port of London Authority London (Port of London Authority, 2011, Port of 

London Authority, 2016) 

Port of Sheerness Ltd Sheerness (Peel Ports Group, 2011) 

 

334 risk items have been identified and addressed with different formats and scales. Even though the risk levels of each 

item cannot be directly compared, some insights can still be observed by statistical analyses and by visualising the 

climate vulnerabilities in this country. Three sets of categories have been set up by the authors manually, including 

climate threat types, seasons, and operation sectors. As Port of London Authority has not associated risk items to 

corresponding climate threats, the 43 risk items from Port of London have been excluded from the analyses in this paper 

(i.e. Tables 5).  

 

To define them on a standardised plate, different EWEs are reclassified with reference to the categories by the IPCC 

working group II in the Fifth Assessment Report of 2014, including “Extreme precipitation”, “Heat wave/ High 

temperature”, “Cold wave/ Increased snow events”, “Sea-level rise (SLR)/ Storm surge”, and “Storminess” 

(Intergovernmental Panel on Climate Change, 2014). More EWEs are also found in adaptation reports mentioned in 

Table 4, including “Drought”, “Seasonal changes of fog events”, “Seasonal changes of lighting events”, “Seasonal 

changes of weather patterns”, and “Seasonal changes of wind speeds and directions”, “High water flow”, “Low water 

flow”, “Change in sediment”, and “High water temperature”. In Table 5, EWEs are considered and classified, and each 

reported climate risk item can consist of more than one threat. For example, Port of Dover has stated a threat, “Extreme 

conditions leading to staff absence, extra work and excess passengers cause staff to take time away from their core roles”. 

This threat is double-counted and reclassified as “Extreme precipitation”, and also “Cold wave/ Increase in winter 

precipitation”. “Storminess”, “Seasonal changes to wind speed and direction”, and “Extreme precipitation” play the 

three most crucial roles in affecting the operational activities of seaports with their individual occupancy rates higher 

than 30%. “Heat wave/ High temperature” and “Sea-level rise (SLR)/ Storm surge” are both important as they have their 

individual occupancy rate higher than 20%. The remaining threats/concerns, “Cold wave/ Increase in snow events”, 

“Drought”, “Seasonal changes of fog events”, “High water flow”, “Low water flow”, “Change in sediment”, and “High 

water temperature”, have their occupancies between 10% and 20% respectively. Occupancy is the parameter used to 



measure the amounts of different categories against the total. For example, 88 risk items have been categorised as 

“Extreme precipitation” with an occupancy rate at 30.24% (88/(334-431)). Alternatively, we can observe that summer 

poses higher risk than winter, and about 70% of EWEs are not seasonal. 

 

Table 5 Occupancy of different extreme weather events, climate risks, operation sectors 

EWEs Occupancy Season  Occupancy Operation sector  Occupancy 

Extreme precipitation 88 (30.24%) Winter 29 (9.97%) Approach routes closure 7 (2.10%) 

Heat wave/ High 

temperature 

78 (26.80%) Summer 59 (20.27%) Civil engineering, jetties, 

pontoons 

5 (1.50%) 

Cold wave/ Increase in 

snow events 

51 (17.53%) Annual 203 (69.76%) Electrical engineering/ Power 

supplies 

14 (4.19%) 

Sea-level rise (SLR)/ 

Storm surge 

77 (26.46%)   External reputation 6 (1.80%) 

Storminess 112 (38.49%)   General 15 (4.49%) 

Drought 32 (11.00%)   Hydrography and dredging 23 (6.89%) 

Seasonal changes of fog 

events 

43 (14.78%)   Increase in tourism and 

recreational use 

7 (2.10%) 

Seasonal changes to 

wind speed and 

direction 

97 (33.33%)   Infrastructure and equipment 64 

(19.16%) 

High water flow 37 (12.71%)   Licensing and consenting 15 (4.49%) 

Low water flow 33 (11.34%)   Loading and moving 29 (8.86%) 

Change in sediment 32 (11.68%)   Maintenance dredging and 

disposal 

3 (0.90%) 

High water temperature 38 (13.06%)   Marine engineering 7 (2.10%) 

    Navigation 17 (5.09%) 

    Staff and personnel/ Business 

continuity  

32 (9.58%) 

 

Furthermore, operation sectors are based on the definitions from Harwich Haven Authority. “Approaching routes 

connectivity” describes the possibilities of road/rail closure due to adverse weather. “Snow and flooding” also affect the 

stability of the road and rail infrastructures. “Civil engineering, jetties, pontoons” describes the risk of poor designs, 

jetties submerging by extreme events, especially SLR. “Electrical engineering/ Power supplies” states the risks by 

flooding water to any electrical infrastructure causing power outage. “External reputation” describes the possibilities of 

losing the external reputation due to delay and cancellation of services. “Hydrography and dredging” describe the risk 

coming with the change in coastal lines and disruptions to hydrographic surveying and dredging regime. “Increase in 

tourism and recreational use” can cause the busy traffic and activities near ports or port routes, which can increase risks. 

“Infrastructure and equipment” describe the risks in adverse weathers damaging the coastal infrastructure and equipment, 

which include tarmac, ramps, and cranes. “Licensing and consenting” states the chance of insurance premiums rising 

because of the unstable services. “Freight loading and moving” means the effect and delays in cargo movements. 

“Marine engineering” associates with the risks inside the vessel, mainly potential reduction. “Navigation” describes the 

effect of navigational safety by inadequate Nav-aids, buoys, and height of beacons. “Staff and personnel/ Business 

continuity” are mainly about operating conditions for staff in different areas. “Statutory duties” describes the regulatory 

issues, such as increasing the spread of invasive alien species and sea against adverse impact. “Storage and cargos” 

involve a higher risk for different kinds of cargos by the increase in EWEs. “Vessel services” states the disruptions of 

vessel movements on the water. “General” defines risk items without specific operation sectors. “Infrastructure and 

equipment”, “Vessel services”, and “Staff and personnel/ Business continuity” are the three most affected operation 

sectors.  

 

2.3. Climate data in the UK. 

 

The data relating to CCRIs for observing and analysing climate threats are obtained from multiple data sources including 

the Meteorological Office (Met Office, 2018), Climate Projection (UK Climate Projection, 2018), and British 

Oceanographic Data Centre (BODC) (British Oceanographic Data Centre, 2018). They are all objective data available 

from the mentioned data sources.  

 

                                                             
1 Here 334 is the total risk items while 43 means the number of risk items from Port of London, which have not been categorised 

into any climate threats as explained above.  



Met Office is the UK national weather service. It is an executive agency and of the Department for Business, Energy, 

and Industrial Strategy. They forecast the climate change across all timescales from weather forecasts. In 2009, UK 

Climate Projections in 2009 (UKCP09) is released, and it provides a data assessment of how the UK climate may change 

in this century. UKCP09 is a gridded observation dataset. The historical dataset spans across the period of 1910 – 2016 

and covers the UK at a 5 x 5 km resolution. The data from 2016 – 2019 have been checked to be consistent. Therefore, 

it is used to analyse the current risks and set up the grades of the CCRIs for analysis. The future dataset is presented in 

the same format based on the same grades, and thus it is possible to foresee the future climate risk levels using the CCRI 

framework. The further definitions and timeframes of climate indices are shown in Table 6. 

 

Table 6 Definitions and timeframes of CCRIs 

Climate index Timeframe Definition 

Maximum temperature 1910 – 2016 Average daily maximum air temperature (oC) 

Minimum temperature 1910 – 2016 Average daily minimum air temperature (oC) 

Precipitation 1910 – 2016 Total precipitation amount (mm) 

Mean wind speed 1969 – 2014 Average hourly mean wind speed at a height of 10 m above 

ground level (knots) 

Mean sea level pressure 1961 – 2014 Average hourly mean sea level pressure (hPa) 

Mean relative humidity 1961 – 2014 Average hourly relative humidity (%) 

Mean vapour pressure 1961 – 2014 Average hourly vapour pressure (hPa) 

Mean cloud cover 1961 – 2006 Average ourly total cloud cover (%) 

Days of air frost 1961 – 2016 Counted days when the minimum air temperature is below 0 oC 

(days) 

Days of ground frost 1961 – 2016 Counted days when the grass minimum temperature is below 0 oC 

(days) 

Days of rain >= 10 mm 1961 – 2016 Counted days with >= 10mm precipitation (0900-0900 UTC) 

(days) 

Days of sleet or snow falling 1971 – 2011 Counted days with sleet or snow falling (days) 

 

Next, ten maximum sea-level records and ten maximum skew surge records are collected from 45 UK seaports based 

on the data from BODC. BODC is a national facility for collecting and releasing data about the marine environment for 

the UK and it is a part of the National Oceanography Centre (NOC). It is for observing the risks of flooding due to SLR. 

Average values of two types of the top-ten records have been calculated for each seaport. Based on the calculated rank-

ordered statistics any extreme storm surge can coincide with any tide. Therefore skew surge which is the difference 

between the maximum observed sea level and the maximum predicted tide are used as an indicator (Williams et al., 

2016). The maximum observed sea level measured by tide gauges are primarily determined by the tidal regime. The 

difference (residual) between the maximum observed sea level and the maximum predicted tide is governed by the wind 

stress and the local atmospheric pressure, roughly two thirds to one third split, respectively. UKCP09 also provides SLR 

and skew surge rise data in the future. Grade setting is further explained in Section 3.2. 

 

By the above statistical analyses, climate change risks can be defined from the different perspectives of EWEs, seasons, 

and operation sectors. As a result, EWEs are summarized in Table 7 which are partially matched with two references,  

the IPCC (2014a) and Forzieri et al. (2018). It becomes a foundation of the EWEs in the CCRI framework in Section 3. 

Climate-related drivers of impacts to urban areas are chosen, and they consist of “Extreme temperature”, Drying trend”, 

“Warming Trend”, “Snow cover”, “Damaging cyclone”, “Extreme precipitation”, and “Sea-level rise”. As “Warming 

Trend”, “Extreme temperature”, and “Drying trend” always come together in the adaptation reports. Therefore, they 

have been merged into “Warming trend/ Extreme temperature/ Drought”.  

 

 

Table 7 EWEs of corresponding climate threats 

IPCC (2014a) Forzieri et al. (2018) 

Warming trend/ Extreme temperature/ Drought Heat wave / Drought/ Wildfires 

Extreme precipitation Flooding 

Snow cover Cold wave/ Snow events 

Damaging cyclone Wind gust/ Storminess 



Sea-level rise Flooding  

 

 

3. CCRI assessment framework by the ER approach 

 

A comprehensive CCRI framework is critical to assess and compare the climate vulnerabilities of seaports against 

climate threats and EWEs between different timeframes and scales. By implementing a CCRI framework, adaptation 

measures can be effectively allocated, and seaports can cooperate for disaster management to enhance climate resilience, 

including emergency berthing. Task Team on Definitions of Extreme Weather and Climate Events (TT-DEWCE) from 

the World Meteorological Organization (WMO) has stated that there are fixed and well known EWEs and their 

thresholds differ from location to location (Task Team on Definitions of Extreme Weather and Climate Events, 2016). 

This section describes a six-step CCRI framework. The climate data of seaports are chosen and evaluated from the 

lowest level to highest level indicators in a developed CCRI hierarchy in Section 3.1. For comparing different seaports’ 

climate characteristics, the climate data across the whole UK is collected, and then assessment grades are defined by 

obtaining specific percentile (Zanobetti et al., 2013) to define the risk grades of the climate indicators in section 3.2 

Next, all evaluations are s synthesised using the ER algorithm in Section 3.3. When applying the ER algorithm in CCRI, 

two input data are required, and they associate with the actual climate risk of the investigated port against the lowest 

level indicator and the weight of each indicator in the hierarchy (i.e. Fig. 1). Therefore, Sections 3.4 and 3.5 are presented 

to describe how the two sets of input data are obtained and used to support the CCRI framework, before the final climate 

risk value is obtained and visualized via software in Section 3.6. 

 

3.1. Define the CCRI hierarchy 

 

By summarising the literature of climate threats and EWEs in Section 2, the influential climate indicators are identified 

from the Met Office, the UK Environment Agency, and BODC. In order to find out the most influential climate indicators 

for constructing seaport CCRI framework, a structured interview based on the literature review in Section 2 has been 

conducted and presented to environmental professions, shipping agents and seaport managers. More details about the 

structured interview and the relevant analysis have been presented (Poo, 2020). Based on the interview result, the 

purified indicators are identified and summarised to construct the CCRI hierarchy in Figure 1. 5 x 5 km monthly gridded 

observational datasets and 25 x 25 km monthly gridded forecasting datasets are collected from UKCP09, and we also 

investigate the forecasting data by Met Office to compare the existing and future risks. The future period is set to be 

2050s (2040-2069), and the emission scenario is defined as medium. 50th percentile data in the 2050s with a medium 

emission scenario is taken as the reference for analysis and there is a probabilistic projection for every variable. 2050 is 

a key year recommended for reaching global net zero CO2 emissions by IPCC, and so it is commonly used as a 

forecasting reference (Owen et al., 2010). Heat stress is projected to increase by many climate model ensembles and 

generations, driven mainly by temperature increases, humidity declines and low cloud cover (Stefanon et al., 2012). 

Therefore, “Warming trend/ Extreme temperature/ Drought” is defined by combining the warming and drying trend, and 

the whole framework is shown in Figure 1.  

 



 
Figure 1 CCRI hierarchy 

 

3.2. Set the evaluation grades to each indicator 

 

As monthly average climate data represent the possibilities of EWEs, percentile values of climate data are commonly 

used in assessing climate vulnerability (Monahan and Fisichelli, 2014, Peterson et al., 2002). Percentile values of 

different CCRIs, shown in Table 8, are chosen and the dataset for the CCRI framework is set up by the reference from 

Task Team on Definitions of Extreme Weather and Climate Events (2016). For the CCRIs from Met Office, 60th, 70th, 

80th, 90th, and 95th percentile values are used to divide the upper bound (UB) assessment grades into five categories, and 

40th, 30th, 20th, 10th and 5th percentile values are used to define the five-lower bound (LB) assessment grades. It is 

common to reference 5th, 10th, and 20th, for both UB and LB sides, as extreme climate data (Albouy et al., 2016, Jones 

et al., 2019). All datasets are divided with respect to the five linguistic assessment grades {L1 “Low risk”, L2 “Moderately 

low risk”, L3 “Medium risk”, L4 “Moderately high risk”, L5 “High risk”} to facilitate the climate risk value evaluation 

in the ER algorithm in Section 3.3. As a result, the values used to define the grades of each indicator are shown in Annex 

1. Forecasting data is referred from UKCP09. There are five CCRIs without forecasting data, including “Days of rain >= 

10.0 mm (days)”, “Days of air frost (days)”, “Days of ground frost (days)”, “Days of sleet and snow falling (days)”, and 

“Days of snowlying (days)”. Those indicators are defined as unknown, and the final climate risk indexes are presented 

with possible ranges. The average values, best possible values and worst possible values are calculated for the 

evaluations reflecting the current best knowledge (i.e. uncertainty in data). 

 

As the maximum sea level records and maximum skew surge records from the BODC are presented by extreme data 

from BODC. In addition, the forecasting changes are collected from UKCP09. The two records from BODC are both 

historical high records, which means they are extreme data. They, with reference to the recommended grades in previous 

studies (Zhang et al., 2013), are divided into five assessment grades by the five values at 10th, 30th, 50th, 70th and 90th 

percentiles of records from all 45 ports data in Annex1 (Zhang et al., 2013). For forecasting, the UKCP09 values, the 

long-term linear trend in skew surge (1951-2099) for the 10-year return level (mm/yr) and sea-level change (m), to 

foresee the sea-level and storm surge changes respectively. Table 8 summaries the evaluation grades of each indicator.  

 



Table 8 Climate change risk indicators framework details 

 * UB: upper bound of the data sets; LB: lower bound of the data sets. 

 

  

Climate 

threat ID 

 

CCRI 

UB/ 

LB Source 

Monthly 

data 

Forecast 

data 

Grade and Percentile 

Reference 

L1 

40th/60th 

 

Low risk 

L2 

30th/70th 

Moderately 

low risk 

L3 

20th/80th 

Medium 

risk 

L4 

10th/90th 

Moderately 

high risk 

L5  

5th/95th  

  

High risk    

Warming 

trend/ Extreme 

temperature/ 

Drought/ 

Wildfire 

1 Maximum temperature (oC) UB Met Office Yes Yes 13.73 15.5 17.24 19.17 20.52 (Asner and Alencar, 2010) 

2 Relative humidity (%) LB Met Office Yes Yes 81.52 78.54 78.54 76.31 74.47 (Rebetez et al., 2006) 

3 Rainfall (mm) LB Met Office Yes Yes 62.22 51.09 40 27.05 18.59 (Rebetez et al., 2006) 

4 Cloud cover (%) LB Met Office Yes Yes 69.96 67.76 64.9 60.64 56.71 (Asner and Alencar, 2010) 

Extreme 

precipitation/ 

Flooding 

5 Rainfall (mm) UB Met Office Yes Yes 88.5 105.94 130.5 174.68 222.65 (Segond et al., 2007)  

6 Days of rain >= 10.0 mm (days) UB Met Office Yes No 2.62 3.31 4.38 6.24 8.22 (Li et al., 2019) 

Snow cover/ 

Cold wave/ 

Snow events 

  

  

7 Days of air frost (days) UB Met Office Yes No 3.64 6.12 9.15 13.52 17.17 (Loyola et al., 2014) 

8 Days of ground frost (days) UB Met Office Yes No 11.09 14.03 16.88 20.38 23.06 (Ballantyne et al., 1998) 

9 Days of sleet and snow falling (days) UB Met Office Yes No 0.68 1.78 3.4 6.3 9.17 (Ballantyne et al., 1998) 

10 Days of snowlying (days) UB Met Office Yes No 0.04 0.39 1.53 4.37 8.01 (Ballantyne et al., 1998) 

11 Minimum temperature (oC) LB Met Office Yes Yes 6.22 7.75 9.2 10.59 11.48 (Dewey, 1977) 

Storminess/ 

Wind gust 

 

12 Rainfall (mm) UB Met Office Yes Yes 88.5 105.94 130.5 174.68 222.65 (Slingo et al., 2014) 

13 Vapour pressure (hPa) LB Met Office Yes No 8.32 7.78 7.26 6.63 6.14 (Matthews et al., 2014) 

14 Mean seal level pressure (hPa) LB Met Office Yes Yes 1012.73 1011.21 1009.21 1006.02 1003.08 (Matthews et al., 2014) 

15 Mean wind speed (knots) UB Met Office Yes Yes 9.92 10.88 12.2 14.36 16.44 (Slingo et al., 2014) 

       10th 30th  50th  70th    90th  

Sea-level rise/ 

Flooding 

16 Maximum relative sea level record 

(m) 

N/A BODC/  

Met Office 

No Yes 2.31 3.02 3.44 4.02 6.10 (Lewis et al., 2011) 

17 Maximum skew surge record (m) N/A BODC/ 

Met Office 

No Yes 0.69 0.81 0.95 1.14 1.39 (Lewis et al., 2011) 



 

10 
 

3.3 Evidential Reasoning for CCRIs  

 

Due to the future data unavailability of some climate indicators, it is essential to employ an advanced reasoning 

technique that can 1) cope with high uncertainty in climate data and 2) synthesise all the CCRIs to generate a single 

climate risk value to build up a comprehensive framework. A CCRI framework demands the construction of a 

hierarchical structure to accommodate the climate risk indicators concerning different climate threats (i.e. Figure 1). 

Corresponding CCRIs have been selected to assess each climate threat independently. In the hierarchical structure, it is 

always the case that the risk indicators at a higher level are also making use of the information from the lower levels. 

Therefore, it is essential to synthesise the vulnerability performance of a seaport against individual indicators from the 

lowest level to the highest one. In the process of assessing the climate risks, the two main uncertainties that decision-

makers may encounter include multiple types of climate indices and incomplete data set. Evidential reasoning (ER) as 

a multi-attribute decision making (MADM) approach, shows its potential for the development of CCRI framework by 

meeting the above requirements (Yang and Singh, 1994). ER has been widely used for risk analysis in the maritime and 

transport industries with its characteristics and advantages/disadvantages found in a wealthy literature (e.g. Alyami et 

al., 2019, Wan et al., 2019a, Wan et al., 2019b, Wang et al., 2019a, Yang et al., 2014, Yang et al., 2018, Yang and Wang, 

2015, Zhang et al., 2016). The heart of this approach is an ER algorithm developed from the concept of the Dempster–

Shafer (D–S) theory, requiring modelling the hypothesis set with the requirements and limitations of the accumulation 

of evidence  

 

By connecting all input information and undertaking the analysis, it is possible to convert and synthesise different types 

of CCRIs into a final climate risk index. The following equations have integrated the newest ER algorithm within the 

CCRI context. A represents the set with five linguistic assessment grades {L1 “Low risk”, L2 “Moderately low risk”, L3 

“Medium risk”, L4 “Moderately high risk”, L5 “High risk”}, which has been combined from two subsets 1A  and 2A  

based on two different CCRIs in a lower level of A in the hierarchy. Let be the degree of belief (DOB) attaching to 

different linguistic terms and  k (k = 1, 2) represents the normalised relative weights of the two CCRIs at the lower 

level. 

 

 1 1 2 2 3 3 4 4 5 5, , , ,A L L L L L     , where

5

1

1m

m




               (1) 

 1,k 1 2,k 2 3,k 3 4,k 4 5,k 5, , , ,kA L L L L L     , where

5

,

1

1m k

m




 and k = 1, 2         (2) 

2

1

1k

k




                        (3) 

, 1 ,m k m kM  , where m = 1, 2, 3, 4, 5 and k = 1, 2              (4) 

 

Equation (1) represents the set with five linguistic assessment grades and equation (2) represents the corresponding 

CCRIs grade sets from two subsets. By the normalised relative weights are given in equation (3), and individual relative 

weight is obtained, the individual degrees, M  can be obtained by equation (4).  

 

k k kH H H  , where k = 1, 2                  (5) 

1k kH   , where k = 1, 2                   (6) 

5

,

1

1k k m k

m

H  


 
  

 
 , where k = 1, 2                (7) 

 

Equations (5) to (7) represent the remained belief value ( H ) unassigned to ,1mM  and ,2mM , where m = 1, 2, 3, 4, 5. H  

represents the degree to which other CCRIs can play a role in the assessment and H  is attributable to the possible 

incompleteness in the subsets 1A  and 2A . 

 

 ,1 ,2 ,1 2 1 ,2'm m m m ma K M M M H H M   , where m = 1, 2, 3, 4, 5             (8) 
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 1 2'UH K H H                       (9) 

1

5 5

,1 ,2

1 1

1- T R

T R
R T

K M M



 


 
 
 
 
 

                    (10) 

Let 'ma be the non-normalised degree to which the synthesised evaluation is set to the five linguistic grades and 'UH  

the non-normalised remaining belief unassigned after the commitment of belief to the five grades. They work together 

as the result of the synthesis of the vulnerability degrees. After the above 10 equations, the final two equations below 

mean the calculation of the combined degrees ma . They are generated by putting 'UH  back to the five expressions 

using the following normalisation process and UH means the normalised remaining belief unassigned in the synthesised 

set. 

 

 ' / 1 'm m Ua a H  , where m = 1, 2, 3, 4, 5                 (11) 

 / 1 'U U UH H H                      (12) 

 

The above equations give the process of combining two CCRIs. If three CCRIs are required to be combined, the result 

obtained from the combination of any two sets can be further synthesised with the third one using the above algorithm. 

Similarly, multiple sets from the evaluations of more sub-criteria can also be assessed in the same way. To facilitate the 

implementation of the ER algorithm in the CCRI of seaports, an illustrative numerical example is presented in Annex 1.  

 

3.4 Evaluate the climate risk of seaports using climate data against the lowest level indicators 

 

The input datasets, now and future, are used (i.e. in Eq. 2) to evaluate seaports using climate data from the lowest level 

indexes in the CCRI framework. For instance, , Twelve seaports, “Dover (DOV)”, “Dundee (DUN)”, “Felixstowe 

(FEL)”, “Grangemouth (GRA)”, “Immingham (IMM)”, “Leith (LEI)”, “Liverpool (LIV)”, “London (LON)”, “Milford 

Haven (MIL)”, “Sheerness (SHE)”, “Southampton (SOU)”, and “Tee (TEE)”, are chosen for a demonstration as they 

are near different urban areas and they are mostly assigned by the UK government to implement adaptation plans in this 

paper. A map showing the locations of all the studied ports is seen in Figure 2. 
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Figures 2 A map of the studied ports in the UK 

 

 

3.5 Assign the weights to the CCRIs in the hierarchy 

 

The CCRI framework consists of three layers: “Climate risk index”, “EWEs”, and “CCRIs”. The relative weights (i.e. 

in Eq. 3) are also necessary for connecting three layers as mentioned in Section 3.3. For “CCRIs”, all the lowest level 

CCRIs have assigned equal weights as there is no experimental evidence to support different weight assignments based 

on the literature and domain expert judgements in the interview survey (Poo, 2020). For “EWEs”, the weight assignment 

comes from a sensitivity study result for different critical infrastructures in Europe (Forzieri et al., 2018): “Warming 

trend/ Extreme temperature/ Drought/ Wildfire” as 29.93%; “Extreme precipitation/ Flooding” as 30.17%; “Snow cover/ 

Cold wave/ Snow events” as 19.70%; “Storminess/ Wind gust” as 20.20%; and “Sea-level rise” as 30.17%.   

 

3.6 Synthesise the evaluation using the ER algorithm and its calculation software IDS 

 

By implying ER equations in Section 3.3, the climate risk index of each investigated seaport can be evaluated from the 

lowest level to the top level “climate index”. ER embedded software IDS (Yang and Xu, 2002) is used for facilitating 

the calculation. The assessment grades of the top level attribute are given their corresponding utility values using a linear 

function as the set of {0, 0.25, 0.5, 0.75, 1} for {“Low risk”, “Moderately low risk”, “Medium risk”, “Moderately high 

risk”, “High risk”} (Yang et al., 2009). The software IDS integrates the logics of a utility interval to assess the unassigned 

DOB. The ER algorithm provides a utility interval, which is a boundary where the unassigned DOB is located to either 

the lowest utility grade “Slightly preferred with a minimum utility value” or the highest utility grade “Greatly preferred 

with a maximum utility value”. The average value of the two associated utility values is used for any ranking purpose 

under the uncertainty in data.  
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4  Case analysis of the UK seaport climate risk  

 

To validate the framework, twelve seaports mentioned in Section 3.4 are evaluated in terms of their CCRI index. The 

results are analysed directly and through a sensitivity analysis and compared with the observable facts for the validation. 

By assessing the climate risk indexes of twelve selected seaports, comparisons are conducted between ports and the 

same ports at different months. Met office defines winter from December to February, and summer from June to August. 

Therefore, seasonal climate datasets are compared and analysed. Also, now and future, as known as historical data and 

forecasting data, are compared for observing the climate change impacts through measuring climate vulnerability 

changes from now to 2050. The raw data and linguistic assessment grades for Felixstowe in Table 9 is shown as an 

example. Also, the dataset represents the two levels, the EWE level and CCRI level. 

 

Table 9 The raw data and linguistic assessment grades for Felixstowe 

EWE ID CCRI 

LB 

/UB Winter Value Summer Value 

Warming 

trend/ 

Extreme 

temperature/ 

Drought/ 

Wildfire 

1 Maximum temperature UB 1 (100%) 7.008 4 (50%), 5 (50%) 19.823 

2 Relative humidity LB 1 (100%) 83.906 1 (5%), 2 (95%)  79.132 

3 Rainfall LB 2 (85%), 3 (15%)  54.769 2 (100%) 61.117 

4 Cloud cover LB 1 (100%) 70.983 5 (100%) 63.456 

Extreme 

precipitation/ 

Flooding 

5 Rainfall UB 1 (100%) 54.769 1 (100%) 61.117 

6 Days of rain >= 10.0 mm UB 1 (100%) 0.688 1 (100%) 1.245 

Snow cover/ 

Cold wave/ 

Snow events 

  

  

7 Days of air frost UB 1 (20%), 2 (80%) 5.642 1 (100%) 0.007 

8 Days of ground frost UB 1 (85%), 2 (15%) 5.614 1 (100%) 2.498 

9 Days of sleet and snow falling UB 2 (35%), 3 (65%) 2.870 1 (100%) 0.004 

10 Days of snowlying UB 3 (80%), 4 (20%) 2.141 1 (100%) 0.000 

11 Minimum temperature LB 1 (20%), 2 (80%) 2.560 1 (100%) 12.395 

Storminess/ 

Wind gust 

12 Rainfall UB 1 (100%) 54.769 1 (100%) 61.117 

13 Vapour pressure LB 2(85%), 3 (15%) 7.712 1 (100%) 14.289 

14 Mean seal level pressure LB 1 (100%) 1015.046 1 (100%) 1016.009 

15 Mean wind speed UB 5 (100%) 17.136 5 (100%) 12.333 

Sea-level 

rise 

16 Maximum sea level record NA 1 (15%), 2 (85%) 4.862 1 (15%), 2 (85%) 4.862 

17 Maximum skew surge record NA 3 (15%), 4 (85%) 1.116 3 (15%), 4 (85%) 1.116 

 

4.1 Comparison between locations and seasons 

 

By obtaining the climate risk indexes of the twelve seaports of January in Figure 2 and July in Figure 3, the climate risk 

indexes of months are shown. The coloured bar presents substantial climate risk, and the other two grey boxes offer 

possible climate risks. The sum of the coloured bar and a grey box shows the average climate risk indexes if it is with 

uncertainties. Taking DUN in January as example, the average score is 0.3169, and the range of possible index values 

is from 0.2289 to 0.4049. In Table 10, a climate risk index comparison between different locations and different months 

takes place. Ranks are given to the investigated seaports by comparing their climate risk indexes in the same month. 

“Maximum relative sea level record (m)” and “Maximum skew surge record (m)” data are missing for DUN, LON and 

TEE. Therefore, the relevant average values are taken for comparison, as the results are incomplete.  
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Figures 3 Climate risk indexes of the twelve UK seaports in January 

 
Figures 4 Climate risk indexes of the twelve UK seaports in July 

 

The findings from Figures 3 and 4 reveal that some south seaports, including DUN and GRA, obtain a higher risk value 

in January and a lower value in July, and vice versa. FEL and SOU are exposed to higher risks in July, and lower in 

January. For the ports in the middle of the UK such as LIV and IMM, they have a higher risk index in January than in 

July. It is found that the potential climate risks facing by different seaports are different among different months. Also, 

their ranks are different during different months. Therefore, it is necessary to observe the variation of climate risk indexes 

of seaports throughout a year and find the possible most threatening periods in a year.    

 

Table 10 Climate risk indexes of the twelve UK seaports in January and July 
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Location DOV DUN FEL GRA IMM LEI LIV LON MIH SHE SOU TEE 

January 0.2726 0.3169 0.1878 0.2323 0.3083 0.2355 0.2988 0.2049 0.3225 0.2420 0.1437 0.2066 

Rank 5 2 11 8 3 7 4 10 1 6 12 9 

July 0.2840 0.1612 0.2193 0.1370 0.2692 0.1391 0.2930 0.2339 0.2197 0.3210 0.1768 0.1888 

Rank 3 10 7 12 4 11 2 5 6 1 9 8 

 

4.2 Comparison between months 

 

By the comparison between different months, it is possible to spot out the dangerous seasons. FEL and GRA are taken 

places for a demonstration as they are both international seaports listing on sailing schedules of Maersk Line (A.P. 

Moller - Maersk, 2020). The result is presented in Figures 5 and 6 and Table 11. The highest indexes of the two ports 

are both existing in July, and FEL sustains the highest value in August. The lowest climate risk indexes of the two ports 

take place in November and September, respectively. 0.1384 is the minimum climate risk indexes of FEL throughout 

the twelve months, and that of GRA is 0.1054. By comparing indexes between the highest and lowest indexes, FEL 

scores 23.48% higher than the lowest index in January, and that in July is 37.53%. Then, GRA scores 38.14% higher 

than the lowest index in January, and it is the lowest in July. Therefore, the seasonal climate differences of two ports 

are at different scales. It is possible for further cooperation for climate resilience. For example, as FEL is facing a higher 

rise in climate risks in summer while GRA is facing higher risks in winter, relief operations or seaport network service 

can be planned between two seaports from a climate adaptation perspective. 

 

 
Figures 5 Monthly climate risk indexes of Felixstowe  
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Figures 6 Monthly climate risk indexes of Grangemouth 

 

Table 11 Climate risk indexes of Felixstowe and Grangemouth in all months 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Felixstowe 0.1878 0.2059 0.200 0.1723 0.2150 0.2182 0.2186 0.2409 0.2020 0.1456 0.1384 0.1450 

Rank 8 5 7 9 4 3 2 1 6 10 12 11 

Grangemouth 0.2333 0.2151 0.193 0.1629 0.1487 0.1673 0.137 0.1075 0.1054 0.106 0.1384 0.1302 

Rank 1 2 3 5 6 4 8 10 12 11 7 9 

 

4.3 Comparison between now and future 

 

The analysis in this section is to compare the now and future climate risks of the investigated ports. Figures 7 and 8 are 

used to observe the changes of climate risk indexes of winter and summer in the twelve seaports. Some forecasting data 

are missing, including “Days of air frost (days)”, “Days of ground frost (days)”, “Days of sleet and snow falling (days)”, 

and “Days of snowlying (days)” and the associated data is set as 100% unknown in the ER reasoning. A comprehensive 

comparison takes places for FEL and GRA in Table 12. Future average scores are used to compare those of now. “Best 

Possible Future” is classified as the lowest possible future climate risk index and “Worst Possible Future” is classified 

as the possible highest possible future climate risk index. For the two chosen seaports, the climate risk indexes from two 

locations increase more significantly in summer. FEL is increased by 135.72% and GRA is increased by 140.39%. In 

winter, FEL increases more significantly by 41.21%, and that of FEL increases by 32.20%. By the comparison between 

now and the future, the trend of climate vulnerability changes can be visualised. The results in this section alert the 

possible, more serious climate risks in the future. Therefore, more climate change studies are needed to be done to tackle 

climate change by mitigation but also adaptation for the more uncertain future. Also, the changes in climate risk indexes 

are different between locations and months, which can be used to rationalise the associated seaport adaptation planning. 
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Figures 7 Future climate risk indexes of Felixstowe and Grangemouth in winter 

  

Figures 8 Future climate risk indexes of Felixstowe and Grangemouth in summer 

 

Table 12 Future climate risk indexes of Felixstowe and Grangemouth 

Seaport Felixstowe Grangemouth 

Month Winter Summer Winter Summer 

Now 0.1820 0.1898 0.2211 0.1327 

Best Possible Future 0.1850 (+1.65%) 0.3718 (+95.89%) 0.2181 (-1.36%) 0.2470 (+86.13%) 

Average Future 0.2570 (+41.21%) 0.4474 (+135.72%) 0.2923 (+32.20%) 0.3190 (+140.39%) 

Worst Possible Future 0.3290 (+80.77%) 0.5230 (+175.55%) 0.3665 (+65.76%) 0.3910 (+194.65%) 

 

4.4 Sensitivity analysis 
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For validating the result, a sensitivity analysis by a one-factor-at-a-time (OAT) approach, which is the most common 

method in previous studies (Ferretti et al., 2016) is conducted. The mechanism of the approach is to observe how 

sensitive the conclusions are to minor changes in inputs. If the methodology is sound and its inference reasoning is 

logical, then the sensitivity analysis must at least follow the following two axioms (Yang et al., 2009): 

  

1) A slight increment/decrement in the degrees of belief associated with any linguistic variables of the CCRIs will 

certainly result in the effect of a relative increment/decrement in the DOB of the linguistic variables and the values of 

climate risk indexes;  

2) Given the same variation of DOB distributions of the lowest-level factors, its influence magnitude to the values of 

climate risk indexes will keep consistency with their weight distributions.  
 
For achieving two axioms, a DOB of 0.1 is reassigned in each CCRI and moved towards the maximal decrement of the 

values of climate risk indexes. The dataset of FEL in October is picked for sensitivity analysis. If the model reflects the 

logical reasoning, the climate risk index values will increase accordingly. For example, if the DOB of “Days of rain >= 

10.0 mm UB” (i.e. ID = 6) belonging to “L5 High risk” increases by 0.1 and, correspondingly, the DOB of it belonging 

to “Low risk” decreases by 0.1. (If the DOB attached to “L1 Low risk” is less than 0.1, then the remaining DOB can be 

taken from the one attached to “L2 Moderately low risk,” this process continues until that 0.1 DOB is consumed) 

Afterwards, to study such influence magnitude of CCRIs based on an interval [0, 0.1], the change of a DOB from 0 to 

0.1 with a smaller step of 0.01 is used for each CCRI towards the maximal increment of the values of climate risk 

indexes. The analysis results are shown in Table 14. 

 

For the first axiom, it is proved as climate risk index increases if any CCRI DOB increases as shown in Table 13. For 

example, when DOB of “Maximum temperature UB” (i.e. ID = 1) increases by 0.1, it is found that the climate risk index 

increases from 0.1461 to 0.1510, which is a positive correlation. In terms of the second Axiom, the variation of the 

CCRIs is different, and some CCRIs provide similar impacts to climate risk indexes. It is because all the lowest level 

CCRIs have assigned equal weights while the EWEs have been given different weights by literature review. For example, 

“Maximum sea level record” (i.e. ID = 16), and “Maximum skew surge record” (i.e. ID = 17), provide the same 

consistent pattern of changes as they are influencing the same EWE, “Sea-level rise” in Table 14. Also, the normalised 

weight of “Sea-level rise” is 23.18, and that of “Warming trend/ Extreme temperature/ Drought/ Wildfire” is 22.99%. 

“Maximum temperature UB” (i.e. ID = 1), “Relative humidity LB” (i.e. ID = 2), “Rainfall LB” (i.e. ID = 3and “Cloud 

cover LB” (i.e. ID = 4) provides smaller changes, with a range from +1.854% to +3.709%, comparing to +5.151% 

provide by “Maximum sea level record” (i.e. ID = 16), and “Maximum skew surge record” (i.e. ID = 17) as shown in 

Table 13. Also, CCRIs for “Warming trend/ Extreme temperature/ Drought/ Wildfire” (i.e. ID = 1 – 4) change in similar 

patterns in Table 14, and they are different from the patterns of CCRIs for Sea-level rise (i.e. ID = 16 – 17). “Cloud 

cover” have a less change comparing to other CCRIs for “Warming trend/ Extreme temperature/ Drought/ Wildfire 

because no DOB of “Cloud cover LB” (i.e. ID = 4) belong to “L1 Low risk” and “L2 Moderately low risk”, and the DOB 

is taken from “L3 Medium risk” which can only provide a less increment. On the other hand, “Days of air frost UB” (i.e. 

ID = 7), “Days of ground frost UB” (i.e. ID = 8), “Days of sleet and snow falling UB” (i.e. ID = 9), “Days of snowlying 

UB” (i.e. ID = 10), and “Minimum temperature LB” (i.e. ID =11), provide the least variation as the normalised weight 

is the smallest. It means that influence magnitudes to the values of climate risk indexes will keep consistency with their 

weight distributions. After all, CCRI framework mechanism is validated. 

 

Table 13 Sensitivity analysis of climate risk index given the variation of the CCRIs 

EWE 

Weight 

ratio 

Normalised 

weight ID CCRI 

LB 

/UB 

New climate 

risk index 

Change 

Warming trend/ 

Extreme 

temperature/ 

Drought/ 

Wildfire 

29.93% 22.99% 1 Maximum temperature UB 0.1510 +3.709% 

2 Relative humidity LB 0.1510 +3.709% 

3 Rainfall LB 0.1510 +3.709% 

4 Cloud cover 

LB 0.1483 +1.854% 

Extreme 

precipitation/ 

Flooding 

30.17% 23.18% 5 Rainfall UB 0.1531 +5.151% 

6 Days of rain >= 10.0 mm UB 0.1531 +5.151% 
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Snow cover/ 

Cold wave/ 

Snow events 

  

  

19.70% 15.13% 7 Days of air frost UB 0.1472 +1.099% 

8 Days of ground frost UB 0.1472 +1.099% 

9 Days of sleet and snow falling UB 0.1472 +1.099% 

10 Days of snowlying UB 0.1472 +1.099% 

11 Minimum temperature LB 0.1472 +1.099% 

Storminess/ 

Wind gust 

20.20% 15.52% 12 Rainfall UB 0.1472 +1.072% 

13 Vapour pressure LB 0.1472 +1.072% 

14 Mean seal level pressure LB 0.1472 +1.072% 

15 Mean wind speed UB 0.1472 +1.072% 

Sea-level rise 30.17% 23.18% 16 Maximum sea level record NA 0.1531 +5.151% 

17 Maximum skew surge record NA 0.1531 +5.151% 

*New climate risk index means that a 10% DOB is reassigned in each factor and moved toward the maximal increment. 

 

Table 14 Sensitivity analysis of climate risk index given the variation of the CCRIs in [0, 0.1] at a Step of 0.01 

ID CCRI 

Variation 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

1 Maximum temperature 0.0005 0.0011 0.0016 0.0022 0.0027 0.0032 0.0038 0.0043 0.0049 0.0054 

2 Relative humidity 0.0005 0.0011 0.0016 0.0022 0.0027 0.0032 0.0038 0.0043 0.0049 0.0054 

3 Rainfall 0.0005 0.0011 0.0016 0.0022 0.0027 0.0032 0.0038 0.0043 0.0049 0.0054 

4 Cloud cover 0.0003 0.0006 0.0008 0.0011 0.0014 0.0016 0.0019 0.0022 0.0025 0.0027 

5 Rainfall 0.0007 0.0015 0.0022 0.0029 0.0037 0.0044 0.0052 0.006 0.0067 0.0075 

6 Days of rain >= 10.0 mm 0.0007 0.0015 0.0022 0.0029 0.0037 0.0044 0.0052 0.006 0.0067 0.0075 

7 Days of air frost 0.0002 0.0003 0.0005 0.0007 0.0008 0.001 0.0011 0.0013 0.0015 0.0016 

8 Days of ground frost 0.0002 0.0003 0.0005 0.0007 0.0008 0.001 0.0011 0.0013 0.0015 0.0016 

9 Days of sleet and snow 

falling 

0.0002 0.0003 0.0005 0.0007 0.0008 0.001 0.0011 0.0013 0.0015 0.0016 

10 Days of snowlying 0.0002 0.0003 0.0005 0.0007 0.0008 0.001 0.0011 0.0013 0.0015 0.0016 

11 Minimum temperature 0.0002 0.0003 0.0005 0.0007 0.0008 0.001 0.0011 0.0013 0.0015 0.0016 

12 Rainfall 0.0002 0.0003 0.0005 0.0007 0.0008 0.0010 0.0011 0.0013 0.0015 0.0016 

13 Vapour pressure 0.0002 0.0003 0.0005 0.0007 0.0008 0.0010 0.0011 0.0013 0.0015 0.0016 

14 Mean seal level pressure 0.0002 0.0003 0.0005 0.0007 0.0008 0.0010 0.0011 0.0013 0.0015 0.0016 

15 Mean wind speed 0.0002 0.0003 0.0005 0.0007 0.0008 0.0010 0.0011 0.0013 0.0015 0.0016 

16 Maximum sea level record 0.0007 0.0015 0.0022 0.0029 0.0037 0.0044 0.0052 0.006 0.0067 0.0075 

17 Maximum skew surge record 0.0007 0.0015 0.0022 0.0029 0.0037 0.0044 0.0052 0.006 0.0067 0.0075 

 

4.5 Discussion 

 

While the implications of the each finding presented in Sections 4.1 – 4.3 are separately presented above, their common 

insights are drawn in this section. By understanding the impacts of different EWEs, insights can be presented into 

temporal and spatial perspectives. Extreme precipitation, storminess, and sea-level rise do not have spatial patterns, but 

extreme hot and cold weather events. Southern seaports experience higher risks in summer, while northern seaports 

experience higher risks in winter. In the future, except extreme cold weather events, all other EWEs provide higher risks 

to the UK seaports. Therefore, the seaports in the northern part of the UK face relatively less increase in climate risks 

those in the south.  

 

These findings visualise the possible climate risks in different seaports. As the percentile values of the climate data are 

based on the UK data, it is suitable to compare the risks temporally and geometrically. By comparing the single seaport 
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temporally, the result can guide the seaport management sector to amend and enhance the adaptations on EWE. On the 

other hand, the governmental bodies, such as DEFRA, can use the geometrical finding to design the adaptation measures. 

For example, seaports in South England are facing a higher risk during summer, while seaports in Scotland are facing a 

higher risk during winter. Some seaports can be aligned for contingency routing and resource allocation. Furthermore, 

a more extensive regional or national assessment can be done if a larger scale dataset is input in this framework. Also, 

different nations can use this assessment method for measuring different climate risks. 

 

5 Conclusion 

 

A new CCRI framework is proposed and implemented to measure the climate risk of seaports in the UK. The 

development of the CCRI framework can stimulate climate risks tracking and monitoring by monthly data from a 

national climate dataset. It contributes to the development of a climate risk comparison platform for adaptation planning 

and port relief logistics operations. This conceptual framework can be tailored and implemented in other regions to 

improve seaport climate resilience. Its capability to compare the indexes with different locations and the forecasting 

datasets makes it possible to rationalise seaport climate adaptation planning in a proactive manner. Therefore, the seaport 

alliance can use climate risk indexes for implementing climate disaster management. Furthermore, various climate 

threats on different seaports are identified and assessed, and so adaptation measures on a specific threat can be rationally 

implemented in proportion to its quantifiable risk levels. 

 

Concerning such changes and findings, the results can be used as a factor for warehouse locations for humanitarian 

relief logistics, and climate adaptation resources can be allocated in a more effectively. Pre-positioning warehouses at 

strategic locations is an approach commonly taken by some humanitarian relief organisations. Using risk indexes can 

improve their capacities to deliver sufficient relief aid within a relatively short timeframe, and to provide shelter and 

assistance to disaster victims. Also, the findings can be used to choose adaptation measures for seaports from a national 

perspective as the climate risk levels of seaports can be visualised. Therefore, a climate risk index can assist the resources 

pre-positioning and adaptation measures allocation by implicating a further analysis based on the finding by CCRI 

framework.  

 

The study can provide different seaport stakeholders with new insights about climate vulnerabilities assessment and 

climate change adaptation. There are three directions for further developments. First, some climate events, such as fog 

and seasonal variation of wind, are not associated with small area climate data to support. Thus, interviews on seaport 

stakeholders are required to obtain the relevant data, and then the qualitative information can be implemented into CCRI 

framework. Second, adaptive capacity, sensitivity, and social-economic factors in a regional and national scale can be 

collected to enhance the CCRI framework development. Lastly, the CCRI framework can be implied to other kinds of 

transport infrastructure, such as airports and railway stations. By then, the CCRI framework can be applied to develop 

a decision-making model for deciding suitable adaptation measures for a dedicated region with different transportation 

modes. 

 

There are a few limitations in the CCRI framework. First, the weights of the lowest level indicators are equalled at this 

moment. A further investigation is valuable by consulting professionals for weight assignments. Second, the CCRI 

framework currently focuses on climate exposure. The climate resilience includes the sensitivity of the regions and 

adaptation ability of seaports. Therefore, it is possible to extend it to include more parameters to understand the climate 

relicense index of seaports. ER has the advantage of incorporating new parameters with the need for significant 

alternation of the current hierarchy. Furthermore, further analysis can be conducted to investigate on how each indicator 

contributes to the high risk in the investigated port from the climate exposure perspective. 
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Annex 1 Illustration of the ER algorithm 

 

The ER algorithm is illustrated by an empirical incomplete dataset for EWE “Sea-level rise”. 

 

𝐴1 = (0, 0, 0,0.9,0); 𝐴1 = (0, 0, 0,0.7,0.3); 𝜔1 = 0.4; 𝜔2 = 0.6 

 

To calculate the basic conditional probability masses  M𝑚,𝑘 as defined by Eq. 4. 

 

𝑀1,1 = 0.6 × 0 = 0; 𝑀1,2 = 0.6 × 0 = 0; 𝑀1,3 = 0.6 × 0 = 0; 

𝑀1,4 = 0.6 × 0.9 = 0.36; 𝑀1,5 = 0.6 × 0 = 0;  

𝑀2,1 = 0.4 × 0 = 0; 𝑀2,2 = 0.4 × 0 = 0; 𝑀2,3 = 0.4 × 0 = 0; 

𝑀2,4 = 0.6 × 0.7 = 0.42; 𝑀2,5 = 0.6 × 0.3 = 0.18; 

 

Next the remaining relative importance 𝐻̅𝑘 for all  𝑘 = (1, 2) is obtained as follows using Eq. 6 

 

𝐻̅1 =  1 − 𝜔1 = 1 – 0.4 = 0.6; 𝐻̅2 =  1 − 𝜔2 = 1 – 0.6 = 0.4 

 

The remaining probability mass  𝐻̃𝑘  due to the possible incompleteness of any individual grad α𝑚,𝑘 is defined by 

Eq. 7. 

 

𝐻̃1 = 𝜔1(1 − ∑ α𝑚,1
5
𝑚=1 ) = 𝜔1 [1 − (α1,1 + α2,1 + α3,1 + α4,1 + α5,1)]  

= 0.4 [1 − (0 + 0 + 0 + 0.9 + 0)] = 0.04 

𝐻̃2 = 𝜔2(1 − ∑ α𝑚,2
5
𝑚=1 ) = 𝜔2 [1 − (α1,2 + α2,2 + α3,2 + α4,2 + α5,2)]  

= 0.6 [1 − (0 + 0 + 0 + 0.7 + 0.3)] = 0 

 

By calculation 𝐻̅𝑘 and 𝐻̃𝑘, 𝐻𝑘 can be obtained by Eq. 5. 

 

𝐻1 = 𝐻̅1 + 𝐻̃1 = 0.6 + 0.04 = 0.64; 𝐻2 = 𝐻̅2 + 𝐻̃2 = 0.4 + 0 = 0.4 

 

The remaining combined probability mass 𝐻′̃
𝑈  due to the possible incomplete assessment of  α𝑚,𝑘 by ‘Maximum 

sea level record” and “Maximum skew surge record” is defined by Eq. 8. 

 

𝐻′̃
𝑈 = 𝐾(𝐻̃1𝐻̃2 + 𝐻̃1𝐻̅2 + 𝐻̅1𝐻̃2) = 1.069 (0 × 0 + 0.04 × 0.4 + 0.6 × 0) = 0.017 

 

The combined remaining relative importance 𝐻′̅̅ ̅
𝑈 from the two CCRIs conducted by ‘Maximum sea level record” and 

“Maximum skew surge record” are obtained using Eq. 9.  

 

𝐻′̅̅ ̅
𝑈 = 𝐾(𝐻̅1𝐻̅2) = 1.069(0.6 × 0.4) = 0.257 

The normalizing factor 𝐾  for combining the two CCRIs ‘Maximum sea level record” and “Maximum skew surge 

record” is calculated using Eq. 10. 

 

𝐾 = [1 − ∑ ∑ 𝑀𝑇,1

5

𝑅=1
 𝑇≠𝑅

5

𝑇=1

𝑀𝑅,2]

−1

= [1 − (0.18 × 0.36)]−𝟏 = 1.069 
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To calculate the combined probability mass 𝑎𝑗, Eq. 11, along with Eq. 8, is employed as follows. 

 

𝑎1 =
 a1

′

1−H′̅̅̅̅
U

=
1.069 (0×0+0×0.4+0.64×0)

1−0.257
= 0  

𝑎2 =
 𝑎2

′

1−𝐻′̅̅ ̅̅
𝑈

=
1.069 (0×0+0×0.4+0.64×0)

1−0.257
= 0  

𝑎3 =
 𝑎3

′

1−𝐻′̅̅ ̅̅
𝑈

=
 1.069 (0×0+0×0.4+0.64×0)

1−0.257
= 0  

𝑎4 =
 𝑎3

′

1−𝐻′̅̅ ̅̅
𝑈

=
 1.069 (0.36×0.42+0.36×0.4+0.64×0)

1−0.257
= 0.812  

𝑎5 =
 𝑎3

′

1−𝐻′̅̅ ̅̅
𝑈

=
 1.069 (0×0.18+0×0.4+0.64×0.18)

1−0.257
= 0.166  

 

Finally, the remaining combined probability mass 𝐻𝑈  due to the possible incomplete assessment of ‘Maximum sea 

level record” and “Maximum skew surge record” is calculated by Eq. 12. 

 

𝐻𝑈 =
𝐻 ′̃

𝑈

1−𝐻′̅̅ ̅̅
𝑈

=
0.1032

1−0.2669
= 0.166  

 

Then the result can be described as follows 

 

‘Sea-level rise” = {0 “L1 Low risk”, 0 “L2 Moderately low risk”, 0 “L3 Medium risk”,

0.812 “L4 Moderately high risk”, 0.166 “L5 High risk”, 0.023 “Unknown”} 


