
Akinbi, A and Ojie, E

 Forensic analysis of open-source XMPP/Jabber multi-client instant messaging
apps on Android smartphones

http://researchonline.ljmu.ac.uk/id/eprint/14572/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Akinbi, A and Ojie, E (2021) Forensic analysis of open-source XMPP/Jabber
multi-client instant messaging apps on Android smartphones. SN Applied
Sciences, 3 (4). ISSN 2523-3963

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Vol.:(0123456789)

SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9

Research Article

Forensic analysis of open‑source XMPP/Jabber multi‑client instant
messaging apps on Android smartphones

Alex Akinbi1  · Ehizojie Ojie2 

Received: 10 August 2020 / Accepted: 24 February 2021
© The Author(s) 2021   OPEN

Abstract
In the quest for a panacea to ensure digital privacy, many users have switched to using decentralized open-source Exten-
sible Messaging and Presence Protocol multi-client instant messaging (IM) apps for secure end-to-end communication.
In this paper, we present a forensic analysis of the artefacts generated on Android smartphones by Conversations and
Xabber apps. We identified databases maintained by each app and external Secure Digital card directories that store
local copies of user metadata. We analysed each app’s storage locations for forensic artefacts and how they can be used
in a forensic investigation. The results in this paper show a detailed analysis of forensic files of interest which can be cor-
related to identify the local user’s multiple IM accounts and contact list, contents of messages exchanged with contacts,
deleted files, time, and dates in the order of their occurrence. The contributions of this research include a comprehensive
description of artefacts, which are of forensic interest, for each app analysed.

Keywords  Mobile forensics · Android forensics · Jabber · Conversations · Xabber · Social networking · End-to-end
encryption

1  Introduction

Most instant messaging (IM) apps provide a free social net-
working service to communicate with friends, family, and
colleagues [1]. However, many users are concerned that
their private messages could be read by the service provid-
ers that own these apps, as well as other third parties and
even governments who like to gather their citizen’s private
data. This has led to the wide adoption of secure IM apps
that provide end-to-end encryption (E2EE), a method of
encrypting data that only allows the sender and receiver
of the message to decrypt and read messages passed
between them [1]. Examples include Telegram, Signal, iMes-
sage, Viber, WhatsApp, Wire, Wickr, etc. Given their popu-
larity, these E2EE IM apps and services are being increas-
ingly used not only for legitimate activities but also for

illicit ones [2, 3]. Therefore, forensic analysis of these apps
continues to pose challenges to law enforcement involved
with criminal investigations where such apps have been
used as a means of secure communication in a crime.

Although privacy can be guaranteed using these E2EE
IM apps, anonymity is still considered daunting for its
users. These E2EE IM apps provide their users with a high
degree of privacy, and the app providers cannot read the
contents of the messages. However, the providers oper-
ate both centralized ecosystem services that enable them
to still have access to information such as user identity,
the identity of user contacts, and IP addresses. It is also
difficult to create and discard accounts and often impos-
sible to run accounts simultaneously, or switch between
them [4]. This issue of maintaining both privacy and ano-
nymity has led to the growing adoption of open-source

 *  Alex Akinbi, o.a.akinbi@ljmu.ac.uk; Ehizojie Ojie, ehizojie.ojie@york.ac.uk | 1School of Computer Science and Mathematics,
Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK. 2Department of Computer Science, University of York,
Heslington, York YO10 5DD, UK.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-021-04431-9&domain=pdf
http://orcid.org/0000-0001-6980-307X
http://orcid.org/0000-0002-3422-1093

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9

Extensible Messaging and Presence Protocol (XMPP) client
instant messaging apps. XMPP was originally developed
in the Jabber open-source community to provide open,
decentralized alternative instant messaging services and
offers several key advantages over centralized or closed
ecosystem services [5].

These key advantages include open-source code (so it
is possible to audit its code), it provides message encryp-
tion, partner authentication, deniability, and perfect for-
ward secrecy through the use of the Off-The-Record (OTR),
a cryptographic protocol that provides encryption for
instant messaging conversations [6]. Another advantage
is the use of Multi-End Message and Object Encryption
(OMEMO), an open standard based on a Double Ratchet
and Personal Eventing Protocol (PEP) for secure multi-
client end-to-end encryption [7]. Users can maintain ano-
nymity on OTR by using multiple accounts, connecting
over a virtual private network (VPN)/The Onion Router
(TOR), or connecting through private XMPP servers. There-
fore, with such characteristics of providing both E2EE and
anonymity, interest in the forensic analysis of decentral-
ized open-source client instant messaging apps built using
XMPP/Jabber and supports OTR or OMEMO is apparent.

In this paper, we deal with the forensic analysis of Con-
versations and Xabber apps. Two popular decentralized
open-source XMPP/Jabber client instant messaging apps
on Android smartphones with 100,000+ and 1,000,000+
downloads respectively from the Google Play Store at
the time of writing this paper. Smartphones running the
Android operating system held an 87% share of the global
market in 2019 compared to the mobile operating system
developed by Apple (iOS), which had a 13% share of the
market [8]. Therefore, by focusing on the Android platform,
we make the most of the potential investigative impact of
our work. There has been no published research address-
ing forensic analysis on Conversations and Xabber apps on
Android smartphones.

Our original contributions in this paper are the explo-
ration and analysis of Conversations and Xabber apps as
summarised below:

•	 From our study and findings, we identified local cop-
ies of messages and files exchanged (forensic artefacts)
between the user and other contacts that are stored in
the main databases and of both apps and file system
of the Android device.

•	 We demonstrate how these forensic artefacts can be
correlated together and interpreted to infer various
types of information which include the timeline of mes-
sages and files exchanged in the order of their occur-
rence and highlight any evidence of deletion.

•	 We reveal that the Conversations app which uses
OMEMO for E2EE communication, store information

associated with the local user, contacts and body of
messages sent or received using the app as plaintext
in the main database maintained by the app.

•	 We reveal that Xabber app which supports OTR for E2EE
communication, stores information associated with
the local user, contacts, and body of messages sent or
received using the app as plaintext in the app’s main
databases.

•	 We reveal how to map and interpret the data stored
by both apps to the local user’s actions that generated
them.

This paper is organized as follows. In Sect. 2, we dis-
cuss related works. In Sect. 3, we discuss the experi-
ment design, analysis methodology and tools used in our
experiments. In Sect. 4, we discuss the investigative sce-
nario used in our experiments. Forensics analysis and find-
ings of Conversation and Xabber apps including artefacts
recovered are presented in Sect. 5 and Sect. 6 respectively.
Finally, in Sect. 7, we discuss our findings and in Sect. 8 we
conclude the paper.

2 � Related works

Most studies of smartphone forensics have focused on
the extraction and analysis of data obtained from the
device flash memory. Forensic analysis of social network-
ing applications has been conducted on Android devices
as demonstrated in several studies [9–11]. Recently, there
have been limited works that have focused on forensic
analysis of open-source decentralized XMPP/Jabber cli-
ent IM apps on Android smartphones. The most notable
one is Anglano et al. [3] forensic analysis of ChatSecure on
Android platforms to recover forensic artefacts related
to the chronology and contents of chat messages and
decrypt the SQLCipher databases. Akinbi and Ojie [12] con-
ducted forensic analysis on Monal and Siskin IM decentral-
ized open-source XMPP apps on iOS devices. Before both
studies, Wouter S. van Dongen [13] conducted a forensic
analysis of Pidgin Messenger 2.0 on the Linux platform. The
ChatSecure app on Android supports OTR for E2EE and
has since been deprecated on the Android platform and
is currently only available to iOS users [14]. Many studies
have focused on popular centralized IM apps on Android
smartphones and demonstrated in studies such as Wickr
[15], WhatsApp [16], Telegram [17], and IMO [18]. However,
forensic analysis of decentralized open-source XMPP/Jab-
ber E2EE multi-client IM apps on Android devices have
been largely ignored, even as they are currently being
used to send encrypted messages by many users. It is not
clear why there are limited studies on forensic analysis of
decentralized open-source XMPP/Jabber E2EE multi-client

Vol.:(0123456789)

SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9	 Research Article

IM apps. However, a recent breakthrough by law enforce-
ment agents in the arrest of organised criminals using
EncroChat secure phones and cryptographic messaging
systems which implements OTR [19], shows the forensic
analysis of these messaging systems are necessary. To the
best of our knowledge, no recent studies have focused on
forensic analysis of Conversations and Xabber decentral-
ized open-source XMPP/Jabber E2EE multi-client IM apps
on Android (with over 100,000 and 1,000,000 downloads
on Google Play Store respectively) which are interoper-
able with other XMPP clients that support OMEMO or OTR
encryption protocols.

3 � Design of experiment, analysis
methodology and tools

The design of the experiment required a set of controlled
actions which were conducted separately for the Conver-
sations and Xabber apps. The analysis methodology is
focused on the identification and recovery of forensic arte-
facts generated by both apps and stored on the Android
device’s internal memory and external Secure Digital (SD)
card. In each experiment, we installed and ran the current
versions available on the Google Play Store (at the time of
writing) which were Conversations v. 2.7.1+ pcr and Xab-
ber v. 2.6.6.645. We then proceeded to create IM accounts
for a local user, several contacts’ IM accounts and carried
out a set of actions to generate forensic artefacts. The
order of actions performed in our experiments for both
Conversations and Xabber apps to generate forensic arte-
facts and to create a realistic scenario for a typical user
include the following:

1.	 Disable the use of E2EE encryption for communication.
2.	 Exchange regular chat messages and files between the

user and all contacts.
3.	 Delete some messages and files sent and received by

the local user.
4.	 Enable the use of E2EE encryption for communication.
5.	 Verify contacts’ encryption keys which ensure forward

secrecy and secure message communication.
6.	 Exchange regular chat messages and files between the

user and all contacts.
7.	 Delete some messages and files sent and received by

the local user.
8.	 Block and delete one contact.

These set of actions in our experiments were played
manually over a period to generate forensic traces [20,
21], which can later be analysed based on our investi-
gative scenario (Sect. 4). These actions also ensure the
experiments can be generalized, comprehensive and

reproduced by a third party under the same operational
conditions to achieve the same results [17]. In our analy-
sis, most of the files and artefacts generated are stored
on the internal device memory which is normally inac-
cessible to users. To access the internal device memory
and recover evidential data, we used Cellebrite UFED 4PC
v. 7.32 to obtain a physical image and analysed the evi-
dential data using Cellebrite Physical Analyzer v. 7.31 [22].
Both tools are suitable commercial forensic tools used
to maintain forensic soundness. At present, Cellebrite
supports digital investigation on various third-party
Android applications and can extract data from unrooted
Android smartphones by exploiting certain bootloader
vulnerabilities that exist in many devices running oper-
ating system versions up to Android 9 (Pie). To achieve
results that are close to realistic scenarios, we used two
unrooted Samsung Galaxy S8+ Android devices running
Android 9 to conduct our experiments and analysis.

4 � Investigative scenario

Conversations and Xabber are open-source XMPP multi-
client IM applications that allow their users to communi-
cate securely via their existing accounts on IM providers
that use the XMPP protocol. To demonstrate the forensic
analysis, interpretation of results in this paper, and how it
can be applied in the context of a forensic investigation,
we derived questions similar to the ones in the forensic
analysis of ChatSecure by Anglano et al. [3] and created an
investigative scenario which is described as follows:

Both the Conversations and Xabber apps are installed
on an Android device which is being examined for eviden-
tial data and forensic files of interest. Forensic investiga-
tors are keen to extract digital evidence and answer the
following questions:

	 i.	 How many unique XMPP IM accounts associated
with the local users were configured and used with
the Conversations app and Xabber app?

	 ii.	 What are the identities and XMPP IM accounts asso-
ciated with contacts of the local user for each app?

	 iii.	 What is the timeline of communication with each of
the contacts and what messages were exchanged?

	 iv.	 Is there evidence of file exchanges between the local
user and contacts? If yes, when did these exchanges
occur and what is the content of such files?

	 v.	 Can encrypted messages be recovered from the
databases maintained by both apps?

	 vi.	 Can deleted data be recovered from both apps?

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9

In the following sections, we present the forensic analy-
sis of the Conversations and Xabber apps respectively.

5 � Forensic analysis of Conversations app

Conversations is a secure, decentralized, and open-source
Jabber/XMPP multi-client IM app for Android 4.0+ smart-
phones that allow users to communicate securely and
does not collect or store user information that could be
inferred to identify the user [23]. On installation, Conver-
sations places the application paths in the main folder “/
data/data/eu.siacs.conversations/” and external storage
card “/storage/emulated/0/Conversations” on the Android
device as shown in Fig. 1. By default, the app requires
the user to set up an existing account by specifying an
XMPP address (username) and password or register a new
account on the Conversation XMPP server and a random
password is automatically generated and saved into the
user account. Users can also add multiple accounts to an

existing account and use them at the same time to com-
municate with other IM contacts. We created two XMPP
IM accounts associated with the local user and three
other contact XMPP IM accounts (Roster or Buddylist) to
exchange messages with the local user. Details on these
IM accounts are as follows (Table 1).

The Conversations app uses OMEMO by default
for encrypting conversations and the user can toggle
between sending messages unencrypted or encrypted
using OMEMO or OpenPGP. Other functionalities include
contact and account management, notification, privacy,
and expert settings (to tunnel all connections through
Tor), contact management, and verification of counter-
part identity. The data such as chat records, configurations
generated during the running of Conversations is stored
in five subdirectories of the folder “eu.siacs.conversations”,
they are “app_KeyStore” “cache”, “databases”, “files” and
“shared_prefs” (see Fig. 1).

The shared_prefs and files subdirectories contain several
activity files, default preferences settings files, media, and
configuration files. For extensiveness, we mention a file
in the shared_prefs subdirectory named eu.siacs.conversa-
tions_preferences.xml which stores the app’s settings and
preferences. The most crucial evidential data of forensic
interest are stored in an unencrypted SQLite database
named “history” in the databases subdirectory under the
directory path “/data/data/eu.siacs.conversations/data-
bases/history”. The path “/storage/emulated/0/Conversa-
tions” is used to store multimedia resources such as sent
and received images, audio, and video files. This is the
directory path for the external SD (memory) card which is
accessible by attaching the Android device to a PC using
a USB cable (see Table 2).

Fig. 1   Main folder structure of the Conversations app

Table 1   Conversations local user and contact IM accounts

Local user’s XMPP IM accounts analysed Android smartphone behemoth@conversations.im
myotherbehemothaccount@conversations.im

Contacts’ XMPP IM accounts on other Android devices Contact 1: bob_behemoth@conversations.im
Contact 2: behemoth01@conversations.im
Contact 3: alice_behemoth@conversations.im

Deleted and blocked contact’s XMPP IM account alice_behemoth@conversations.im

Table 2   File paths of critical evidence sources of the Conversations app

Directory path Details

/data/data/eu.siacs.conversations/databases/
history

The unencrypted database containing chat messages and local user account information

/storage/emulated/0/Conversations/Media/ External SD card location where local copies of raw multimedia relating to audio and
video messages are stored

Vol.:(0123456789)

SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9	 Research Article

5.1 � Location of Conversations app artefacts

The history database stores information generated by
the Conversations app and associated user activities.
These include user information, the list of the corre-
sponding contacts, and local copies of messages that
have been exchanged in plaintext. This unencrypted
database contains 18 different tables. From our find-
ings, only 10 out of these 18 tables contain information
of forensic interest namely tables accounts, contacts,
conversations, identities, messages, messages_index, mes-
sages_index_content, prekeys, signed_prekeys, and ses-
sions (See Fig. 2). We now discuss the contents of these
tables along with their mapping to the user accounts

and activities to answer questions from our investiga-
tive scenario.

5.2 � Recovering account information

The accounts table contains information about the local
user account or multiple IM accounts set up by the user
including passwords for each one and stored in plaintext.
However, according to the privacy policy of the app’s
developers, user passwords are stored as hashes on Con-
versations’ XMPP servers [23]. Each IM account username
(XMPP address) is assigned a unique user identifier (pri-
mary key) named “uuid” in the table. From our investiga-
tive scenario, we found both distinct accounts for a local
user named behemoth@conversations.im and myotherbe-
hemothaccount@conversations.im stored in the table. Both
accounts were active and used to exchange messages with
contacts. The first part of each account is stored in the field
“username” and domain part @conversations.im stored
in the field named “server”, while the avatar field stores
a unique file name associated with the user’s account
image file stored in the subdirectory “/data/data/eu.siacs.
conversations/files/avatars/” and named 8f44441a2833f-
9542c14b2a258663a83420aed0b (see Fig. 3). Avatar images
can help investigators reveal the identity of a local user or
contacts if the avatar shows the face or feature that can be
distinctly associated with the individual.

The contacts table stores information associated with
active contacts the local user has added and exchanges
messages or files with. Information about deleted or
blocked contacts is not stored in this table. Each contact
is associated with a local user IM account identified by the
uuid from the accounts table and subsequently stored in
the “accountUuid” field. The contacts XMPP address (user-
names) are stored in the “jid” field and the last time of
message exchanged is stored in the “last_time” field. Other
information about each contact such as avatar and chat
group assigned, are stored in the “avatar” and “groups”
fields respectively.

Information about the first conversation exchanged
by the local user with all unique contacts is stored in
the conversations table. This includes information about
active, deleted, or blocked contacts. Each conversation Fig. 2   Structure of the main history database

Fig. 3   Fields of account table (fields containing irrelevant data are hidden)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9

is assigned a unique identifier stored in the “uuid” field,
the associated contact username is stored in the “name”
field and the full contact XMPP address is stored in the
“contactJid” field. The “created” field contains the Unix
epoch time the first message was sent to or received
from each contact. The identities tables store all only
active XMPP addresses which include the multiple local
user’s IM accounts and associated contacts identified by
unique identifiers stored in the “account” field.

This table does not store information associated with
deleted or blocked contacts. Each unique identifier in
the “account” field is a foreign key in the conversations
table stored in the “accountUuid” field. This key shows
the relationship between a contact that was added by
a specific local user IM account. The IM accounts asso-
ciated with the local user are assigned the integer 1
and 0 for contacts in the “ownkey” field. Information
on verified and trusted IM accounts are stored in the
“trust” field. Figure 4 shows the foreign key relationship
between the conversations and identities tables and
highlighting the deleted contact IM account informa-
tion stored in the conversations table. The conversations
table stores information associated with the creation

or start of a message with a contact (whether active
or deleted) by a local user using a specific IM account.

5.3 � Recovering chronology of chat logs, message
contents, and deleted files

Each time a message is sent or received, the Conversations
app stores details of both the textual content and associ-
ated metadata in the messages, messages_index, and mes-
sages_index_content tables. The messages_index and mes-
sages_index_content tables are similar as they both contain
the body of each message stored in fields named “body”
and “c1body” respectively and each associated with unique
identifiers. However, the messages table is the main table
in the database. It contains a detailed record of all textual
messages sent and received, the chronological time of
when each message was sent or received, and whether
each message was sent encrypted or unencrypted. The
messages table can be joined to the conversations table
by the field named “conversationUuid”. Also, the conver-
sations table can be joined to the accounts table by the
field named “accountUuid”. These joins and relationships
between all three tables can help to identify the correla-
tion of messages exchanged using a specific local user’s

Fig. 4   Conversations table and identities tables

Vol.:(0123456789)

SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9	 Research Article

IM account with a contact. Moreover, it can be used to
identify when the first message was created and sent to a
contact using a specific user IM account. Figure 5 illustrates
the relationships and joins between the accounts, conver-
sations, and messages tables which can help reconstruct
distinct Conversations accounts with messages.

In the figure, we see two distinct Conversations
accounts, named behemoth and myotherbehemothac-
count (see the records stored in accounts in Fig. 5). Both
these accounts have a unique identifier “uuid” which is a
foreign key in the conversations table. The “uuid” field (pri-
mary key) in the conversations table appears as a foreign
key in the messages table in the field “conversationUuid”.
Hence we see from the 2nd record in the conversations
table (uuid = d52cc163…), the behemoth@conversations.
im user account (accountUuid = 6e0ddfb…) started a
conversation (created first message) with the contact
behemoth01 (contactJid = behemoth01@conversations.
im) on the 17th of Apr, 2020 at 18:37:28 pm UTC + 1 (cre-
ated = ‘1587148648509′). In the 2nd record from the mes-
sages table (uuid= e0e069e4… and conversationUuid=
d52cc163…), we see details of a message (body= ‘Hello’)
sent on the 17th of Apr, 2020 at 18:37:48 pm UTC+1
(timeSent= ‘1587148668330’).

Other information stored in the messages table includes
local user and contacts IM accounts that sent or received
messages, the relative path of multimedia files exchanged,
message status indicating read, edited, or deleted and
unique identifiers for each messages which are stored in
the “uuid” field. Since all the records of messages and files
exchanged are stored in the messages table, we can eas-
ily reconstruct the sequence of events, contents of chat
messages, and show evidence of deleted files. In Fig. 6,
we see information associated with only active contact IM
accounts (behemoth01@conversations.im and bob_behe-
moth@conversations.im) stored in the “counterpart” field.
The “timeSent” and “body” fields store the time the com-
munication occurred and the textual content of the mes-
sage respectively. Record of messages and files exchanged
with the deleted and blocked contact (alice_behemoth@
conversations.im) are not stored in the table.

To demonstrate the chronology and sequence of
exchanged messages and files from our investigative sce-
nario, a total of 17 messages exchanged is shown in Fig. 6.
From this figure, we see that the first record in the field
named “body” corresponds to an unencrypted (encryp-
tion = 0) incoming message (status = 0) from the conver-
sations.im server on the 17th Apr. 2020 at 18:36:54 pm
UTC + 1 (Unix time stamp = ‘1587148614239′). The “type”

Fig. 5   Reconstruction of user accounts and messages

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9

field (type = 0), indicates the message is text. The 12th
record in the body field corresponds to an encrypted
(encryption = 5) outgoing message (status = 2) sent on
the 18th Apr. 2020 at 21:03:59 pm UTC + 1 (Unix time
stamp = ‘1587243839908′) to the contact behemoth01@
conversations.im. The “type” field contains the integer
2 indicating the message exchanged is a video file. In

Table 3, we presented a detailed interpretation of the rel-
evant fields.

There is no option to delete chat messages from the
Conversations app chat window at the time of this writ-
ing. However, files exchanged can be deleted, and chat
messages can be edited, cleared, or closed. In the scenario,
we edited one message and deleted an image from the

Fig. 6   Messages table

Table 3   Structure of the messages table

Name Role Type Meaning

uuid Primary key Text Unique identifier of the message
conversationUuid Foreign key Text Unique identifier of the conversation
timeSent – Int The date this message has been sent or received (13-digits Unix epoch format)
Counterpart – Text IM contact message was sent to or received from
Body – Text Body of the message
Encryption – Int Flag indicating whether a message is encrypted (5) or unencrypted (0)
Status – Int Flag indicating whether a message was sent (2 or 8) or received (0)
Type – Int Flag indicating whether the body of a message is text (0), image file (1) or video file (2)
relativeFilePath – Text The relative path of an image or video file sent or received using the AES Galois/Coun-

ter Mode of operation
Edited – Text Unique identifier for an edited message
Read – Boolean Flag indicating whether a message is read (1) or unread (0)
Deleted – Boolean Flag indicating whether the body of a message is deleted (1) or kept (0)

Vol.:(0123456789)

SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9	 Research Article

chat window. The 7th and 14th records correspond to
information about this action in the “edited” and “deleted”
(deleted = 1) fields as shown in Fig. 7. Once the deletion
occurred, the image was removed from the app’s chat win-
dow, but a local copy persists on the external SD card in
the directory /storage/emulated/0/Conversations/Media/
Conversations Images/. A copy of our deleted image on the
local user’s phone was recovered in the directory path /
storage/emulated/0/Conversations/Media/Conversations
Images/c0397114-23e6-4998-9473-3b9e8cea429b.jpg.

The prekeys, signed_prekeys, and sessions tables contain
information of multiple prekeys and verified keys used
by the local user’s multiple IM accounts in the forward
secrecy and secure message communication with contacts
as explained in OMEMO cryptographic analysis [24]. Our
experiment and analysis of Conversations were limited to
the use of OMEMO for encrypted communication because
it is considered to have better encryption features than
OpenPGP [7].

6 � Forensic analysis of Xabber app

Xabber for Android is a secure, decentralized, and open-
source Jabber/XMPP multi-client IM app [25]. On instal-
lation, Xabber places the application’s path in the main

folder “/data/data/com.xabber.android” on the Android
device as shown in Fig. 8. By default, the app requires the
user to set up an existing account by specifying an XMPP
address and password or register a new account on the
xabber.org server. Users can also add multiple accounts
to an existing account and use them simultaneously to

Fig. 7   Messages table showing record of edited and deleted messages

Fig. 8   The folder structure of the Xabber app

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9

communicate with other IM contacts. In our investiga-
tive scenario, we created two XMPP IM accounts associ-
ated with the local user and two other contact XMPP IM
accounts to exchange messages with the local user. One
of the contact IM accounts was deleted after a few chat
messages were exchanged. Details on these IM accounts
are as follows (see Table 4).

The Xabber app supports OTR encryption by default
for E2EE message encryption and the user can toggle
between sending messages unencrypted or encrypted
by switching the OTR plugin mode in the app’s security
settings. Other setting options include contact, chat and
account management, notification, privacy, connection,
and debug settings. Forensic artefacts and associated
metadata generated by Xabber are stored in 8 subdirecto-
ries of the folder “com.xabber.android”, they are “app_Key-
Store”, “app_textures”, “app_web_webview”, “cache”, “data-
bases”, “files”, “no_backup” and “shared_prefs” (see Fig. 8).

Like the Conversations app, the Xabber app subdirec-
tories contain several activity files, default preferences set-
tings files, media, and configuration files. The most crucial
evidential data of forensic interest are stored in two unen-
crypted Realm open source object database management
system files [26] (“xabber.realm” and “realm_database.
realm”) and one unencrypted SQLite database (“xabber.
db”). The path “/data/data/com.xabber.android/cache/
image_manager_disk_cache/” is used to store multime-
dia resources such as avatars, sent and received images,
audio, and video files. Details for each storage location is
described in Table 5.

6.1 � Location of Xabber app artefacts

From our findings, the xabber.realm database is the main
database where the Xabber app stores and maintains the
information concerning the accounts used on the app and
associated activities. The database stores local copies of
the messages in plaintext that have been exchanged and
contains 8 different tables. From our findings, only 4 out
of these 8 tables contain information of forensic interest
namely class_Attachment, class_ContactRealm, class_Mes-
sageItem, and pk. The realm_database.realm database
stores account information concerning the local user and
contact IM accounts. The database consists of 21 tables.
From our findings, only 7 out of these 21 tables contain
information of forensic interest namely class_Account-
Realm, class_ChatDataRealm, class_UploadServer, class_
XabberAccountRealm, class_XMPPUserRealm,class_SyncSta-
teRealm, and pk. Lastly, xabber.db database has 30 tables.
However, only 4 out of these 30 tables contain information
of forensic interest namely avatars, groups, groups_group,
otr, and otr_list.

We now discuss the contents of these databases, their
tables, and fields along with their mapping to the user
accounts and activities to answer questions from our
investigative scenario.

6.2 � Recovering account information

The realm_database.realm database stores information
of distinct XMPP IM accounts and passwords configured
by the local user on Xabber. The record is stored in the
class_AccountRealm table in plaintext. Each IM account
is assigned a unique identifier (primary key) and stored
in the “id” field. The account names, associated XMPP

Table 4   Xabber local user and
contact IM accounts Local user XMPP IM accounts on analysed Android smart-

phone
behemothlabs@xabber.org
otherbehemoth@xabber.org

Contacts’ XMPP IM accounts on other Android devices Contact 1: behemothlabs01@xabber.org
Contact 2: alice.behemoth@xabber.org

Deleted contact XMPP IM account alice.behemoth@xabber.org

Table 5   File paths of critical evidence sources of the Xabber app

Directory path Details

/data/data/com.xabber.android/files/xabber.realm Unencrypted database containing local user account information and
exchanged chat messages

/data/data/com.xabber.android/files/realm_database.realm Unencrypted database containing local user account information
data/data/com.xabber.android/databases/xabber.db Unencrypted database containing local user account and contacts’

information
/data/data/com.xabber.android/cache/image_manager_disk_

cache/
Location where local copies of raw multimedia audio and video files

are stored

Vol.:(0123456789)

SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9	 Research Article

server names, passwords, and authentication tokens are
stored in the username, serverName password, and token
fields respectively. The avatars table in the xabber.db
database, stores information of all IM accounts in the
“user” field, and the hash value of the local user’s avatar
in the “hash” field. The local user’s raw avatar (image
file) is stored in the directory “/data/data/com.xabber.
android/files/avatars/<hash value>”. In the xabber.db
database, the groups, and groups_group tables jointly
store group information on local user IM accounts while
the otr and otr_list tables jointly store information about
contacts XMPP IM accounts that have been verified.

Information associated with the contacts of the local
user is stored in the class_ChatDataRealm table of the
realm_database.realm database. The table contains one
record of multiple local user IM accounts with the cor-
responding contact IM account with whom messages
have been exchanged. The table also includes records

of deleted contacts. From our investigative scenario, we
recovered information regarding previous exchanges
between one of the local user’s IM account (otherbehe-
moth@xabber.org) and the deleted contact’s IM account
(alice.behemoth@xabber.org). However, the body of the
messages is not stored in this table.

6.3 � Recovering chronology of chat logs, message
contents, and deleted files

The xabber.realm database stores record of textual content
of both encrypted and unencrypted messages and meta-
data (e.g., the unique identifier for each message, a status
flag which indicates whether a message is sent or received,
corresponding contact IM account information, date
and time when the exchange occurred). These records
are stored in the class_MessageItem table. In Table 6, we
present a detailed interpretation of the relevant fields.

Table 6   Structure of the class_MessageItem table

Name Role Type Meaning

uniqueId Primary key String Unique identifier of the message
Account – String Local user IM account
User – String Contact user IM account message is exchanged with
Text – String Body of the message
Incoming – Boolean Flag indicating whether a message was received (true) or sent (false)
Encrypted – Boolean Flag indicating whether a message is encrypted (true) or unencrypted (0)
Offline – Boolean Flag indicating whether the contact IM account was online (true) or offline

(false)
Timestamp – Int The date this message has been sent or received (13-digits Unix epoch format)
Error – Boolean Flag indicating message error (true or false)
Delivered – Boolean Flag indicating message delivery (true or false)
Read – Boolean Flag indicating whether a message is read (true) or unread (false)

Fig. 9   class_MessagesItem table

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9

To demonstrate the chronology of messages exchanged
with each one of the contacts from our investigative sce-
nario, we present some of the contents of 13 messages
exchanged and stored in this table as shown in Fig. 9.

We see from the figure; both unencrypted
(encr ypted = False) and encr ypted messages
(encrypted = True) exchanged between the local user’s
IM account (behemothlabs@xabber.org) and the contact
(behemothlabs01@xabber.org) are stored in plaintext in
the field named “text”. Information associated with the
local user’s actions are stored in the “action” field when
OTR encryption is enabled (action = otr_encryption) and
successful verification of the contact’s encryption key is
complete (action = otr_smp_verified). All subsequent
messages exchanged between the user and contact are
encrypted (encrypted = True) until OTR encryption is disa-
bled (action = otr_unreadable).

Messages exchanged with deleted contacts are also
stored in the class_MessageItem table. In Fig. 9, we see
from the last record in the table, an unencrypted mes-
sage sent (encrypted = False and incoming = False) from
the local user’s IM account (otherbehemoth@xabber.org)
to the deleted contact (alice.behemoth@xabber.org) on
the 19th Apr. 2020 at 20:37:20 pm UTC + 1 (Unix time
stamp = ‘1587328640815′) is stored in the field “text”
(text = ‘Hello there’).

The class_Attachment table in the xabber.realm data-
base, stores record file attachments sent or received by
the local user accounts (see Fig. 10). Each file is assigned
a unique identifier and stored in the “uniqueId” field. The
“fileUrl” field contains the direct link to file attachment con-
tent on XMPP servers. By entering the URL link stored in
the field into a web browser, for example (https​://uploa​
d02.xabbe​r.org/4f9ed​c.../QG.../title​), the file uploaded by
the Xabber client can be accessed directly.

Deleted media files such as images can also be recov-
ered from the /data/data/com.xabber.android/cache/
image_manager_disk_cache/ directory path within the
Xabber app’s Android filesystem folder. In the directory,
each media file is stored as a unique file name (hash)
with the “0.0” extension. In our investigative scenario, we
deleted an image that was received by the local user in the

app chat window. However, a raw copy of the same image
was recovered from this directory.

7 � Discussion

Lack of privacy and anonymity on encrypted instant mes-
saging platforms are huge concerns for privacy advocates
and many users. At this moment, apps like WhatsApp have
been criticised for their new privacy policy which allows
the vendor to collect user data and account information
for marketing purposes. Rival platforms such as Signal
and Telegram apps require users to provide a valid phone
number that is tied to their account during registration.
These concerns have made many users switch to open-
source XMPP multi-client instant messaging apps which
provide E2EE and anonymity for communication. We
believe these reasons make our work even more relevant
as many users utilize these applications for private legiti-
mate communication but also illicit ones. Therefore, to the
best of our knowledge, this is the primary forensic analysis
of Conversations and Xabber, two popular XMPP multi-
client apps that support two distinct protocols, OMEMO
and OTR respectively for E2EE communication. The goal of
this research was to analyse databases maintained by both
apps and the internal device storage locations on Android
devices for digital forensic artefacts and metadata. The
study also aimed to show the importance of correlation
and interpretation of the artefacts generated by each app
and present findings that would be beneficial for forensic
investigators.

Our findings show both Conversations and Xabber apps
store local copies of user data in unencrypted databases,
internal and external device storage locations, that can be
extracted from an Android mobile device during mobile
forensic analysis. These include user account information,
user contact information, chat messages, files exchanged
and evidence of deleted messages or contacts. These find-
ings are similar to the results shown in the forensic analysis
of Telegram [17] and IMO [18] apps on Android devices.
However, there are major differences due to the features
and E2EE protocols used. Both Conversations and Xabber
apps support the use of multiple XMPP IM accounts by a

Fig. 10   class_Attachment table

https://upload02.xabber.org/4f9edc.../QG.../title
https://upload02.xabber.org/4f9edc.../QG.../title

Vol.:(0123456789)

SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9	 Research Article

local user to send messages, support the exchange of mes-
sages with other decentralized XMPP clients irrespective of
the E2EE protocol implemented and allow a user to enable
or disable encryption for communication.

These features are indicative of how forensic artefacts
that persist in the apps’ databases are stored compared to
Telegram and IMO, which are centralized IM apps, imple-
ment alternative protocols for E2EE and are not interop-
erable with other messaging apps. Results presented in
the forensic analysis of ChatSecure on Android devices
[3], which uses OTR for E2EE communication, show local
copies of both exchanged messages and files can be
recovered from two distinct databases maintained by the
app. The findings are consistent with results shown from
our analysis of the Xabber app which also supports OTR.
Although ChatSecure uses encrypted SQLite databases,
Xabber uses a combination of unencrypted Realm open-
source object databases and an SQLite database to store
user data locally. It is also worth noting that all data and
forensic artefacts associated with both Conversations and
Xabber apps are deleted from the mobile device and can-
not be recovered once the apps are uninstalled.

Therefore, the discussion of our findings and inter-
pretation of artefacts from this study can be valuable for
forensic investigators that come across these apps during
mobile forensic investigations.

8 � Conclusion

In this paper, we identify all the artefacts left by Conversa-
tions and Xabber apps. In our analysis of the Conversa-
tions app which uses OMEMO for E2EE, we access the main
database maintained by the app, analyse, and recover all
critical user’s information stored in plaintext. These include
information associated with the local user’s multiple IM
accounts, information associated with contact IM accounts
(active and deleted), the textual content of messages
(encrypted and unencrypted) exchanged, files including
deleted ones, and chronology in the order of their occur-
rence. Although we showed information associated with a
deleted contact’s IM account, information associated with
messages exchanged with such contact is not stored in the
app’s main database.

In our analysis of the Xabber app which uses OTR for
E2EE, we were able to access the three databases main-
tained by the app. We identified, analysed, and showed
information associated with the local user’s multiple
IM accounts, information associated with all contact IM
accounts (active and deleted), deleted files and textual
content of all encrypted and unencrypted messages
exchanged.

It is worth noting that the recovery of critical informa-
tion as demonstrated in this study cannot be generalized
to other E2EE decentralized open-source XMPP/Jabber
multi-client instant messaging apps. However, for foren-
sic investigators, this study can aid forensic investigations
for both Conversations and Xabber apps and our meth-
odology can be adopted in the forensic analysis of simi-
lar XMPP/Jabber apps. Future directions include analyses
of XMPP private servers for traces of evidential forensic
artefacts.

Funding  This research did not receive any specific grant from fund-
ing agencies in the public, commercial, or not-for-profit sectors.

Declaration 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creat​iveco​mmons​
.org/licen​ses/by/4.0/.

References

	 1.	 Express VPN (2019) The most secure messaging apps in 2019,
Express VPN. https​://www.expre​ssvpn​.com/blog/best-messa​
ging-apps/. Accessed April 18, 2020

	 2.	 Conference Support Section (2013) Organized crime branch,
division for treaty affairs, unodc, comprehensive study on cyber-
crime, United Nations off. drugs crime. http://www.unodc​.org/
docum​ents/organ​ized-crime​/UNODC​_CCPCJ​_EG.4_2013/CYBER​
CRIME​_STUDY​_21021​3.pdf. Accessed April 18, 2020

	 3.	 Anglano C, Canonico M, Guazzone M (2016) Forensic analysis
of the ChatSecure instant messaging application on android
smartphones. Digit Investig 19:44–59. https​://doi.org/10.1016/j.
diin.2016.10.001

	 4.	 Express VPN (2019) How to keep your messages private and
anonymous. https​://www.expre​ssvpn​.com/blog/anony​mous-
chat-servi​ces/. Accessed April 18, 2020

	 5.	 XMPP Standards Foundation (XSF) (2020) An overview of XMPP,
about XMPP. https​://xmpp.org/about​/techn​ology​-overv​iew.
html. Accessed April 18, 2020

	 6.	 Borisov N, Goldberg I, Brewer E (2004) Off-the-record commu-
nication, or, why not to use PGP. In: Proceedings of the 2004
ACM workshop on privacy in the electronic society—WPES ’04.
ACM Press, New York, p 77. doi: https​://doi.org/10.1145/10291​
79.10292​00

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.expressvpn.com/blog/best-messaging-apps/
https://www.expressvpn.com/blog/best-messaging-apps/
http://www.unodc.org/documents/organized-crime/UNODC_CCPCJ_EG.4_2013/CYBERCRIME_STUDY_210213.pdf
http://www.unodc.org/documents/organized-crime/UNODC_CCPCJ_EG.4_2013/CYBERCRIME_STUDY_210213.pdf
http://www.unodc.org/documents/organized-crime/UNODC_CCPCJ_EG.4_2013/CYBERCRIME_STUDY_210213.pdf
https://doi.org/10.1016/j.diin.2016.10.001
https://doi.org/10.1016/j.diin.2016.10.001
https://www.expressvpn.com/blog/anonymous-chat-services/
https://www.expressvpn.com/blog/anonymous-chat-services/
https://xmpp.org/about/technology-overview.html
https://xmpp.org/about/technology-overview.html
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1145/1029179.1029200

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:430 | https://doi.org/10.1007/s42452-021-04431-9

	 7.	 XMPP Standards Foundation (XSF) (2020) XEP-0384: OMEMO
encryption. https​://xmpp.org/exten​sions​/xep-0384.html.
Accessed April 18, 2020

	 8.	 Statista (2020) Share of global smartphone shipments by oper-
ating system from 2014 to 2023, Statista.Com. https​://www.
stati​sta.com/stati​stics​/27230​7/marke​t-share​-forec​ast-for-smart​
phone​-opera​ting-syste​ms/. Accessed April 18, 2020

	 9.	 Al Mutawa N, Baggili I, Marrington A (2012) Forensic analysis of
social networking applications on mobile devices. Digit Investig
9:S24–S33. https​://doi.org/10.1016/j.diin.2012.05.007

	10.	 Quick D, Choo K-KR (2017) Pervasive social networking foren-
sics: intelligence and evidence from mobile device extracts.
J Netw Comput Appl 86:24–33. https​://doi.org/10.1016/j.
jnca.2016.11.018

	11.	 Norouzizadeh-Dezfouli F, Dehghantanha A, Eterovic-Soric B,
Choo K-KR (2016) Investigating social networking applications
on smartphones detecting Facebook, Twitter, LinkedIn and
Google+ artefacts on Android and iOS platforms. Aust J Forensic
Sci 48:469–488. https​://doi.org/10.1080/00450​618.2015.10668​
54

	12.	 Akinbi A, Ojie E (2021) Forensic analysis of open-source XMPP
multi-client social networking apps on iOS devices. Forensic
Sci Int Digit Investig 36:301122. https​://doi.org/10.1016/j.fsidi​
.2021.30112​2

	13.	 van Dongen WS (2007) Forensic artefacts left by pidgin mes-
senger 2.0. Digit Investig 4:138–145. https​://doi.org/10.1016/j.
diin.2008.01.002

	14.	 Ballinger C (2016) The end of ChatSecure Android, Chatsecure.
Org. https​://chats​ecure​.org/blog/chats​ecure​-andro​id-depre​
cated​/. Accessed April 18, 2020

	15.	 Mehrotra T, Mehtre BM (2013) Forensic analysis of Wickr applica-
tion on android devices. In: 2013 IEEE international conference
on computational intelligence and computing research. IEEE,
pp 1–6. doi: https​://doi.org/10.1109/ICCIC​.2013.67242​30

	16.	 Anglano C (2014) Forensic analysis of WhatsApp messenger on
Android smartphones. Digit Investig 11:201–213. https​://doi.
org/10.1016/j.diin.2014.04.003

	17.	 Anglano C, Canonico M, Guazzone M (2017) Forensic analysis
of telegram messenger on Android smartphones. Digit Investig
23:31–49. https​://doi.org/10.1016/j.diin.2017.09.002

	18.	 Sudozai MAK, Saleem S, Buchanan WJ, Habib N, Zia H (2018)
Forensics study of IMO call and chat app. Digit Investig 25:5–23.
https​://doi.org/10.1016/j.diin.2018.04.006

	19.	 Computer Fraud & Security (2020) Hundreds of alleged criminals
arrested after European authorities infiltrate encrypted chat ser-
vice. Comput Fraud Secur 2020(7):1–3. https​://doi.org/10.1016/
S1361​-3723(20)30067​-1

	20.	 Lin X, Chen T, Zhu T, Yang K, Wei F (2018) Automated forensic
analysis of mobile applications on Android devices. Digit Inves-
tig 26:S59–S66. https​://doi.org/10.1016/j.diin.2018.04.012

	21.	 Scrivens N, Lin X (2017) Android digital forensics. In: Proceed-
ings of the ACM turing 50th celebration conference-China—
ACM TUR-C ’17. ACM Press, New York, pp 1–10. doi: https​://doi.
org/10.1145/30639​55.30639​81

	22.	 Cellebrite (2020) Cellebrite UFED 4PC and Physical Analyzer.
https​://www.celle​brite​.com/en/home/. Accessed April 18, 2020

	23.	 Conversations, Privacy Policy (2020) Acc. Privacy Policy. https​://
accou​nt.conve​rsati​ons.im/priva​cy/ Accessed April 18, 2020

	24.	 Verschoor SR (2016) OMEMO: Cryptographic analysis report.
http://alexa​ndria​.tue.nl/extra​1/afstv​ersl/wsk-i/Versc​hoor_2016.
pdf%5Cn https​://conve​rsati​ons.im/omemo​/audit​.pdf. Accessed
April 22, 2020

	25.	 Xabber.com (2020) Introducing Xabber, Xabber. https​://www.
xabbe​r.com/. Accessed April 22, 2020

	26.	 Realm (2020) Realm database. Realm database https​://realm​.io/
produ​cts/realm​-datab​ase. Accessed April 22, 2020

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://xmpp.org/extensions/xep-0384.html
https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://doi.org/10.1016/j.diin.2012.05.007
https://doi.org/10.1016/j.jnca.2016.11.018
https://doi.org/10.1016/j.jnca.2016.11.018
https://doi.org/10.1080/00450618.2015.1066854
https://doi.org/10.1080/00450618.2015.1066854
https://doi.org/10.1016/j.fsidi.2021.301122
https://doi.org/10.1016/j.fsidi.2021.301122
https://doi.org/10.1016/j.diin.2008.01.002
https://doi.org/10.1016/j.diin.2008.01.002
https://chatsecure.org/blog/chatsecure-android-deprecated/
https://chatsecure.org/blog/chatsecure-android-deprecated/
https://doi.org/10.1109/ICCIC.2013.6724230
https://doi.org/10.1016/j.diin.2014.04.003
https://doi.org/10.1016/j.diin.2014.04.003
https://doi.org/10.1016/j.diin.2017.09.002
https://doi.org/10.1016/j.diin.2018.04.006
https://doi.org/10.1016/S1361-3723(20)30067-1
https://doi.org/10.1016/S1361-3723(20)30067-1
https://doi.org/10.1016/j.diin.2018.04.012
https://doi.org/10.1145/3063955.3063981
https://doi.org/10.1145/3063955.3063981
https://www.cellebrite.com/en/home/
https://account.conversations.im/privacy/
https://account.conversations.im/privacy/
http://alexandria.tue.nl/extra1/afstversl/wsk-i/Verschoor_2016.pdf%5Cn
http://alexandria.tue.nl/extra1/afstversl/wsk-i/Verschoor_2016.pdf%5Cn
https://conversations.im/omemo/audit.pdf
https://www.xabber.com/
https://www.xabber.com/
https://realm.io/products/realm-database
https://realm.io/products/realm-database

	Forensic analysis of open-source XMPPJabber multi-client instant messaging apps on Android smartphones
	Abstract
	1 Introduction
	2 Related works
	3 Design of experiment, analysis methodology and tools
	4 Investigative scenario
	5 Forensic analysis of Conversations app
	5.1 Location of Conversations app artefacts
	5.2 Recovering account information
	5.3 Recovering chronology of chat logs, message contents, and deleted files

	6 Forensic analysis of Xabber app
	6.1 Location of Xabber app artefacts
	6.2 Recovering account information
	6.3 Recovering chronology of chat logs, message contents, and deleted files

	7 Discussion
	8 Conclusion
	References

