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Abstract 

 

Groups of animals often compete over resources, such as territory, food, or mates, 

which are critical for survival. Successful groups tend to be those in which 

individuals cooperate effectively, and thus intergroup competition is thought to exert 

a selective pressure favouring the evolution of behavioural traits that promote 

intragroup affiliation. However, no cohesive pattern has emerged to describe the 

effect of intergroup conflict (IGC) on intragroup social behaviour. Furthermore, 

because most studies focus on intragroup behaviour during or immediately after 

conflict, we know relatively little about how groups perceive and respond to the risk 

of encountering rivals.  

Here, I investigate the function of intragroup behaviour in response to the threat and 

occurrence of IGC in three wild crested macaque (Macaca nigra) social groups. I use 

relative risk maps based on the timing and locations of intergroup encounters (IGEs) 

in conjunction with behavioural observations to test predictions that changes in 

intragroup behaviour function to increase social cohesion. Group spread, behavioural 

synchrony, and pre- and post-encounter focal observation data indicate that crested 

macaques remember the frequency, location, and outcome of previous IGEs: Also, 

that individuals in dominant and subordinate groups may perceive encounters 

differently. However, I found no evidence that intragroup behaviour functions to 

promote cohesion. Rather, my results indicate that both pre- and post-conflict 

behaviour functions primarily to minimise individual costs and reduce physiological 

anxiety.  

Rather than collective action being impeded by the lack of cohesion-enhancing 

behaviours, I suggest that this population may not need them in the context of IGC. 

These findings raise the possibility that (a) when food resources are abundant and 

mating access is easily monopolised, not all groups that engage in IGC have 

something worth fighting for, and (b) that we need to find ways of incorporating this 

into future models of intergroup hostility. 
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Chapter 1 

 

General Introduction 

 

1.1 Intergroup competition 

Across many taxa, group-living animals compete over resources such as food 

(spotted hyenas (Crocuta crocuta): Boydston et al., 2001; banded mongooses 

(Mungos mungo): Thompson et al., 2017), shelter (honeybees (Apis mellifera): 

Rangel et al., 2010; greater ani (Crotophaga major): Strong et al., 2018), and mates 

(cichlid fish (Neolamprologus pulcher): Bruintjes et al., 2016; savannah baboons 

(Papio cynocephalus ursinus): Kitchen et al., 2004). These interactions can result in 

death or the loss of territory, significantly affecting individual fitness and group 

survival. Examples include territorial expansion in chimpanzees (Pan troglodytes) 

following the eradication of rival males (Mitani et al., 2010), clan wars in hyenas 

(Boydston et al., 2001), intergroup infanticide in white-winged trumpeters (Psophia 

leucoptera) (Sherman, 2003), and violent intergroup clashes in meerkats (Suricata 

suricatta) (Mares et al., 2012), free-ranging dogs (Canis familiaris lupus) (Bonanni 

et al., 2010), and lions (Panthera leo) (Mosser & Packer, 2009). The most successful 

groups (in the context of intergroup competition) tend to be those in which 

individuals cooperate effectively in pursuit of common goals (Nunn & Lewis, 2001; 

Willems et al., 2013); other things being more or less equal (e.g. encounter location 

or group size (Brown, 2013; Crofoot et al., 2008)). As such, in many animal societies 

the successful maintenance of home ranges or territories requires cooperation and 

collective resource defence against conspecifics: ants (Adams, 1990; Tanner, 2006), 

birds (Carlson, 1986; Woolfenden & Fitzpatrick, 1977), carnivores (Furrer et al., 

2011; Mosser & Packer, 2009), and primates (Cheney, 1987; Kitchen et al., 2004; 

Puurtinen & Mappes, 2009). 

However, cooperation in heterogenous groups, and thus competitive ability, is often 

hindered by collective action problems (CAPs) (Olson, 1965). A CAP occurs when 

non-participants (often called ‘free riders’) receive the benefit of collective action but 

incur none of the costs. When resources are not monopolisable within a group (e.g. 
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a shared home range or territory), free riders may benefit from reduced time and 

energy costs, and a reduced risk of injury by not participating alongside group-mates 

(Nunn, 2000; Nunn & Lewis, 2001; van Schaik, 1996). For example, playback 

studies in lions and non-human primates (hereafter primates) demonstrate that as 

relative group size increases, more individuals free ride in response to simulated 

territorial intrusion (Heinsohn & Packer, 1995; Nunn & Deaner, 2004). Collective 

action problems tend to occur when individuals have different levels of interest in 

contributing to collective behaviour. These differences arise because individuals in a 

group differ with respect to age, sex, dominance rank, and resource access; and 

therefore experience the costs and benefits of collective action differently (Majolo et 

al., 2020). As such, individuals must base their decision to participate on the trade-

off between these potential costs and benefits, and adopt the most profitable fitness-

maximising strategy. 

Because reproductive investment usually differs between the sexes, males and 

females tend to have broadly different fitness-maximising strategies (Trivers, 1972). 

This is particularly evident in the context of intergroup conflict (IGC) because it may 

impose very different costs on males and females (e.g. Arseneau-Robar et al., 2017; 

Cassidy et al., 2017; Thompson et al., 2017; van Vugt, 2009). Male fitness tends to 

be limited by access to mates while that of females is limited by access to resources 

and safety (Trivers, 1972). Thus, males are expected to participate in IGC to acquire 

or defend sexual access to mates (directly or by protecting resources for females and 

themselves (Majolo et al., 2005)), whereas females should be most involved (directly 

or by incentivising male participation (Arseneau-Robar et al., 2017, 2016)) when 

access to food, water or shelter is concerned (Emlen & Oring, 1977). As a result, 

depending on what combination of resources are at stake, one or the other sex should 

participate most actively (Boydston et al., 2001; Grinnell, 2002; Koch et al., 2016; 

Mares et al., 2012). Importantly though, participation need not necessarily follow the 

pattern described above: For example, a recent study of IGC in banded mongooses 

that found that females tend to initiate hostilities, during which they mate with out-

group males (increasing their own fitness), while in-group males bear most of the 

fighting costs (Johnstone et al., 2020).  

Furthermore, within hierarchical groups, dominant individuals are typically able to 

monopolise a disproportionate share of the contested resources if their group wins 
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(Gavrilets & Fortunato, 2014; Willems et al., 2015). As such, in addition to sex 

differences, dominance asymmetries may also alter incentives to participate in IGC. 

For example, in species with high reproductive skew, dominant individuals (often 

males) should have a greater incentive than subordinates to participate; in order to 

defend access to mates (Cooper et al., 2004). This should be particularly evident 

during the mating season for both resident and prospecting dominants (e.g. Majolo 

et al., 2005).  

There is a growing body of evidence from human and non-human animal studies that 

intergroup competition exerts a strong influence on intragroup social behaviour 

(Pisor & Surbeck, 2019; Radford et al., 2016; Robinson & Barker, 2017); and 

theoretical models show that over time IGC can select for genetic traits that increase 

both intergroup hostility and intragroup cooperation (Bowles, 2009; Choi & Bowles, 

2007; Lehmann & Feldman, 2008). Related to these models is the hypothesis that 

groups at (imminent or future) risk of attack should also evolve on a behavioural 

timescale by becoming more coordinated, socially cohesive, and/or cooperative, in 

order to surmount the CAP and increase their odds of success in intergroup 

competition (Alexander & Borgia, 1978; Birch et al., 2019; Bruintjes et al., 2016; 

Turchin, 2018) 

Indeed, there is growing evidence that exposure to rival groups increases intragroup 

social cohesion (represented by intragroup affiliation) in various taxa (Birch et al., 

2019; Bruintjes et al., 2016; Hellmann & Hamilton, 2019; Mares et al., 2012; Morris-

Drake et al., 2019; Preston et al., 2020; Radford, 2008a, 2008b; Radford & Fawcett, 

2014; Thompson et al., 2020), including primates (e.g. Arseneau-Robar et al., 2016; 

Cords, 2002; (meta-analysis of 15 species) Majolo et al., 2016; Mirville et al., 2020; 

Payne, Henzi, et al., 2003; Samuni, Mielke, et al., 2019; Shaffer, 2013). However, 

no cohesive pattern has emerged: some studies report a decrease in intragroup 

affiliation (Tórrez-Herrera et al., 2020; Yi et al., 2020), an increase in intragroup 

aggression (Arseneau-Robar et al., 2016; Polizzi di Sorrentino, Schino, Massaro, et 

al., 2012), and/or no change in either (Cheney, 1992; Chism & Rogers, 2004; 

Grueter, 2013; Nunn & Deaner, 2004). However, Cheney’s (1992) study only 

examined female primates, and Grueter’s (2013) meta-analysis of 48 primate species 

used a proxy of IGC (home range overlap) that may not adequately distinguish 

between intergroup contest and scramble competition (Majolo et al., 2016; Sterck et 
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al., 1997; Wrangham, 1980). In addition, most studies consider the impacts of IGC 

on intragroup behaviour during or immediately after the event. Therefore, we know 

relatively little about how social groups perceive spatial variation in the risk of 

encountering rival groups, and whether they exhibit pre-emptive responses to the risk 

of conflict (analogous to the predator-induced “landscape of fear” concept (Bleicher, 

2017; Coleman & Hill, 2014; Laundré et al., 2010; Nowak et al., 2017)); although 

see LaBarge et al. (2020) for a recent exception. Crucially, if intragroup social 

behaviour changes, even in the absence of a direct out-group threat, it would 

highlight the importance of intergroup hostility in shaping intragroup behaviour. 

Currently, it is still unclear exactly how intergroup hostility and intragroup cohesion 

and cooperation are linked; and it appears that different social and environmental 

conditions may elicit/require different, or more varied behavioural responses. 

Furthermore, there is considerable variety in the types of intragroup social behaviour 

that are assumed to represent social cohesion. For example, within the primate 

literature allogrooming is the most commonly used measure of cohesion (Majolo et 

al., 2016). There are sound reasons for this: allogrooming has several important 

social functions in primate societies (e.g. promoting agonistic support and feeding 

tolerance (Dunbar, 1991; Koyama et al., 2006; Ventura et al., 2006)). However, 

spatial proximity (Aureli et al., 2006; LaBarge et al., 2020; Mitani et al., 2010; 

Shaffer, 2013), association and relationship indices (Garber & Kowalewski, 2011; 

Wittig et al., 2016), party size (Samuni, Mielke, et al., 2019), and affiliative facial 

expressions (Micheletta et al., 2013) may all be equally relevant measures. This is 

problematic because although the behaviours that are used as indicators of social 

cohesion are generally all affiliative, they may serve different functions under 

different circumstances. For example, increasing spatial proximity may serve a 

thermoregulatory function in some contexts (Campbell et al., 2018) and a predator 

defence function in others (LaBarge et al., 2020; Schreier & Swedell, 2012). In the 

context of IGC, the function of behaviour may change depending on intrinsic factors 

such as individual sex, age, rank, and reproductive status, as well as extrinsic factors 

like season, and out-group identity etc. Many studies merely infer the social cohesion 

function of affiliative social behaviours without investigating competing or 

alternative hypotheses (although see Arseneau-Robar et al. (2016)). For example, 

IGC is a stressful event (Eckardt et al., 2016; Nunn & Deaner, 2004; Polizzi di 

Sorrentino, Schino, Massaro, et al., 2012; Wittig et al., 2016), and intragroup 
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affiliative behaviour may function to manage stress in this context. Various studies 

show that the exchange of affiliative behaviour can buffer the adverse effects of 

stressful events by down-regulating hypothalamic-pituitary-adrenocortical (HPA) 

axis activity (e.g. Kikusui et al., 2006; Wittig et al., 2008; Young et al., 2014). 

Finally, it may also be possible that in certain IGC circumstances, individuals have 

no need, ability, or incentive to increase social cohesion: Either because they can 

free-ride on the efforts of others, because their social system impedes the emergence 

of cooperative behaviour, and/or because the benefits of victory/costs of defeat are 

too meagre to incentivise it. 

1.2 Crested macaques 

This study examines the functions of social behaviour before and after intergroup 

encounters (IGEs) in wild crested macaques (Macaca nigra) in Tangkoko Nature 

Reserve (TNR), North Sulawesi, Indonesia. Crested macaques are one of seven 

macaque species endemic to Sulawesi (Fooden, 1980; Riley, 2010). Notwithstanding 

an (estimated) introduced population of 100,000 individuals on the island of Bacan, 

the wild population of approximately 4,000 – 6,000 is confined to the most northern 

tip of Sulawesi (Johnson et al., 2020; Riley, 2010). Following sharp population 

declines of up to 80% in the native population over the last 40 years, crested 

macaques are classified as critically endangered by the International Union for 

Conservation of Nature (IUCN) (Supriatna & Andayani, 2008). The Bacan 

population is not included within the IUCN threat assessment because it exists 

outside the native range. 

Crested macaques are semi-terrestrial primates that live in multi-male, multi-female 

groups of approximately 40 to 100 individuals  (Marty, Hodges, Agil, et al., 2017; 

O’Brien & Kinnaird, 1997). They have several potential predators at this study site, 

such as reticulated pythons (Python reticulatus), dogs (Canis familiaris), and 

Sulawesi hawk-eagles (Nisaetus lanceolatus). However, the study site appears to be 

devoid of felid predators (O’Brien & Kinnaird, 1997). Females are the philopatric 

sex and have an unusually tolerant social style that allows for a broad range of social 

interactions between a large number of individuals, largely unconstrained by rank or 

kinship (Duboscq et al., 2013, 2017). Relations between male crested macaques more 

closely resemble those described for multimale groups in other macaque species: 
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predominantly agonistic (Hill, 1994). Males transfer out of their natal groups at or 

shortly after reaching their physical peak, and may continue to transfer between 

groups throughout their life (Marty, Hodges, Agil, et al., 2017). Male-male 

competition during and after emigration can be intense and reproductive skew is high 

(Engelhardt et al., 2017). Females signal fertility in a reliable fashion through sexual 

swellings and behaviour, and males appear to use this information to time their 

mating (and mate-guarding) effort appropriately (Higham et al., 2012), such that 

individual dominant males can monopolise matings with fertile females. Females 

give birth year-round, but more than 80% of births occur between January and May, 

approximately 59% of which occur between March and May (Engelhardt & 

Farajallah, 2008). Infant weaning starts at approximately five months and is normally 

complete within a year (Kerhoas et al., 2014).  

1.3 Crested macaque intergroup conflict 

Crested macaques, and this population in particular, are an excellent model in which 

to investigate the effects of IGC on intragroup behaviour because: (a) encounters 

with rival groups are frequent (~0.8/12h-day (Martínez-Iñigo, 2017)) and active; (b) 

both sexes participate to some degree, (c) home range overlap is extensive; and (d) 

predation risk is extremely low (which removes the possibly confounding influence 

of perceived predation risk on intragroup behaviour). 

Compared with several other primate species (e.g. chimpanzees, capuchin monkeys 

(Cebus capuchinus), or Japanese macaques (Macaca fuscata)), IGC in crested 

macaques is not well studied. However, prior research on this population found that 

although encounters ranged from peaceful intermingling to violent contact 

aggression, most were characterised by some form of aggression (81.6% any, and 

28.2% contact (Kinnaird & O’Brien, 2000; Martínez-Iñigo, 2017)). Combining back-

records from 2006-2015 with 10 months of field observations across 2015-2016, 

Martínez-Íñigo (2017) reported that serious injuries were rare, but did occur (4 of 12 

observed attacks), as did the loss of infants (4 of 12), and death (1 of 12). Notably, 

11 of 13 victims (across 12 attacks) were adult females, isolated from their group and 

outnumbered by out-group adult females and sub-adults of both sexes. Males 

participated in 74.6% of encounters, behaving aggressively towards out-group males 

and in-group females (herding was recorded in 80% of encounters) (Martínez-Iñigo, 
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2017), strongly indicating a mate access defence strategy. It was unclear why females 

participated (50.7% of encounters): Female intergroup aggression was primarily 

linked to male participation, not to the value of food resources at the encounter 

location. Martínez-Íñigo (2017) rejected the idea that females participate to bolster 

male defence of food resources (because female participation was unrelated to the 

balance of male participants on either side), instead positing that females might 

defend their interests by socially incentivising male participation.   

Large groups tend to win encounters (Kinnaird & O’Brien, 2000; Martínez-Iñigo, 

2017), but numerical superiority does not guarantee victory: small groups are capable 

of displacing larger rivals if the encounter occurs in an area that the smaller group 

use more frequently (Martínez-Iñigo, 2017). Nevertheless, small groups appear to 

avoid larger groups when possible, changing travel course when they come within 

100 m of dominant neighbours (Kinnaird & O’Brien, 2000). This effect seems to be 

transitive with respect to group dominance, i.e. of the three study groups, the smallest 

avoided both larger rivals, the intermediate group avoided the largest but did not alter 

its trajectory for the smallest, and the largest group avoided neither subordinate group 

(Kinnaird & O’Brien, 2000). Thus, groups seem to understand the relative risks of 

encountering different rivals and adjust their behaviour accordingly. 

1.4 Intergroup encounter risk perception 

The ability of primates to perceive and respond to varying levels of risk throughout 

their ranges has been well documented with respect to predation and human-wildlife 

conflict (Campos & Fedigan, 2014; Coleman & Hill, 2014; King & Cowlishaw, 

2009; LaBarge et al., 2020; Makin et al., 2012; Nowak et al., 2014, 2017; Reisland 

& Lambert, 2016; Waterman et al., 2019; Willems & Hill, 2009). Common responses 

to perceived risk include changes in activity budget, intragroup spacing, group size, 

and over/underuse of risky areas; but studies of how macaques respond to spatial 

variation in perceived risk are notably lacking (for an exception see: Waterman et al., 

2019). Furthermore, the landscape of fear (Bleicher, 2017) approach has rarely been 

used to examine the effects of perceived IGE risk in primates, and to my knowledge 

never in macaques. LaBarge et al. (2020) observed an increase in spatial cohesion 

among samango monkeys (Cercopithecus albogularis schwarzi) in reaction to actual 

IGC, but no pre-emptive change in areas of high perceived encounter risk. Similarly, 
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Benadi et al. (2008) found no statistically significant increase in cohesion, or change 

in activity budget, among Verreaux’s sifaka (Propithecus verreauxi) in overlapping 

compared to core home range areas. Phayre’s leaf monkeys (Trachypithecus phayrei 

crepusculus) tended to avoid areas of their home ranges that bordered those of 

neighbouring groups (Gibson & Koenig, 2012), and while white-face capuchins 

continued to use the shared edges of their range, they socialised less in those 

potentially risky areas (Tórrez-Herrera et al., 2020). Taken together, the few studies 

that exist provide only limited support for the idea that even in the absence of a direct 

threat, the perceived risk of intergroup hostility may be enough to pre-emptively alter 

intragroup behaviour. However, by examining changing patterns (rather than rates) 

of behaviour at the group- and dyad-level it may be possible to clarify the effect of 

perceived IGE risk on intragroup behaviour. 

1.5 Thesis aims and structure 

The overall aim of this thesis is to develop an understanding of how the risk and 

occurrence of IGC influences intragroup behaviour in crested macaques. In Chapter 

2, I describe the study species and site, before detailing behavioural sampling and 

statistical analysis methods. I refer throughout to appendices that contain figures and 

summary information about IGE occurrence and outcome, home range estimates, 

tourist pressure, predation pressure, and perceived relative inter group encounter risk. 

In Chapter 3, I examine the effect of perceived IGE risk on group-wide spatial 

cohesion and behavioural synchrony. Specifically, I investigate whether crested 

macaques remember the timing and location of previous IGCs, and whether they pre-

emptively alter their behaviour in these high risk areas. I also ask whether the 

interplay between perceived encounter risk and the cumulative outcome of recent 

encounters (in the previous month) alters the perceived cost/benefit balance of 

encountering rival groups.  

Having investigated two group-level responses to perceived IGE risk, in Chapter 4 I 

explore dyadic-level responses to a similar (though crucially different) stimulus. I 

compare the social behaviour of dyads in two specific risk conditions; one in which 

there is little to no risk of IGE, and another in which the impending probability of 

encountering another group is high. That is, during a 40 minute window prior to 

entering a high IGE risk area (where in fact an encounter did later occur). Here, I 
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investigate whether patterns of affiliative behaviour are sensitive to the perceived 

risk of IGEs, and whether these responses are reactive (a response to stress), or pre-

emptive (a strategic preparation for the possibility of conflict). In Chapter 5, I 

examine the effect of IGC on post-conflict intragroup social behaviour. Specifically, 

I compare levels and patterns of self-directed, affiliative, and aggressive behaviour 

in the three hours after IGC to those at baseline. I ask whether post-conflict behaviour 

functions primarily to (a) relieve tension, (b) increase group cohesion, and/or (c) 

incentivise future participation in intergroup aggression. Finally, in Chapter 6 I 

summarise the major findings, considering the social and ecological conditions that 

create the need (or lack thereof) for collective action. I discuss the limitations and 

implications of my work and consider possible future directions. 
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Chapter 2 

 

General Methods 

 

2.1 Ethical statement 

All research received clearance from the Liverpool John Moores University Ethics 

Committee (approval number NK_JOW/2017-14), from the Indonesian Ministry of 

Research, Technology and Higher Education (research permit number 

2C11AB0129-S), and adhered to the International Primatological Society’s ethical 

guidelines (Riley et al., 2014). 

2.2 Study site 

Data collection was carried out from March 2018 through  June 2019 in Tangkoko 

Nature Reserve (TNR) (1◦33′N, 125◦10′E); an 88.67 km2 area of lowland rainforest 

in North Sulawesi, Indonesia (Fig. 2.1). The study was part of the Macaca Nigra 

Project (MNP) (https://www.macaca-nigra.org), a long-term field project established 

in 2006 to study the biology and habitat of wild crested macaques. The research area 

(Fig. 2.1, panel C) is a mix of primary and secondary forest and regenerating former 

gardens. Altitude at the study site ranges from sea level to 1,351 m, and temperatures 

are relatively constant throughout the year, with an average range of 24-28 °C (MNP, 

unpublished data). Rainfall varies seasonally, with the majority falling between 

October and May; June through September is typically hot and dry (O’Brien & 

Kinnaird, 1997; Ratna Sari, 2013: MNP, unpublished data). 
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Figure 2.1 Location of study site (panel C) within North Sulawesi (panel B), Indonesia (panel A). 
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2.3 Study subjects 

This study focused on three groups of crested macaques; Pantai Batu 1B (PB1B), 

Rambo 1 (R1), and Rambo 3 (R3). Group sizes varied throughout the study because 

of deaths and male dispersals (see Table 2.1), so I recorded the number of adults in 

each group daily. PB1B has been followed more or less continuously by MNP since 

2008 (Marty et al., 2016); R1 was studied in the 1990s (O’Brien & Kinnaird, 1997), 

and again by MNP since 2006 (Marty et al., 2016); R3 has been studied intermittently 

by MNP since 2006. The study animals were tolerant of researchers (Bejder et al., 

2009), could be observed at close range (approximately 10 m), and all adults were 

individually recognisable by physical characteristics such as scars, gait, and shape of 

the anogenital region. The study animals subsisted largely on natural food. However, 

in areas where their home range overlapped the edges of a nearby village, R1 

occasionally ate human crops such as coconuts (Cocos nucifera), papayas (Carica 

papaya), sap harvested from palm trees (Aracaceae spp.), and processed food from 

human refuse. 

Table 2.1 Observation duration, composition and size of crested macaque study groups in 
TNR, Sulawesi, Indonesia. 

Group Observation 

period 

Mean ± SD 

follow days 

per month 

Adult 

group 

size 

Number 

of adult 

females 

(F) 

Number 

of adult 

males 

(M) 

Adult Sex 

Ratio 

(F:M) 

PB1B Mar 2018 – 
Jun 2019 

8.83 ± 2.44 24 - 32 20 - 21 4 - 12 5:1 – 1.75:1 

R1 Mar 2018 – 
Jun 2019 

9.17 ± 3.13 47 – 49 32 - 34 15 - 17 2.13:1 – 2:1 

R3 Aug 2018 – 
Jun 2019 

6.55 ± 3.70 10 8 2 4:1 

 

2.4  Data collection 

All the behavioural data presented in this thesis were collected by me and a field 

assistant, Eka Arisyamanti; a biology student from Bogor Agricultural University, 

Java, Indonesia. I employed Eka to collect data alongside me from March 2018 to 
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March 2019. Additional location data for PB1B were provided by Dr. Kirsty Graham 

and Andre Pasetha, occasionally including the location of IGEs that occurred when 

neither Eka nor I were following the group.   

We followed the study groups from dawn until dusk (approximately 06:00 to 18:00) 

each day; from sleeping tree to sleeping tree. We conducted parallel scan and focal 

observation trials to check for interobserver reliability (Caro et al., 1979), and a 

minimum agreement score of Cohen’s k = 0.80 was achieved before data were 

included in the study. We recorded all behavioural data on Android smartphones 

using a customised Cybertracker (v3.507) data collection program (Steventon et al., 

2011), and all location data using Garmin etrex-10 handheld receivers (Garmin 

International, Inc., Olathe, KS, USA). 

2.5 Predators 

For all predator encounters we recorded the following: date, time, location, predator 

type, predator number, and group identity. As reported elsewhere (O’Brien & 

Kinnaird, 2000; Riley, 2010), predator encounters and fatalities appear to be rare (see 

Appendix 1 for summary data).  

2.6 Tourist encounters 

Tangkoko Nature Reserve is a popular tourist destination for local and international 

visitors. Wildlife observation tours led by local guides are the main form of 

recreation for international visitors, and crested macaques are marketed as a key 

attraction (Hilser et al., 2013). The presence of tourists does not seem to affect crested 

macaque activity budgets, but self-scratching (indicative of physiological anxiety in 

primates (Maestripieri et al., 1992; Polizzi di Sorrentino, Schino, Tiddi, et al., 2012; 

Schino et al., 1991)) and retreat behaviours increase among all sex-age classes in 

their presence (Paulus, 2009). Provisioning by tourists is prohibited within TNR, but 

still occurrs on occasion. For all tourist encounters we recorded the following: date, 

time, location, number of tourists and guides, and group identity (see Appendix 2 for 

summary data). 
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2.7 Behavioural sampling 

2.7.1 All-occurrences focal sampling 

We collected focal animal behavioural data, using continuous all-occurrences 

sampling (Altmann, 1974). We collected 481.1 hours of focal animal data from 84 

adult subjects, with an average of 6.3 hours of data per individual from 239 days of 

observation (PB1B = 211.9 hours, R1 = 169.2 hours, R3 = 99.9 hours). Focal 

individuals were observed for 10 minutes, during which we recorded their behaviour 

and the identity of all their interaction partners. We continuously recorded the 

subject’s activity state (feeding/foraging, travelling, resting, and allogrooming), all 

event behaviours (affiliation, aggression, and self-scratching), and the identity of all 

interaction partners and neighbours (in body contact (contact-sitting) and within one 

body length)) (see Table 2.2 for focal sampling behavioural definitions).  

To ensure that focal follows were independent, no individual was sampled twice 

within a two hour period and we attempted to sample all adults in the group before 

resampling any individual. When it was not possible to locate the appropriate 

individual, a pseudo-random technique for selecting focal animals was used (Boinski 

& Campbell, 1995; Fragaszy et al., 1992): from the animals observable at that 

moment, the most undersampled individual was selected. 
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Table 2.2 Definitions of focal sampling behaviours, following Thierry et al. (2000) and Duboscq et al. (2013). 

Behaviour Definition 

Feeding/Foraging An individual searching for, manipulating, and/or ingesting food. 

Travelling Rapid locomotion with no signs of searching for food. 

Resting An individual sitting, lying, or standing without engaging in any specific behaviour. Includes sleeping. 

Allogrooming An individual cleaning the skin or fur of a partner. The hair is brushed and parted using the hands; particles are picked using 
the hand or the mouth, teeth or tongue. A bout consisted of a continuous period of allogrooming  with breaks not exceeding 10 
seconds. 

Affiliation Comprised embrace, tail grasp/rub, hug, hip holding, genital grasp, body grasp/touch, pat, soft grunt; and affiliative facial 
expressions such as lip-smack, teeth-chatter, and silent-bared-teeth. 

Aggression Threats: aggressive vocalisations (bark, grunt, rattle, scream) and/or facial expressions (half-open mouth, open-mouth bared-
teeth, stare, jaw movement). 

Attacks: non-contact (chase, lunge, stamp), and contact (bite, hit, missed hit, grab and push) 

Displacement An individual approaching another, without any threatening behaviour, to within five body lengths, who simultaneously 
moved away. Where relevant, displacement was superseded by aggression. 

Self-scratching A repetitive raking of the skin using the hands or feet. 

Contact-sitting Two individuals sitting in continuous contact for a minimum of five seconds. Allogrooming bouts were not recorded as 
contact-sitting. 

Proximity Two individuals remaining within one body length of each other for at least five seconds. Only non-agonistic approaches, 
where the approaching individual did not direct any aggressive behaviour to their partner were considered. 
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2.7.2 Instantaneous scan sampling 

We conducted instantaneous scan samples at 30 minute intervals throughout the day, 

obtaining a total of 4624 scans (PB1B=1840, R1=1680, R3=1104 scans) from 239 

days of observation. During each scan (10 min duration) we recorded the identity 

and activity of all visible individuals (see Table 2.3 for scan sampling activity 

definitions), as well as the number (to within five body lengths) and identity (to 

within one body length) of their nearest neighbours. In addition, at the end of each 

scan we conducted a second instantaneous scan, this time noting the number of adult 

individuals simultaneously in view and their activity: (1) feed/foraging, (2) 

travelling, (3) resting, or (4) socialising (comprised allogrooming, affiliation, 

aggression, play, and mating). We categorised each of the four behaviours as 

physically “active” or “inactive” (see Table 2.3). Feed/foraging and travelling were 

classified as active behaviours because they involve active physical movement 

during which the individual changes position and location frequently. Resting and 

socialising were classified as inactive behaviours because individuals tend to be lying 

or sitting, and remain stationary when engaged in these activities (Agetsuma, 1995; 

Gautrais et al., 2007). Although neither play nor aggression are likely to be 

stationary, inactive behaviours, they were included in the socialising category 

because they are clearly social activities; they comprised only 0.14% and 0.99% of 

all records respectively.  

We also measured the distance (m) between the individuals at the front and back of 

the group (relative to the group’s ongoing, or last direction of travel), and between 

the individuals on either side of the group, using an Eventek laser rangefinder (range 

0.03 – 60 m, accuracy ± 2.0 mm). 
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Table 2.3 Definitions of scan sampling activities, following Thierry et al. (2000), Duboscq et al. (2013), and Allan & Hill (2018). 

Behaviour Active/inactive Definition 

Feeding/Foraging Active An individual searching for, manipulating, and/or ingesting food. 

Travelling Active Rapid locomotion with no signs of searching for food. 

Resting Inactive An individual sitting, lying, or standing without engaging in any specific behaviour. Includes sleeping. 

Allogrooming Inactive An individual cleaning the skin or fur of a partner. The hair is brushed and parted using the hands; particles are 
picked using the hand or the mouth, teeth or tongue. 

Self-grooming Inactive An individual cleans its own skin or fur. The hair is brushed and parted using the hands; particles are picked using 
the hand or the mouth, teeth or tongue. 

Affiliation Inactive Comprised embrace, tail grasp/rub, hug, hip holding, genital grasp, body grasp/touch, pat, soft grunt; and affiliative 
facial expressions such as lip-smack, teeth-chatter, and silent-bared-teeth. 

Aggression Inactive Threats: aggressive vocalisations (bark, grunt, rattle, scream) and/or facial expressions (half-open mouth, open-
mouth bared-teeth, stare, jaw movement). 

Attacks: non-contact (chase, lunge, stamp), and contact (bite, hit, missed hit, grab and push) 

Mating Inactive An insertion of the erect penis in the female genitals during mounting. 

Play Inactive An individual (or individuals) engage in relaxed and exuberant behaviour patterns that include: running, swinging, 
dragging or throwing an object, wrestling, chasing, sparring, bouncing, or leaping over a partner.  

Scanning/Looking Inactive An individual’s eyes are open; its line of vision extends beyond its hands and the substrate, animal, or object they 
are in contact with. 
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2.7.3 Ad-libitum sampling 

We collected ad-libitum data throughout the study, noting the number of group-wide 

aggressive events (see Table 2.2) in the 30 minutes between successive scans.  

2.8 Intergroup encounters 

2.8.1 Definition 

Intergroup encounters were defined following a previous study at this site (Martínez-

Iñigo, 2017). An encounter started when two or more groups were in visual contact, 

or were within 100 m of each other, and ended when these conditions were no longer 

met. If a single individual remained in visual contact with the out-group while the 

rest of the group was out of sight and/or more than 100 m away the encounter was 

classed as over. However, if the same two groups met again within an hour, the 

encounter was considered ongoing. We recorded the identity of both groups, the start 

and end time, the eventual outcome, and whether any intergroup aggression occurred 

(see Appendix 3 for summary data). We used Garmin etrex-10 handheld receivers to 

record the location of the focal group at the start and end of the encounter.  

2.8.2 Outcome 

The winning group remained at the encounter location or continued its travel path 

with less than a 45° deviation in trajectory. The losing group departed the encounter 

location and/or changed its travel path by more than 45°. A draw occurred when the 

travel paths of both groups deviated equally (Kinnaird & O’Brien, 2000; Martínez-

Iñigo, 2017). We considered an encounter finished at the last intergroup behavioural 

exchange and/or when the groups were out of sight of each other.  

2.8.3 Participation 

Visibility permitting, we recorded the identity and behaviour of any participating 

individuals on an all-occurrence basis. For the purpose of analysis, individuals were 

later classified as combatants (threats and/or attacks given and/or received) or non-

combatants (no participation and/or non-aggressive participation, e.g. 

scanning/looking, affiliation, or flee (travel rapidly away from out-group) (see Table 

2.2).  
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2.9 Range use 

We recorded the focal group’s location every two minutes using Garmin etrex-10 

handheld receivers. We began recording as soon as the first adult macaque descended 

from the sleeping tree in the morning and ceased when the last adult group-member 

ascended the sleeping tree in the evening. In addition to recording sleeping sites, we 

also marked any location at which a group stopped to feed continuously for more 

than five minutes.  

2.10 Data processing and analysis 

2.10.1 Home range estimation 

Using location data collected across the entire study period, I estimated utilisation 

distributions (UDs) for the study groups using Brownian Bridge Movement Models 

(BBMMs) (see maps in Appendix 4). Utilisation distributions, which estimate the 

intensity or probability of use throughout a group/animal’s range (Millspaugh et al., 

2006), were created using the R (R Core Team, 2019) package ‘BBMM’ (Nielson et 

al., 2013). I created 50% and 95% density isopleths to delineate home range cores 

and boundaries respectively (Kernohan et al., 2001; Silverman, 1986; Worton, 1989). 

I chose to use BBMMs because unlike the Kernel Density Estimate approach, 

BBMMs (1) account for the temporal correlation of locations recorded over brief 

intervals, (2) assume that successive locations are non-independent, and (3) deal well 

with areas that are significantly over- and under-used (Fischer et al., 2013; Horne et 

al., 2007). The BBMM incorporates known estimates of location error to predict 

multiple trajectories between successive locations and quantifies the utilization 

distribution of a group/animal based on its path rather than on individual points 

(Horne et al., 2007).  

The three study groups ranged widely, and there was considerable overlap in their 

UD estimates. I used the kerneloverlap command of the ‘adehabitatHR’ (Calenge, 

2011) package in R version 3.6.1 (R Core Team, 2019) to calculate 95% UD Overlap 

Index values (UDOI) for each pair of groups across the entire study period (Fieberg 

& Kochanny, 2005). Values of UDOI < 1 indicate less overlap relative to uniform 

space use, whereas values of UDOI > 1 indicate higher than normal overlap relative 

to uniform space use (see Appendix 4 for summary data). 
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2.10.2 Perceived intergroup encounter risk maps 

To quantify spatial variation in perceived IGE risk, I used a technique commonly 

used in epidemiological studies to map disease risk from case-control data (Campos 

& Fedigan, 2014; Davies et al., 2018; Kelsall & Diggle, 1995; Lawson & Williams, 

1993). The technique estimates a relative risk function using a ratio of two kernel 

density estimates: one derived from “case” data, e.g. all individual occurrences of an 

infectious disease, and the other from “control” data, i.e. a random sample of 

individuals from the population at risk. By doing so it is possible to estimate spatial 

variation in disease risk. I calculated a “perceived IGE risk landscape” for each group 

as the ratio of IGEs (the “cases”) to normal usage density (the “controls”). We 

recorded the focal group’s location every two min using Garmin etrex-10 handheld 

receivers and extracted location data every thirty minutes (the “controls”). We also 

recorded the location of the start of any IGEs (the “cases”).  

Risk maps were made on a monthly basis for each group, producing 33 in total (see 

Appendix 5). The resulting maps represent the probability of the focal group 

encountering another given their underlying pattern of space use, and a continuous 

numerical value is assigned to each pixel of the map (range: 0.001 to 1). This value 

can be interpreted as the relative risk of experiencing an IGE in any area of a group’s 

home range. Because each map is derived from a different number of case and control 

points, over a different home range area, pixel size varies by group (PB1B=17x16 

m; R1=25x23 m; R3=12x18 m).  Using the R (R Core Team, 2019) package ‘sparr’ 

(Davies et al., 2018), I used multiscale adaptive kernel smoothing to simultaneously 

smooth the density estimates at different bandwidths, depending on “case” density 

(Abramson, 1982; Silverman, 1986). This allows for the use of different kernel 

smoothing parameters (bandwidths) in areas with different amounts of data. This 

greatly reduces estimation bias and prevents the over- and under-smoothing that 

commonly results from applying the same fixed bandwidth to areas of high and low 

data density. 

In addition, I generated P value (α = 0.05) risk surfaces for each group using Monte-

Carlo (MC) simulation of the kernel-estimated risk functions. This allowed me to 

identify areas of statistically significant high and low IGE risk. First, the “case” and 

“control” data are pooled (IGEs and normal use locations respectively); then points 

are randomly sampled from this pooled data, without replacement, to represent the 
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new simulated “cases”. The remaining points are used as the estimated “controls”. 

The risk function is calculated as above and stored, and the procedure is repeated 

1000 times. The P value surface is found as the proportion of simulated risk estimates 

that equal or exceed the estimated risk from the observed data at each evaluation 

point. Single-tailed tests produce high-risk contours around any value <= 0.05; I 

conducted two-tailed tests to produce both low- and high-risk contours. Low risk 

contours surrounded any values >= 0.95, and areas with values >0.05 and <0.95 were 

classified as medium risk. 

2.10.3 Assignation of risk values to behavioural observations 

Using the monthly risk maps described in section 2.10.2, I assigned a risk value to 

each focal and scan sample, based on the location at which they  ended. Using the R 

(R Core Team, 2019) package ‘raster’ (Hijmans, 2020), I attached the risk contour 

value (low, medium, high) from the previous month to each  sample, e.g. for each 

group, focal/scan samples that occurred in September 2018 were assigned risk values 

from the August 2018 risk map. Although using risk maps for the previous month 

results in a time lag between observations and risk conditions, particularly for 

focal/scan samples conducted late in the month, I chose to use risk maps from the 

previous month to avoid the possibility of assigning risk values based on IGEs that 

had not yet occurred. Given that I was also interested in how a group’s recent IGE 

win/loss record (from the previous month) influences their response to risk, using 

risk maps from the previous month allowed me to investigate how a group’s recent 

actual IGE experience might influence their current response to IGE risk. Although 

this approach may seem conservative, compared to constructing weekly or even daily 

rolling risk maps, given the frequency with which each group was followed, one 

month was the smallest window in which enough data were collected with which to 

construct accurate risk maps.  

2.10.4 Food availability 

Crested macaques are eclectic feeders, consuming fruit, arthropods, leaves, 

mushrooms, shoots, bark, and occasionally eggs, small birds (personal observation), 

frogs, and snakes. However, ripe fruit is the primary and preferred food item, 

comprising approximately 50-70% of the diet, followed by arthropods at 

approximately 20-35% (O’Brien & Kinnaird, 1997; Ratna Sari, 2013). Various 
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studies have examined crested macaque dietary preferences (Kinnaird & O’Brien, 

1995, 2005; Lee, 1997; O’Brien & Kinnaird, 1997; Ratna Sari, 2013) and of the 145 

fruit species consumed, macaques consistently spend the most time and energy 

searching for and consuming Ficus spp., Dracontomelum dao, Eugenia spp., 

Palaquium spp., and Canaga odorata.  

The availability of ripe fruit was derived from phenology data collected by other 

members of the MNP as part of a long-running ecological project. Once a month, 

twenty 100 x 100 m plots were sampled. The abundance of ripe fruit was measured 

on a logarithmic scale for 15 individual plants of the 42 most important food plant 

species for crested macaques (O’Brien & Kinnaird, 1997). From these data I 

calculated the mean ripe fruit availability per month across the study area, which 

estimates the relative abundance of food during the study.   

2.10.5 Female reproductive state 

We quantified and recorded the sexual swelling state of each adult female on each 

observation day using definitions adapted from the MNP working protocol (Table 

2.4). We also recorded the date on which any new infant macaque was observed for 

the first time. We classified the new infant’s mother (which was apparent either 

because we had witnessed the birth (or its immediate aftermath), because an 

umbilical cord still trailed from her genitals, and/or from her behaviour; suckling and 

continuously carrying the infant) as pregnant for 150 days prior to the date of birth 

(Thomson et al., 1992). We classified her as lactating for 155 days (average time 

until first observed nipple deterrence (Thierry, Iwaniuk, et al., 2000)) or until she 

continuously refused suckling, whichever occurred first. 

Table 2.4 Definitions of female sexual swelling states. 

State Definition 

None No swelling. 

Inflating 
swelling 

Sexual skin starting to swell, often first on the top. Colour changing 
from pale pink to deep red. Visible wrinkles. 

Maximally 
swollen 

Full swelling. Sexual skin red, taught, and fully swollen. Colour is 
deep red. No visible wrinkles. 

Deflating 
swelling 

Sexual skin becoming less swollen. Colour changing from deep red 
back to pale pink. Visible wrinkles appearing. 
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2.10.6 Dominance rank 

To determine individual dominance ranks, I used Elo-rating (Neumann & Kulik, 

2014), which sequentially tracks an individual’s success in agonistic interactions and 

updates their rating over time. As such, individual ratings can be obtained for any 

point in time during the study, and all ranking data used in the analyses were matched 

to the day of observation. I used displacements and aggressive interactions taken 

from all focal data, supplemented with ad libitum data to calculate ratings for all 

adult macaques, sub-setting by group and sex. Only interactions with a clear 

winner/loser were used. Following Neumann et al. (2011) I assigned a different k 

value to displacements (k=50) and threats/fights (k=200). Using the same k value 

would imply that all interaction types have equal consequences in terms of 

dominance rank, i.e. when calculating an individual’s Elo-rating, no distinction 

would be made between mild and severe aggression. However, a physical fight is 

likely to be much more relevant in terms of determining an individual’s social status 

than a displacement or threat (Albers & de Vries, 2001; Neumann et al., 2011). This 

is reflected in the use of different k values for these interaction types. 

2.10.7 Dyadic composite sociality index 

To estimate the strength of the social bond between individuals, I used a dyadic 

composite sociality index (DCSI) (Sapolsky et al., 1997; Silk et al., 2013) based on 

the proportion of observation time each focal subject x spent grooming, contact-

sitting with, and in close proximity (sitting within one body length) to partner y. The 

DCSI was calculated using the following equation: 

  

Here, d is the number of behaviours that contribute to the index; ��� is the proportion 

of observation time focal individual x spent in behaviour i for dyad xy; and � is the 

mean rate of behaviour i for individual x across all x…yn dyads. Here, � is calculated 

in a different way than the DCSI presented by Silk et al. (2013): originally � is the 

mean rate or proportion of behaviour i across all dyads, such that high DCSI values 

represent dyads that have more frequent and/or longer lasting affiliative interactions 

than the average dyad in their group. However, for these analyses I was primarily 
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interested in how individuals choose to direct their social effort when under potential 

threat. As such, I calculated the index so that DCSI values would instead represent 

the social preference of individual x for partner y1, compared with the social 

preference of individual x for partner y2…yn. Therefore, a high DCSI value for dyad 

xy represents the high social preference of individual x for individual y, compared to 

the social preference of individual x for other potential partners. 

2.10.8 Statistical analysis 

I conducted all analyses in R version 3.6.1 (R Core Team, 2019). Data were analysed 

with generalised linear mixed models (GLMMs) (Bolker et al., 2009), using the 

‘glmmTMB’ (Brooks et al., 2017) and ‘lme4’ (Bates et al., 2015) packages. GLMMs 

allow for the simultaneous analysis of multiple independent variables whilst 

controlling for the non-independence of repeated sampling by treating experimental 

units (e.g. individuals, dyads, and/or groups where relevant) as random effects (Zuur 

et al., 2009). Depending on the distribution of each response variable around its 

predicted mean, I specified a binomial, negative binominal, Poisson, zero-inflated 

Poisson, or Gamma response distribution, with the canonical link function in all cases 

(specified throughout the thesis) (Zuur et al., 2009). For all ‘glmmTMB’ models, I 

used the Anova.glmmTMB function from the ‘glmmTMB’ package (Brooks et al., 

2017) to test the significance of the fixed effects using a likelihood ratio test (LRT), 

assuming an asymptotic chi-square distribution of the test statistic; for the ‘lme4’ 

models I used the mixed function from the ‘afex’ package (Singmann et al., 2017). 

These systematically drop fixed effects one at a time (Barr et al., 2013), comparing 

each reduced model (lacking the fixed effect of interest) with the full model. I then 

used the confint function to calculate profile likelihood confidence intervals around 

the fixed effect estimates (Bolker et al., 2009). 

Binomial model estimates and confidence intervals were converted to odds ratios to 

aid in interpreting the values of the estimates, particularly for multi-level factors, and 

to show effect sizes (negative binomial and Poisson model estimates and confidence 

intervals were converted to incident rate ratios). Because it is inappropriate to 

evaluate interaction effects in nonlinear models simply by looking at the sign, 

magnitude, or statistical significance of the coefficient on the interaction term, this 

makes simple summary measures of these effects difficult (Ai & Norton, 2003; 

Brambor et al., 2006). The interaction effect may be different for different values of 



  Chapter 2
   

 

37 
 

variables and should not be evaluated solely by reference to the p-value of the overall 

effect. Rather, in order to provide a substantively meaningful interpretation, based 

on considerations of biological significance and effect size, it is more appropriate to 

calculate and plot the marginal effects of the interacting variables, and the uncertainty 

with which they are estimated, across a representative range of their values. I used 

the package ‘emmeans’ (Lenth et al., 2019) to do this and where appropriate present 

the results of interaction effects graphically, in addition to presenting tables of 

coefficients. Model fit and assumptions were verified by plotting residuals versus 

fitted values with the package ‘DHARMa’ (Hartig, 2019). This package uses a 

simulation-based approach to create readily interpretable scaled (quantile) residuals 

for fitted GLMMs. To assess predictor collinearity I used the collin.diag function of 

the package ‘misty’ (Yanagida, 2020) to derive generalised variance inflation factors 

(GVIF(1/(2 x d.f.))) for each model. Before fitting all models, I z-transformed all 

continuous variables using the scale function. 
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Abstract 

The spatial distribution of perceived risk can alter behaviour and time allocation 

patterns in solitary and group-living animals. This “landscape of fear” concept has 

been well studied in the context of predation and human disturbance, but few studies 

have investigated whether spatial variation in perceived intergroup encounter (IGE) 

risk has similar effects on behaviour. We explored whether three groups of wild 

crested macaques (Macaca nigra) would pre-emptively adjust intragroup group-level 

spatial cohesion and behavioural synchrony in response to perceived IGE risk. First, 

monthly relative risk maps were created from IGE data. We then explored whether a 

behavioural indicator of anxiety was related to risk in order to validate the maps. We 

used generalised linear mixed models to compare behaviour in low and high risk 

areas, whilst controlling for group size, preferred resource availability, intragroup 

aggression, time of day, and habitat visibility. We found that groups adjusted spatial 

cohesion and behavioural synchrony in high risk areas. However, the nature of this 

response depended on the interaction between risk and IGE win/loss record for the 

previous month; spatial cohesion and behavioural synchrony increased among 

 
1 Author contributions: JW, NK, and BM conceived the study. JW, NK, BM, and AE designed the 
study. JW and EA collected data. JW analysed data and wrote the manuscript. JW, NK, and BM 
revised manuscript drafts. MA and AE stewarded the field project of which this study was a part. 
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habitual losers and decreased among habitual winners. Subordinate groups appear to 

adopt a defensive strategy in high risk areas, whilst dominant groups adopt a more 

exploratory one. This highlights the role of intergroup social dynamics in 

determining group-level patterns of behaviour. 

3.1 Introduction 

In many social species, stable groups of individuals cooperate in defence of territory, 

food, or mating opportunities, against other conspecific groups (Kitchen & Beehner, 

2007; Krause & Ruxton, 2002; Radford et al., 2016); and there is increasing evidence 

that intergroup competition can drive the evolution of social behaviour (Alexander 

& Borgia, 1978; Choi & Bowles, 2007; Majolo et al., 2016; Puurtinen & Mappes, 

2009; Thompson et al., 2017). At their most extreme, encounters with rival groups 

can result in the injury or death of participants, in winning as well as losing groups 

(Cheney & Seyfarth, 1987; Fashing, 2001; Hölldobler & Lumsden, 1980; Martínez-

Iñigo, 2017; McGraw et al., 2002; Mech, 1994; Mills, 1983; Payne, Lawes, et al., 

2003; Wrangham et al., 2006). Even if physical injury is avoided, defeated groups 

may experience increased energy expenditure (Crofoot, 2013), increased anxiety 

(Radford, 2008b), and reduced time for feeding or other valuable activities (Yi et al., 

2020) (compared to victorious groups). Most importantly, defeated groups may lose 

short-term access to valuable resources, and if a pattern of group dominance is 

established this exclusion may become more permanent as parts of a group’s home 

range are annexed by dominant rivals (Kitchen & Beehner, 2007; Radford, 2003; 

Wilson & Wrangham, 2003). Changes in home range size and/or resource access 

have well-established effects on lifetime reproductive fitness: individuals in groups 

with more productive home ranges tend to experience increased offspring survival 

and shorter interbirth intervals (Lemoine, Boesch, et al., 2020; Nilsen et al., 2004).  

Given the significant effect that intergroup competition can have on individual 

fitness, researchers from various disciplines have hypothesised a link between 

intergroup competition and intragroup social structure (Choi & Bowles, 2007; Reeve 

& Holldobler, 2007; Sterck et al., 1997; Wrangham, 1980). At the group level, most 

investigations have focussed on the evolution of behavioural traits such as 

cooperation, altruism, and friendship, all of which promote intragroup social 

cohesion (Alexander & Borgia, 1978; Majolo et al., 2016). Increased social cohesion 
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may facilitate future participation in intergroup conflict (IGC), overcoming the 

collective action problem (CAP) associated with joint territorial/resource defence 

(Gavrilets, 2015). That is, if collective action creates a public good that all group 

members can share in equally (or nearly so), natural selection favours free-riders, 

who partake of the benefits without sharing the costs. Their presence can inhibit 

collective action, resulting in the loss of the public good for all (Nunn & Lewis, 

2001). However, despite the recent interest in the effect of intergroup competition on 

intragroup social cohesion and its role in overcoming CAPs (Bruintjes et al., 2016; 

Mirville et al., 2020; Preston et al., 2020; Samuni, Mielke, et al., 2019; Yi et al., 

2020) (see Radford et al. (2016) for a thorough review), less attention has been payed 

to the possible effect of intergroup competition on intragroup spatial cohesion, i.e. 

the extent to which group-mates maintain interindividual proximity. To succeed in 

intergroup competition, individuals must not only participate, but also coordinate 

with group-mates the timing and intensity of action (Zhang et al., 2019). Indeed, out-

group attacks frequently fail because individual participants are poorly coordinated 

(De Dreu et al., 2016). It seems evident then that group-mates must be in broadly the 

same place at the same time. Otherwise communication, information exchange, 

participant recruitment, and coordinated action may be compromised (Boesch et al., 

2008; Grinnell, 2002; Radford, 2008b; Wrangham, 1999). In addition to the 

importance of spatial cohesion for coordinated action, aggregation may also reduce 

the individual costs of IGC. Individuals in scattered groups risk being outnumbered 

by the active participants of rival groups (a key determinant of encounter outcome 

(Majolo et al., 2020)), and/or being outmanoeuvred/isolated by the coordinated 

actions of rivals, with potentially lethal consequences (Boesch et al., 2008; Martínez-

Iñigo, 2017; Watts et al., 2006). 

One of the main factors that allows groups to remain spatially cohesive is behavioural 

synchrony (Agetsuma, 1995; Conradt & Roper, 2000), i.e. the extent to which 

individuals perform the same activity at the same time (Asher & Collins, 2012; 

Duranton & Gaunet, 2016). The less synchrony there is between the activities of 

group members, the more likely the group is to split (Conradt & Roper, 2005; Engel 

& Lamprecht, 1997). For example, if an individual wishes to remain with the group 

it cannot stay behind to sleep while the rest of the group forages in a different location 

(Conradt & Roper, 2000; Rook & Penning, 1991). However, the maintenance of 

synchrony depends less on the precise behaviour being performed and more on 
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whether individuals are active (e.g. foraging or travelling) or inactive (e.g. resting or 

socialising) at the same time (Gautrais et al., 2007). Behavioural synchrony begets 

spatial cohesion, which promotes effective collective action in the event of an 

intergroup encounter (IGE). Thus, in order to remain stable (and competitive in the 

context of  IGC), groups need to be spatially cohesive and behaviourally 

synchronous. As such, intergroup competition likely exerts a strong selection 

pressure on spatial cohesion and behavioural synchrony. Under this scenario we 

would expect to see adaptive changes in both group-level properties in response to 

temporal changes in the intensity of intergroup competition, and to spatial variation 

in the risk of encountering rival groups.  

Spatial variation in perceived risk creates a “landscape of fear” (Bleicher, 2017) that 

can alter animal behaviour (changes in vigilance, foraging, spacing, and group size 

(Banks, 2001; Dannock et al., 2019; Laundré et al., 2001; Makin et al., 2012)) or 

time allocation patterns (avoiding/underusing high risk areas) (Heithaus & Dill, 

2002; Kotler et al., 2016; Willems & Hill, 2009). The landscape of fear approach has 

largely been used to study the effects of predation risk, and to a lesser extent human-

wildlife conflict (Nowak et al., 2017; Reisland & Lambert, 2016; Waterman et al., 

2019), but it can also be applied to the perceived risk of aggressive encounters 

between conspecific groups (Gibson & Koenig, 2012; LaBarge et al., 2020; 

Markham et al., 2013; Tórrez-Herrera et al., 2020). Theory predicts that in response 

to predation risk group-living animals should clump together in order to exploit the 

confusion and dilution effects (Hamilton, 1971; Krause & Ruxton, 2002; van Schaik, 

1983). Respectively, these make it more difficult for a predator to target any one 

group member and reduce the per capita risk of injury if an attack does occur. In 

addition, several studies indicate that individual predation risk is reduced by 

synchronising behaviour with others (Bode et al., 2010; May et al., 2008). Doing so 

allows group-mates to stay together, again making it more difficult for a predator to 

single-out any one individual. Given the common potential for injury or death we 

might anticipate similar responses to IGE risk as to the threat of predation; although 

these responses are likely modulated by factors specific to intergroup competition, 

such as group dominance (in the mid- to long-term) and winner-loser effects (in the 

short-term).  
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Of the limited studies that exist, most have focussed on non-human primates 

(hereafter primates). Primates are a diverse group of long-lived, socially complex 

animals, making them an ideal taxon in which to investigate the evolutionary and 

ecological processes that affect behavioural variation (Smuts et al., 2008). Most 

recently, LaBarge et al. (2020) explored changes in spatial cohesion in response to 

actual and perceived IGE risk in samango monkeys (Cercopithecus albogularis 

schwarzi). They observed an increase in cohesion in reaction to actual IGC, but no 

pre-emptive change in areas of high perceived encounter risk. Similarly, Benadi et 

al. (2008) investigated interindividual distances and activity patterns in Verreaux’s 

sifaka (Propithecus verreauxi) in overlapping vs. core home range areas, but found 

no significant changes in spatial cohesion or time spent feeding, travelling, or resting 

in potentially high encounter risk areas. Both chimpanzees (Pan troglodytes) and 

spider monkeys (Ateles geoffroyi) stay closer together when feeding in areas where 

the risk of IGC is high (Aureli et al., 2006; Mitani et al., 2010), and although Tórrez-

Herrera et al. (2020) did not explicitly measure spatial cohesion or behavioural 

synchrony they observed an increase in the number of capuchin (Cebus capuchinus) 

group members feeding together (at the same time) in contested areas of their home 

range. They posited that this may function to increase spatial cohesion; improving 

the chances of detecting rival groups, diluting individual risk of injury, and 

potentiating joint defence of resources in the event of an IGE.  

Individuals of many group living species (including non-primate species) also act in 

concert to assault/repel potential predators, often in a highly coordinated, 

synchronous way (Crofoot, 2012). Baboons (Papio spp.) kill hunting leopards 

(Panthera pardus) together (Cowlishaw, 1994), and capuchin monkeys (C. 

capuchinus, C. imitator) cooperate to attack snakes (Boa constrictor) that have 

captured group mates (Chapman, 1986; Jack et al., 2020). White-lipped peccaries 

(Tayassu pecari) gather to threaten and chase jaguars (Panthera onca); and of 

particular interest in the context of spatial cohesion, the decision to do so may be 

driven by group size and spread (Rampim et al., 2020). A similar pattern of 

coordinated behaviour has been observed in response to out-group threats. After 

encountering rival groups of Taï chimpanzees, individuals emit loud calls, drum on 

buttress roots, and then wait for other group members to gather before initiating an 

attack (Boesch & Boesch-Achermann, 2000). During wolf (Canis lupus) territorial 

aggression the lead individual of the chasing pack will often pause or turn back mid-
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chase to wait for lagging members to catch up (Harrington & Mech, 1979). And, 

multi-female groups of eastern whipbirds (Psophodes olivaceus) sing highly 

synchronised songs to defend mating positions against rival females (Rogers et al., 

2007; Rogers & Mulder, 2004). 

Finally, behavioural synchrony may serve other adaptive purposes in the context of 

intergroup competition; to signal group cohesion to rivals, to enhance intragroup 

cooperation, and to stimulate an endorphin release that elevates pain thresholds. For 

example, it appears that the elaborate synchronous behavioural displays exhibited by 

allied male Indian Ocean bottlenose dolphins (Tursiops aduncus) are directed not 

only at females, but may also serve a signalling role within and between male 

alliances (Connor et al., 1992, 2006). And, among human subjects, synchronised 

physical training significantly increases pain thresholds, likely through heightened 

opiodergic activity (Cohen et al., 2010; Tarr et al., 2015). Clearly, in certain 

predatory and many IGE contexts, adaptive individual decision-making may promote 

the emergence of group-level spatial cohesion and behavioural synchrony. 

Successful intragroup cooperation requires an interplay between these factors: 

behavioural synchrony allows group members to remain in relatively close proximity 

(or allows them to reunite quickly if dispersed), which facilitates spatial cohesion, 

which in turn potentiates coordinated, synchronous, collective action. These 

strategies have been investigated for prey species (reviewed in Lima & Dill, 1990), 

and for animals living in human-dominated landscapes (Ciuti et al., 2012; Clinchy et 

al., 2016; Stillfried et al., 2017). They have also been examined in the context of 

actual IGC (to a limited extent). But the way in which the perceived threat of IGE 

influences patterns of spatial cohesion and behavioural synchrony has received very 

little attention.  

Furthermore, because the costs and benefits of IGC are experienced very differently 

by winning and losing groups, it is important to consider whether risk perception is 

influenced by how likely individuals think they are to win/lose an encounter. Clearly, 

we cannot know another animal’s mind, but as a proxy we may investigate how a 

group’s recent IGE win/loss record influences their subsequent response to encounter 

risk. Groups that habitually lose encounters (hereafter subordinate groups) may 

perceive them as particularly costly events, whilst habitual winners (hereafter 

dominant groups) may perceive IGEs as opportunities to be exploited, the benefits 
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of which may outweigh the potential costs (Crofoot, 2013; Lemoine, Boesch, et al., 

2020; Sicotte et al., 2007). In addition to retaining access to any contested food 

resources, individuals in winning groups may gain out-group copulations, and/or the 

chance to assess group transfer options (Hale et al., 2003; Sommer & Reichard, 

1997). Also, by repeatedly winning IGEs victorious groups may reinforce a pattern 

of intergroup dominance (Arseneau, 2010; Cooper et al., 2004; Crofoot & 

Wrangham, 2010; Harris, 2006), potentially offsetting future conflict costs by 

reducing rival group size (if lethal violence occurs (Langergraber et al., 2017)), 

expanding their home range, and/or discouraging subordinate groups from 

subsequent engagement (Williams et al., 2004). Evolutionary game theory predicts 

that animals should assess their chances of victory and avoid contests they are likely 

to lose (Maynard Smith, 1982). As such, we might expect subordinate groups to 

behave in ways that decrease the likelihood of encountering rivals, and/or minimise 

the potential costs if they do. However, presumably the original prediction cuts both 

ways: we might also expect dominant groups to behave in ways that (a) maximise 

the potential benefits of IGEs they are likely to win, or (b) that reflect a relatively 

benign attitude towards IGE risk (given that the most dominant groups may perceive 

little to no threat from subordinate rivals). 

In this study we examine to what degree variability in perceived IGE risk explains 

anxiety, spatial cohesion, and behavioural synchrony among three groups of wild 

adult crested macaques (Macaca nigra) in the Tangkoko Nature Reserve (TNR), 

Sulawesi, Indonesia. Specifically, we hypothesise that perceived IGE risk induces 

anxiety among crested macaques (H1), and that groups will alter their spacing (H2) 

and behavioural synchrony (H3) in ways that reflect the interplay between perceived 

IGE risk and the perceived cost/benefit balance of engaging with rival groups. We 

use self-scratching as an indicator of anxiety (a well-established indicator of 

physiological stress in primates (Maestripieri et al., 1992; Polizzi di Sorrentino, 

Schino, Tiddi, et al., 2012; Schino et al., 1991), including crested macaques 

(Neumann et al., 2013)) to validate our approach to quantifying perceived encounter 

risk; the elliptical area occupied by a group as a measure of group cohesion (smaller 

area indicates greater cohesion (King & Cowlishaw, 2009)); a synchrony index 

derived from all behaviours as well as the proportion of a group simultaneously 

active (feeding or travelling) vs. inactive (resting or socialising) as measures of 

behavioural synchrony (Agetsuma, 1995; Rook & Penning, 1991); and the 
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proportion of IGCs a group lost in the previous month (number of losses divided by 

number of wins) as a measure of group dominance. We test the following non-

mutually exclusive predictions (Table 3.1): 
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Table 3.1 Hypotheses to test the influence of perceived IGE risk on anxiety, group cohesion, and behavioural synchrony among crested macaques. 

Hypothesis Prediction Rationale 

H1: Perceived IGE risk 
influences anxiety levels 

P1.1 General increase in self-scratching in 
perceived high IGE risk areas. 

IGEs can be stressful events and the prospect of one may induce anxiety. Self-
scratching is a reliable indicator of anxiety among macaques.  

P1.2 A positive interaction between perceived IGE 
risk and the proportion of encounters lost in the 
previous month, such that individuals in 
subordinate groups self-scratch more in high 
encounter risk areas than individuals in dominant 
groups. 

Losing an IGE causes more physiological stress than winning one, and subordinate 
groups are more likely to lose encounters. Therefore, the prospect of an encounter 
should induce more anxiety among individuals in subordinate groups than 
dominant groups. 

H2: Perceived IGE risk 
influences spatial 
cohesion 

P2.1 A spreading positive interaction between 
perceived IGE risk and the proportion of encounters 
lost in the previous month, such that subordinate 
groups increase spatial cohesion in high risk areas 
and dominant groups do not. 

For individuals in subordinate groups, increasing spatial cohesion may (1) reduce 
the likelihood of detection by other groups, (2) potentiate the exchange of 
information if another group is spotted, (3) dilute the risk of injury if an encounter 
does occur, and (4) increase the odds of being part of a well-coordinated defensive 
action. This should minimise the likelihood and cost of IGEs.  
Individuals in dominant groups may perceive little to no threat from subordinate 
groups, rendering items 1-4 above unnecessary.  

P2.2 A cross-over interaction between perceived 
IGE risk and the proportion of encounters lost in 
the previous month, such that subordinate groups 
increase spatial cohesion in high risk areas and 
dominant groups spread out. 

For individuals in subordinate groups, see prediction 2.1. 
Individuals in dominant groups may perceive IGEs as relatively cost-free 
opportunities to pursue out-group mating, assess group transfer options, and/or 
reinforce intergroup dominance. Spreading out should maximise the likelihood of 
encountering other groups for these purposes. 

H3: Perceived IGE risk 
influences behavioural 
synchrony 

P3.1 A spreading positive interaction between 
perceived IGE risk and the proportion of encounters 
lost in the previous month, such that subordinate 
groups increase behavioural synchrony in high risk 
areas and dominant groups do not. 

For individuals in subordinate groups, increasing behavioural synchrony may (1) 
reduce the risk of being singled-out, isolated, and attacked by another group, (2) 
minimise the time spent in high encounter risk areas (if individuals prioritise active 
behaviours), (3) promote spatial cohesion, and (4) enhance intragroup cooperation. 
This should minimise the likelihood of detection by other groups and reduce the 
risk of injury if an encounter does occur. 
Individuals in dominant groups may perceive little to no threat from subordinate 
groups, and so have no need to synchronise their behaviour in high risk areas. 
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3.2 Methods 

We studied the behaviour and ranging patterns of crested macaques living in three 

neighbouring groups in the TNR, Sulawesi, Indonesia (see Fig. 2.1), from March 

2018 through June 2019.  

3.2.1 Ethical statement 

See section 2.1. 

3.2.2 Study site 

See section 2.2. 

3.2.3 Study subjects 

See section 2.3. 

3.2.4 Data collection 

See section 2.4. 

3.2.5 Behavioural sampling 

See section 2.7.2. 

3.2.6 Control variables 

Spatial cohesion is usually conceived of as a balancing act between the selective 

pressures of intragroup feeding competition and predation risk. These competing 

forces may be mediated by adjusting interindividual spacing (Janson, 1988), and it 

is important to account for this when assessing the influence of risk on spatial 

cohesion. The crested macaques at this study site are an ideal cohort with which to 

untangle the effects of perceived IGE risk from predation risk and intragroup feeding 

competition for two key reasons. First, predation is rare among this population: 

crested macaques have several potential predators, such as reticulated pythons 

(Python reticulatus), dogs (Canis familiaris), and Sulawesi hawk-eagles (Nisaetus 

lanceolatus), but predator encounters and fatalities are rare (O’Brien & Kinnaird, 

1996, 1997; MNP, unpublished data) (see Appendix 1 for summary data). As such, 

no additional control variables related to predation risk were included in the analyses. 

Second, to control for potential effects of intragroup feeding competition on spatial 

cohesion (and feeding effort, which may also affect behavioural synchrony), we 
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included a monthly measure of relative ripe fruit availability (crested macaques’ 

primary food source (O’Brien & Kinnaird, 1997; Ratna Sari, 2013)) in all analyses. 

Group size is also likely to exert a strong influence on both spatial cohesion and 

behavioural synchrony. Larger groups are likely to spread out more than small 

groups, particularly when feeding, to reduce intragroup competition (Agetsuma, 

1995; Smith et al., 2005). Because this will increase the area occupied by a group 

and reduce opportunities for communication (and thus synchrony), we included daily 

adult group size as a control variable in the spatial cohesion and behavioural 

synchrony analyses. Crested macaques typically spend more time resting in the 

midday and afternoon periods of the day than the morning (O’Brien & Kinnaird, 

1997); therefore time of day is likely to influence both group spread and the 

probability of behavioural synchrony. As such, we included hour of the day in both 

main analyses. It is also likely that habitat characteristics such as understory visibility 

will limit the ability of macaques to monitor each other (which may affect group 

spread and synchrony), and of observers to accurately monitor macaques (Boinski & 

Garber, 2000; Koda et al., 2008). Vegetation density differs greatly across the study 

area. Some areas are entirely clear, such as the beachfront, and others are virtually 

impassable, such as regenerating post-fire scrub. A categorical measure of visibility 

was recorded at each scan and added as a control (scan visibility) to both main 

analyses. Four categories were defined: open ground/forest clearing (1), light (2), 

medium (3), and dense (4) vegetation. For the spatial cohesion analysis, we also 

included the ad libitum number of group-wide aggressive events in the 30 minutes 

pre-scan (i.e. between successive scans), and the proportion of the group that was 

engaged in active behaviour (see Table 2.3). We included aggression to control for 

the effect of intragroup competition on social cohesion and thus group spread; 

selective attraction occurs between former opponents in crested macaques (Petit & 

Thierry, 1994). We added the proportion of the group that was active to control for 

the fact that ‘inactive’ individuals (those resting and/or socialising) tend to be in 

much closer proximity to each other than those foraging or travelling. Because 

communication deteriorates when individuals are spread over a large area, hindering 

the ability of individuals to synchronise their behaviour, we included group cohesion 

as a control in the behavioural synchrony analysis. Finally, time spent feeding is often 

strongly influenced by variation in individual energy requirements (Altmann, 1980; 

Dunbar & Dunbar, 1988). Pregnant or lactating females generally have greater 
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(though not identically so) energy requirements than “non-reproductive” females, 

and males in general (reviewed in Gittleman and Thopmson, 1988). As such, high 

numbers of females in a single reproductive state, and/or a pregnant/lactating state 

may increase group-wide behavioural synchrony; because of their similar energy 

requirements. We controlled for this in the behavioural synchrony model by 

including the daily proportion of a group’s females that were in the same 

reproductive state, and the daily proportion in a pregnant or lactating state. 

3.2.7 Ripe fruit availability 

The availability of ripe fruit was derived from phenology data collected by other 

members of the MNP as a part of a long-running ecological project (see section 

2.10.4).  

3.2.8 Female reproductive state 

We recorded and defined the sexual swelling state of each adult female following the 

procedure described in section 2.10.5.  

3.2.9 Dominance rank 

Individual dominance ranks were determined following the procedure described in 

section 2.10.6. 

3.2.10 Intergroup encounters 

Intergroup encounters were defined as described in sections 2.8.1 and 2.8.2. Because 

responses to risk are likely to be subject to winner and loser effects (Arseneau, 2010; 

Cooper et al., 2004; Crofoot & Wrangham, 2010; Harris, 2006), we calculated a 

monthly IGE loss to win ratio for each group by dividing their number of losses by 

wins (see Appendix 3 for IGE summary data). 

3.2.11 Relative intergroup encounter risk 

Relative intergroup encounter risk was quantified following the procedure described 

in section 2.10.2. 

3.2.12 Selection of scan samples for analysis 

Risk values were assigned to each scan sample following the procedure described in 

section 2.10.3. Only low and high risk condition scans were retained for analysis, in 
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order to compare spatial cohesion and behavioural synchrony in two contrasting risk 

conditions. Additionally, in order to qualify for inclusion in these analyses, scan 

samples had to meet three criteria: (1) the entire scan had to be undisturbed, e.g. by 

predators (see section 2.5) or tourists (see section 2.6) etc.; (2) at least 25% of a 

group’s adults had to be simultaneously visible; and (3) the scan had to be 

independent of any IGE, i.e. scans recorded within a one hour window, before, 

during, or after the start/end of an IGE, were excluded from analysis. This was to 

ensure a focus on behaviour associated with the potential threat of IGE, and not on 

behavioural responses associated with an incipient or recently concluded encounter 

(proportion of scans removed by group due to all conditions: PB1B=0.38, R1=0.91, 

R3=0.29). The proportion of R1 scans that were excluded was particularly high 

because of criteria two (at least 25% of the group’s adults had to be simultaneously 

visible). R1 had many more adults than either PB1B or R3 (see Table 2.1) so this 

condition was difficult to meet. 

3.2.13 Data analysis 

3.2.13.1. Relative intergroup encounter risk and self-scratching 

To validate the relative risk approach, we calculated individual self-scratching rates 

(frequency per minute) from continuous all-occurrences ten minute focal follow data 

(Altmann, 1974), collected during a simultaneous data collection protocol (see all-

occurrences focal sampling method in section 2.7.1). To test if self-scratching 

increased in line with our perceived IGE risk maps (H1: Prediction 1.1, Table 3.1), 

we used the package ‘glmmTMB’ (Brooks et al., 2017) to fit a zero-inflated Poisson 

generalised linear mixed model (GLMM) with log link function and an offset for 

observation duration (M1). The log link function ensures positive fitted values, and 

the Poisson distribution is typically used for count data (Zuur et al., 2009). We 

compared self-scratching rates in the low and high IGE risk conditions. Fixed effects 

were risk condition (factor with 2 levels); proportion of IGEs lost in the previous 

month (continuous); and daily subject rank (continuous). The interaction term risk 

condition x proportion of IGEs lost in the previous month was included to test 

Prediction 1.2 (Table 3.1), that win/loss record affects IGE risk perception, and the 

interaction risk condition x daily subject rank was included to account for the 

modulating effect of dominance rank on self-scratching among primates, including 

macaques (Kaburu et al., 2012; Palagi & Norscia, 2011; Troisi & Schino, 1987). To 
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control for repeated observations of the same individuals within the same groups we 

used subject nested in group as a random intercept and included random slopes for 

the main effect of risk condition. 

3.2.13.2 Spatial cohesion 

Spatial cohesion was calculated following King & Colishaw (2009). At the end of 

each scan we measured the distance (m) between the individuals at the front and back 

of the group (relative to the group’s ongoing, or last direction of travel) (a), and 

between the individuals on either side of the group (b), using an Eventek laser 

rangefinder (range 0.03 – 60 m, accuracy ± 2.0 mm). The estimated elliptical area 

(e) occupied by the visible individuals was calculated as π × ½a × ½b. From this, 

we calculated cohesion (c) as the number of individuals in view (v) divided by the 

area they occupied, that is, v/e.  

To test if group spatial cohesion per scan changed in response to IGE risk (H2), we 

used the package ‘glmmTMB’ (Brooks et al., 2017) to fit a Gamma GLMM with a  

log link function (M2). The log link function ensures positive fitted values, and the 

Gamma distribution is typically used for continuous data with a skewed distribution 

(Zuur et al., 2009). Fixed effects for the cohesion model were risk condition (factor 

with 2 levels), proportion of IGEs lost in the previous month (continuous), daily adult 

group size (continuous), monthly ripe fruit availability (continuous), hour 

(continuous), scan visibility (factor with 4 levels), aggressive events in previous 30 

minutes (continuous), and proportion of group in active behaviour per scan 

(continuous). The interaction term risk condition x proportion of IGEs lost in the 

previous month was included to test predictions 2.1 and 2.2 (Table 3.1), that win/loss 

record affects IGE risk perception. To incorporate the dependency among scans (on 

the occasions when two observers followed distant parts of the same group), and 

among observations of the same group, on the same day, we used scan ID nested in 

day, nested in group as a random intercept. When random slopes for the interaction 

between risk condition and proportion of IGEs lost in the previous month were 

included the random effects parameters and residual variance were unidentifiable, so 

the slopes were removed (Barr et al., 2013). This was also the case when the simple 

main effects were included as random slopes, so these were also removed. 
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3.2.13.3 Behavioural synchrony 

General behavioural synchrony was also calculated following King & Colishaw 

(2009). We quantified group-wide general behavioural synchrony using Simpson’s 

Diversity Index (Krebs, 1989; Peet, 1974), a simple index that measures diversity in 

categorical data. Behavioural synchrony (Bs) at each scan was calculated as 

 where ni is the number of individuals engaged in a specific activity 

and N is the total number of individuals in view, for i=4 categories (feed/foraging, 

travelling, resting, socialising; Table 2.3). Bs values can range from zero to one, with 

values near zero indicating that group behaviour is heterogeneous, and thus 

asynchronous. Values near one indicate that group behaviour is homogeneous, and 

thus synchronous. For the second measure of behavioural synchrony we compared 

the number of individuals per scan in an active vs. inactive state (Table 2.3).  

To test if behavioural synchrony per scan increased in response to IGE risk (H3), we 

used the ‘glmmTMB’ package (Brooks et al., 2017) to fit two models. The first model  

(M3) examined general behavioural synchrony (Bs). We fit a Beta GLMM with log 

link function. The log link function ensures positive fitted values, and the Beta 

distribution is typically used for continuous data on the interval from zero to one 

(Zuur et al., 2009). The second model (M4) examined what proportion of the group 

was engaged in active vs. inactive behaviour per scan. We used a binomial GLMM 

with logit link function. The logit link function ensures fitted values within the 0 -1 

range, and the binomial distribution is typically used to model proportion data (Zuur 

et al., 2009). 

Fixed effects for both models were risk condition (factor with 2 levels), proportion 

of IGEs lost in the previous month (continuous), daily adult group size (continuous), 

monthly ripe fruit availability (continuous), hour (continuous), scan visibility (factor 

with 4 levels), group cohesion per scan (continuous), daily female reproductive 

synchrony (continuous), and daily proportion of females pregnant or lactating 

(continuous). The interaction terms risk condition x proportion of IGEs lost in the 

previous month were included in both models to test the prediction that win/loss 

record affects IGE risk perception. To incorporate the dependency among scans, and 

among observations of the same group, on the same day, we used scan ID nested in 

day, nested in group as a random intercept for both models. As with the spatial 
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cohesion model, when random slopes were included the models failed to converge, 

so these were removed. 

3.2.13.4 Hypothesis testing and model validation 

We conducted all analyses in R version 3.6.1 (R Core Team, 2019) following the 

general procedure described in section 2.10.8. For these analyses we  used the 

Anova.glmmTMB function from the ‘glmmTMB’ package (Brooks et al., 2017)  to 

test the significance of the fixed effects, and the confint function to calculate profile 

likelihood confidence intervals around the fixed effect estimates (Bolker et al., 2009). 

Where appropriate, model estimates and profile likelihood based confidence 

intervals were converted to odds/rate ratios to aid in interpreting the values of the 

estimates (particularly for multi-level factors) and to show effect sizes (see section 

2.10.8 for further details). Where appropriate we present the results of interaction 

effects graphically, in addition to presenting tables of coefficients.  

Model fit and assumptions were verified following the procedure described in section 

2.10.8. We used the collin.diag function of the package ‘misty’ (Yanagida, 2020) to 

derive generalised variance inflation factors (GVIF(1/(2 x d.f.))) for each model, which 

did not reveal any predictor collinearity problems (Zuur et al., 2009) (largest GVIF: 

self-scratching model = 1.56; cohesion model = 1.74; general synchrony model = 

1.82; active vs. inactive model = 1.82). Before fitting the models, we z-transformed 

all continuous variables using the scale function. 

3.3 Results 

3.3.1 Self-scratching rates and intergroup encounter risk 

As predicted (P1.1), self-scratching increased significantly in high risk areas 

compared to low risk areas (M1: Fig.3.1 and Table 3.2). However, contrary to 

Prediction 1.2, there was no modulating effect of recent win/loss record (M1: Table 

3.2). These results indicate that the relative risk maps accurately reflect perceived 

levels of IGE risk for these study groups (H1). 
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Figure 3.1 Difference in self-scratching rate in areas of low/no and high perceived IGE 
risk in crested macaques (M1). Points and error bars represent estimated marginal means 
and their standard errors.   

3.3.2 Spatial cohesion 

Consistent with hypothesis H2, we found evidence that perceived IGE risk 

significantly influenced the spatial cohesion of crested macaque groups. As 

predicted, this effect differed depending on recent win/loss record (M2: Fig. 3.2 and 

Table 3.3): In high risk areas spatial cohesion per scan increased for groups with poor 

win/loss records (individuals clumped together) and decreased for groups with strong 

win/loss records (individuals spread out) (prediction 2.2). However, this effect was 

only evident at the edges of the win/loss scale, i.e. for groups that had lost or won 

more than 70% of their IGEs in the previous month (see areas to the right and left of 

the dotted red lines in Fig. 3.6). As anticipated, several control variables also had 

statistically significant effects on spatial cohesion: Group spread increased when 

more ripe fruit was available (M2: Table 3.3), when more of the group were engaged 

in active behaviours (feeding or travelling) (M2: Table 3.3), and in medium and 

dense vegetation, compared to open areas (M2: Table 3.3). 
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Figure 3.2 The effect of IGE risk and monthly win/loss record on spatial cohesion of 
crested macaque groups, as predicted from a GLMM (M2). Shaded grey areas represent 
95% confidence intervals around estimates. Red dotted lines indicate the range of x-axis 
values (to the outer left and right respectively) for which the relationship between IGE risk 
and spatial cohesion is statistically significant at α=0.05.   

3.3.3 Behavioural synchrony 

We found partial evidence in support of hypothesis H3, that perceived IGE risk 

influences behavioural synchrony in crested macaques. No statistically significant 

effect of IGE risk was indicated by the general behavioural synchrony model (M3: 

Table 3.4); although synchrony decreased as the proportion of females in a pregnant 

or lactating state increased (M3: Table 3.4). However, we found that the probability 

of being observed in an active vs. inactive state (i.e., feeding or travelling vs. resting 

or socialising) increased significantly in high encounter risk areas compared to 

low/no risk areas (M4: Fig. 3.3 and Table 3.5). As predicted (P3.1), this effect was 

modulated by recent win/loss record (M4: Fig. 3.3 and Table 3.5), but, as with the 

spatial cohesion results, the effect was not significant across the entire range of 

win/loss values: Active synchrony was significantly greater in high IGE risk areas 

than low/no risk areas, but only among groups that had lost 70% or more of their 

IGEs in the previous month. On the other hand, dominant groups (i.e. those that had 

lost 10% or less of their previous month’s encounters) were significantly less 

synchronous in high risk areas (see areas to the right and left of the dotted red lines 

in Fig. 3.3, respectively).  
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Figure 3.3 The effect of IGE risk and monthly win/loss record on active synchrony among crested 
macaques, as predicted from a GLMM (M4). Shaded grey areas represent 95% confidence intervals 
around estimates. Red dotted lines indicate the range of x-axis values (to the outer left and right 
respectively) for which the relationship between IGE risk and the probability of being observed in 
an active state is statistically significant at α=0.05. 
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Table 3.2 GLMM (M1) investigating the influence of perceived IGE risk on self-scratching in crested macaques. 

Term Levels Est SE RR RR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -1.24 0.11 a a a a a 

 IGE risk High 0.29 0.13 1.33 [0.97; 1.76] 4.86 1 0.027 

 Subject rankb  0.05 0.09 1.05 [0.92; 1.33] 0.08 1 0.777 

 Proportion of IGE losses in previous monthb  -0.01 0.08 0.99 [0.82; 1.12] 0.41 1 0.523 

 IGE risk x Subject rankb  -0.12 0.12 0.89 [0.64; 1.09] 1.05 1 0.306 

 IGE risk x Proportion of IGE losses in previous monthb  -0.05 0.11 0.95 [0.82; 1.26] 0.20 1 0.656 

Zero-inflation model         

 Intercept  -1.66 0.27 a a a a a 

 IGE risk  -0.08 0.43   0.03 1 0.855 

Random intercepts Variance SD      

 Subject within group 0.34 0.58      

Random slopes         

 IGE risk 0.36 0.60      

The model was run with a Poisson error structure and log link function, controlling for repeated observations within subjects nested in groups. Random 
slopes for the main effect of IGE risk were included, as was a zero-inflation component to model the main effect of IGE risk. The table shows fixed effects 
parameter estimates and standard errors (Est; SE); rate ratios and their 95% profile likelihood confidence intervals (RR; RR 95% CI); and LRT statistics, 
degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation (Variance; SD). a Not shown because 
of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 0.05) P values are in bold.  
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Table 3.3 GLMM (M2): Influence of perceived IGE risk and recent win/loss record on spatial cohesion in crested macaques. 

The model was run with a Gamma error structure and log link function, controlling for repeated observations within scans, days, and study groups (entered 
as random effects). The table shows fixed effects parameter estimates and standard errors (Est; SE); their 95% profile likelihood confidence intervals (95% 
CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation (Variance; 
SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. c Not shown because of having no 
meaningful interpretation in the presence of a significant interaction. Statistically significant (α = 0.05) P values are in bold.  

 

 

 

Term Levels Est SE 95% CI LRT df P value 

Test fixed effects        

 Intercept  -2.05 0.18 a a a a 

 IGE risk High -0.06 0.12 c c c c 

 Proportion of IGE losses in previous monthb  -0.23 0.09 c c c c 

 IGE risk x Proportion of IGE losses in previous monthb  0.45 0.12 [0.22; 0.68] 15.13 1 <0.001 

Control fixed effects        

 Adult group sizeb  -0.02 0.07 [-0.16; 0.12] 0.08 1 0.777 

 Ripe fruit availabilityb  -0.19 0.05 [-0.30; -0.08] 12.24 1 <0.001 

 Aggressive events in previous 30 minsb  -0.001 0.06 [-0.12; 0.11] 0.0003 1 0.986 

 Hourb  0.03 0.06 [-0.09; 0.14] 0.25 1 0.617 

 Proportion of group in active behavioural stateb  -0.54 0.17 [-0.88; -0.20] 9.91 1 0.002 

 Visibility 2 -0.41 0.21 [-0.82; 0.01] 20.59 3 <0.001 

 3 -0.71 0.18 [-1.05; -0.36]    

 4 -0.76 0.18 [-1.12; -0.40]    

Random effects Variance SD     

 Scan within day within group 0.28 0.53     
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Table 3.4 GLMM (M3): Influence of perceived IGE risk and recent win/loss record on general behavioural synchrony in crested macaques. 

Term Levels Est SE 95% CI LRT df P value 

Test fixed effects        

 Intercept  -0.18 0.25 a a a a 

 IGE risk High -0.04 0.18 [-0.40; 0.32] 0.04 1 0.848 

 Proportion of IGE losses in previous monthb  -0.30 0.15 [-0.61; -0.0005] 2.02 1 0.155 

 IGE risk x Proportion of IGE losses in previous monthb  0.28 0.18 [-0.08; 0.65] 2.34 1 0.126 

Control fixed effects        

 Adult group sizeb  -0.26 0.16 [-0.57; 0.06] 2.60 1 0.107 

 Ripe fruit availabilityb  0.03 0.09 [-0.15; 0.21] 0.11 1 0.745 

 Hourb  0.05 0.09 [-0.13; 0.23] 0.33 1 0.568 

 Group cohesionb  0.03 0.09 [-0.15; 0.20] 0.09 1 0.759 

 Overall synchrony in female reproductive stateb  0.03 0.15 [-0.27; 0.34] 0.05 1 0.821 

 Proportion pregnant or lactating femalesb  -0.32 0.11 [-0.54; -0.10] 8.39 1 0.004 

 
Visibility 2 0.42 0.33 [-0.23; 1.08] 6.50 3 0.090 

3 -0.05 0.28 [-0.60; 0.51]    

 4 -0.33 0.28 [-0.90; 0.23]    

Random effects Variance SD     

 Scan within day within group 0.10 0.10     

The model was run with a beta error structure and log link function, controlling for repeated observations within scans, days, and study groups (entered as 
random effects). The table shows fixed effects parameter estimates and standard errors (Est; SE); their 95% profile likelihood confidence intervals (95% CI); 
and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation (Variance; SD). a 
Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 0.05) P values are 
in bold.  
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Table 3.5 GLMM (M4): Influence of perceived IGE risk and recent win/loss record on active behavioural synchrony in crested macaques. 

Term Levels Est SE OR OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -0.06 0.33 a a a a a 

 IGE risk High c c c c c c c 

 Proportion of IGE losses in previous monthb  c c c c c c c 

 IGE risk x Proportion of IGE losses in previous monthb  0.65 0.24 1.92 [1.19; 3.12] 7.10 1 0.008 

Control fixed effects         

 Adult group sizeb  -0.22 0.20 0.8 [0.54; 1.19] 1.26 1 0.262 

 Ripe fruit availabilityb  -0.16 0.12 0.85 [0.67; 1.07] 1.87 1 0.172 

 Hourb  0.11 0.12 1.12 [0.88; 1.42] 0.81 1 0.369 

 Group cohesionb  -0.20 0.12 0.82 [0.65; 1.02] 3.09 1 0.079 

 Overall synchrony in female reproductive stateb  -0.07 0.20 0.93 [0.62; 1.38] 0.13 1 0.717 

 Proportion pregnant or lactating femalesb  -0.03 0.14 0.97 [0.74; 1.29] 0.03 1 0.857 

 
Visibility 2 0.18 0.47 1.2 [0.48; 3.03] 3.80 3 0.284 

3 0.13 0.38 1.14 [0.54; 2.42]    

 4 0.54 0.37 1.72 [0.82; 3.59]    

Random effects Variance SD      

 Scan within day within group 2.14 1.46      

The model was run with a binomial error structure and logit link function, controlling for repeated observations within scans, days, and study groups (entered 
as random effects). The table shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence 
intervals (OR; OR 95% CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard 
deviation (Variance; SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. c Not shown because 
of having no meaningful interpretation in the presence of a significant interaction. Statistically significant (α = 0.05) P values are in bold.  
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3.4 Discussion 

These results show that the risk of encountering rival groups influences spatial 

cohesion and behavioural synchrony among wild crested macaques, and that group 

dominance modulates this effect (Table 3.6). Where the likelihood of IGE is high, 

the most subordinate groups (those with poor win/loss records in the previous month) 

increase spatial cohesion. However, the most dominant groups (those with strong 

win/loss records) do the opposite and spread out. Furthermore, although it is unclear 

from these analyses whether behavioural synchrony is a driver or consequence of 

spatial cohesion (likely both), the same pattern is observed: in high risk areas, active 

behavioural synchrony (but not general behavioural synchrony) increases among 

subordinate groups and decreases among dominant groups. Notably, the evidence for 

this effect is only statistically significant among groups at the extreme ends of the 

dominance spectrum, i.e. groups with particularly skewed win/loss records in the 

previous month. 

Table 3.6 Summary of hypotheses, predictions, and support provided by this study. 

Hypothesis Predictions Supported? 

1. Perceived IGE risk 
influences anxiety levels 

1.1 General increase in self-scratching. Yes 

1.2 Increase in self-scratching greater 
among subordinate groups. 

No 

2. Perceived IGE risk 
influences spatial cohesion 

2.1 Spatial cohesion increases among 
subordinate groups; no change among 
dominant groups. 

No 

2.2 Spatial cohesion increases among 
subordinate groups and decreases among 
dominant groups. 

Yes 

3. Perceived IGE risk 
influences behavioural 
synchrony 

3.1 Behavioural synchrony increases 
among subordinate groups; no change 
among dominant groups. 

Partially 

 

For subordinate groups, there are clear benefits to increasing spatial cohesion and 

behavioural synchrony in response to IGE risk. First, individuals in spatially 

cohesive, well-coordinated groups are less likely to be targeted, isolated, or injured 

if an encounter does occur (Hamilton, 1971; van Schaik, 1983; Wilson & Wrangham, 

2003). Lone individuals are at greater risk of being injured or killed by out-group 

rivals in many group-living, spatially cohesive species (Boesch et al., 2008; Gros-

Louis et al., 2003; Mech, 1994; Shimada et al., 2009; Stanford, 1995; Watts et al., 
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2006). Indeed, twelve of the thirteen recorded instances of intergroup coalitionary 

aggression in this crested macaque population (i.e. simultaneous attacks by two or 

more members of one group against another, lasting more than one minute and 

involving contact aggression (Martínez-Iñigo, 2017)) occurred when a lone female 

was separated from her group and outnumbered by attackers (MNP; Martínez-Iñigo, 

2017). Second, macaques in spatially cohesive, synchronous groups may detect and 

flee from rival groups more quickly in high encounter risk areas because there are 

more individuals to keep watch (Braune et al., 2005). Early detection followed by 

efficient information transfer can create an escape-wave, whereby the behavioural 

changes of a small proportion of the group initiates a rapid, group-wide flight 

response (Herbert-Read et al., 2015). Finally, increased spatial cohesion may relieve 

anxiety in high encounter risk areas via ‘social buffering’ (Kikusui et al., 2006; 

Sanchez et al., 2015), and increased behavioural synchrony may function likewise 

via endorphin release (Cohen et al., 2010; Tarr et al., 2015). Both  serve an adaptive 

function: at the individual-level by buffering the negative physiological effects of 

heightened stress, and at the group-level by promoting cooperative behaviour 

(Dunbar et al., 2012; Wiltermuth & Heath, 2009). 

 Increased spatial cohesion and behavioural synchrony among subordinate 

groups can be understood within the landscape of fear framework as a defensive 

strategy, i.e. in high IGE risk areas, individuals alter their behaviour to minimise their 

risk of detection and/or injury; and in doing so they form a more cohesive counter-

attacking unit (Stanford, 1995). In contrast, there are several possible, non-mutually 

exclusive, explanations for the observed decrease in spatial cohesion and behavioural 

synchrony among the most dominant groups that may suggest a more 

exploratory/aggressive strategy. First, in high encounter risk areas dominant groups 

may spread out to increase the likelihood of encountering rivals. By consistently 

seeking out and winning IGEs, the strongest groups may reinforce a pattern of 

intergroup dominance that increases lifetime reproductive fitness at an individual and 

group level (‘Intergroup Dominance’ hypothesis: Crofoot & Wrangham, 2010; 

Sugiura et al., 2000). Second, because large groups must spread out to reduce 

intragroup feeding competition (Agetsuma, 1995; Smith et al., 2005), group size 

could potentially explain the decrease in spatial cohesion and behavioural synchrony 

among dominant groups. However, by including adult group size as a control 

variable (i.e. holding group size at its mean) we were able to isolate and confirm the 
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effects of encounter risk and win/loss record. Furthermore, group size was not a 

significant predictor of spatial cohesion or behavioural synchrony in any of the model 

outputs. As such, we may consider alternative explanations.  

Finally, spatial cohesion and behavioural synchrony may decrease among dominant 

groups in high risk areas because males in those groups perceive IGEs differently 

from those in subordinate groups. Encounters provide opportunities to assess the 

composition of neighbouring groups in advance of immigration attempts, which can 

be costly due to resistance from resident males in this and other species (Cheney & 

Seyfarth, 1983; Marty et al., 2016; van Noordwijk & van Schaik, 1985). However, 

because males in dominant groups can be relatively certain of victory if an encounter 

does occur, they may be able to take advantage of this in a way that males in 

subordinate groups cannot by roaming more widely. If this is the case, the decrease 

in spatial cohesion and behavioural synchrony observed among dominant groups in 

high encounter risk areas could be the result of young adult males leaving the main 

body of the group to investigate transfer opportunities (Saito et al., 1998). This 

contrasts with resident males from subordinate groups who are likely to be more 

focussed on avoiding or repelling interloping out-group males, and guarding in-

group females than investigating transfer opportunities. These males are, at least 

temporarily, better served by increasing spatial cohesion and synchrony. It would be 

worth investigating this possibility by comparing interindividual distances of 

different age-sex classes in dominant and subordinate groups in high risk areas, while 

considering the fact that large (likely dominant) groups tend to have proportionally 

more young adult males than small (likely subordinate) groups (Suzuki et al., 1998). 

Taken together, these results indicate that crested macaques remember the frequency, 

location, and outcome of previous IGEs, and use this information to respond pre-

emptively to varying levels of perceived encounter risk across their home ranges. 

Indeed, the fact that the active vs. inactive measure of behavioural synchrony 

changed in response to risk when the general measure did not, suggests that 

individuals do not synchronise their behaviour per se, but rather their patterns of 

locomotion, presumably (in the case of subordinate groups at least) to maintain 

spatial cohesion. Crucially, these results also demonstrate that the way in which 

groups responds to this variation in risk is significantly influenced by how likely they 

are to win or lose an encounter; perhaps reflecting the considerable difference in cost 
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to habitual losers and winners of IGEs. Few landscape of fear (Laundré et al., 2001) 

studies have focussed on the role of intergroup competition in shaping animal 

behaviour (Bleicher, 2017), and with only one exception of which we are aware 

(Kurihara & Hanya, 2018), none have considered group dominance as we have here. 

Doing so raises interesting questions about how self-assessed resource holding 

potential, or fighting ability (Maynard Smith, 1982), affects IGE risk perception and 

home range use. For example, it is important to note that the changes in spatial 

cohesion observed in high encounter risk areas only occurred when groups had won 

or lost >= 70% of their IGEs in the previous month. The same was true of subordinate 

groups with respect to active behavioural synchrony, whilst it only decreased among 

dominant groups that had won >= 90% of their encounters in the previous month. 

This suggests that the costs associated with altering spatial cohesion and behavioural 

synchrony in response to IGE risk (e.g. increased feeding competition in groups that 

clump together and reduced likelihood of support in groups that spread out) may only 

be acceptable for individuals in groups at either end of the intergroup dominance 

spectrum. For groups in the middle it is perhaps more efficient to continue as normal 

in high risk areas and meet the costs/benefits of conflict on a case-by-case basis.  

In summary, these findings support our understanding of the important role that 

intergroup competition plays in shaping social evolution. They also further our 

understanding by highlighting the influence of group dominance on both intergroup 

and intragroup processes, even at times when neighbouring groups do not interact 

directly. More research effort is required (ideally with a greater number of study 

groups) to clarify two key points. First, the extent to which behavioural synchrony 

drives spatial cohesion. It is unclear whether individuals synchronise their behaviour 

in order to increase spatial cohesion, or whether spatial cohesion increases their 

ability to synchronise. Conducting multiple simultaneous focal observations within 

a group may shed light on this question. Second, and most crucially, whether the 

cohesion and synchrony strategies posited here for subordinate and dominant groups 

pay off. It should be possible to investigate this by simultaneously tracking the 

positions of all the groups in the study area. By tracking group spread and degree of 

behavioural synchrony in ‘real-time’ and aligning these with the occurrence of actual 

IGEs it may be possible to identify instances when subordinate groups avoided 

detection and/or dominant groups searched for and found rivals. Although these data 

were collected during this study, due to personnel limitations, there were too few 
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days on which all groups were followed simultaneously to conduct a thorough 

analysis. Even with these limitations, this study provides insights into the importance 

of intergroup competition as a driving force of animal behaviour. 
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Potential intergroup conflict influences current intragroup 

behaviour in wild crested macaques (Macaca nigra) 

 

James O. Waterman, Muhammad Agil, Antje Engelhardt, Eka Arisyamanti, 

Bonaventura Majolo, Nicola F. Koyama2 

 

This chapter has been formatted for submission to Animal Behaviour 

Abstract 

In many social species, groups of individuals cooperate to defend resources and 

territory, often at great individual cost. Conflict participants risk injury or death, and 

experience costs like reduced feeding efficiency or reduced access to high-energy 

food sources. The effects of recent and incipient intergroup conflict (IGC) on 

intragroup social behaviour have been examined in numerous species, however we 

know relatively little about if and how the anticipation of IGC influences intragroup 

social behaviour in non-human animals. The previous chapter of this thesis used 

monthly intergroup encounter (IGE) risk maps to assess group-level responses to 

risk; this chapter uses the same maps to investigate the function of dyadic-level 

responses. Here, we investigated whether patterns of affiliative behaviour in three 

groups of wild crested macaques (Macaca nigra) were sensitive to the perceived risk 

of IGEs, and whether these responses were reactive (a response to stress), or pre-

emptive (a strategic preparation for the possibility of conflict). We hypothesised that 

the function of pre-conflict affiliative behaviour would be to (a) reduce the anxiety 

associated with IGEs, (b) minimise the potential costs of conflict, or (c) increase 

group cohesion prior to encounters. Using generalised linear mixed models, we 

 
2 Author contributions: JW, NK, and BM conceived the study. JW, NK, BM, and AE designed the 

study. JW and EA collected data. JW analysed data and wrote the manuscript. JW, NK, and BM 
revised manuscript drafts. MA and AE stewarded the field project of which this study was a part. 



  Chapter 4
   

 

67 
 

compared the affiliative behaviour of dyads in two risk conditions; one in which there 

was little to no risk of IGE, and another in which the impending probability of 

encountering another group (within 40 minutes) was high. All models controlled for 

the effects of preferred resource availability, available social time, dyad reproductive 

state, and encounter win/loss record in the previous month. We found that affiliative 

interactions between female and male macaques decreased almost to zero in the pre-

high-risk condition, male-male interactions were entirely absent, and the usual 

pattern of female-female affiliation reversed such that high-ranking females were the 

most preferred partners. These behavioural changes show that even in the absence of 

a direct threat, the risk of encountering rival groups influences patterns of social 

behaviour among wild crested macaques. Evidence for the function of male 

behaviour was scarce, but for females these patterns appear to have a clear purpose: 

to minimise the occurrence/cost of intragroup sexual coercion and out-group 

aggression. These findings indicate that crested macaque pre-conflict affiliative 

behaviour functions to minimise potential individual costs rather than to increase 

group cohesion or incentivise the future participation of group-mates. 

4.1 Introduction 

Intergroup competition has important consequences for individual fitness and the 

social structure of animal groups in both the long- and short-term. Losing an 

encounter with another group may constrain a group’s home range, alter travel 

behaviour, and restrict access to high quality resources, negatively affecting lifetime 

reproductive fitness in a wide range of taxa that include Hymenopterans  (Batchelor 

& Briffa, 2010; Hölldobler & Lumsden, 1980; Rangel et al., 2010), Passeriformes 

(Langen & Vehrencamp, 1998; Strong et al., 2018), Carnivores (Christensen et al., 

2016; Dyble et al., 2019; Mosser & Packer, 2009), and non-human Primates 

(hereafter primates) (Cooksey et al., 2020; Crofoot, 2013; Lemoine, Preis, et al., 

2020). Other potential costs associated with intergroup competition include physical 

injury or death (Mech, 1977; Rosenbaum et al., 2016), the death of offspring (Cords 

& Fuller, 2010; Sherman, 2003), increased energy expenditure (Schoof & Jack, 

2013), increased anxiety (Radford, 2008b), and disruptive changes in social 

structure, e.g. loss of rank, and/or changes in reproductive access following the 

immigration of out-group individuals (Marty, Hodges, Agil, et al., 2017). 
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Numerous recent studies highlight the effects of intergroup competition on 

intragroup social behaviour (see Radford et al., 2016 for a review). However, most 

of these studies focus on the immediate aftermath of intergroup encounters (IGEs). 

Among green woodhoopoes (Phoeniculus purpureus) allopreening increased after 

intergroup conflict (IGC) (Radford, 2008a; Radford & Fawcett, 2014), whilst Javan 

gibbon (Hylobates moloch) pairs groomed less (Yi et al., 2020). Following simulated 

threats from rival groups, dwarf mongooses (Helogale parvula) invested more time 

in grooming, foraged closer together, and more regularly acted as sentinels (Morris-

Drake et al., 2019). Similarly, affiliation between cichlid fish (Neolamprologus 

pulcher) increased following simulated out-group intrusions (Bruintjes et al., 2016).  

A smaller number of studies have examined the effects of IGC on intragroup social 

behaviour during the encounter itself. Intragroup affiliation and aggression increased 

among vervet monkeys (Chlorocebus pygerythrus) in-between bouts of intergroup 

aggression (Arseneau-Robar et al., 2018, 2016), and intragroup aggression increased 

among tufted capuchins (Cebus apella) during, but not after IGEs (Polizzi di 

Sorrentino, Schino, Massaro, et al., 2012). Thus, there is mounting evidence that the 

intragroup behaviour of numerous species is affected by recent and/or incipient IGEs. 

However, we know relatively little about how group-living animals respond to the 

perceived risk of IGEs. 

 There is considerable evidence that many species remember where, and how 

recently they have encountered danger and use this information to alter their 

behaviour (Fagan et al., 2013; Laundré et al., 2010; Willems & Hill, 2009). For 

example, in response to the threat of predation many animals alter space use, how 

they travel, and how they behave in perceived risky areas. Predation risk prompts 

sexual segregation in Dall’s sheep (Ovis dalli dalli) (Corti & Shackleton, 2002); 

numerous primate species show signs of heightened anxiety in risky habitats, moving 

through them at great speed (Gebo et al., 1994), or choosing travel routes that 

minimise risk exposure (see review in Boinski & Garber, 2000); and kangaroos 

(Macropus rufous and M. fuliginosus) and wallabies (M. agilis) persistently avoid 

particular feeding areas after detecting predator scent cues (Parsons & Blumstein, 

2010). Given the potentially high costs of IGC, the risk of encountering rival groups 

might also be expected to prompt behavioural changes (LaBarge et al., 2020; Tórrez-

Herrera et al., 2020).  
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Several studies have investigated this possibility, but they tend to focus on broad 

(activity budget) responses to simulated encounters and/or proxies of risk, such as 

areas of home range overlap (Benadi et al., 2008; Morris-Drake et al., 2019; Radford, 

2011; Tórrez-Herrera et al., 2020). Very few studies have examined the influence of 

IGE risk on fine-scale patterns of social behaviour in groups of wild animals. 

Furthermore, we understand little about whether these responses are best 

characterised as reactive (a response to the stress of potential aggression), or pre-

emptive (a strategic preparation for the possibility of conflict) (LaBarge et al., 2020). 

It is well established that IGC causes stress in wild primates (Eckardt et al., 2016; 

Nunn & Deaner, 2004; Wittig et al., 2016). As such it is possible that any changes in 

affiliative behaviour observed in association with IGE risk function primarily to 

reduce, relieve, or re-direct this anxiety. In this scenario, individuals may increase 

affiliative interactions with group-mates to relieve the physiological stress caused by 

the prospect of IGEs (‘social buffering’ as defined by Kikusui et al., 2006). 

Alternatively, the function of affiliative behaviour in the face of IGE risk may be 

strategic: to maximise individual reproductive fitness and/or to minimise individual 

costs (Radford, 2011).  

Primates are an ideal order in which to test theories about the effects of intergroup 

competition on intragroup social behaviour because many species live in large social 

groups and form complex, long-lasting relationships (Smuts et al., 2008). This 

presents an opportunity to examine individual decision-making in a group context; 

specifically, how different classes of individuals in heterogenous groups respond to 

the threat of IGEs, and how existing relationships between individuals influence 

these responses (Cheney, 1987; Kitchen & Beehner, 2007). In this study, we examine 

the influence of perceived IGE risk on patterns of affiliative social behaviour 

(specifically partner choice and number) in three wild groups of crested macaques 

(Macaca nigra) in Tangkoko Nature Reserve (TNR) in Sulawesi, Indonesia. This 

species, and this population is an excellent model in which to investigate the effects 

of IGE risk on intragroup social behaviour because: (a) encounters with rival groups 

are frequent (~0.8/12h-day (Martínez-Iñigo, 2017)) and active; (b) home range 

overlap is extensive; (c) predation risk is extremely low (which removes the possibly 

confounding influence of perceived predation risk on intragroup behaviour); and (d) 

both sexes participate to some degree.  
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To investigate the possibility that individuals alter their social behaviour in 

anticipation of contact with rival groups, we test two contrasting hypotheses, the 

tension-reduction hypothesis (H1) and the preparing-for-conflict hypothesis (H2), 

within which we focus on two possible, non-mutually exclusive, preparatory 

strategies: (H2A) in which individuals try to maximise their own reproductive 

interests, and (H2B) in which individuals try to minimise their risk of injury. We 

compare patterns of social behaviour in two contrasting risk conditions, one in which 

the likelihood of encountering a rival group is very low, and another in which the 

impending probability of encountering another group is high (see sections 4.2.12 and 

4.2.13 for details). A range of predictions (summarised in Table 4.1) are generated 

from these hypotheses.  

According to the tension-reduction hypothesis (H1), individuals may increase 

affiliative interactions with group-mates to relieve physiological stress caused by the 

prospect of IGEs. Thus, the primary function of these interactions is to reduce tension 

by maximising the effects of social buffering (Kikusui et al., 2006; Rincon et al., 

2019). If this is the case, we predict that patterns of affiliative behaviour in high IGE 

risk areas will largely resemble those observed in low/no IGE risk areas. That is, 

individuals will continue to interact with the partners with whom they are most 

familiar; those with whom they most frequently affiliate in low/no IGE risk areas, 

but at a higher rate (see Table 4.1 for specific predictions and rationales). Thus, there 

should be no change in the number of different partners with whom an individual 

exchanges affiliative interactions, and males and females will likely behave in similar 

ways.  

Whilst the tension-reduction hypothesis (H1) essentially predicts no change in 

partner quality or quantity, according to the preparing-for-conflict hypothesis (H2) 

the function of affiliative behaviour in the face of IGE risk is strategic: to maximise 

the benefits and minimise the costs that individuals may face in the event of conflict 

(Radford, 2011). If this is the case, we predict that patterns of social behaviour in 

high IGE risk areas will change (relative to low/no IGE risk areas) in a way that 

maximises individual reproductive interests and/or minimises risk of injury (Table 

4.1). In terms of partner numbers the preparing-for-conflict hypothesis (H2) predicts 

a range of responses: Depending on which strategy a male or female adopts it may 

best serve their interests to either focus their social effort on a specific subset of 
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partners, or to spread their social effort among a greater number of partners. If 

individuals focus on a strategic subset this may be evidenced by a decrease in 

affiliative partner numbers. However, because other factors (such as feeding 

requirements) may impose an upper limit on the time that individuals can allocate to 

social behaviour, they may purposefully direct their effort towards different, rather 

than more individuals, predicting no change in partner numbers. Finally, strategies 

intended to incentivise the participation of group-mates in IGEs, and/or that rely on 

safety in numbers, predict an increase in partner numbers (see Table 4.1 for specific 

predictions and rationales). 
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Table 4.1 Hypotheses to test the function of affiliative social interactions between crested macaque dyads (F-F = female-female; F-M = female-male; M-F 
= male-female; M-M = male-male) in the 40 minutes prior to entering a high IGE risk location (relative to low/no IGE risk areas). 

Hypothesis Sex Strategy Predictions: 

Pre-High IGE risk areas vs. low/no IGE risk areas 

Rationale 

H
1:

 T
en

si
on

-r
ed

uc
ti

on
 ♀ Social buffering 1.1 General increase in affiliative behaviour. Affiliation relieves the physiological stress 

associated with potential IGEs, and the anxiolytic 
effects of affiliation are maximised with closely 
bonded social partners. 
 
 

1.2 No change in partner choice: Prefer closely 
bonded social partners. 

1.3 No change in number of different partners. 

♂ Social buffering 1.4 General increase in affiliative behaviour. 

1.5 No change in partner choice: Prefer closely 
bonded social partners. 

1.6 No change in number of different partners. 

H
2:

 P
re

pa
ri

ng
-f

or
-c

on
fl

ic
t 

A
: M

ax
im

is
e 

in
di

vi
du

al
 

re
pr

od
uc

ti
ve

 in
te

re
st

s ♀ Incentivise male 
participation 

2A.1 Increase in F-M affiliative behaviour. If males act as ‘hired-guns’, females may benefit by 
incentivising the most frequent, aggressive, and 
influential IGE participants (high ranking males). 

2A.2 Prefer high-ranking male partners to mid/low-
ranking male partners. 

2A.3 Increase in number of male vs female partners. 

♂ Sexual coercion 
of females 

2A.4 Decrease in M-F and F-M affiliative behaviour. To deter out-group copulations males may 
aggressively herd females before and during IGEs. 
This may be evidenced by a decrease in affiliative 
behaviour between the sexes. 

2A.5 Decrease in number of female partners. 

B
: M

in
im

is
e 

ri
sk

 o
f 

in
ju

ry
 

♀ Avoid male 
sexual coercion 

2B.1 Decrease in F-M affiliative behaviour. By avoiding males, females may avoid costs 
associated with aggressive sexual coercion.  2B.2 Decrease in number of male partners. 

Safety in 
numbers  

2B.3 Increase in F-F affiliative behaviour.  Because recent affiliation may increase the 
likelihood of agonistic support and cooperation, F-F 
affiliation may increase, whilst avoiding potentially 
aggressive males. Preferred partners may be high-
ranking females. 

2B.4 Decrease in F-M affiliative behaviour. 

2B.5 Prefer high-ranking female partners to mid/low-
ranking female partners. 

2B.5 Increase in female partner numbers. 

♂ Safety in 
numbers 

2B.6 Increase in M-M affiliative behaviour. Because recent affiliation may increase the 
likelihood of agonistic support and cooperation, M-
M affiliation may increase. Preferred partners may 
be high-ranking males, who are likely to be the 
strongest fighters. 

2B.7 Increase in male partner numbers. 
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4.2 Methods 

From March 2018 through June 2019 we studied the behaviour and ranging patterns 

of three crested macaque social groups in TNR, Sulawesi, Indonesia (see Fig. 2.1. in 

section 2.2).  

4.2.1 Ethical statement 

See section 2.1. 

4.2.2 Study site 

See section 2.2. 

4.2.3 Study subjects 

See section 2.3. 

4.2.4 Data collection 

See section 2.4. 

4.2.5 Behavioural sampling 

See section 2.7.1. 

4.2.6 Control variables 

To properly investigate the effect of IGE risk on crested macaque social behaviour, 

additional variables had to be accounted for. First, feeding competition can alter rates 

of affiliation, aggression, and reconciliation between group-mates (Janson & van 

Schaik, 1988; Koenig, 2002). We controlled for variation in food abundance by 

including a monthly measure of ripe fruit availability in all models (the primary and 

preferred food item for crested macaques (O’Brien & Kinnaird, 1997; Ratna Sari, 

2013). We initially included the rate of aggression given/received by the focal 

individual in each dyad as a control variable, but this rate was zero in all but two 

qualifying focal observations, so this variable was dropped to avoid model 

convergence problems associated with over-fitting. Second, female reproductive 

state can influence crested macaque social behaviour; females exhibit conspicuous 

sexual swellings and maximally swollen females receive less social attention 
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(including grooming) from other females, but are groomed more by males (Clark & 

Melfi, 2005). They are also more likely to be herded by males, often aggressively, 

during IGC (Martínez-Iñigo, 2017). We controlled for this by including a variable in 

the dyadic social behaviour models that describes the reproductive state of the dyad 

as donor maximally swollen, receiver maximally swollen, or neither partner swollen. 

There were so few instances of both donor and receiver maximally swollen that it 

caused problems with model convergence, so this level was excluded. Third, a 

group’s recent IGE win-loss record may affect how individuals in that group perceive 

the possibility of contact with other groups (Crofoot & Wrangham, 2010; Dugatkin, 

1997). As demonstrated in Chapter 3, individuals in groups that habitually lose 

encounters tend to clump together in high risk areas, while those in groups that 

habitually win tend to spread out. To control for this, in all models we included a 

variable that quantified the proportion of IGEs that each group lost in the previous 

month. Finally, we included in all models a control variable that quantified the 

proportion of each observation that was available for social interaction, i.e. the 

proportion of time spent resting and socialising (‘inactive’ behaviours) as opposed to 

feeding and travelling (‘active’ behaviours). This was to account for the possibility 

that individuals may spend less time resting and socialising in high risk areas than 

safer, low risk areas (Cowlishaw, 1997), and the fact that crested macaques spend 

more time socialising in the morning and midday periods than the afternoon (O’Brien 

& Kinnaird, 1997).  

4.2.7 Dyadic composite sociality index 

To estimate the strength of the social bond between individuals, we used a dyadic 

composite sociality index (DCSI) (Sapolsky et al., 1997; Silk et al., 2013), calculated 

as described in section 2.10.7.  

4.2.8 Dominance rank 

Individual dominance ranks were determined following the procedure described in 

section 2.10.6. 

4.2.9 Ripe fruit availability 

The availability of ripe fruit was determined following the procedure described in 

section 2.10.4.   
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4.2.10 Female reproductive state 

The sexual swelling state of each adult female was defined following the procedure 

described in section 2.10.5.  

4.2.11 Intergroup encounters 

Intergroup encounters were defined as described in sections 2.8.1 and 2.8.2. Because 

risk perception is likely to be subject to winner and loser effects (Arseneau, 2010; 

Cooper et al., 2004; Crofoot & Wrangham, 2010; Harris, 2006), we calculated a 

monthly IGE loss to win ratio for each group by dividing their number of losses by 

wins (see Appendix 3 for IGE summary data).  

4.2.12 Relative intergroup encounter risk 

Relative intergroup encounter risk was quantified following the procedure described 

in section 2.10.2. 

4.2.13 Selection of focal observations for analysis 

Risk values were assigned to each focal observation, based on the location at which 

that focal ended, following the procedure described in section 2.10.3. 

Because the focus of our investigation was how individuals might respond to IGE 

risk it was crucial to compare behaviour in two contrasting risk conditions; one in 

which there was little to no risk of IGE, against another in which the impending 

probability of encountering another group was high. Observations were assigned to 

the low/no risk condition only when the following four criteria were met: (1) the 

focal individual was in a low risk area for the entire observation, (2) the entire 

observation occurred within at least a continuous one hour stay in the low risk area, 

(3) no part of the observation occurred within the final 30 minutes prior to leaving 

that low risk area, and (4) at no point during that day did the group experience an 

IGE.  

Observations were assigned to the pre-high IGE risk condition only when the 

following four criteria were met: (1) the focal individual was in a medium risk area 

for the entire observation, (2) the entire observation occurred within at least a 

continuous 30 minute stay in the medium risk area, (3) the observation ended a 

maximum of 40 minutes prior to entering a high risk area, and (4) the group 
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experienced an IGE that day, at some time after the focal observation ended. The 

final condition was included to ensure that these observations represented macaque 

behaviour prior to entering an area of genuinely high IGE risk, as evidenced by the 

subsequent occurrence of an actual encounter. Only focal follows in which the 

subject was in view for five minutes or more were included in analyses.  

4.2.14 Data analysis 

4.2.14.1 Probability of positive social behaviour 

To test if behavioural changes in pre-high IGE risk areas supported the tension-

reduction (H1) or preparing-for-conflict (H2) hypotheses, we first created a dyadic 

matrix of positive social behaviour (PSB) from all allogrooming, affiliation, and 

contact-sitting interactions between every paired combination of adult macaques. We 

then collapsed this into a single dyadic matrix indicating the presence or absence of 

any PSB between dyads. We chose this outcome measure instead of rates or 

proportions of individual PSBs because the three separate dyadic matrices were too 

sparse to compare specific behaviours in pre-high IGE risk areas to low/no risk areas. 

Even after this process there were no PSBs observed between male-male dyads in 

either risk condition. Thus, these dyads were dropped from all analyses and 

predictions 2B.6 and 2B.7 (see Table 4.1 above) could not be tested. However, the 

total absence of PSB between males strongly suggests that these predictions would 

not be supported.  

The first full PSB model contained a three-way interaction between risk condition, 

dyad sex, and actor/receiver rank, however its inclusion resulted in over-fitting, 

which is associated with a loss of power (Bates et al., 2015). As such, to test the 

remaining predictions we fitted two simpler binomial generalised linear mixed 

models (GLMMs) (Bolker et al., 2009) with logit link functions and offsets for 

observation duration, using the ‘lme4’ package (Bates et al., 2015) in R (R Core 

Team, 2019). The logit link function ensures fitted values between 0 and 1, and the 

binomial distribution is typically used for 0/1 responses (Zuur et al., 2009). The first 

model (M1) examined how rank and social bond strength affected the probability of 

PSB between mixed sex dyads (F-M and M-F), addressing the following predictions 

(and strategies): 1.1, 1.2, 1.4, 1.5 (social buffering); 2A.1, 2A.2 (female 

incentivisation of males); 2A.4 (male sexual coercion of females); 2B.1 (female 
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avoidance of male sexual coercion); and 2B.4 (female safety in numbers) (see Table 

4.1 above). Fixed effect predictor variables in this model were: risk condition (factor 

with 2 levels); dyad sex (factor with 2 levels); DCSI (continuous); daily actor rank 

(continuous), daily receiver rank (continuous); and as controls: monthly ripe fruit 

availability (continuous); daily dyad reproductive state (factor with 3 levels); 

proportion of IGEs lost in the previous month (continuous); and available social time 

per focal observation (continuous). The interaction terms were: risk condition x dyad 

sex; risk condition x DCSI; risk condition x daily actor rank; and risk condition x 

daily receiver rank. To incorporate the dependency among observations of the same 

individuals within the same groups, we used actor nested in group, and receiver 

nested in group as crossed random intercepts. When random slopes for risk condition 

were included the models failed to converge, so these were removed. The second 

model (M2) examined how rank and social bond strength affected the probability of 

PSB between female only dyads (F-F), directly addressing predictions 2B.3 and 2B.5 

(female safety in numbers strategy) (see Table 4.1 above). M2 used the same link 

function, offset, and random effects structure as the first, the fixed effects differed 

only by the exclusion of dyad sex.  

4.2.14.2 Number of positive social behaviour partners 

To test if the number of different PSB partners differed between low/no IGE risk and 

pre-high IGE risk conditions, we fitted two Poisson GLMMs with log link functions 

and offsets for observation duration, using the ‘lme4’ package (Bates et al., 2015) in 

R (R Core Team, 2019). The log link function ensures positive fitted values, and the 

Poisson distribution is typically used for count data (Zuur et al., 2009). The first (M3) 

modelled the number of different partners to whom the focal individual gave PSB, 

and the second (M4) how many different partners the focal individual received PSB 

from (M4), addressing the following predictions (and strategies): 1.3, 1.6 (social 

buffering); 2A.3 (female incentivisation of males); 2A.5 (male sexual coercion of 

females); 2B.2 (female avoidance of male sexual coercion); and 2B.6 (female safety 

in numbers) (see Table 4.1 above). Fixed effect predictor variables in both models 

were: risk condition (factor with 2 levels); subject sex (factor with 2 levels) and daily 

subject rank (continuous); and as controls: monthly ripe fruit availability 

(continuous); daily donor/recipient reproductive state (factor with 3 levels); 

proportion of IGEs lost in the previous month (continuous); and available social time 
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per focal observation (continuous). The interaction terms were: risk condition x 

subject sex and risk condition x daily subject rank. To incorporate the dependency 

among observations of the same individuals within the same groups, we used subject 

nested in group as crossed random intercepts for both models. When random slopes 

for risk condition were included the models failed to converge so the slopes were 

removed (Barr et al., 2013).  

4.2.14.3 Hypothesis testing and model validation 

We conducted all analyses in R version 3.6.1 (R Core Team, 2019) following the 

general procedure described in section 2.10.8. For these analyses we  used the mixed 

function from the ‘afex’ package (Singmann et al., 2017) to test the significance of 

the fixed effects, and the confint function to calculate profile likelihood confidence 

intervals around the fixed effect estimates (Bolker et al., 2009).  

Model estimates and profile likelihood based confidence intervals were converted to 

odds ratios to aid in interpreting the values of the estimates (particularly for multi-

level factors) and to show effect sizes (see section 2.10.8). Where appropriate we 

present the results of interaction effects graphically, in addition to presenting tables 

of coefficients.  

Model fit and assumptions were verified following the procedure described in section 

2.10.8. To assess predictor collinearity we used the collin.diag function of the 

package ‘misty’ (Yanagida, 2020) to derive generalised variance inflation factors 

(GVIF(1/(2 x d.f.))) for each model, which did not reveal any serious collinearity 

problems (Zuur et al., 2009): (largest GVIF(1/(2 x d.f.)): probability of PSB model (M1) 

= 2.74; probability of PSB model (M2) = 1.39; PSB partner number (given) model 

(M3) = 1.42; PSB partner number (received) model (M4) = 1.46). Before fitting the 

models, we z-transformed all continuous variables using the scale function. 

4.3 Results 

4.3.1 H1. Tension-Reduction Hypothesis 

Considered together, the results of models M1 through M4 fail to support the tension-

reduction hypothesis (H1). Contrary to Predictions 1.1 and 1.4 there was no general 

increase in affiliative behaviour in pre-high IGE risk areas. Rather, we found a 
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significant decrease in the exchange of affiliative behaviour between mixed sex 

dyads in the pre-high IGE risk condition (M1: Fig. 4.1 and Table 4.2). Although 

affiliative behaviour increased between female only dyads in the pre-high IGE risk 

condition, the significant interaction between risk condition and receiver rank (M2: 

Fig. 4.2 and Table 4.3) indicates that female macaques chose partners from outside 

their usual cohort, contrary to Predictions 1.2 and 1.5 of the tension-reduction 

hypothesis (H1). We found no significant change in the number of different partners 

to whom macaques gave affiliative behaviour (M3: Table 4.4), however, contrary to 

Prediction 1.6 we observed a significant decrease in the number of different partners 

that male macaques received affiliative behaviour from in the pre-high IGE risk 

condition, compared to the low/no risk condition (M4: Fig. 4.3B and Table 4.5). 

Because no male-male affiliative interactions were included in these analyses it is 

safe to assume that fewer females gave affiliative behaviour to males in the pre-high 

IGE risk condition. However, as indicated by the estimated marginal means and 

associated confidence intervals plotted in figures 4.3A and 4.3B, we found no 

statistically significant evidence of a change in female partner numbers, lending 

partial support to Prediction 1.3. 
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Figure 4.1 Predicted probability of PSB occurring between mixed sex 
crested macaques as a function of risk condition (M1). Points and error 
bars represent estimated marginal means and their standard errors.  

 

 

Figure 4.2 Predicted values from a multiple logistic regression of the 
probability of PSB occurring between female crested macaques as a 
function of risk condition and receiver rank (M2). Shaded grey areas 
represent 95% confidence intervals around estimates. 
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Figure 4.3 Predicted values from two GLMMs of the number of different partners that 
crested macaques gave (A: M3) and received (B: M4) affiliative behaviour to/from as a 
function of risk condition and sex/reproductive state. Shapes and error bars represent 
estimated marginal means and their standard errors.  

4.3.2 H2. Preparing-For-Conflict Hypothesis 

We found no evidence that females use affiliative behaviour to incentivise male IGE 

participation prior to entering high IGE risk areas (Predictions 2A.1, 2A.2, and 2A.3). 

This strategy predicted an increase in female-male affiliative behaviour, that females 

would prefer high-ranking male partners, and that females would increase the 

number of different males they exchanged affiliative behaviour with, at the expense 

of female partners. However, we found that in pre-high IGE risk areas female-male 

affiliative behaviour decreased (M1: Fig. 4.1 and Table 4.2), that affiliation was 

unaffected by receiver rank (M1: Table 4.2), and that males received affiliative 

behaviour from significantly fewer different female partners (M4: Fig. 4.3B and 

Table 4.5). 

However, we did find evidence indicating that sexual coercion may play a major role 

in shaping patterns of affiliative behaviour among crested macaques prior to entering 

high IGE risk areas. This was true of both sexes. In response to aggressive male 

herding of females, we predicted a decrease in affiliative behaviour between the 

sexes (Predictions 2A.4 and 2B.1), and a decrease in the number of different mixed 
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sex affiliative partners (Predictions 2A.5 and 2B.2). All four predictions were 

supported: We observed a decrease in affiliative behaviour between mixed sex dyads 

(M1: Fig. 4.1 and Table 4.2), and a decrease in the number of female partners from 

whom males received affiliative behaviour (M4: Fig. 4.3B and Table 4.5). 

Finally, we found partial evidence that females seek safety in numbers prior to 

entering high IGE risk areas (Predictions 2B.3, 2B.4, 2B.5, and 2B.6). This strategy 

predicted an increase in affiliative behaviour between female dyads, that high 

ranking females would be preferred partners, that affiliative behaviour between the 

sexes would decrease, and that females would exchange affiliative behaviour with a 

greater number of different female partners. The first three of these predictions were 

supported: We found an increase in affiliation between female dyads in the pre-high 

IGE risk condition, specifically that high ranking females were significantly more 

likely to receive affiliative behaviour prior to entering high IGE risk areas than mid 

or low ranking females (M2: Fig. 4.2 and Table 4.3). As previously stated, this was 

accompanied by a decrease in affiliative behaviour between the sexes (M1: Fig. 4.1 

and Table 4.2). However, we found no support for the final prediction; there was no 

significant increase in female affiliative partner numbers in the pre-high IGE risk 

condition (see estimated marginal means and confidence intervals in Fig. 4.3A and 

Fig. 4.3B). 
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Table 4.2 GLMM (M1) investigating factors affecting the occurrence of PSB between mixed sex macaque dyads in response to IGE risk. 

Term Levels Est SE OR OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -6.02 1.14 a a a a a 

 IGE risk Pre-High -5.58 2.42 0.004 [0.00; 0.24] 5.07 1 0.024 

 Dyad sex (F-M) M-F -1.37 1.29 0.25 [0.01; 2.62] 0.02 1 0.885 

 Dyad DCSIb  -3.16 2.65 0.04 [0.00; 0.66] 2.15 1 0.142 

 Actor rankb  0.81 0.62 2.25 [0.66; 8.24] 0.27 1 0.602 

 Receiver rankb  0.37 0.63 1.45 [0.41; 5.31] 0.76 1 0.384 

 IGE risk x Dyad sex  Pre-High x M-F 3.06 2.11 21.33 [0.41; 2285.81] 2.30 1 0.129 

 IGE risk x Dyad DCSIb  1.02 3.61 2.77 [0.00; 1664.21] 0.08 1 0.778 

 IGE risk x Actor rankb  -2.41 1.54 0.09 [0.00; 1.25] 3.06 1 0.080 

 IGE risk x Receiver rankb  -1.99 1.57 0.14 [0.00; 2.16] 1.97 1 0.778 

Control fixed effects         

 Proportion of IGE losses in previous monthb  -2.54 1.24 0.08 [0.01; 0.72] 5.19 1 0.023 

 Ripe fruit availabilityb  -0.70 0.47 0.50 [0.16; 1.14] 2.95 1 0.086 

 Available social timeb  2.64 0.87 14.01 [3.22; 104.72] 16.27 1 <0.001 

 Dyad reproductive state Actor max swollen 0.88 1.43 2.41 [0.13; 45.66] 0.90 2 0.636 

 Receiver max swollen 1.26 1.76 3.53 [0.08; 139.71]    

Random effects Variance SD     

 Actor within group 2.49 x 10-15 4.99 x 10-8     

 Receiver within group 0 0     

The model was run with a binomial error structure and logit link function, controlling for repeated observations within actors nested in groups, and receivers 
nested in groups. The table shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence 
intervals (OR; OR 95% CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard 
deviation (Variance; SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically 
significant (α = 0.05) P values are in bold. Dyad sex (F=Female, M=Male). 

 

 



  Chapter 4
   

 

84 
 

Table 4.3 GLMM (M2) investigating factors affecting the occurrence of PSB between female macaques in response to IGE risk. 

Term Levels Est SE OR OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -4.49 0.20 a a a a a 

 IGE risk Pre-High c c c c c c c 

 Dyad DCSIb  0.05 0.84 1.05 [0.16; 4.81] 0.12 1 0.732 

 Actor rankb  -0.39 0.16 0.68 [0.49; 0.91] 1.15 1 0.285 

 Receiver rankb  c c c c c c c 

 IGE risk x Dyad DCSIb  -0.65 1.67 0.52 [0.01; 10.09] 0.18 1 0.675 

 IGE risk x Actor rankb  0.49 0.27 1.63 [0.97; 2.80] 3.36 1 0.067 

 IGE risk x Receiver rankb  0.90 0.27 2.46 [1.45; 4.33] 11.28 1 <0.001 

Control fixed effects         

 Proportion of IGE losses in previous monthb  -0.29 0.14 0.75 [0.57; 0.98] 4.58 1 0.032 

 Ripe fruit availabilityb  -0.02 0.12 0.98 [0.77; 1.25] 0.02 1 0.891 

 Available social timeb  0.73 0.14 2.08 [1.59; 2.74] 32.17 1 <0.001 

 Dyad reproductive state Actor max swollen -0.57 0.56 0.57 [0.16; 1.56] 1.14 2 0.565 

 Receiver max swollen -0.12 0.49 0.89 [0.31; 2.17]    

Random effects Variance SD      

 Actor within group 0 0      

 Receiver within group 0 0      

The model was run with a binomial error structure and logit link function, controlling for repeated observations within actors nested in groups, and receivers 
nested in groups. The table shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence 
intervals (OR; OR 95% CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard 
deviation (Variance; SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. c Not shown because 
of having no meaningful interpretation in the presence of a significant interaction. Statistically significant (α = 0.05) P values are in bold. 
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Table 4.4 GLMM (M3) investigating factors affecting the number of different partners to whom macaques gave affiliative behaviour in response to IGE 
risk. 

Term Levels Est SE OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -3.07 0.23 a a a a a 

 IGE risk Pre-High 0.17 0.39 1.18 [0.55; 2.54] 1.36 1 0.243 

 Subject rankb  -0.51 0.18 0.60 [0.41; 0.85] 3.73 1 0.053 

 
Subject sex & reproductive status F1 0.98 0.53 2.67 [0.80; 7.07] 12.94 2 0.002 

M -0.99 0.74 0.37 [0.06; 1.28]    

 IGE risk x Subject rankb  0.20 0.40 1.22 [0.56; 2.73] 0.27 1 0.606 

 
IGE risk x Subject sex & reproductive status Pre-High x F1 -0.81 1.30 0.45 [0.02; 4.60] 2.24 2 0.327 

Pre-High x M -1.60 1.28 0.20 [0.01; 2.35]    

Control fixed effects         

 Proportion of IGE losses in previous monthb  -0.35 0.15 0.70 [0.52; 0.94] 5.70 1 0.017 

 Ripe fruit availabilityb  -0.02 0.15 0.98 [0.71; 1.32] 0.02 1 0.896 

 Available social timeb  0.78 0.16 2.19 [1.61; 3.04] 27.34 1 <0.001 

Random effects Variance SD      

 Subject within group 0 0      

The model was run with a Poisson error structure and log link function, controlling for repeated observations within subjects nested in groups. The table 
shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence intervals (OR; OR 95% CI); 
and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation (Variance; SD). a 

Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 0.05) P values are 
in bold. Subject sex & reproductive status (F0=Female, F1=Female max swelling, M=Male). 
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Table 4.5 GLMM (M4) investigating factors affecting the number of different partners from whom macaques received affiliative behaviour in response to 
IGE risk. 

Term Levels Est SE OR OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -3.35 0.28 a a a a a 

 IGE risk Pre-High c c c c c c c 

 Subject rankb  -0.62 0.21 0.54 [0.35; 0.80] 2.66 1 0.103 

 
Subject sex & reproductive status F1 c c c c c c c 

M c c c c    

 IGE risk x Subject rankb  0.45 0.45 1.57 [0.66; 3.92] 1.07 1 0.30 

 
IGE risk x Subject sex & reproductive status Pre-High x F1 0.68 1.29 1.97 [0.14; 27.75] 7.49 2 0.024 

Pre-High x M -2.71 1.19 0.07 [0.00; 3.92]    

Control fixed effects         

 Proportion of IGE losses in previous monthb  -0.35 0.17 0.71 [0.50; 1.00] 3.86 1 0.050 

 Ripe fruit availabilityb  0.02 0.16 1.02 [0.73; 1.40] 0.01 1 0.905 

 Available social timeb  0.96 0.18 2.61 [1.84; 3.83] 31.49 1 <0.001 

Random effects Variance SD      

 Subject within group 0.09 0.30      

The model was run with a Poisson error structure and log link function, controlling for repeated observations within subjects nested in groups. The table 
shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence intervals (OR; OR 95% CI); 
and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation (Variance; SD). a 
Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. c Not shown because of having no meaningful 
interpretation in the presence of a significant interaction. Statistically significant (α = 0.05) P values are in bold. Subject sex & reproductive status 
(F0=Female, F1=Female max swelling, M=Male). 
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4.4 Discussion 

These results show that the risk of encountering neighbouring groups influences 

patterns of social behaviour among wild crested macaques, and that these patterns 

appear to serve a strategic purpose, that cannot be explained by the tension-reduction 

hypothesis (H1). When faced with the risk of an IGE, macaques apportioned their 

social effort outside the usual cohort of partners. Had individuals continued to 

associate with their usual partners, even at a higher rate, this would indicate that the 

primary purpose of affiliative behaviour in response to the risk of IGE is to reduce 

physiological tension by maximising the effects of social buffering (Cheney & 

Seyfarth, 2009; Kikusui et al., 2006). However, both partner choice and number 

changed, in support of several predictions of the preparing-for-conflict hypothesis 

(H2) (Table 4.6). Specifically, we found evidence indicating that prior to entering 

high IGE risk areas, female macaques alter their social behaviour in order to 

minimise the occurrence/cost of male sexual coercion, and/or out-group aggression. 

Sexual coercion and aggressive herding are common in primate societies (Smuts & 

Smuts, 1993), particularly in the context of IGEs (Arseneau-Robar et al., 2018; 

Cheney & Seyfarth, 1977; Sicotte, 1993). The costs can be high for females, and may 

include physical wounding, increased physiological stress, heightened energetic 

demands, and lost opportunity costs (Palombit, 2014). Injuries resulting from sexual 

coercion or mating have been described in a wide range of primates, including other 

macaques (Macaca spp.) (Carpenter, 1942; Enomoto, 1981; Lindburg, 1971; Teas, 

1984), baboons (Papio spp.) (Baniel et al., 2017; Smuts, 1985), chimpanzees (Pan 

troglodytes) (Goodall, 1986; Muller et al., 2009), and atelines (Atelidae spp.) (Gibson 

et al., 2008). Several non-mutually exclusive female counterstrategies have been 

observed, including but not limited to: convenience polyandry (Engelhardt et al., 

2006; Huchard et al., 2012), post-copulatory manipulation of reproduction/cryptic 

female choice (Dixson, 2002), and individual defence by sexual segregation or 

evasion (Brockman, 1999; Mackinnon, 1974). The results of this study strongly 

suggest that female crested macaques employ the latter when faced with the prospect 

of IGEs.  
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Table 4.6 Summary of hypotheses, predictions, and support provided by this study. 

Hypothesis Strategy Predictions Supported? 

H1: 
Tension-
reduction 

Female: Social 
buffering 

1.1 General increase in affiliative 
behaviour. 

No 

1.2 No change in partner choice: 
Prefer closely bonded social partners. 

No 

1.3 No change in number of different 
partners. 

Partially 

Male: Social 
buffering 

1.4 General increase in affiliative 
behaviour. 

No 

1.5 No change in partner choice: 
Prefer closely bonded social partners. 

No 

1.6 No change in number of different 
partners. 

No 

H2A: 
Preparing-
for-conflict: 
Maximise 
individual 
reproductive 
interests 

Female: 
Incentivise 
male 
participation 

2A.1 Increase in F-M affiliative 
behaviour. 

No 

2A.2 Prefer high-ranking male 
partners to mid/low-ranking male 
partners. 

No 

2A.3 Increase in number of male 
partners vs female partners. 

No 

Male: Sexual 
coercion of 
females 

2A.4 Decrease in M-F and F-M 
affiliative behaviour. 

Yes 

2A.5 Decrease in number of female 
partners. 

Yes 

H2B: 
Preparing-
for-conflict: 
Minimise 
risk of injury 

Female: Avoid 
male sexual 
coercion 

2B.1 Decrease in F-M affiliative 
behaviour. 

Yes 

2B.2 Decrease in number of male 
partners. 

Yes 

Female: Safety 
in numbers 

2B.3 Increase in F-F affiliative 
behaviour.  

Yes 

2B.4 Decrease in F-M affiliative 
behaviour. 

Yes 

2B.5 Prefer high-ranking female 
partners to mid/low-ranking female 
partners. 

Yes 

2B.5 Increase in female partner 
numbers. 

No 

 

Prior to entering high IGE risk areas, affiliative behaviour between the sexes 

decreased. The odds of affiliative behaviour occurring between male and female 

macaques were approximately 100% lower in the pre-high IGE risk condition than 

the low/no risk condition (Fig. 4.1). Furthermore, males received affiliative 

behaviour from significantly fewer (female) partners. The predicted number of 
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different partners from whom males received affiliative behaviour (per hour) in the 

pre-high-risk condition was 93% lower than in the low/no risk condition, dropping 

almost to zero (Fig. 4.3B). In common with most female-philopatric primate species, 

male crested macaques receive a great deal more social attention from females than 

other males (Gumert, 2007; Reed et al., 1997). Indeed, we observed no affiliative 

behaviour between males in the focal observations that were eligible for inclusion in 

this study. As such, the significant decrease in the number of partners from whom 

males received affiliative behaviour is necessarily attributable to a reduction in the 

number of adult females directing affiliative behaviour towards them, rather than 

from any change in male-male social relations. Both findings support the predictions 

of the preparing-for-conflict hypothesis (H2) that relate to sexual coercion. 

Furthermore, we found that female macaques also altered their choice of (female) 

partner in pre-high IGE risk areas. As predicted by the preparing-for-conflict 

hypothesis (H2), individuals in the lower half of the dominance hierarchy tended to 

receive less affiliative behaviour in response to the risk of IGE, while high-ranking 

females received more (Fig. 4.2). The odds of receiving affiliative behaviour were 

628% (approximately 7 times) higher for the highest ranked individual compared to 

the lowest in the pre-high-risk condition, and 121% higher than that of an average 

ranked individual, suggesting that high-ranking females are much more attractive 

social partners in the face of IGE risk. It is not unusual for high ranking individuals 

to be attractive social partners in primate societies (Schino, 2001), however, because 

of their highly tolerant social style, interactions between female crested macaques 

are largely unconstrained by rank, or even kinship (Duboscq et al., 2013, 2017). 

Combined with the clear preference for lower ranking females in the low/no risk 

condition, this suggests that females may have a specific purpose for directing PSB 

up the hierarchy so strongly in response to IGE risk, given that partner choice is 

theoretically free.  

Three non-mutually exclusive strategies are predicted by the preparing-for-conflict 

hypothesis (H2), all of which reduce a female macaque’s risk of injury prior to/during 

IGEs. First, because recent affiliation may increase the likelihood of agonistic 

support and cooperation between partners (Koyama et al., 2006; Schino, 2007)), 

females may choose to associate with the strongest fighters in their group. In many 

primate species these are likely to be high-ranking males (Franz et al., 2015; Marty 
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et al., 2016; Marty, Hodges, Heistermann, et al., 2017), however we have shown that 

females tend to avoid males in the pre-high IGE risk condition. Consequently, 

females may choose to affiliate with the most socially powerful/attractive female 

partners, who are likely to be high-ranking. Second, because isolated and out-

numbered adult females are the most frequent recipients of intergroup coalitionary 

aggression during crested macaque IGEs (Martínez-Iñigo, 2017; personal 

observation), the prospect of encounter risk may prompt females to seek out the most 

socially attractive partners to (a) reduce the likelihood of being isolated, and (b) take 

advantage of the dilution effect (Hamilton, 1971). Indeed, among female crested 

macaques, recent affiliative partners tend to be found in close proximity even after 

the interaction has ended (Aureli & Yates, 2010). Finally, females in many primate 

species direct affiliative behaviour preferentially towards high-ranking males (Reed 

et al., 1997; Schino, 2001; Seyfarth, 1978), however because females avoid males in 

the pre-high IGE risk condition (as predicted by the preparing-for-conflict hypothesis 

(H2)) it is possible that high-ranking females become available as social partners, 

which could also account for the observed increase in affiliative behaviour directed 

towards them.  

Taken together the results of the PSB probability and partner number models suggest 

(a) a strategic change in patterns of social behaviour between crested macaques in 

response to IGE risk, and (b) that the change in female affiliative behaviour functions 

to minimise risk of injury; from in-group males and/or out-group aggressors. 

Resident females appear to avoid males to reduce the risk of aggressive herding, 

whilst preferentially associating with high-ranking females for 

social/agonistic/numerical support; when they become available as partners.  

Following recent work by LaBarge et al. (2020), this study is one of the first to 

investigate pre-emptive social responses to the threat of IGE in a wild primate 

species; notably, one belonging to a genus (Macaca) in which the capacity for future 

planning is generally thought to be limited (Beran et al., 2004; Bourjade et al., 2012; 

Dekleva et al., 2012; Scarf et al., 2011). Although complex planning may not be 

required to explain these results, they do indicate that crested macaques remember 

where they previously encountered rivals and adjust their behaviour accordingly. It 

would be adaptive for animals to remember locations where they recently 

experienced danger, and to alter their behaviour when next in or around that area. 
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Evidence from a limited few other primate species demonstrates this with respect to 

predator encounters: After captive marmosets (Callithrix geoffroyi) were presented 

with a snake model in the evening, the next day they were significantly more vigilant 

in the area where the model was seen (Hankerson & Caine, 2004). Similarly, 

presentation of a stuffed python at a favoured sleeping site deterred long-tailed 

macaques (Macaca fascicularis) from using that site for at least 12 days, whilst 

periodically “checking” it while travelling to another tree (van Schaik & Mitrasetia, 

1990); And moustached tamarins (Sanguinus mystax) avoided the site of a snake 

attack for two days before returning to feed there on every observation day for the 

following three months (Tello et al., 2002). However, examples of primates altering 

their social behaviour in response to IGE risk on the same fine temporal scale are 

very rare.  

Although several studies provide evidence of changes in activity budget, space-use, 

and/or social behaviour (Benadi et al., 2008; Lewis, 2006; Mirville et al., 2020; 

Tórrez-Herrera et al., 2020; Wrangham et al., 2007; Yi et al., 2020), these generally 

focus on behaviour along territorial borders, or in areas of home range overlap. 

Primate home ranges are usually relatively static, and although dramatic shifts can 

occur, they tend to be infrequent (Mitani et al., 2010; Scarry & Tujague, 2012). As 

such, it is possible that animals alter their behaviour because these areas are less 

familiar to them and/or their older conspecifics do so (Clarke et al., 1993; Isbell, 

1990), rather than as a pre-emptive response to IGE risk. However, by using the 

timing and locations of actual IGEs to create monthly relative IGE risk maps, we 

were able to assess (a) whether crested macaques remembered the locations of recent 

IGEs anywhere within their home range, (b) whether they altered their social 

behaviour in these areas, and crucially (c) whether those changes could be 

characterised as reactive (intended to reduce the stress of being in a potentially risky 

area), or pre-emptive (intended to maximise individual benefits and/or minimise 

individual costs of potential encounters). In doing so these results provide novel 

evidence in support of the hypothesis that between group contest competition has an 

important role in shaping primate social behaviour (Alexander & Borgia, 1978; Choi 

& Bowles, 2007; Hamilton, 1975; Puurtinen & Mappes, 2009).  

Further studies could attempt to collect more data on two key dyad combinations. 

Specifically, male-male dyads and female-female dyads in which both partners were 
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maximally swollen. We only had a limited amount of data for these dyads, primarily 

because they interacted so infrequently, but even these had to be excluded from 

analysis to meet the rigorous data selection criteria; the purpose of which was to 

compare social behaviour in two greatly contrasting risk contexts. Although social 

interaction between male crested macaques is rare, it is possible that by allowing 

more focal observations into the analyses, the responses of these two dyad types 

could be more closely examined and the role of males in shaping the group-wide 

response to IGE risk could be more clearly understood. This is particularly relevant 

given the importance of considering the different fitness-maximising strategies of 

females and males in IGE studies (Arseneau-Robar et al., 2017; Kitchen & Beehner, 

2007; Majolo et al., 2005; Trivers, 1972). Without a complete picture of how male 

crested macaques behave under these circumstances it is difficult to be certain 

whether the female response (avoid males in favour of high-ranking females) is 

actually a consequence of the fact that (some) adult males are often absent during 

and immediately prior to IGEs (because they are engaged with the other group in 

some way) (Martínez-Iñigo, 2017; personal observation ), or whether the female 

response is part of a strategy to minimise potential injury as proposed here. Future 

studies would benefit from a larger number of observers to more precisely record 

which males participate, which stay with the group, and which of those aggressively 

herd females during IGEs. With this information it might be possible to understand 

whether the female pre-emptive strategies observed here are a response to the general 

threat of male sexual coercion prior to/during IGEs, or a response to the specific 

social milieu that results from differential male participation in IGEs.  

In sum, this study demonstrates that crested macaques remember the timing and 

locations of recent encounters with rival groups, and that in response to the threat of 

IGEs they alter their social behaviour in ways that minimise the potential costs 

associated with these events. The evidence for this is relatively unambiguous for 

female macaques, however, the forces that motivate male preparatory behaviour are 

still unclear. These data are most consistent with the preparing-for-conflict 

hypothesis (H2), in which individuals make strategic changes in the allocation of 

their social effort, rather than the tension-reduction hypothesis (H1) in which 

individuals focus on their usual cohort of preferred partners. Comparisons with other 

female-philopatric primates suggest that the unusually tolerant social style of female 

crested macaques may be a key component in the realisation of their pre-emptive 
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strategy; allowing them a relatively unconstrained choice of partner with whom to 

aggregate in response to the dual threat (internal and external) posed by IGEs. 
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Chapter 5 

 

Impacts of intergroup conflict on intragroup social behaviour in 

wild crested macaques (Macaca nigra) 

 

James O. Waterman, Muhammad Agil, Antje Engelhardt, Eka Arismayanti, 

Bonaventura Majolo, Nicola F. Koyama3 

 

This chapter has been formatted for submission to Behavioural Ecology 

Abstract 

Group-living animals face a variety of threats from rival groups and recent work 

indicates that intergroup conflict (IGC) can affect subsequent intragroup behaviour 

in a range of species, even after conflict has ended. Because intergroup hostility is 

often associated with the evolution of cooperative behaviour many studies have 

focused on behaviours that promote cohesion and cooperation within groups. 

However, the function of post-conflict social behaviour remains unclear because 

results differ considerably by species, social system, and competitive regime. Here, 

we studied the intragroup social behaviour of three wild groups of crested macaques 

(Macaca nigra) following IGC to test the hypotheses that post-conflict behaviour 

functions to (a) relieve tension, (b) increase group cohesion, and/or (c) incentivise 

future participation. The previous chapters of this thesis used risk maps derived from 

the previous month’s intergroup encounters, however this chapter focuses on 

behavioural responses in the aftermath of actual IGC. We used generalised linear 

mixed models to compare levels and patterns of self-directed, affiliative, and 

aggressive behaviour in the three hours after IGC to those at baseline, whilst 

controlling (where appropriate) for the effects of preferred resource availability, 

available social time, rank, and dyad sex, reproductive state, and social bond strength. 

 
3 Author contributions: JW, NK, and BM conceived the study. JW, NK, BM, and AE designed the 

study. JW and EA collected data. JW analysed data and wrote the manuscript. JW, NK, and BM 
revised manuscript drafts. MA and AE stewarded the field project of which this study was a part. 
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Contrary to all predictions we found that affiliative behaviour decreased in the 

immediate (one hour) aftermath of conflict. Self-scratching (a behavioural indicator 

of anxiety) increased in the hour following conflict; dyads in losing groups 

exchanged more affiliative behaviour than those in winning groups; individuals 

focused their post-conflict affiliative effort on their usual (strongly bonded) social 

partners; and conflict participation had no effect on the giving or receiving of 

affiliation or aggression. These results are consistent with studies of many other 

social species which suggest that IGC results in increased anxiety. However, we 

found no evidence that crested macaques use affiliative or aggressive behaviour to 

enhance group cohesion or to punish/reward group-mates following IGC. Rather, 

these findings indicate that in crested macaques the primary function of post-conflict 

social behaviour may be to relieve the associated physiological stress.  

5.1 Introduction 

Intergroup conflict (IGC) occurs in many social species and exerts a powerful 

selective force on intragroup social behaviour (Bowles, 2009; Hamilton, 1975; 

Majolo et al., 2016; Puurtinen & Mappes, 2009). In the long-term, theoretical models 

predict that intense conflict between groups favours the selection of behavioural traits 

within groups that amplify intergroup aggression and intragroup cooperation 

(Alexander & Borgia, 1978; Choi & Bowles, 2007). However, recent work on human 

and non-human animals indicates that IGC can also affect the immediate, short-term 

behaviour of individuals, even after the conflict has ended (Burton-Chellew et al., 

2010; Mirville et al., 2020; Radford et al., 2016; Thompson et al., 2020). Much of 

this work has focussed on the influence of IGC on behaviours that promote cohesion 

and cooperation within groups (the ‘conflict-cohesion hypothesis’), both of which 

improve the odds of victory (Birch et al., 2019; Crofoot & Gilby, 2012; De Dreu et 

al., 2016; Nunn & Lewis, 2001). Indeed, several non-human animal studies have 

found evidence that exposure to, or conflict with rival groups increases social 

cohesion, as measured by affiliative behaviours such as allogrooming or body-

contact (Radford et al., 2016). However, others report reduced affiliative behaviour, 

increased intragroup aggression, and/or no change at all (Radford et al., 2016). These 

mixed results suggest that the ‘conflict-cohesion hypothesis’ is not universally 
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applicable, and that the function of post-IGC social behaviour differs by at least 

species, social system, and competitive regime. 

Among these recent non-human animal studies, the strongest support for the 

‘conflict-cohesion hypothesis’ comes from those that focus on post-IGC behaviour 

in cooperatively breeding species and eusocial insects, i.e. species with social 

systems characterised by extreme social tolerance and/or cooperation (Andersson, 

1984; Kappeler & Silk, 2010). For example, social cohesion increased following IGC 

in green woodhoopoes (Phoeniculus purpureus) (Radford, 2008a, 2008b; Radford & 

Fawcett, 2014), cichlid fish (Neolamprologus pulcher) (Bruintjes et al., 2016), 

dampwood termites (Zootermopsis angusticollis) (Thompson et al., 2020), harvester 

ants (Messor barbarous) (Birch et al., 2019), and dwarf mongooses (Helogale 

parvula) (Morris-Drake et al., 2019). A similar study of banded mongooses (Mungos 

mungo) failed to find evidence of an increase in social cohesion, but did observe a 

decrease in male-female aggression following IGC (Preston et al., 2020). Finally, 

IGC also led to post-conflict increases in intragroup affiliation among Wied’s black 

tufted-ear marmosets (Callithrix kuhli) (Schaffner & French, 1997), one of very few 

cooperatively breeding non-human primates (hereafter primates) (Burkart & van 

Schaik, 2010). 

In contrast, among non-cooperatively breeding (and non-eusocial) species post-IGC 

behavioural responses are more varied and support for the ‘conflict-cohesion 

hypothesis’ is less compelling. Most of these studies focus on post-IGC affiliation 

and aggression in primate species, with mixed results. Several studies found that IGC 

had no significant effect on post-conflict affiliation or aggression at all (patas 

monkeys (Erythrocebus patas) (Chism & Rogers, 2004); ringtailed lemurs (Lemur 

catta) (Nunn & Deaner, 2004); and vervet monkeys (Chlorocebus pygerythrus) 

(Cheney, 1992)). A recent study of Javan gibbons (Hylobates moloch) even observed 

a decrease in pair-grooming following IGC (Yi et al., 2020). Furthermore, although 

numerous studies have reported significant changes in affiliative and aggressive 

intragroup behaviour following IGC, because no detailed data were available on 

partner choices and/or how these might relate to participation, it has not been possible 

to draw firm conclusions about the function of post-IGC behaviour from these 

studies. For example, allogrooming increased among blue monkeys (Cercopithecus 

mitis) (Cords, 2002), samango monkeys (C. albogularis erythrarchus) (Payne, 
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Henzi, et al., 2003), and mountain gorillas (Gorilla beringei beringei) (Mirville et 

al., 2020) following IGC; but without partner choice information these increases only 

circumstantially support the ‘conflict-cohesion hypothesis’. There are other 

potentially more parsimonious explanations. For example, IGC is known to cause 

substantial stress among primates. Chimpanzee (Pan troglodytes) IGC is associated 

with increased hypothalamic-pituitary-adrenal (HPA) axis activity (the physiological 

system most associated with stress (Novak et al., 2013)) (Samuni, Preis, et al., 2019; 

Wittig et al., 2016), Therefore, it is possible that, as with intragroup conflict, one 

potential function of post-IGC affiliation is to reduce anxiety and stress (which may 

manifest as increased intragroup aggression (e.g. Polizzi di Sorrentino, Schino, 

Massaro, et al., 2012)) (Kikusui et al., 2006; Radford et al., 2016): the ‘tension-

reduction hypothesis’.  

Only a small number of studies have examined post-IGC social behaviour at a level 

of detail that allows firm conclusions to be drawn, and these indicate another possible 

function of post-IGC social behaviour: to incentivise the continued/future 

participation of group-mates (the ‘social incentive hypothesis’) (Arseneau-Robar et 

al., 2016; Cooper et al., 2004). For example, between episodes of intergroup 

aggression, female vervet monkeys (Chlorocebus pygerythrus) groomed males that 

had participated in the previous bout and aggressed those that had not (Arseneau-

Robar et al., 2016). In subsequent aggressive bouts, these males participated at a level 

exceeding their personal baseline. Similarly, female bonnet macaques (Macaca 

radiata) groomed and mated more with participating than non-participating males, 

suggesting that they may have been rewarding IGC combatants (Cooper et al., 2004). 

However, no data were available on whether this influenced participation in 

subsequent IGC. Thus, there appear to be at least three plausible non-mutually 

exclusive hypotheses to explain the function of post-IGC social behaviour: ‘conflict-

cohesion’, tension-reduction’, and ‘social incentive’ (Radford et al., 2016).  

Here, we investigate how IGC affects post-conflict intragroup behaviour in three 

groups of wild crested macaques (Macaca nigra) in Tangkoko Nature Reserve 

(TNR), Sulawesi, Indonesia. Crested macaques live in multi-male, multi-female 

(philopatric) groups of variable size. Although they are non-territorial they are a 

particularly suitable species in which to investigate the function of post-IGC social 

behaviour because (a) they have relatively stable, overlapping home ranges, (b) they 
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have frequent intergroup encounters (IGEs) (Martínez-Iñigo, 2017), (c) both male 

and female macaques participate, and (d) female crested macaques have an unusually 

tolerant social style (Duboscq et al., 2013, 2017). This is important because the link 

between IGC and intragroup dynamics may be more pronounced and/or visible in 

species in which social interactions can occur between a broad range of individuals, 

largely unconstrained by rank or kinship. 

In this study, we compare social and self-directed behaviour in the three hours 

following IGC to baseline levels and ask to what extent can any changes in 

occurrence and/or pattern be explained by the following three hypotheses: the 

‘conflict-cohesion’ (H1), ‘tension-reduction’ (H2), and ‘social incentive’ (H3) 

hypotheses. These are not mutually exclusive, and we outline predictions for each 

(summarised in Table 5.1). When evaluating these predictions it is important to 

consider that individuals may have relatively inflexible time budgets and thus limited 

time each day for social activities (e.g. allogrooming; a key affiliative behaviour 

among primates) (Chism & Rogers, 2004). As such, it is useful to explore not only 

general increases/decreases in post-IGC social behaviour, but also/rather changes in 

how individuals allocate their social effort.  

According to the ‘conflict-cohesion’ hypothesis (H1), the primary function of social 

behaviour following IGC is to increase group-wide social cohesion. Under this 

scenario, group-wide rates of affiliation should increase (Prediction 1.1) and 

members should affiliate with many individuals across the group (Prediction 1.2) 

rather than focusing on a few already well-bonded partners (Prediction 1.3), or on 

recent IGC combatants (Prediction 1.4) (Radford et al., 2016; Samuni, Mielke, et al., 

2019). Furthermore, because intragroup aggression can have a destabilising effect on 

social cohesion (Flack et al., 2005; Wey & Blumstein, 2010), individuals may try to 

increase/maintain group cohesion by reducing intragroup aggression (Prediction 

1.5). 

According to the ‘tension-reduction’ hypothesis (H2), the primary function of social 

behaviour following IGC is to reduce stress and anxiety. Self-scratching is a well-

established indicator of anxiety in primates (Maestripieri et al., 1992), including 

crested macaques (Neumann et al., 2013), and increases during ringtailed lemur 

territorial conflicts (Nunn & Deaner, 2004). If crested macaque encounters are 

similarly stressful, self-scratching should increase following IGC (Prediction 2.1), 
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particularly in defeated groups (Prediction 2.2) given that losing is likely to be more 

stressful than winning (Radford, 2008b). In order to maximise the anxiolytic effects 

of social buffering (Kikusui et al., 2006) group-wide affiliation should increase 

(Prediction 2.3), particularly following lost conflicts (Prediction 2.4). Individuals 

should also affiliate with a select few partners (Prediction 2.5), those with whom they 

have the strongest social bonds (Prediction 2.6) (Young et al., 2014), rather than 

focusing on recent IGC combatants (Prediction 2.7). While the anxiety arising from 

IGC may result in post-conflict increases in intragroup aggression (Prediction 2.8) 

(Polizzi di Sorrentino, Schino, Massaro, et al., 2012), particularly among losing 

groups (Prediction 2.9) (Radford et al., 2016), the ‘tension-reduction’ hypothesis 

(H1) predicts that by buffering anxiety levels, increased post-IGC affiliative 

behaviour may inhibit this rise in aggression (Prediction 2.10).  

Finally, according to the ‘social incentive’ hypothesis (H3) the primary function of 

social behaviour following IGC is to encourage future participation among group 

mates (Arseneau-Robar et al., 2016; Radford et al., 2016, p. 206). Under this 

scenario, post-IGC affiliative behaviour serves to reward combatants, and aggressive 

behaviour to punish non-combatants. As such, although no overall change in levels 

of affiliative (Prediction 3.1) and aggressive (Prediction 3.2) behaviour may occur, 

the affiliative behaviour that does occur should be preferentially focused on a small 

number of individual combatants (Predictions 3.3 and 3.4), and aggressive behaviour 

towards non-combatants (Prediction 3.5), regardless of existing social bond strength 

(Prediction 3.6). 
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Table 5.1 Hypotheses to test the function of post-IGC social interactions relative to baseline conditions. 

Hypothesis Predictions Rationale 

H1: Conflict-
cohesion 

1.1 Post-IGC affiliation rates are higher than baseline 
rates. 

Affiliation reinforces social bonds between group-mates and 
increases social cohesion. 

1.2 Post-IGC, macaques affiliate with more partners than 
at baseline. 

To promote group-wide social cohesion, individuals affiliate with 
many different partners, rather than focusing their social effort on a 
specific subset. 1.3 Post-IGC affiliation rates are independent of social 

bond strength between individuals. 

1.4 Post-IGC affiliation rates are independent of IGC 
participation. 

1.5 Post-IGC aggression rates are lower than baseline 
rates. 

Intragroup aggression disturbs in-group relationships and cohesion, 
potentially reducing the probability of cooperation and coalitionary 
support in future IGC. 

H2: Tension-
reduction 

2.1 Post-IGC self-scratching rates are higher than 
baseline rates. 

IGC is a stressful occurrence that induces anxiety and self-
scratching is a reliable indicator of anxiety among macaques.  

2.2 Post-IGC self-scratching rates are higher among 
groups that lose than groups than win. 

Losing an IGC causes more physiological stress than winning one. 

2.3 Post-IGC affiliation rates are higher than baseline 
rates. 

Affiliative behaviour can buffer the effects of increased anxiety 
following stressful events. 

2.4 Post-IGC affiliation rates are higher among groups 
that lose than groups than win. 

Losing an IGC causes more physiological stress than winning one. 

2.5 Post-IGC, macaques affiliate with fewer partners 
than at baseline. 

Individuals focus their social effort on a small subset of group-mates 
(those with whom they have the strongest social bonds). 

2.6 Post-IGC affiliation rates are higher between group 
members with strong social bonds. 

The anxiolytic effects of affiliation are maximised with strongly 
bonded social partners. 

2.7 Post-IGC affiliation rates are independent of IGC 
participation. 

The receipt of post-IGC affiliation is linked primarily to the strength 
of pre-existing social bonds, not to IGC participation. 

2.8 Post-IGC aggression rates are higher than baseline 
rates. 

Intragroup aggression may be a consequence of redirected 
aggression and/or increased stress/anxiety following IGC.  

2.9 Post-IGC aggression rates are higher among groups 
that lose than groups than win. 

Losing an IGC causes more physiological stress than winning one. 
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Table 5.1 continued           
           

Hypothesis Predictions Rationale 

 2.10 Post-IGC aggression rates do not differ from 
baseline rates. 

Post-IGC affiliation may inhibit a rise in aggression.  

H3: 
Social incentive 

3.1 Post-IGC affiliation rates do not differ from baseline 
rates. 

Rather than engaging in more/less social behaviour, individuals 
focus their post-IGC social effort on a subset of group-mates. 

3.2 Post-IGC aggression rates do not differ from baseline 
rates. 

 

3.3 Post-IGC, macaques affiliate with fewer partners 
than at baseline. 

Individuals focus their social effort on a small subset of group-mates 
(combatants).  

3.4 IGC combatants receive more post-IGC affiliation 
than non-combatants. 

Combatants are rewarded for their participation with social services 
(affiliation, grooming etc.). 

3.5 IGC non-combatants receive more post-IGC 
aggression than combatants. 

Non-combatants are punished for their failure to participate. 

3.6 Post-IGC affiliation rates are independent of social 
bond strength between individuals. 

The receipt of post-IGC affiliation is linked primarily to IGC 
participation, not to the strength of pre-existing social bonds. 
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5.2 Methods 

We studied the behaviour and ranging patterns of crested macaques living in three 

neighbouring groups in the TNR, Sulawesi, Indonesia, from March 2018 through 

June 2019.  

5.2.1 Ethical statement 

See section 2.1. 

5.2.2 Study site 

See section 2.2. 

5.2.3 Study subjects 

See section 2.3. 

5.2.4 Data collection 

See section 2.4. 

5.2.5 Behavioural sampling 

See section 2.7.1. 

5.2.6 Control variables 

Because feeding competition can alter rates of affiliation, aggression, and 

reconciliation between primates (Janson & van Schaik, 1988; Koenig, 2002) we 

included a monthly measure of ripe fruit availability (the primary and preferred food 

item for crested macaques (O’Brien & Kinnaird, 1997; Ratna Sari, 2013) as a control 

variable in all social behaviour (affiliation and aggression) models. Dominance rank 

was included in all analyses to control for (a) the effect of rank on self-scratching in 

primates (Troisi & Schino, 1987; Whitehouse et al., 2017), and (b) the effect of rank 

on social attraction (Schino, 2001). Sex and female reproductive state can also 

influence crested macaque social behaviour; rates of social behaviour differ 

considerably between dyad sex combinations in crested macaques (Reed et al., 

1997). For example, social interactions between adult males are rare, and maximally 

swollen females receive less social attention (including grooming) from other 

females, but are groomed more by males (Clark & Melfi, 2005). Swollen females are 

also more likely to be victims of aggressive sexual coercion (Martínez-Iñigo, 2017). 
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We accounted for this by including a composite control variable that specifies 

subject/dyad sex and subject/dyad reproductive status (S-RS) by combining the 

levels female (F0), female-maximally swollen (F1), and male (M). For example, a 

maximally swollen female subject is coded as ‘F1’ and a male-female (not maximally 

swollen) dyad is coded as ‘M-F0’ . Where appropriate we also included a measure 

of the social bond strength between partners as a control because strongly bonded 

dyads are more likely to associate with each other than weakly bonded dyads 

(Duboscq et al., 2013). Finally, we included in all models a control variable that 

quantified the proportion of each observation that was available for social interaction, 

i.e. the proportion of time not spent feeding or travelling.  

5.2.7 Dyadic composite sociality index 

We quantified the strength of the social bond between individuals using a dyadic 

composite sociality index (DCSI) (Sapolsky et al., 1997; Silk et al., 2013), calculated 

as described in section 2.10.7.  

5.2.8 Dominance rank 

We determined individual dominance ranks as described in section 2.10.6. 

5.2.9 Ripe fruit availability 

The availability of ripe fruit was estimated following the procedure described in 

section 2.10.4. 

5.2.10 Female reproductive state 

We specified the sexual swelling state of each adult female as described in section 

2.10.5. 

5.2.11 Intergroup encounters and outcome 

Intergroup encounters were defined as described in sections 2.8.1 and 2.8.2. For these 

analyses, only encounters with a clear winner or loser were included in analyses (N 

= 231). We considered an encounter to have finished at the time of the last intergroup 

behavioural exchange and/or when the groups were out of sight of each other. 
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5.2.11.1 Intergroup encounter participation 

Visibility permitting, we recorded the identity and behaviour of any participating 

individuals on an all-occurrence basis (see section 2.8.3). From a total of 183 

recorded IGEs (see Appendix 3 for IGE summary data), full participation data were 

unavailable for 67 (36.6%) of these. The focal observations that followed these 

encounters were excluded from analyses that examined the effect of participation on 

post-IGE behaviour; they were retained for all other analyses.  

5.2.12 Selection of focal observations for analysis 

In order to test predictions about the function of post-IGC social behaviour it was 

crucial to establish a baseline condition against which to compare behaviour in the 

hours following IGC. Commonly, this would be the hour immediately before an IGC 

because it controls for several specific variables such as food abundance, terrain, and 

weather conditions, and because this is a regularly used baseline in other post-IGC 

behaviour studies: However, we previously demonstrated (Chapter 4) that crested 

macaques alter their behaviour prior to entering areas where IGEs are most likely to 

occur. One of the criteria for inclusion in the previous investigation was that the 

group experienced an IGE that day, at some time after the focal observation ended. 

In some cases, this occurred within an hour of the high-risk focal observation ending. 

As such, using the hour before an IGC as the baseline condition for the current 

analysis would unavoidably include “preparatory” high-risk focal observations that 

had already been found to be affected by impending IGE risk. We therefore decided 

to use the same baseline focal observations as the previous analysis (see section 

4.2.13), which had already been shown to be a robust baseline sample of crested 

macaque behaviour in areas of little or no IGE risk.  

Focal observations were assigned to the baseline risk condition only when the four 

criteria described in section 4.2.13 were met. Focal observations were assigned to the 

post-IGC condition only when the following two criteria were met: (1) the 

observation started within a three hour window following the end of an IGC, and (2) 

the group did not experience another IGC within that three hour window. Only focal 

follows in which the subject was in view for five minutes or more were included in 

analyses.  
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5.2.13 Data analysis 

5.2.13.1 Self-scratching behaviour 

To test whether macaques scratched more frequently in the three hours post-IGC than 

in the baseline condition (Prediction 2.1), we first ran a negative binomial generalised 

linear mixed model (GLMM) with a log link function and an offset for observation 

duration (M1). The log link function ensures positive fitted values, and the negative 

binomial distribution is appropriate for overdispersed count data (Zuur et al., 2009). 

We specified self-scratching frequency per individual as the dependent variable; IGC 

condition (factor with 4 levels: baseline vs. 1, 2, and 3 hours post-IGC) as the 

independent variable; and daily subject rank (continuous) as a control variable. To 

incorporate the dependency among observations of the same individuals within the 

same groups, we included random intercepts for subject nested in group. No random 

slopes were specified because their inclusion resulted in model convergence 

problems.  

Second, to test whether IGC outcome affected post-conflict self-scratching frequency 

(Prediction 2.2), we used another negative binomial GLMM (M2), with a log link 

function and an offset for observation duration, to examine self-scratching in post-

IGC hours only. A post-IGC model was needed because no outcome (the key variable 

of interest in Prediction 2.2) could be associated with the baseline condition. We 

specified self-scratching frequency per individual as the dependent variable; IGC 

condition (factor with 3 levels: 1, 2, and 3 hours post-IGC) and outcome (factor with 

2 levels: lose vs. win) as independent variables; and daily subject rank (continuous) 

as a control variable. We included the two-way interaction IGC condition x outcome; 

and random intercepts for subject nested in group. No random slopes were specified 

because, as with the first self-scratching model, their inclusion resulted in model 

convergence problems.  

5.2.13.2 Affiliative behaviour within dyads 

To examine the effects of IGC on affiliative behaviour we created a dyadic matrix of 

all allogrooming, affiliation, and contact-sitting interactions between every paired 

combination of adult macaques. We then collapsed this into a single dyadic matrix 

indicating the presence or absence of any positive social behaviour (PSB) between 

these dyads. We used the number of different PSB partners an individual interacted 
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with as the dependent variable in the PSB partner model (model M3), and the 

presence/absence of PSB (yes vs. no) as the dependent variable in both PSB rate 

models (M4 and M5). Presence/absence of PSB was chosen instead of rates or 

proportions of individual behaviours because the three separate dyadic matrices were 

too sparse to effectively compare specific affiliative behaviours.  

First, to test whether macaques exchanged PSB with more or fewer partners 

following IGC (Predictions 1.2, 2.5, and 3.3) we fit a negative binomial GLMM with 

a log link function and an offset for observation duration (M3). We specified the 

number of different PSB partners as the dependent variable; IGC condition (factor 

with 4 levels: baseline vs. 1, 2, and 3 hours post-IGC) as the independent variable; 

daily subject rank (continuous), daily subject S-RS (factor with 3 levels: M, F0, F1), 

monthly ripe fruit availability (continuous), and available social time per focal 

observation (continuous) as control variables; and random intercepts for subject 

nested in group. No random slopes were specified because their inclusion resulted in 

model overfitting. 

Second, to test whether the probability of dyads exchanging PSB changed following 

IGC (Predictions 1.1, 2.3, and 3.1) we fit a binomial GLMM with a logit link function 

and an offset for observation duration (M4). The logit link function ensures fitted 

values between 0 and 1, and the binomial distribution is typically used for 0/1 

responses (Zuur et al., 2009). We specified the occurrence of PSB (yes vs. no) as the 

dependent variable; IGC condition (factor with 4 levels: baseline vs. 1, 2, and 3 hours 

post-IGC) as the independent variable; and daily dyad S-RS (factor with 7 levels: F0-

F0, F0-F1, F0-M, F1-F0, F1-M, M-F0, M-F1 (M-M and F1-F1 combinations were 

dropped because very few were present in the data and their inclusion destabilised 

the model)), DCSI (continuous), daily actor rank (continuous), daily receiver rank 

(continuous), monthly ripe fruit availability (continuous), and available social time 

per focal observation (continuous) as control variables. To incorporate the 

dependency among observations of the same individuals within the same groups, we 

included actor nested in group, and receiver nested in group as crossed random 

intercepts. No random slopes were specified because their inclusion resulted in 

model convergence problems. 

Third, we examined how IGC outcome (Prediction 2.4), social bond strength 

(Predictions 1.3, 2.5, 3.6), and participation in IGC (Predictions 1.4, 2.6, 3.4) affected 
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the probability of dyads exchanging PSB in the two hours following IGC. The third 

hour post-IGC was excluded because there were no recorded instances of IGC 

participants giving or receiving PSB during this period. Using only post-IGC data 

with complete participant information, we fit a binomial GLMM with a logit link 

function and an offset for observation duration (M5). As with the previous PSB 

model, we used the occurrence of PSB (yes vs. no) as the dependent variable; IGC 

condition (factor with 2 levels: 1 and 2 hours post-IGC), outcome (factor with 2 

levels), DCSI (continuous), actor combatant (factor with 2 levels; yes vs. no), and 

receiver combatant (factor with 2 levels; yes vs. no) as independent variables; and 

daily dyad S-RS (factor with 7 levels: F0-F0, F0-F1, F0-M, F1-F0, F1-M, M-F0, M-

F1), daily actor rank (continuous), daily receiver rank (continuous), monthly ripe 

fruit availability (continuous), and available social time per focal observation  

(continuous) as control variables. The interaction terms IGC condition x outcome, 

IGC condition x DCSI, IGC condition x actor combatant, and IGC condition x 

receiver combatant were included. To incorporate the dependency among 

observations of the same individuals within the same groups, we included actor 

nested in group, and receiver nested in group as crossed random intercepts. No 

random slopes were specified because their inclusion resulted in model convergence 

problems.  

5.2.13.3 Aggressive behaviour within dyads 

To examine the effects of IGC on intragroup aggression, we created a dyadic matrix 

of aggressive behaviour between every paired combination of adult macaques. We 

used the presence/absence of aggression (yes vs. no) as the dependent variable 

instead of the frequency of aggressive behaviour because this rarely exceeded one 

per focal observation. 

First, to test whether IGC affected the rate of post-conflict intragroup aggression 

(Predictions 1.5, 2.8, 2.10, and 3.2) we used a binomial GLMM with a logit link 

function and an offset for observation duration (M6). We specified the occurrence 

of aggressive behaviour (yes vs. no) as the dependent variable; IGC condition (factor 

with 4 levels: baseline vs. 1, 2, and 3 hours post-IGE) as the independent variable; 

and daily dyad S-RS (factor with 7 levels: F0-F0, F0-F1, F0-M, F1-F0, F1-M, M-F0, 

M-F1), DCSI (continuous), daily actor rank (continuous), daily receiver rank 

(continuous), monthly ripe fruit availability (continuous), and available social time 
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per focal observation (continuous) as control variables. To incorporate the 

dependency among observations of the same individuals within the same groups, we 

included actor nested in group, and receiver nested in group as crossed random 

intercepts. Random slopes were omitted because their inclusion resulted in model 

convergence problems. 

Finally, we examined how IGC outcome (Prediction 2.9), and participation in IGC 

(Predictions 3.4 and 3.6) affected the probability of post-conflict intragroup 

aggression between dyads. We used a binomial GLMM with a logit link function and 

an offset for observation duration (M7). We used the occurrence of aggression (yes 

vs. no) as the dependent variable; outcome (factor with 2 levels), actor combatant 

(factor with 2 levels; yes vs. no), and receiver combatant (factor with 2 levels; yes 

vs. no) as independent variables; and DCSI (continuous), daily dyad S-RS (factor 

with 8 levels: F0-F0, F0-F1, F0-M, F1-F0, F1-M, M-F0, M-F1, M-M), daily actor 

rank (continuous), daily receiver rank (continuous), monthly ripe fruit availability 

(continuous), and available social time per focal observation (continuous) as control 

variables. We also included the interaction term IGC condition x outcome. The 

interaction effects IGC condition x actor combatant, and IGC condition x receiver 

combatant were omitted because these data were sparse, and their inclusion led to 

model convergence failures. To incorporate the dependency among observations of 

the same individuals within the same groups, we included actor nested in group, and 

receiver nested in group as crossed random intercepts. As with all previous models, 

no random slopes were specified because their inclusion resulted in model 

convergence problems.  

5.2.13.4 Hypothesis testing and model validation 

We conducted all analyses in R version 3.6.1 (R Core Team, 2019) following the 

general procedure detailed in section 2.10.8. For these analyses we used the 

Anova.glmmTMB function from the ‘glmmTMB’ package (Brooks et al., 2017) to 

test the significance of the fixed effects, and the confint function to calculate profile 

likelihood confidence intervals around the fixed effect estimates (Bolker et al., 2009).  

Binomial model estimates and confidence intervals were converted to odds ratios to 

aid in interpreting the values of the estimates, particularly for multi-level factors, and 

to show effect sizes (negative binomial model estimates and confidence intervals 
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were converted to incident rate ratios) (see section 2.10.8). Where appropriate we 

present the results of interaction effects graphically, in addition to presenting tables 

of coefficients. 

Model fit and assumptions were verified as described in section 2.10.8. We used the 

collin.diag function of the package ‘misty’ (Yanagida, 2020) to derive generalised 

variance inflation factors (GVIF(1/(2 x d.f.))) for each model, which did not reveal any 

collinearity problems (Zuur et al., 2009) (Table 5.2). Before fitting the models, we 

z-transformed all continuous variables using the scale function. 

Table 5.2 Generalised variance inflation factors (GVIF) for models M1 - M7. 

Model Model overview Largest GVIF(1/(2 x d.f.)) 

M1 Self-scratching (baseline vs. post-IGC) 1.00 

M2 Self-scratching (IGC outcome) 1.61 

M3 PSB partner number (baseline vs. post-
IGC) 

1.08 

M4 PSB (baseline vs. post-IGC) 1.08 

M5 PSB (IGC outcome, DCSI, and 
participation) 

2.39 

M6 Aggression (baseline vs. post-IGC) 1.13 

M7 Aggression (IGC outcome and 
participation) 

1.75 
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5.3 Results 

Table 5.3 Summary of hypotheses, predictions, and support provided by this study. 

Hypothesis Predictions Supported? 

H1: Conflict-cohesion 1.1 Post-IGC affiliation rates are higher than baseline rates. No 

1.2 Post-IGC, macaques affiliate with more partners than at baseline. No 

1.3 Post-IGC affiliation rates are independent of social bond strength between individuals. No 

1.4 Post-IGC affiliation rates are independent of IGC participation. Yes 

1.5 Post-IGC aggression rates are lower than baseline rates. No 

H2: Tension-reduction 2.1 Post-IGC self-scratching rates are higher than baseline rates. Yes 

2.2 Post-IGC self-scratching rates are higher among groups that lose than groups than win. No 

2.3 Post-IGC affiliation rates are higher than baseline rates. No 

2.4 Post-IGC affiliation rates are higher among groups that lose than groups than win. Yes 

2.5 Post-IGC, macaques affiliate with fewer partners than at baseline. No 

2.6 Post-IGC affiliation rates are higher between group members with strong social bonds. Partially 

2.7 Post-IGC affiliation rates are independent of IGC participation. Yes 

2.8 Post-IGC aggression rates are higher than baseline rates. No 

2.9 Post-IGC aggression rates are higher among groups that lose than groups than win. No 

2.10 Post-IGC aggression rates do not differ from baseline rates. Yes 

H3: Social incentive 3.1 Post-IGC affiliation rates do not differ from baseline rates. No 

3.2 Post-IGC aggression rates do not differ from baseline rates. Yes 

3.3 Post-IGC, macaques affiliate with fewer partners than at baseline. No 

3.4 IGC combatants receive more post-IGC affiliation than non-combatants. No 

3.5 IGC non-combatants receive more post-IGC aggression than combatants. No 

3.6 Post-IGC affiliation rates are independent of social bond strength between individuals. No 
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5.3.1 H1. Conflict-cohesion Hypothesis 

Taken together, the results of models M1-M7 fail to support the conflict-cohesion 

hypothesis (H1) (Table 5.3). Contrary to Prediction 1.1, there was no post-IGC 

increase in intragroup affiliation. Rather, we found a significant decrease in 

affiliative behaviour between macaques in the first hour post-IGC (M4: Fig. 5.1 and 

Table 5.4), after which levels returned to baseline. Considering post-IGC patterns of 

affiliative behaviour; in the first hour post-IGC individuals preferentially exchanged 

affiliative behaviour with strongly bonded social partners (contrary to Prediction 1.3) 

(M5: Fig. 5.2 and Table 5.5), and as predicted this was unrelated to IGC participation 

(Prediction 1.4) (M5: Table 5.5). Finally, there was no increase in affiliative partner 

numbers following IGC (contrary to Prediction 1.2) (M3: Table 5.6).   

5.3.2 H2. Tension-reduction Hypothesis 

We found partial support for the tension-reduction hypothesis (H2) (Table 5.3). As 

predicted (Prediction 2.1), macaques scratched themselves more frequently in the 

hours following IGC than during the baseline condition. Self-scratching rate was 

higher in all three post-IGC hours, but only significantly higher than baseline during 

the first post-IGC hour (M1: Fig. 5.3 and Table 5.7), indicating that IGC is a short-

term stressful event for crested macaques. However, contrary to Prediction 2.2, IGC 

outcome had no significant effect on self-scratching rate (M2: Table 5.8). We found 

no evidence of a group-wide increase in affiliation post-IGC (Prediction 2.3), but as 

predicted, post-IGC affiliation was more frequent among losing groups than winning 

groups (Prediction 2.4) (M5: Fig. 5.4 and Table 5.5). Furthermore, individuals 

directed their post-IGC social effort towards their usual social partners rather than 

towards IGC combatants (in support of Predictions 2.6 and 2.7), but only during the 

first post-IGC hour. Under these circumstances the tension-reduction hypothesis 

(H2) also predicts a reduction in the number of affiliative partners post-IGC 

(Prediction 2.5), as individuals focus on those with whom they have the strongest 

social bonds, but we found no evidence of this. Finally, contrary to Predictions 2.8 

and 2.9, there was no significant increase in intragroup aggression following IGC 

(M6: Fig. 5.5 and Table 5.9), regardless of outcome (M7: Table 5.10), rather, 

aggression rates remained stable in the post-IGC hours (in support of Prediction 

2.10). 
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Figure 5.1 Predicted probability of PSB between crested macaques in the 
hours following IGC compared to baseline conditions (M4). Points and 
error bars represent estimated marginal means and their standard errors.  

  

 

 

Figure 5.2 Predicted probability of PSB between crested macaques in the 
two hours following IGC as a function of social bond strength (DCSI) 
(M5). Shapes and error bars represent estimated marginal means and their 
standard errors.  
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Figure 5.3 Crested macaque self-scratching frequency in the hours 
following IGC compared to baseline conditions (M1). Points and error 
bars represent estimated marginal means and their standard errors. 

 Figure 5.4 Predicted probability of PSB between crested macaques in the 
two hours following IGC as a function of IGC outcome (M5). Points and 
error bars represent estimated marginal means and their standard errors. 
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Figure 5.5 Predicted probability of aggressive behaviour between crested macaques in the 
hours following IGC compared to baseline conditions (M6). Points and error bars represent 
estimated marginal means and their standard errors.  

5.3.3 Social Incentive Hypothesis 

We found almost no evidence in support of the social incentive hypothesis (H3) 

(Table 5.3). This predicts that levels of affiliation and aggression will remain stable 

following IGC, but that post-IGC patterns of behaviour will change to reflect IGC 

participation. Intragroup aggression remained at baseline levels (in support of 

Prediction 3.2), but no other predictions were supported. Post-IGC affiliative 

behaviour declined (contrary to prediction 3.1), affiliative partner numbers remained 

the same (contrary to Prediction 3.3), and social effort was directed towards strongly 

bonded group-mates (contrary to Prediction 3.6) rather than IGC combatants 

(contrary to Prediction 3.4). Likewise, contrary to Prediction 3.5, non-combatants 

received no more aggression than combatants (M7: Table 5.10). 
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Table 5.4 GLMM (M4) investigating the influence of IGC on the probability of affiliation between crested macaque dyads. 

Term Levels Est SE OR OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -4.89 0.14 a a a a a 

 IGC condition 1 hour post-IGC -0.39 0.17 0.68 [ 0.49; 0.94 ] 10.69 3 0.014 

 
2 hours post-IGC -0.18 0.17 0.84 [ 0.61; 1.17 ]    

3 hours post-IGC 0 0.17 1 [ 0.72; 1.39 ]    

Control fixed effects         

 DCSIb  0.19 0.05 1.21 [ 1.11; 1.33 ] 17.34 1 <0.001 

 

Dyad Sex & Reproductive state F0-F1 -0.27 0.18 0.76 [ 0.53; 1.07 ] 31.54 6 <0.001 

F0-M -0.26 0.24 0.77 [ 0.47; 1.20 ]    

F1-F0 -0.24 0.18 0.79 [ 0.54; 1.11 ]    

F1-M 0.91 0.24 2.48 [ 1.52; 3.92 ]    

M-F0 -0.94 0.31 0.39 [ 0.20; 0.69 ]    

M-F1 0.34 0.28 1.4 [ 0.78; 2.35 ]    

 Actor rankb  -0.04 0.05 0.96 [ 0.87; 1.07 ] 0.47 1 0.495 

 Receiver rankb  -0.04 0.06 0.96 [ 0.86; 1.07 ] 0.58 1 0.446 

 Ripe fruit availabilityb  -0.02 0.05 0.98 [ 0.89; 1.08 ] 0.22 1 0.641 

 Available social timeb  0.55 0.05 1.73 [ 1.57; 1.94 ] 105.00 1 <0.001 

Random effects Variance SD      

 Actor within group 8.37 x 10-9 9.15 x 10-5      

 Receiver within group 3.91 x 10-3 6.25 x 10-2      

The model was run with a binomial error structure and logit link function, controlling for repeated observations within actors nested in groups, and receivers 
in groups. The table shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence intervals 
(OR; OR 95% CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation 
(Variance; SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 
0.05) P values are in bold. Dyad Sex & Reproductive state (F0=Female, F1=Female maximally swollen, M=Male). 
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Table 5.5 GLMM (M5) investigating the influence of IGC outcome, participation, and social bond strength on the probability of affiliation between 
crested macaque dyads. 

Term Levels Est SE OR OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -5.03 0.19 a a a a a 

 IGC condition 2 hours post-IGC c c c c c c c 

 DCSIb  c c c c c c c 

 IGC outcome Win -0.38 0.23 0.68 [ 0.44; 1.07 ] 4.55 1 0.033 

 Actor combatant  -1.85 1.04 0.16 [ 0.01; 0.78 ] 0.44 1 0.507 

 Receiver combatant  -0.35 0.56 0.7 [ 0.20; 1.91 ] 0.02 1 0.897 

 IGC condition x DCSIb  -0.36 0.16 0.7 [ 0.50; 0.95 ] 5.09 1 0.024 

 IGC condition x IGC outcome 2 hours post-IGC x Win 0.01 0.34 1.01 [ 0.52; 1.98 ] 0.002 1 0.969 

 IGC condition x Actor combatant  1.91 1.15 6.75 [ 0.95; 137.02 ] 2.76 1 0.097 

 IGC condition x Receiver combatant  0.65 0.71 1.92 [ 0.49; 8.33 ] 0.83 1 0.361 

Control fixed effects         

 

Dyad Sex & Reproductive state F0-F1 -0.45 0.31 0.64 [ 0.33;   1.13 ] 26.81 7 <0.001 

F0-M -0.47 0.42 0.63 [ 0.25;   1.34 ]    

F1-F0 -0.43 0.31 0.65 [ 0.34;   1.15 ]    

F1-F1 0.42 0.49 1.52 [ 0.51;   3.66 ]    

F1-M 1.28 0.37 3.6 [ 1.69;   7.34 ]    

M-F0 -1.27 0.61 0.28 [ 0.07;   0.79 ]    

M-F0 0.55 0.45 1.73 [ 0.66;   4.01 ]    

 Actor rankb  -0.05 0.09 0.95 [ 0.79;   1.14 ] 0.33 1 0.565 

 Receiver rankb  -0.04 0.09 0.96 [ 0.80;   1.15 ] 0.20 1 0.651 

 Ripe fruit availabilityb  -0.07 0.09 0.93 [ 0.78;   1.10 ] 0.69 1 0.407 

 Available social timeb  0.56 0.09 1.75 [ 1.47;   2.11 ] 37.43 1 <0.001 
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 Table 5.5 continued  

Random effects Variance SD      

 Actor within group 0.02 0.14      

 Receiver within group 0.02 0.13      

The model was run with a binomial error structure and logit link function, controlling for repeated observations within actors nested in groups, and receivers 
in groups. The table shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence intervals 
(OR; OR 95% CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation 
(Variance; SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. c Not shown because of 
having no meaningful interpretation in the presence of a significant interaction. Statistically significant (α = 0.05) P values are in bold. Dyad Sex & 
Reproductive state (F0=Female, F1=Female maximally swollen, M=Male). 
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Table 5.6 GLMM (M3) investigating the influence of IGC on affiliative partner numbers in crested macaques. 

Term Levels Est SE RR RR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -2.48 0.19 a a a a a 

 

IGC condition 1 hour post-IGC -0.11 0.21 0.9 [ 0.59; 1.37 ] 2.92 3 0.405 

2 hours post-IGC 0.07 0.21 1.07 [ 0.71; 1.65 ]    

3 hours post-IGC 0.15 0.22 1.16 [ 0.76; 1.79 ]    

Control fixed effects         

 Subject rankb  -0.05 0.06 0.95 [ 0.85; 1.07 ] 0.57 1 0.45 

 
Subject Sex & Reproductive status  F1 0.22 0.17 1.25 [ 0.88; 1.71 ] 18.72 2 <0.001 

M -1.02 0.26 0.36 [ 0.21; 0.58 ]    

 Ripe fruit availabilityb  -0.04 0.06 0.96 [ 0.85; 1.08 ] 0.43 1 0.514 

 Available social timeb  0.55 0.06 1.73 [ 1.53; 1.97 ] 73.07 1 <0.001 

Random effects Variance SD      

 Subject within group 0.07 0.26      

The model was run with a negative binomial error structure and log link function, controlling for repeated observations within subjects nested in groups. The 
table shows fixed effects parameter estimates and standard errors (Est; SE); rate ratios and their 95% profile likelihood confidence intervals (RR; RR 95% 
CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation (Variance; 
SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 0.05) P 
values are in bold. Subject Sex & Reproductive status (F1=Female max swollen, M=Male). 
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Table 5.7 GLMM (M1) investigating the influence of IGC on self-scratching rate in crested macaques. 

Term Levels Est SE RR RR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -1.42 0.13 a a a a a 

 

IGC condition 1 hour post-IGC 0.39 0.14 1.48 [ 1.13; 1.98 ] 9.56 3 0.023 

2 hours post-IGC 0.25 0.15 1.28 [ 0.97; 1.71 ]    

3 hours post-IGC 0.17 0.15 1.19 [ 0.89; 1.60 ]    

Control fixed effects         

 Subject rankb  0.04 0.04 1.04 [ 0.96; 1.12 ] 0.84 1 0.358 

Random effects Variance SD      

 Subject within group 0.03 0.17      

The model was run with a negative binomial error structure and log link function, controlling for repeated observations within subjects nested in groups. The 
table shows fixed effects parameter estimates and standard errors (Est; SE); rate ratios and their 95% profile likelihood confidence intervals (RR; RR 95% 
CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation (Variance; 
SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 0.05) P 
values are in bold.  
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Table 5.8 GLMM (M2) investigating the influence of IGC outcome on self-scratching rate in crested macaques. 

Term Levels Est SE RR RR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -1.03 0.11 a a a a a 

 
IGC condition 2 hours post-IGC -0.27 0.17 0.76 [ 0.55; 1.06 ] 5.03 2 0.081 

3 hours post-IGC -0.24 0.17 0.79 [ 0.56; 1.08 ]    

 IGC outcome Win 0.01 0.13 1.01 [ 0.78; 1.32 ] 0.66 1 0.416 

 
IGC condition x IGC outcome 2 hours post-IGC x Win 0.18 0.21 1.2 [ 0.79; 1.80 ] 0.77 2 0.682 

3 hours post-IGC x Win 0.02 0.22 1.02 [ 0.67; 1.57 ]    

Control fixed effects         

 Subject rankb  0.03 0.04 1.03 [ 0.94; 1.12 ] 0.34 1 0.561 

Random effects Variance SD      

 Subject within group 0.03 0.18      

The model was run with a negative binomial error structure and log link function, controlling for repeated observations within subjects nested in groups. The 
table shows fixed effects parameter estimates and standard errors (Est; SE); rate ratios and their 95% profile likelihood confidence intervals (RR; RR 95% 
CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation (Variance; 
SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 0.05) P 
values are in bold.  

 

 

 

 

 

 

 



  Chapter 5
   

 

121 
 

Table 5.9 GLMM (M6) investigating the influence of IGC on aggression in crested macaques. 

Term Levels Est SE OR OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -6.42 1.11 a a a a a 

 

IGC condition 1 hour post-IGC 0.87 1.11 2.39 [ 0.38; 46.67 ] 3.44 3 0.329 

2 hours post-IGC -0.15 1.22 0.86 [ 0.09; 18.78 ]    

3 hours post-IGC 1.05 1.12 2.86 [ 0.44; 56.35 ]    

Control fixed effects         

 DCSIb  -0.4 0.26 0.67 [ 0.39;  1.09 ] 2.35 1 0.125 

 

Dyad Sex & Reproductive state F0-F1 -0.6 1.14 0.55 [ 0.03;  3.77 ] 7.69 8 0.465 

F0-M -1.21 1.12 0.3 [ 0.02;  1.99 ]    

F1-F0 0.32 1.15 1.38 [ 0.07; 10.07 ]    

F1-F1 1.18 1.24 3.25 [ 0.15; 29.49 ]    

F1-M -0.02 1.14 0.98 [ 0.05;  6.85 ]    

M-F0 0.65 0.71 1.92 [ 0.45;  7.80 ]    

M-F0 1.52 0.81 4.57 [ 0.83; 22.00 ]    

M-M -0.02 0.89 0.98 [ 0.13;  5.03 ]    

 Actor rankb  0.21 0.27 1.23 [ 0.73;  2.12 ] 0.62 1 0.430 

 Receiver rankb  -0.38 0.29 0.68 [ 0.39;  1.20 ] 1.73 1 0.189 

 Ripe fruit availabilityb  -0.03 0.27 0.97 [ 0.56;  1.60 ] 0.01 1 0.905 

 Available social timeb  -0.13 0.26 0.88 [ 0.53;  1.47 ] 0.25 1 0.619 

Random effects Variance SD       

 Actor within group 1.22 x 10-9 3.49 x 10-5       

 Receiver within group 1.94 x 10-10 1.39 x 10-5       

The model was run with a binomial error structure and logit link function, controlling for repeated observations within actors nested in groups, and receivers 
in groups. The table shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence intervals 
(OR; OR 95% CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation 
(Variance; SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 
0.05) P values are in bold. Dyad Sex & Reproductive state (F0=Female, F1=Female maximally swollen, M=Male). 
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Table 5.10 GLMM (M7) investigating the influence of IGC outcome and participation on aggression in crested macaques. 

Term Levels Estimate SE OR OR 95% CI LRT df P value 

Test fixed effects         

 Intercept  -6.47 1.06 a a a a a 

 
IGC condition 2 hours post-IGC 1.26 1.2 3.53 [ 0.31;  43.27 ] 0.73 2 0.693 

3 hours post-IGC 0.57 1.16 1.77 [ 0.17;  19.94 ]    

 IGC outcome Win 0.18 1.05 1.2 [ 0.15;  11.54 ] 0.21 1 0.644 

 Actor combatant Yes 0.05 0.94 1.05 [ 0.13;   5.84 ] 0.003 1 0.958 

 Receiver combatant Yes 1.51 1.06 4.53 [ 0.47;  35.80 ] 2.04 1 0.153 

 
IGC condition x IGC outcome 2 hours post-IGC x Win -2.55 1.71 0.08 [ 0.00;   2.03 ] 2.72 2 0.257 

3 hours post-IGC x Win 0.12 1.46 1.13 [ 0.06;  21.33 ]    

Control fixed effects         

 DCSIb  -0.2 0.36 0.82 [ 0.38;   1.64 ] 0.30 1 0.581 

 

Dyad Sex & Reproductive state F0-F1 -0.22 1.28 0.8 [ 0.03;   8.08 ] 5.87 8 0.662 

F0-M -0.44 1.37 0.64 [ 0.02;   7.92 ]    

F1-F0 0.95 1.34 2.59 [ 0.10;  31.67 ]    

F1-F1 3.44 1.68 31.19 [ 0.84; 915.16 ]    

F1-M 0.86 1.36 2.36 [ 0.09;  29.23 ]    

M-F0 0.75 1.05 2.12 [ 0.23;  16.82 ]    

M-F1 0.83 1.36 2.29 [ 0.09;  28.03 ]    

M-M 0.89 1.12 2.44 [ 0.23;  21.97 ]    

 Actor rankb  0.86 0.42 2.36 [ 1.08;   5.75 ] 4.18 1 0.041 

 Receiver rankb  -0.28 0.4 0.76 [ 0.34;   1.66 ] 0.49 1 0.485 

 Ripe fruit availabilityb  -0.09 0.36 0.91 [ 0.43;   1.80 ] 0.06 1 0.799 

 Available social timeb  0.58 0.37 1.79 [ 0.89;   3.88 ] 2.52 1 0.113 
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 Table 5.10 continued 

Random effects Variance SD      

 Actor within group 9.88 x 10-10 3.14 x 10-5      

 Receiver within group 2.77 x 10-10 1.66 x 10-5      

The model was run with a binomial error structure and logit link function, controlling for repeated observations within actors nested in groups, and receivers 
in groups. The table shows fixed effects parameter estimates and standard errors (Est; SE); odds ratios and their 95% profile likelihood confidence intervals 
(OR; OR 95% CI); and LRT statistics, degrees of freedom, and p values (LRT; df; P value). Also shown are random effects variance and standard deviation 
(Variance; SD). a Not shown because of having no meaningful interpretation. b z-transformed; mean ± SD of the original value. Statistically significant (α = 
0.05) P values are in bold. Dyad Sex & Reproductive state (F0=Female, F1=Female maximally swollen, M=Male). 
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5.4 Discussion 

 The main findings of this study are that (1) affiliative behaviour between crested 

macaques decreased in the immediate aftermath (first hour)  of IGC; (2) dyads in 

losing groups exchanged more affiliative behaviour than those in winning groups, 

(3) individuals focused their post-IGC affiliative behaviour on their strongly bonded 

social partners; and (4) IGC participation had no effect on the giving or receiving of 

post-conflict affiliative or aggressive behaviour. 

As predicted by the tension-reduction hypothesis (H2: Table 5.1), individual 

macaques scratched themselves more following IGC (in the first hour) than they did 

in the baseline condition (Prediction 2.1), but no effect of IGC outcome was observed 

(contrary to Prediction 2.2). Contrary to all predictions (1.1, 2.3, and 3.1), dyads 

exchanged less affiliative behaviour in the hour post-IGC than at baseline, but both 

IGC outcome (Prediction 2.4) and social bond strength (Prediction 2.6) influenced 

patterns of affiliative behaviour in ways consistent with the tension-reduction 

hypothesis. As predicted by both the conflict-cohesion (H1) and tension-reduction 

hypotheses (H2), IGC participation had no significant effect on subsequent affiliative 

or aggressive behaviour (in support of Predictions 1.3 and 2.7 and contrary to 

Predictions 3.4 and 3.5). Furthermore, no change in aggressive behaviour was found 

in the post-IGC period compared to baseline (contrary to Predictions 1.5 and 2.8), 

even when IGC outcome was considered (Prediction 2.9). The social incentive 

hypothesis (H3) correctly predicted no change in levels of post-IGC aggression 

(Prediction 3.2), however no other social incentive predictions were supported. 

Likewise, only one prediction of the conflict-cohesion hypothesis (H1) was 

supported (Prediction 1.4). In sum, we found no evidence that crested macaques use 

grooming, affiliation, contact-sitting, and/or aggression to enhance in-group 

cohesion or to punish/reward group-mates in the aftermath of IGC. However, we did 

confirm several predictions of the tension-reduction hypothesis (H2), suggesting that 

in crested macaques the primary function of post-IGC social behaviour may be to 

relieve the physiological stress and anxiety associated with out-group conflict. 

Intergroup conflict can be costly, and these results, showing that self-scratching 

increases in the hour post-IGC, indicate that crested macaques experience increased 

physiological stress in response to conflict with other groups. Many previous studies 

of primates (reviewed in Maestripieri et al., 1992), including other macaques, 
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demonstrate that self-scratching is a reliable indicator of stress (Barbary macaques 

(Macaca Sylvanus): (Kaburu et al., 2012; Maréchal et al., 2011); Japanese macaques 

(Macaca fuscata yakui): (Majolo et al., 2009); and crested macaques (Aureli & 

Yates, 2010)), but it has rarely been used in the context of IGC. A study of semi-free-

ranging ringtailed lemurs observed increased rates of self-directed behaviour, 

including self-scratching, during IGEs (Nunn & Deaner, 2004), but this study is one 

of the first to use this method to examine stress responses to IGC in wild primates. 

Long-term stress exposure can have negative effects on growth, reproduction, 

disease resistance, and longevity (Pride, 2005), but these can be reduced through 

positive social contact, particularly allogrooming (Terry, 1970). It is therefore 

surprising that our results show a significant decrease in PSB (affiliative gestures, 

touches, contact-sitting, and allogrooming) in the first hour following IGC, when we 

might expect to see an increase in response to elevated stress.  

There are several possible explanations for the decrease in PSB following IGC, and 

for the apparent lack of effect of IGC participation. First, the familiarity of the study 

groups may affect intragroup behaviour following IGC. Encounters with unknown 

groups often elicit a more powerful response from territory-holders than those with 

more familiar neighbouring groups (see Christensen & Radford’s (2018) review). 

Strangers could be more threatening for two main reasons: First, their appearance at 

territorial borders is less spatially and temporally predictable than that of neighbours 

(Jordan et al., 2007); and second, unfamiliar groups are more likely to usurp an entire 

territory than familiar neighbours. As such they represent a greater threat than 

neighbouring groups that are likely to return to their own territory following an 

incursion (Wilson, 1975): the “dear-enemy” effect (Fisher, 1954). In contrast, the 

“nasty-neighbour” effect proposes that familiar groups pose a greater threat if 

fluctuating resources levels in disputed territory encourage usurpation by neighbours 

(Temeles, 1990). The home ranges of the macaque groups at this study site 

overlapped considerably and the groups encountered one another frequently. In 

addition, food at this study site is abundant year-round (Kinnaird et al., 1999; 

O’Brien & Kinnaird, 1997; Ratna Sari, 2013), dispersing males often transfer in and 

out of the same groups throughout their lives (Marty, Hodges, Heistermann, et al., 

2017), and two of our study groups (plus two other non-study groups) were closely 

related, having previously been part of the same group that fissioned several years 

before the study began. Therefore, it is probably safe to assume that groups were 
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familiar with each other, which could explain why no increases in post-IGC 

affiliation or aggression were observed: Over and above the stress induced by any 

encounter with another group, perhaps encounters with familiar neighbours are not 

threatening enough to elicit an increase in affiliative or aggressive behaviour in this 

population. 

However, if this were the case, we might expect PSB to remain unchanged after IGC, 

rather than to decrease. Individuals may forage more after IGEs to compensate for 

lost feeding time and increased energy expenditure. However, given that we 

controlled for available social time in all our analyses it seems unlikely that this is 

driving the decrease in post-IGC PSB among crested macaques. We might also 

expect to see an increase in intragroup aggression as individuals compete more 

fiercely for limited fall-back resources (in the case of losing groups). Very few 

studies report a decrease in social behaviour following IGEs, and our findings are in 

contrast with many of those for other species, where post-IGE PSB either increased 

(Cercopithecus mitis: (Cords, 2002); Neolamprologus pulcher: (Bruintjes et al., 

2016);  Phoeniculus purpureus: (Radford, 2008b); Gorilla beringei beringei: 

(Mirville et al., 2020); Cercopithecus mitis erythrarchus: (Payne, Henzi, et al., 2003); 

Pan troglodytes verus: (Samuni, Mielke, et al., 2019)), or did not change 

(Erythrocebus patas: (Chism & Rogers, 2004); Lemur catta: (Nunn & Deaner, 

2004); Cebus apella: (Polizzi di Sorrentino, Schino, Massaro, et al., 2012); 

Cercopithecus aethiops: (Cheney, 1992)). Only Yi et al. (2020) found a post-IGC 

decrease in affiliative social behaviour, with a simultaneous increase in feeding 

behaviour, between pairs of Javan gibbons.  

However, the species detailed above all have quite different social systems to each 

other, and to that of crested macaques. Furthermore, the nature of IGEs also differs 

considerably between these species. For example, affiliation between chimpanzees 

often increases pre- and post-IGC (Mitani et al., 2010; Samuni, Mielke, et al., 2019), 

with the likely function of increasing group cohesion and cooperation. Conflict 

between chimpanzee groups can be notoriously violent, if relatively infrequent, and 

can result in individual deaths and the usurpation of entire territories, which in turn 

has powerful fitness consequences for males and females (Langergraber et al., 2017; 

Mitani et al., 2010). Given that numerical superiority is one of the key determinants 

of IGC success in chimpanzees, affiliative behaviours that increase group cohesion 



  Chapter 5
   

 

127 
 

may be highly adaptive. However, IGC among crested macaques at this study site is 

much more frequent, potentially injurious but rarely lethal (Martínez-Iñigo, 2017), 

and because food is abundant (O’Brien & Kinnaird, 1997; Ratna Sari, 2013) the costs 

of losing an encounter may be relatively low, compared to chimpanzees for example. 

Intragroup cohesion does not appear to be a key determinant of IGC success in 

crested macaques, with lethal coalitionary attacks being rare, and individuals of both 

sexes acting primarily to protect their own reproductive interests (this study; 

Martínez-Iñigo, 2017; Martínez-Iñigo et al., 2017). Although crested macaques are 

not cooperative breeders (for whom communal defence and collective action are 

crucial drivers of lifetime reproductive fitness (Bruintjes et al., 2016; Radford, 

2008b), the high degree of social tolerance and relatedness between female group-

mates (as the philopatric sex) may mean that most individuals are already prepared 

to support their close kin during IGC. As such, there may be little need of a social 

mechanism to increase group cohesion or incentivise participation in the context of 

IGC. 

However, if there is little need for a cohesive behavioural mechanism in this 

situation, we might again anticipate no change in PSB post-IGC, rather than a 

decrease. Having taken into account dyad sex, female reproductive state, and the 

strength of social bonds, which are the primary determinants of PSB between crested 

macaques dyads under normal circumstances (this study; Clark & Melfi, 2005; Cowl 

et al., 2020; O’Brien & Kinnaird, 1997) the decrease in PSB was still evident. We 

therefore propose four non-mutually exclusive potential explanations for the 

observed decrease in PSB following IGC. First, that individuals increase vigilance at 

the expense of allogrooming in the aftermath of encounters. Because allogrooming 

(a key component of our PSB measure) can interfere with vigilance (Cords, 1995; 

Maestripieri, 1993; Mooring & Hart, 1995), it may be less common in the first hour 

post-IGC as individuals remain alert for the possible return of their rivals (both 

winners and losers). This could be investigated further by comparing time spent 

vigilant in the hours following IGC with baseline levels.  

Second, there may be fewer opportunities (for losing groups) and less need (for 

winning groups) for intragroup affiliation following IGC. Losing groups generally 

move away from the IGC location and interindividual spacing tends to increase when 

travelling (Papio spp.; (Altmann & Altmann, 1973; Dunbar & Nathan, 1972); 
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Erythrocebus patas: (Hall, 1966); Symphalangus syndactylus: (Chivers, 1971); 

Miopithecus talapoin: (Gautier-Hion, 1970)). This reduces the likelihood of social 

exchange between individuals and could explain the decrease in PSB during the first 

post-IGC hour. Winning groups on the other hand may remain at the IGC location to 

feed on the contested resource, usually abundantly fruiting fig trees. Social behaviour 

may decrease in this case because although individuals may clump together to exploit 

the resource, they may be too busy feeding to engage in social behaviour. Indeed, 

this may partially explain our finding that although affiliative behaviour decreases in 

the first hour post-IGC for winning and losing groups, winning groups exchange even 

less affiliative behaviour than losing groups. Furthermore, the abundance of fruit may 

reduce intragroup (contest) feeding competition in both winning and losing groups 

to the extent that intragroup aggression also decreases/remains stable (Isbell, 1991).  

Third, it may be that at times of increased anxiety (such as post-IGC) certain 

individuals avoid one another in anticipation of receiving aggression. There is limited 

evidence in the literature for an increase in intragroup aggression following IGC, and 

as with affiliative behaviour the results are inconsistent. In line with the results 

presented here, a study of ringtailed lemurs found no post-IGC increase in intragroup 

aggression (Nunn & Deaner, 2004), whilst agonistic interactions involving 

silverback male mountain gorillas decreased following long (vs. short) IGEs 

(Mirville et al., 2020), and post-IGC male-to-female aggression increased among 

bonnet macaques (Cooper et al., 2004). The latter study hypothesised that this 

aggression was the consequence of increased anxiety and/or functioned as herding 

behaviour. We have already demonstrated that anxiety increases post-IGC among 

crested macaques, and that females tend to avoid males pre-conflict; most likely to 

avoid aggressive sexual coercion/herding during between-group encounters (see 

Chapter 4). It follows that female macaques may also try to avoid males in the 

immediate aftermath of IGC when they may be the victims of further aggression: 

Possibly because males are in a general state of heightened anxiety and may redirect 

aggression received during IGC, and/or because males may try to punish/discourage 

female out-group copulations. Given that a great deal of the PSB between crested 

macaques takes the form of female-to-male grooming, and that the receipt of 

aggression is more likely upon approaching a potential aggressor (even to offer 

grooming), it is possible that PSB decreases post-IGC because females avoid males. 
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If this conflict-avoidance strategy works it would also be evidenced by an unchanged 

rate of intragroup aggression, which we see in these results.  

Finally, affiliative behaviour may decrease following IGC simply because 

individuals have relatively inflexible time-budgets (Chism & Rogers, 2004). As 

such, “discretionary” activities, such as allogrooming, may be sacrificed in favour of 

maintenance activities like feeding. If time-budgets are limited in this way it follows 

that any remaining post-IGC social behaviour should serve an individual’s most 

immediate needs: which for crested macaques in this habitat may be tension-

reduction (particularly for losing groups), rather than increasing group cohesion or 

socially incentivising future IGC participation. Our finding that individuals in losing 

groups still exchange more affiliative behaviour than those in winning groups 

supports this argument, as does our finding that individuals direct their time-limited 

social effort towards their most strongly bonded partners in the aftermath of conflict 

(which should maximise the effects of social buffering (Kikusui et al., 2006; Young 

et al., 2014)). Additionally, although we found almost no support for the conflict-

cohesion hypothesis in this study, it is possible that by focussing their time-limited 

post-IGC social effort on strongly bonded social partners, crested macaques still 

manage to service their most important social relationships. In this respect, although 

post-IGC social behaviour may not actively increase social cohesion, it may function 

to maintain it, at least within specific social cliques 

Considering our previous findings that female and male crested macaques appear to 

pursue their own reproductive interests in anticipation of potential IGC, rather than 

any collective goal, this time-limited tension-reduction scenario seems the most 

likely explanation of our results. In order to investigate this more thoroughly, future 

work should aim to quantify exactly how individuals participate, record in detail their 

behaviour during and immediately after IGC, and track participants over a 

considerably longer time-frame. This could be achieved with a larger team of 

individuals, spread around and throughout the competing groups, but this presents its 

own logistical and ethical problems as the number of observers increases. However, 

this would allow a more thorough understanding of whether the results presented 

here do in fact reflect a time-limited tension-reduction strategy, or whether some 

other form of social capital is exchanged in the aftermath of IGC, but perhaps in a 

different currency and/or at a later time.  
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The effect of IGC on intragroup social behaviour is still not well understood, and as 

the number of species examined increases it becomes clear that there is a great deal 

of variation in how species, groups, and individuals respond. These results begin to 

fill a gap in our understanding by providing the first information concerning the post-

IGC responses of a Resident-Nepotistic-Tolerant (RNT) primate species (Sterck et 

al., 1997), and support the idea that a species’ social system is a key factor in 

understanding the wide variation in responses. In common with Resident-Nepotistic 

(RN) species, RNT species experience high levels of intragroup contest competition, 

and we see the development of stable, linear, and nepotistic female hierarchies in 

both. However, unlike RN species, crested macaques also experience high intergroup 

contest competition, and this predicts the development of a more tolerant dominance 

regime (confirmed by Duboscq et al., 2013), in order to ensure the support of low-

ranking individuals during IGC. This may explain the lack of evidence for the 

conflict-cohesion or social-incentive hypotheses in this study: if all individuals can 

benefit more or less equally from the spoils of IGC victory there may be little need 

for a behavioural mechanism that bolsters group cohesion and/or incentivises 

participation, particularly if time-budgets are limited by IGC. If this is the case it is 

more likely that as suggested here, individuals of RNT species will pursue 

behavioural strategies that most reliably maximise their own lifetime-reproductive 

fitness, such as buffering the deleterious effects of stress, rather than (or before) those 

that promote group-wide cohesion and collective action. 
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Chapter 6 

 

General Discussion 

6.1 Discussion 

Intergroup competition is a pivotal factor in recent theoretical models of the 

evolution of social behaviour, particularly behaviour such as intragroup cooperation 

(Choi & Bowles, 2007; Puurtinen et al., 2015; Puurtinen & Mappes, 2009). 

Aggressive intergroup conflict (IGC) is one of the riskiest cooperative actions that 

an individual can undertake, and in many cases non-participants can receive the 

benefits of collective action (e.g. territory or resource defence) but incur none of the 

costs (Kitchen & Beehner, 2007; Nunn & Lewis, 2001). This renders the defence of 

commonly held resources vulnerable to a collective action problem (CAP) (Olson, 

1965). If costly collective action produces a public good that cannot be monopolised 

by the individuals responsible for producing it, natural selection will favour free-

riders over co-operators (Heinsohn & Packer, 1995), collective action will break 

down, and the public good will be lost to all (Rankin et al., 2007). Group-living 

animals in a diverse range of taxa rely on cooperative action in defence of resources 

against conspecifics (e.g. ants (Formicidae spp.) (Adams, 1990; Batchelor & Briffa, 

2010; Birch et al., 2019; Hölldobler & Lumsden, 1980; Tanner, 2006), termites 

(Thompson et al., 2020), honeybees (Apis mellifera) (Rangel et al., 2010), birds 

(Passeriformes spp.) (Carlson, 1986; Langen & Vehrencamp, 1998; Strong et al., 

2018; Woolfenden & Fitzpatrick, 1977), fish  (Braga Goncalves & Radford, 2019; 

Bruintjes et al., 2016; Hellmann & Hamilton, 2019), and carnivores (Carnivora spp.) 

(Christensen et al., 2016; Dyble et al., 2019; Furrer et al., 2011; Morris-Drake et al., 

2019; Mosser & Packer, 2009; Preston et al., 2020; Stewart et al., 2001). However, 

recent empirical work indicates that the CAP appears to be a particularly important 

selective pressure in the evolution of primate sociality and cooperation (Kitchen & 

Beehner, 2007; Nunn, 2000; Willems et al., 2013; Willems & van Schaik, 2015). 

Groups that win intergroup encounters (IGEs) tend to have greater access to fitness-

enhancing resources (Mitani et al., 2010), and effective competition typically 

requires cooperation among individuals (De Dreu et al., 2016). Consequently, many 

researchers have hypothesised that intergroup hostility exerts a selective force on 
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behaviours that promote intragroup cooperation, thereby overcoming the CAP 

(Alexander & Borgia, 1978; Bowles, 2009; Choi & Bowles, 2007). As such, many 

recent studies of interactions between groups of social animals have focused on the 

possible role of affiliative and aggressive behaviours in promoting intragroup 

cohesion and cooperation, but with conflicting results (e.g. Chism & Rogers, 2004; 

Mirville et al., 2020; Payne, Henzi, et al., 2003; Polizzi di Sorrentino, Schino, 

Massaro, et al., 2012; Preston et al., 2020; Samuni, Mielke, et al., 2019; Thompson 

et al., 2020; and Yi et al., 2020). While intergroup hostility and intragroup 

cooperation may be fundamentally linked in an evolutionary sense, the social and 

environmental conditions under which many group-living animals exist may 

elicit/demand different, or more varied responses. Despite a growing body of work, 

we still have an incomplete picture of this connection across different group living 

taxa. The goal of this thesis was to investigate how the threat and occurrence of IGC 

affects intragroup behaviour in wild crested macaques (Macaca nigra). 

In Chapters 3 and 4, I first used the increase in a behavioural indicator of anxiety 

(self-scratching) to establish support for the view that crested macaques remember 

the location, timing, and outcome of recent IGEs, and that the prospect of 

encountering other groups can be stressful. Several studies show that non-human 

primates (hereafter primates) remember the locations of predator attacks and 

disturbance events, such as human persecution or large gatherings  (Boinski et al., 

2000; Fagan et al., 2013; Reisland & Lambert, 2016; Waterman et al., 2019), but 

very few have demonstrated the same with IGEs in the wild. I found that although 

both spacing and social behaviour changed in areas where IGEs were most likely to 

occur, there was little evidence that encounter risk prompted the expression of 

behaviours likely to facilitate future participation in IGEs. Rather, my findings 

suggest that when faced with the risk of intergroup hostility, individuals tend to 

behave in ways that maximise their own interests (physical safety and reproductive 

success) without the need for cooperative behaviour.  

In Chapter 3, I found that groups altered their spacing and behavioural synchrony, 

but in different ways depending on their recent IGE win/loss record. Groups with the 

strongest records appear to spread out in high risk areas, a response most likely driven 

by low- and mid-ranking males prospecting for out-group mating/transfer 

opportunities. This would also explain the accompanying decrease in behavioural 



  Chapter 6
   

 

133 
 

synchrony as different sex-age-rank classes pursue different agendas. I hypothesised 

that dominant groups might spread out to find, engage, and defeat rivals, reinforcing 

a profitable pattern of group dominance (Lemoine, Boesch, et al., 2020). However, 

if this were the case, we might expect to see an increase in active behavioural 

synchrony, which we do not here. In contrast, groups with the poorest win/loss 

records clump together and their behaviour becomes more synchronised. It is well 

established that small groups (that are likely to be subordinate) can overcome CAPs 

more easily than large groups (Olson, 1965), in which free-riding is often widespread 

and difficult to police. However, rather than functioning to promote effective 

collective action a more parsimonious explanation of the observed increase in spatial 

cohesion and behavioural synchrony among subordinate groups is that individuals 

try to take advantage of the dilution effect (Hamilton, 1971); crowding together in 

areas where the possibility of out-group attack is greatest. 

Similarly, the patterns of social behaviour I observed in Chapter 4, as groups 

prepared to enter high encounter risk areas, are most likely explained by “selfish” 

motives. If coordinated collective action is important for IGC success in crested 

macaques we might expect to see an increase in behaviours that promote social 

cohesion and cooperation in advance of potential conflict. This should be particularly 

evident between adult males, the most frequent and aggressive participants. 

However, prior to entering high encounter risk areas I found that male-male social 

interactions ceased entirely. Male crested macaques exchange very little affiliative 

behaviour with one another at any time (Reed et al., 1997), but the total absence of 

interaction prior to entering high encounter risk areas suggests: (a) that the steep male 

dominance hierarchy (Marty, 2015) may inhibit affiliative social interaction at all 

times, regardless of IGE risk; and/or (b) that male crested macaques have no need of 

a behavioural mechanism to promote male collective action during IGC.  

Because male reproductive fitness is primarily limited by access to sexually receptive 

females (Trivers, 1972) they may follow at least three IGE strategies, only the third 

of which (detailed below) would create any substantial selective pressure for 

cooperation in this species. First, they may directly defend their own reproductive 

interests by herding in-group females and aggressing out-group males (the mate-

defence hypothesis: van Schaik et al., 1992; Wrangham, 1980). Second, they may 

use IGEs as opportunities to survey group transfer possibilities (Lazaro-Perea, 2001; 
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Majolo et al., 2005). Third, they may indirectly defend females (and increase female 

reproductive output (Williams et al., 2004)) by defending food resources  (the hired-

guns hypothesis: Fashing, 2001; Rubenstein, 1986). Overall, my findings provide 

strong support for the first of these possibilities, limited support for the second, and 

virtually none for the third. 

First, in crested macaques dominant males can easily monopolise mating access (and 

crucially paternity) due to low female reproductive synchrony and clear, reliable 

signals of fertility (conspicuous sexual swellings) (Higham et al., 2012). This 

priority-of-access model (Altmann, 1962) is also evident in other primate species 

(Alberts et al., 2003; Altmann et al., 1996; Boesch et al., 2006; Setchell et al., 2005) 

and several studies have found that oestrus females, who could conceive offspring 

with out-group males, are more likely to be herded than those who are not (Byrne et 

al., 1987; Cheney & Seyfarth, 1977; Smuts & Smuts, 1993). Indeed, rather than, or 

in addition to attacking out-group rivals during IGEs, male crested macaques 

commonly herd swelling females one-on-one, and males of all rank display 

significantly more aggression towards swollen females than towards females in other 

reproductive states (Martínez-Iñigo, 2017; Reed et al., 1997). This appears to be an 

extremely effective strategy: Engelhardt et al. (2017) found no evidence of 

extragroup paternity or natal breeding in paternity tests of 63 infants from three 

groups of crested macaques (two of which I followed for this study) between 2006 

and 2011. Furthermore, the mean proportion of alpha paternity was found to be 65% 

(Engelhardt et al., 2017). Under these conditions there may be very little incentive 

for male crested macaques to cooperate with each other in defence of mates: 

dominant males can protect their own reproductive interests without engaging in joint 

action, and non-dominant males have little chance of achieving mating success even 

if they do cooperate. 

Second, intergroup transfer is a common and risky occurrence for male crested 

macaques (Marty, 2015). Intragroup competition over access to fertile females is 

high, male takeover attempts can be extremely violent, and alpha male tenures only 

last on average 12 months (Marty, Hodges, Agil, et al., 2017); one of the shortest 

tenures known for any primate species (average in multi-male multi-female groups 

is approximately 50 months (Lukas & Clutton-Brock, 2014)). Given the high 

potential for injury, and the extreme reproductive skew towards dominant males, 
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immigration attempts that result in anything less than a successful takeover may be 

extremely costly in terms of lifetime reproductive fitness. As such, in common with 

chacma baboons (Papio ursinus) (Alberts & Altmann, 1995), males often wait until 

they have reached their physical peak before attempting to transfer into another group 

(Marty, Hodges, Agil, et al., 2017), rather than emigrating at or shortly after sexual 

maturity, as seen in most other primate species characterised by male natal dispersal 

(Pusey & Packer, 1986). In sum, the timing of male takeover attempts is of crucial 

importance in this species (Marty et al., 2016) and IGEs can be valuable opportunities 

to assess the relative strengths of out-group males. However, this strategy does not 

require cooperation between males either (even though low ranking males sometimes 

transfer together following a successful takeover by another more dominant 

individual (Marty et al., 2016)).  

Finally, the males of several group-living primate species do cooperate to defend 

food resources for females during IGC, acting as ‘hired-guns’ (Scarry, 2013, 2017; 

Willems & van Schaik, 2015; Williams et al., 2004). However, there appear to be 

two main impediments to this in crested macaques: the antagonistic social 

relationships between males, and the abundance of food at this study site. Within 

social systems in which males are less closely related to each other than are resident 

females (like that of crested macaques), tolerance, friendship, and trust among 

resident males appears to play an important role in facilitating the emergence of 

collective action (Gilby & Wrangham, 2008). For unrelated males these qualities are 

likely achieved over time and through frequent, predictable social interactions 

(Kitchen, 2004). However, relations between male crested macaques are generally 

short-lived, infrequent, and antagonistic (Reed et al., 1997). In addition, the quick 

turnover and high reproductive skew associated with the alpha male position also 

means that relatedness among offspring (including males) is lower than it would be 

in species with longer alpha tenures. This likely hinders cooperation also (Widdig, 

2013). As such, males may not associate with each other often enough, for long 

enough, or with enough tolerance to form the kind of bonds required to cooperatively 

defend food resources, for females or themselves.  

Furthermore, the availability of food at this study site is extremely high, and very 

predictable year-round (Kinnaird et al., 1999; Kinnaird & O’Brien, 1995, 2005; 

O’Brien & Kinnaird, 1997; Ratna Sari, 2013), so much so that it may preclude the 
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need for females to compete for it and thus for males to act as ‘hired-guns’ at all. 

Because female reproductive fitness is primarily restricted by access to the resources 

needed to raise offspring (Cheney & Seyfarth, 1987; Fashing, 2001; Trivers, 1972), 

females should experience a strong selective pressure to contest and win IGCs when 

these resources are at stake. However, the extraordinary density of fruiting trees in 

Tangkoko Nature Reserve (TNR) (Kinnaird et al., 1999; Kinnaird & O’Brien, 2005; 

Ratna Sari, 2013) may reduce the level of direct intergroup food competition to such 

an extent that the pressure for female crested macaques to compete and win is (at 

least partially) relieved.  

In practice this may have given rise to a situation whereby groups that lose (or are 

denied) access to a contested food resource can simply travel to another nearby. 

While there are still costs associated with this (e.g. reduced opportunities for feeding 

and resting, and increased energy expenditure during travel), these are almost 

certainly outweighed by the potential costs of aggressive IGC (e.g. heightened 

anxiety, greatly increased energy expenditure for conflict participants, potential 

injury or death, and even the loss of offspring (Martínez-Iñigo, 2017; personal 

observation). In sum, it appears that an abundance of food at this study site may (a) 

release female crested macaques from the pressure to compete for resources with 

other groups, (b) release male crested macaques from the need to act as ‘hired-guns’, 

and as such, (c) remove any pressure for the evolution of female behaviours that 

promote collective action or incentivise future participation in IGC.  

This idea is supported by the fact that I found no evidence of female attempts to 

incentivise male participation either before or after conflict. I investigated both 

possibilities and found evidence of neither (Chapters 4 and 5, respectively). Shortly 

before entering high encounter risk areas, social interactions between mixed-sex 

dyads decreased dramatically and the number of females from whom male macaques 

received affiliative behaviour decreased almost to zero. Neither did I observe any 

post-conflict punishment or reward associated with participation (via aggression or 

the giving/withholding of affiliative behaviour). These patterns strongly suggest the 

absence of any attempt by females to incentivise male or female participation, as has 

been observed in vervet monkeys (Chlorocebus pygerythrus) for example 

(Arseneau-Robar et al., 2016). Rather, the changes in social behaviour that I observed 

in the aftermath of IGC (Chapter 5) appear to function primarily to reduce stress and 
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anxiety. Although the overall rate of affiliative behaviour decreased in the first hour 

following IGC, individuals in losing groups exchanged more affiliative behaviours 

than those in winning groups. Theory predicts that losing an encounter is more 

stressful than winning (Radford et al., 2016), however I found no evidence of this in 

my comparison of self-scratching rates between winning and losing groups. 

Individuals also focused their social effort on strongly bonded social partners, rather 

than on conflict participants. If post-conflict affiliation in crested macaques functions 

to increase group cohesion (in order to promote future collective action) we would 

expect to see an increase in the aftermath of conflict, and/or a change in patterns of 

social effort that reflect this, e.g. rapid affiliation with many different partners as 

described in blue monkeys (Cords, 2002), or a focus on conflict participants. I found 

evidence of neither.  

6.2 Limitations and future directions 

Throughout this study there are some limitations to consider. Among these was my 

inability to follow all three study groups every day. This makes it difficult to be 

certain about IGE rates and win/loss records. However, whenever possible my field 

assistant and I split up and followed two groups simultaneously. Also, I only 

collected data on three macaque groups. This allowed for large volumes of data to be 

collected on each group (essential for robust analyses of dyadic behavioural 

interactions), but at the cost of capturing a greater range of intergroup variation in 

response to conflict. However, I was able to sample three groups of considerably 

different size. This has the advantage of making my results more reliably applicable 

to other samples or populations of crested macaques than if I had studied groups of 

similar sizes.  

Throughout the thesis my quantification of IGE risk relied on risk maps created from 

encounters that occurred in the preceding month. For example, for each group, focal 

observations that occurred in August 2018 were assigned risk values from the July 

2018 risk map. This approach relies on the assumption that one month is a reasonable 

time window over which crested macaques remember previous encounters and that 

this alters their perception of encounter risk accordingly. In theory it may have been 

more parsimonious to construct weekly or even daily rolling risk maps. However, 

given the frequency with which each group was followed, one month was the 



  Chapter 6
   

 

138 
 

smallest window in which enough data were collected to construct accurate risk 

maps.  

Finally, my inability to include subadult individuals in observations and analyses 

may have biased some of my conclusions (Fedurek & Lehmann, 2017), particularly 

with respect to the effects of risk on group-wide spatial cohesion, and both risk and 

occurrence of conflict on dyadic social behaviour. The effect of excluding subadult 

females from the spatial cohesion analyses is unlikely to be too problematic because 

they tended to stay close to their older female relatives, particularly in the context of 

IGC. However, subadult males, particularly those approaching sexual maturity, are 

the class of individuals most likely to benefit from the information-gathering 

potential of IGEs (Marty, 2015; Marty et al., 2016). As such, these young males may 

be more motivated than the rest of their group to explore areas where the likelihood 

of IGE is high, and this may have skewed some of my group spread measurements. 

In terms of post-conflict social behaviour, the exclusion of young males is unlikely 

to be problematic because male macaques exchange so little social behaviour at any 

time (Reed et al., 1997; this study). Also, because they are highly unlikely to sire 

offspring in their own natal group (Engelhardt et al., 2017; Reed et al., 1997), sub-

adult males have little incentive to defend mates or to act as hired-guns; either of 

which might garner social attention from group-mates. However, subadult females 

frequently exchange affiliative social behaviours with adult individuals, particularly 

older (presumably related) females. In order to investigate questions about partner 

choice throughout the thesis, both interaction partners had to be identified with 

certainty. This was not possible with all subadult individuals (including females). As 

a result, social interactions between adults and subadults were not included in 

analyses of affiliation rates. While this may have artificially deflated rates of 

intragroup affiliation, this effect is likely to be similar across groups. Furthermore, 

because subadult individuals rarely participate in IGC to the same extent as adults, 

interactions that involve them seem unlikely to serve the kind of strategic functions 

that I hypothesised throughout. 

Moving forward, a more focused approach to phenological data collection might 

answer one of the most interesting questions raised by my study: are there any 

specific resources that reliably predict the escalation of intergroup aggression? If so, 

it would suggest that some resources are in fact limiting and that the pressure for 
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collective action in crested macaques is not entirely absent. It may simply be that it 

does not occur frequently enough to exert a meaningful selection pressure on 

behaviours that would facilitate joint defence. For example, during the dry season 

reliable sources of fresh water are scarce. Groups often spent an unusually large 

proportion of the day at those locations, foraging less and resting/socialising nearby 

instead. The same was true of a few highly palatable, seasonally limited fruits such 

as mango (Magnifera indica). Anecdotally, the occurrence and frequency of IGEs 

increased considerably during the short mango fruiting window. Compared to Ficus 

spp. and Dracontomelon dao trees (the primary and preferred foods (Kinnaird & 

O’Brien, 1995, 2005; Lee, 1997; O’Brien & Kinnaird, 1997; Ratna Sari, 2013)), there 

were very few mango trees throughout the study area and the increase in intergroup 

hostility appeared to be centred around these locations. It is possible therefore, that 

in periods of scarcity male and female macaques may attempt to gain access to 

limited/highly palatable resources (Majolo et al., 2005), and that under these 

conditions we may see the emergence of (albeit temporary) behavioural mechanisms 

that facilitate intragroup cooperation and collective action. If this were the case it 

would suggest a more flexible, ecologically driven response to the need for collective 

action, which might go some way to explaining why intergroup coalitionary 

aggression  does still occur (on rare occasions) in this population, despite the low 

level of resource competition. 

Another way to approach this question might be to conduct a similar study with the 

large introduced population of crested macaques on the island of Bacan, in the North 

Mollucas, 300 km southeast of North Sulawesi. Little is known about this population 

by comparison, but population density is reportedly very high (Rosenbaum et al., 

1998), which may mean that IGEs are frequent in this population also. However, like 

the study population, the Bacan population also enjoys an extremely high density of 

food resources (Rosenbaum et al., 1998). Although for comparative purposes it 

would be more instructive to study another population with less abundant resources 

it may still be illuminating to discover whether the patterns observed in this study are 

repeated elsewhere. 
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6.3 General conclusion 

In this thesis I set out to investigate how the risk and occurrence of IGC influences 

intragroup social behaviour. What is most notable about my findings, especially 

when considered as a whole, is that I found no convincing evidence to indicate that 

IGC promotes cohesion and cooperation in crested macaques. Rather, I found that 

the particular ecological conditions under which this population exists 

(superabundant natural food resources), and the peculiarities of the male social 

system and reproductive strategy, seem to preclude the need for collective action in 

the context of IGC. In summary, I propose that this population of crested macaques 

have not experienced strong or sustained enough selective pressure to drive the 

evolution of behaviours that facilitate intragroup cohesion, cooperation, and 

collective action. These findings highlight the importance of examining a broad 

range of species and social systems when investigating the effect of intergroup 

competition on intragroup social evolution. In doing so I hope to have furthered our 

understanding of the factors that promote the evolution of cooperative behaviour in 

social primates by demonstrating a few limited effects of their absence.  

Indeed, my findings suggest that not all groups that engage in IGC always have 

something worth fighting for, and that we need to find ways of incorporating this 

possibility into future models of intergroup hostility. A new meta-analysis of studies 

that link IGC with intragroup affiliation could focus on whether studies have 

considered, quantified, or controlled for the effect of territorial resource availability, 

both in space and time (i.e. considering seasonal supply and demand of specific 

limiting resources). The work involved in collecting data of this kind is considerable, 

but it may contribute to the emergence of a more thorough and coherent 

understanding of the factors that facilitate and impede collective action in group-

living animals. 
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Appendices 

Appendix 1: Predator encounters 

During the study, across all groups, we observed 41 predators in 35 separate encounters over 226 observation days, with a mean rate of 0.18 ± 

0.46 (mean ± SD) predator encounters per day (range: 0 – 3), and no fatal or injurious attacks.  
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Appendix 2: Tourist encounters 

During the study, across all groups, we observed 978 tourists in 177 separate encounters over 226 observation days, with a mean rate of 4.33 ± 

9.53 (mean ± SD) tourists per day and a mean encounter rate of 0.78 ± 1.60 (mean ± SD) tourist encounters per day. Two of the study groups, 

PB1B and R1 were regularly visited by tourists. The third group, R3 were not (Table A.1). Fig. A.1 shows the locations of all observed tourist-

macaque encounters in Tangkoko Nature Reserve (TNR) from March 2018 through June 2019. 

Table A.1 Tourist-macaque encounters in TNR from March 2018 through June 2019. 

Group Total number of 

tourists 

Total number of tourist-

macaque encounters 

Number of tourists per day (mean ± SD), 

range (min – max) 

Tourist encounters per day (mean ± SD), 

range (min – max) 

PB1B 440 81 3.60 ± 8.14 (0 – 57) 0.69 ± 1.52 (0 - 12) 

R1 436 75 4.33 ± 8.50 (0 – 47) 0.74 ± 1.25 (0 – 6) 

R3 71 18 1.28 ± 4.02 (0 – 20) 0.25 ± 0.82 (0 – 5) 
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Figure A.1 Tourist-macaque encounters in TNR from March 2018 through June 2019 for groups PB1B (panel A), R1 (panel B), and R3 (panel C).
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Appendix 3: IGEs 

During the study, across all groups, we observed 183 intergroup encounters (IGEs) over 226 observation days, with a mean rate of 0.74 ± 0.66 

(mean ± SD) IGEs per day (range: 0 – 3) (Table A.2 and Fig. A.2). 

Table A.2 Summary of IGEs between wild crested macaque groups in TNR from March 2018 through June 2019. The total number of IGEs by group do 
not sum to 183, the total number recorded across the study, because (depending on the identity of both groups) a single encounter may be counted twice in 
the by-group tally, whilst it is only ever counted once in the across-group tally.

 Group Total number of recorded IGEs Number of IGEs per day (mean ± SD), range (min – max) 

PB1B 91 0.63 ± 0.64 (0 – 2) 

R1 114 0.77 ± 0.55 (0 – 3) 

R3 57 0.46 ± 0.55 (0 – 2) 
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Figure A.2 Summary of crested macaque IGEs in TNR from March 2018 through June 2019. 
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Appendix 4: Home range & overlap 

Table A.3 Utilisation Distribution Overlap Index (UDOI) values for crested macaque groups in TNR from March 2018 through June 2019. 

Group pair UDOI 

PB1B – R1 0.23 

PB1B – R3 0.02 

R1 -R3 0.16 
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Figure A.3 Crested macaque home range estimates (and overlaps) in TNR from March 2018 through June 2019 for all 3 study groups (panel A), PB1B 
(panel B), R1 (panel C), and R3 (panel D). 
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Appendix 5: Relative IGE risk 

Figure A.4 Crested macaque monthly IGE relative risk maps in TNR (PB1B Jun 2018-Feb 2019). 
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Figure A.5 Crested macaque monthly IGE relative risk maps in TNR (PB1B Mar 2019-May 2019; R1 Jul 2018-Dec 2018). 
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Figure A.6 Crested macaque monthly IGE relative risk maps in TNR (R1 Jan2019-May 2019; R3 Aug 2018-Nov 2018). 
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Figure A.7 Crested macaque monthly IGE relative risk maps in TNR (R3 Dec2018-Jun 2019). 


